
Chapter 4 

Lexical Analysis(Scanner) 
 

 
What is a Lexical Analyzer? 

 
A Lexical Analyzer or Scanner is an algorithm that groups the characters of the 

source code to form the Tokens, moreover, it returns the Internal 

Representation Number of these tokens, which is a kind of an ID that assigned 

for each token.  

These tokens are divided into 3 kinds: 
 

1.  Names : Which is any name we have in a program. These in turn are 

divided into 2 types:  

a. Keywords/Reserved: which are words such as if/else/while. These 

names can’t be used as variable names. They have a specific place and 

function 

b. User Defined Names, Which are the names declared by the user. 

 
2.  Values : such as integers(1, 2, 3, 4) or floating point(1.1, 2.34, 5234.123) et 

 
3.  Special Symbols/Tokens : And these are the logical(==, 

&&, ||) and arithmetic operations(+, -, *, /), parenthesis([], {}, 

()), or any other tokens that are not from the first or second 

kind. 

Let us apply the scanner to this short segment of code: 
 

 
while(x>=100) 

{ 

n +=x; 

x++ 

  } 

 

This results in this set of tokens : 
 

While , ( , x , >= , 100 , ) , { , n , += , x , ; , x , ++ , } . 

 
Referencing these tokens against a certain keywords table like this one : 
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index Symbol 

.. .. 

33 While 

.. .. 

67 >= 

.. .. 

.. .. 

 
Leads us to these ID's : 

 

 

 

Token Internal Representation 
Number 

While 33 

( 84 

x 100 

>= 67 

100 200 

) 85 

{ 92 

n 100 

+= 77 

x 100 

; 81 

x 100 

++ 75 

; 81 

} 93 

 

note that all user defined names have the same number. This is because to the 

syntax analyzer, it doesn't matter what the variable is, it just matters that there 

is a variable there. 

 
Type Checking implementation 

During this process of analysis, The Compiler builds what is called the Symbol 

Table. The Symbol Table is the table which contains the user defined 

name(mostly variables), its type, data type, and its values. The Symbol table for 

this segment of code would be: 
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Name Type Data type Value 

compute function-name integer 0 

n varaiable integer 0-20 

x variable float 4.5 

y variable float 0-9.0 

m constant integer 10 

 

To perform type checking, the compiler takes the name, and checks the 

keywords table, if it is not in the keywords table, it is a user defined variable. if 

it is a user defined name, it then goes to check the symbol table. If it is not 

defined in the symbol table, it returns that the variable is not defined (unknown 

symbol/variable deceleration error), if it is in the symbol table, it retrieves its 

type. If the operation being performed on the variable is not compatible with the 

type of the variable, it returns that the operation is not compatible( mismatch - 

type error ). 

 
 

 
. 

. 

. 

int compute(int,int);  
int n;  
float x=4.5 , y; 
y=2*x;  
const  int  m=10; 
n=compute(10,m); 

. 

. 

. 
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Regular Expressions(Regular Languages) 

Regular Expressions (Languages) are a class of language that are important for 

lexical analysis, since we use them to define and generate tokens. This Class of 

languages is defined recursively. 

 
Defining a Language as a Set 

 
We Say that : 

 

 Def: An Alphabet V is a Set of Symbols. 
 
For example, our alphabet is the set V = {a,b,...,y,z}.  
 

 Def: A String is a Sequence of Symbols Taken From the Alphabet. 
 
So if V is our alphabet, then : 

 
abc

dsd

a 

qwe

az 

asa

sd 

 

Are all strings defined on V.  

Note: we can define an infinite number of strings on an alphabet V. Uploaded By: Ayham NobaniSTUDENTS-HUB.com



  
Formally, we define: 
 

S is the set of all strings over some alphabet V. 
 

Def: given strings x,y ∈ S, then define the 

concatenation operation on x and y as follows:  

XY=The string formed by following x with y 

Note that XY ≠ YX . We say that the concatenation operation is not commutative. 

Uploaded By: Ayham NobaniSTUDENTS-HUB.com



Let us Define a special string, called the empty string, which we denote with λ. 
Notice that λX = Xλ = X.  

