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9.1.3. Suppose lhaq Xy — Qin R" as k — oc¢ and that y; 1s bounded in R".
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9.1.6. Let E be a nonempty subset of R".

a) Show that a sequence x; € E converges to some point a € E if and
only if for every set U, which is relatively open in E and contains a,
there 1s an N € N such that x; € U for k > N.

b)) Prove that a set C C E is relatively closed in E if and only if the limit
of every sequence x; € C which converges to a point in E satisfies

limgs oo Xk € C. . _— = <o Noatd
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9.1.6. Let E be a nonempty subset of R”.

a) Show that a sequence x; € E converges to some point a € E if and
only if for every set U, which 1s relatively open in E and contains a,
thereisan N € Nsuch thatx; € U fork > N.
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9.1.1. Using Definition 9.11, prove that the following limits exist.
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9.2.7. Define the distance between two nonempty subsets A and B of R" by

dist(A, B) :=inf{f[x —y|): x€ A and y e B}.

a) Prove thatif A and B are sets which satisfy A N B = {, then

dist(A, B) > 0.
b) Show that there exist nonempty, closed sets A, B in R? such that
AN B =¥ butdist(A, B) = 0.
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9.3.7. Suppose that(g : R — R is differentiable and that g’(x) > 1 for all x € R. f
Prove that