Formally, we can say: 

λ is the identity element of the concatenation operation. 
 

Def: Given an alphabet V, a language L over V is a set of strings formed 
from V.  
 
By this definition, these sets Are all languages: 

Given V={a, b, , … ,z} 

L1={aa, gb, c}  

L2={asdasd, qwe, asd}  
L3={abb} 

 
This definition also leads us to the conclusion : 
 

There are an ∞ number of languages defined on an alphabet.  
 

Set of Operations On Languages 
 
Given an Alphabet V, assume that : 

 

1. L = {set of all languages defined on V}  

2. L = {L1, L2, L3,....Ln, …., ∞} 

We will define a 3 operations on L , ie, the operands are languages belonging to L. 

 

Concatenation Operation 
 
Given that L, M are languages over an alphabet V, then  

LM = "L concatenated with M" = {xy | x ∈ L, y ∈ M}. 

 

Given V={a, b, c} 
 
For Example let L={ab, bba}} and M={aa,bb}, then :  
 
LM={abaa, abbb, bbaaa, bbabb }  
 
ML={aaab, aabba, bbab, bbbba}} 
 
Note that : 

 
1. LM ≠ ML. (Concatenation on languages is not commutative). 

 
2. L{λ} = {λ}L = L. (λ is the identity for concatenation). 
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3. L{ } = { }L = { }. 

 
The OR "|" Operation 

OR is ∪ operation in set theory 

 
Given that L, Mare languages over an alphabet V, then 
 

L|M = "L OR M" = {x | x ∈ L or x ∈ M} = L ∪ M.  

Note that : 

1. L|M = M|L. (OR on language is commutative) 

 

2. L|{ } = { }|L = L. (The empty set is the identity element for the OR operation) 

 

 

The Closure "*" Operation (A Unary Operation) 
 
Given that L is a language over an alphabet V then L* is: 
 

L* = L0 ∪ L1 ∪ L2 ∪ ..... ∪ L∞ 

   L+ = L* - {λ} 
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The Recursive Definition of Regular Languages 
 
Given an alphabet V then : 

 

1. ∅ = { } = empty language is a regular language denoting the language 

{ } 

2. λ = {λ} is a regular language denoting the language λ 

3. For every element a ∈ V , a= {a} is a regular language denoting the 

language {a} 

4.  Given R and S are regular languages denoting the regular languages 
LR and LS respectively, then : 

 
a) RS is a regular language denoting LRLS 

 
b) R|S is a regular language denoting LR|LS 

 
c) R* is a regular language denoting LR*  

 

 

EXAMPLES: 

Given R={a} and S={b}, then : 
 
- RS={ab}, 

 
- R|S={a,b}, 

 

- R*= {a}0 ∪{a}1 ∪.... 

= {λ,a,aa,aaa,....} 
 

= A string that consists of any number of a's 
 

- Lets say we took (RS)* then 
 

(RS)* = {ab}0 ∪{ab}1 ∪..... 

= {λ,ab,abab,ababab,abababab,....} 

 
= A string that consists of any number of "ab"s 

 
- Lets say we took (a|b)* , then : 

 

(a|b)* = ({a}|{b})* = ({a}∪{b})* 

Uploaded By: Ayham NobaniSTUDENTS-HUB.com



= ({a,b})* = Any string of a's and b's 
 
 
- Let us say we took (0|1)*00, then By the definitions above, this results in any 

binary string that ends with 00, such as 

{100,000,1100,0000,...} 
 
- Let us say we took (a|b)*bbb(a|b)*, then By the definitions above, this results 

in any string of a's and b's that contains at least 3 consecutive b's such as 

{bbb,abbb,bbba,bbbbb,...} 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Defining Tokens Using Regular Languages: 
 
we have 3 types of tokens: 

 
1. Names 

2. Values 

3. Special Symbols 
 
The scanner must recognize these and be able to distinguish them. 

 
Names 

 
In programming languages, names are: letter followed by letters or 

digits. The regular language for names is :  

Letter(Letter|digit)* = L(L|d)* 

Values 
 
In programming languages, there are multiple types of values, and they can all be 
defined using a regular language 

 

1. Integers :  
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 [+|-]digit(digit)* = [+|-]dd* = [+|-]d+ 

Note : [x] means we take x zero or one time only. 

 

2. Floating Point Numbers : 

[+|-] d+.d+  

[+|-] d.d+E(+|-)d+ 

 
Special Symbols 

 
The Set of special symbols {+,-,<=,....} are each given by its own regular 

languages. For example, the symbol + has its own regular languages given by : 

+ = {+} 
 

* = {*} 
 

<= = {<}{=} = {<=} 
 
or ++ , which is given by 

 
++ = {+}{+} = {++} 
 

Finite State Automata(FSA) 
 
 
The Question remains: How do we build an algorithm to recognize(accept) strings 
whose languages are regular languages? 

 
 
Tokens in source codes are strings of regular languages. The algorithm that 

recognizes these strings is called the Finite State Automata or the Finite 

State Machine or the Finite State System. The Finite State Automata 

contains : 

1. A Set of states. 

2. Transitions between states. 

3. Input string to be examined. 
 
Given that we have this Finite State Automata(FSA) : 
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- The set of states Q={S,A,B,G,H} 
S is called the Starting State.  
H is called the Final(Halt) State. 
 

- The transitions between the states are given by{+, -, d, .}  
 

- Given the input string is "-ddd.dd" eg "-511.32". 
 

-  

Tracking through the states on this string, we start at state S : 

 
 

Since H is the final state, we say that the string is accepted, or more formally : 

 
Def: A string is accepted or recognized if after scanning the 

whole string we end up with a final state.  

The Regular Language(expression) generated(accepted) 

by this machine L(M) is given by : 

L(M)=[+|-]{d+., .d+, d+.d+} 
 
Other examples of finite state machines are : 

 

1. Names  
 

2. Integers 
 

3. <= 
 

 
- d d d . d d 

S--->A--->B--->B--->B--->H--->H--->H 
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Types of Finite State Automata 
 
there are 2 types of Finite State Automata 

 
(A) None-Deterministic Finite State Automata (NDFSA) 

 
An algorithm is none-deterministic or fuzzy if there are options(choices) in the 

algorithm. An example of a none-deterministic algorithm is the solution of the 

Knight Tour Problem, which is based on Backtracking Techniques. 

A Finite State Automata is none-deterministic if : 
 

1. There are λ-transitions(moves) in the FSA : 
 

2. Or There is more than one transition from the same state on the same input 
: 

 
In Both cases, There are a choices (trial and error) to implement. The only 

way to solve none-deterministic machines is to use backtracking. This is not 

practical in a compiler, because backtracking is a very time consuming 

algorithm and is extremely slow. 

Fortunately, There are algorithms to transform any NDFSA to a DFSA. 

Therefore, we can assume always in the assumption that our machine is 

deterministic 
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(B) Deterministic Finite State Automata(DFSA) 

 
If A Machine is not none-deterministic, we call it a Deterministic Finite State 
Automata, ie : 

 

1. There are NO λ-moves(transitions). 

 

2. AND There is NO more than one transition from the same state on the same 

input. 
 
Only Deterministic Finite State Automata are used for compilers. 

 

 
Transformation of NDFSA to DFSA 

 
The Algorithm that transforms an NDFSA to a DFSA consists of the following 
steps : 

 

1. Removal of λ transitions. 

2. Removal of none-determinism. 

3. Removal of inaccessible states. 

4. Merging equivalent states. 
 
 

Given the following NDFSA : 

 
What is L(G) = ? 
 

L(G)=[+|-] (d+ | d+.d+ | d+. | .d+) 
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And we want to transform it into a DFSA. Let’s follow through the steps :  

Let’s transform the Finite state machine into a transition table: 

State \ 
VT 

+ - . d λ 

S A A   A 

A    B,C E 

B    B F 

C   D C  

D    D F 

E   G E  

G    H  

H    H F 

F      

 

(1) Removal Lambda Transitions 

 

1. Consider S-λ->A 
 

            Add all transition in Row A to S. 
 

2. Repeat Step(1) for all States with λ Transitions 
 

3. Mark all states from which there is a λ Transition to a final State. Mark 
 

              it as the final State. 
 

4. Delete the λ Column This results in this table : 
 

 
 

State \ 
VT 

+ - . d 

S A A G B,C,E 

A   G B,C,E 

B    B 

C   D C 

D    D 

E   G E 

G    H 

H    H 

F     
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(2) Removal Of Non-Determinism 

 
Which mean not having more than 1 transition on 1 input. 

 

1. Consider [B,C,E]. Lets add this and treat it as a new state in the table. 
 

2. If at least one of the states [B,C,E] is a final state, then we make it a final  
state. 

 

3. Repeat steps (1) and (2) for all non-deterministic states 

 

4. The Machine is now deterministic  
 

This results in this table : 

 

 

 

 

E   G E 

G    H 

H    H 

F     

B,C,E   D,G B,C,E 

D,G    D,H 

D,H    D,H 

 
 

 

(3) Removal of Non-Accessible States 

 

1. Mark the Initial State 
 

2. Mark all states for which there is a transition from S 
 

3. Repeat step (2) for all marked states. 
 
 
 

This results in this table : 
 
 
 

State \ 
VT 

+ - . d 

S A A G B,C,E 

A   G B,C,E 

B    B 

C   D C 

D    D 
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State \ 
VT 

+ - . d 

✓ S A A G B,C,E 

✓ A   G B,C,E 

B    B 

C   D C 

D    D 

E   G E 

✓ G    H 

✓ H    H 

F     

✓ B,C,E   D,
G 

B,C,E 

✓ D,G    D,H 

✓ D,H    D,H 

 

 

 

4. Delete all unmarked states . This results in this simplified Table : 
 
 
 
 
 

 

State \ 
V T 

+ - . d 

✓ S A A G B,C,E 

✓ A   G B,C,E 

✓ G    H 

✓ H    H 

✓ B,C,E   D,
G 

B,C,E 

✓ D,G    D,H 

✓ D,H    D,H 

 

 

 
 

 

 
This is now a Deterministic Machine That accepts the same languages as the 

original NDFSA . For Clarity, Let.s rename [B,C,E] to X, [D,G] to Y, [D,H] to Z. Uploaded By: Ayham NobaniSTUDENTS-HUB.com



 

State \ 
V T 

+ - . d 

✓ S A A G X 

✓ A   G X 

✓ G    H 

✓ H    H 

✓ X   Y X 

✓ Y    Z 

✓ Z    Z 

 

 

And the graph now looks like this : 

 

 
(4) Merging Equivalent States 

 
 
DEF: State p and state q in a FSA are said to be equivalent if: 
For any string X, machine M in state p accepts X iff machine M in state q accepts 
X. 
 
 
We will use the feasible-pairs table method in merging equivalent states.  
A state pair (p,q) is a feasible pair if: 
 

1. {p,q}⊂F OR {p,q}⊂Q-F ie, either both {p,q} are final states or both {p,q} are 
not final states. 

2. for every token(symbol) a∈VT, either both {p,q} have transitions on "a", or 

both {p,q} don't have transitions on "a". 
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3. p ≠ q ; 
 

Note:(p,q) ≡ (q,p). 

 
 
 
for example, given the following NDFSA, represented by the following transition 
table : 
 

 

State \ 
VT 

a b c 

1 2 5  

2 3 4 1 

3 5 2  

4 6  1 

5 1 4 1 

6 4  1 

7 3 5 3 

 

To find the feasible pairs, first we must separate the set of final states from the 

set of non-final states. therefore, we have these 2 sets  

Q-F = {1,2,3,5,7} 
 

F = {4,6} 
 

 
this results in this feasible-pairs table : 

 

feasible 

pairs\VT 

a b c 

(1,3) 2,5 5,2  

(2,5) 3,1 4,4 1,1 

(2,7) 3,3 4,5 1,3 

(5,7) 1,3 4,5 1,3 

(4,6) 6,4  1,1 

 
 
DEF: A feasible pairs (p,q) is marked if there is a transition to a pair (r,s) such 
that : 

 

1. r ≠ s. AND 

 

2. (r,s) is either marked OR not among the feasible pairs. 
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This results in this feasible-pairs table : 

 

feasible 

pairs\ VT 

a b c 

(1,3) 2,5 5,2  

(2,5) 3,1 4,4 1,1 

✓ (2,7) 3,3 4,5 1,3 

✓ (5,7) 1,3 4,5 1,3 

(4,6) 6,4  1,1 

 
We go through the table once more, in case we marked something later on in the 

table that would effect the pairs in the top of the table. 

if a pair (p,q) remains unmarked, that means that p is equivalent to q. therefore, 
we merge p and q, choosing one of them : 

 
1. 1 ≡ 3 ---> 1 

2. 2 ≡ 5 ---> 2 

3. 4 ≡ 6 ---> 4 
 
We then merge, replacing every 3 with a 1, every 5 with a 2, and every 6 with a 4,  
resulting in this state table : 
 

 

State\ 
VT 

a b c 

1 2 2  

2 1 4 1 

4 4  1 

7 1 2 1 

 
 
This is the machine with the minimum number of states. 
Let’s go back to our example Last time, we reached this state table : 

 

State \ 
V T 

+ - . d 

✓ S A A G X 

✓ A   G X 

✓ G    H 

✓ H    H 

✓ X   Y X 

✓ Y    Z 

✓ Z    Z 
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Lets quickly apply what we learned on this table. 
 
Separate the final from the non-final states :  

Q-F ={S,A,G} 
F = {H,X,Y,Z} 

 
Constructing the feasible pairs table : 

 

feasible 

pairs\VT 

+ - . d 

(H,Y)    H,Z 

(H,Z)    H,Z 

(Y,Z)    Z,Z 

 

1. Marking feasible pairs 

 

feasible 

pairs\VT 

+ - . d 

(H,Y)    H,Z 

(H,Z)    H,Z 

(Y,Z)    Z,Z 

 

2. Merge 

and Replace 

H ≡ Y ≡ Z --> H 

Resulting in this state table : 
 

State \ 
V T 

+ - . d 

✓ S A A G X 

✓ A   G X 

✓ G    H 

✓ H    H 

✓ X   H X 

 
This is the simplest form of the machine. 

 
Now we must check if the machine accepts the same language as our original 
machine. 
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This machine accepts the language.   
 
L(G) = [+|-] { dddd, ddd.dd, dddd., .dddd } 
 
 
Which is the same language of our original machine. 
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Creating a NDFSA From a Regular Expression 
 

1. Decompose the regular expression to its primitive components :  

a. for λ, X-λ->Y.  

b. for a, X-a->Y. 
 

2. Supposed that N1, N2 are transition diagrams for the regular 

expressions R1, R2 respectively, N1 accepts R1 & N2 accepts R2, then : 

a.  which represents R1R2 is : 

b.  which represents R1|R2 is : 

 

c.  which represents R* is : 
 
 
 
 
 
 
 
 
 
 
 

 

d. N

 + 
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x which represents R + is : 

Note that this is the same as Rx* except we removed 

all the states that result in a λ. 

Example: Given the regular expression 

L(L|d)* 
 
Which has this transition table 
 
 
 

 

State\ 
VT 

L d λ 

1 2   

2   3,9 

3   4,6 

4 5   

5   8 

6  7  

7   8 

8   3,9 

9    
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State\ 
VT 

L d λ 

1 2   

2 5 7 3,9,8,6 

3 5 7 4,6,8,3,9 

4 5   

5 5 7 8,3,9,4,6 

6  7  

7 5 7 8,3,9,4,6 

8 5 7 3,9,8,4,6 

9    

 

 

 

 

 

State\ 
VT 

L d 

✓ 1 2  

✓ 2 5 7 

3 5 7 

4 5  

✓ 5 5 7 

6  7 

✓ 7 5 7 

8 5 7 

9   

 

 

 

 

 

State \ 
V T 

L d 

✓ 1 2  

✓ 2 5 7 

✓ 5 5 7 

✓ 7 5 7 
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feasible 

pairs \ V T 

L d 

(2,5) (5,5) (7,7) 

(7,7) (5,5) (7,7) 

(5,7) (5,5) (7,7) 

 

 

2 ≡ 5 ≡ 7 
 
 

 

State\ 
VT 

L d 

1 2 - 

2 2 2 
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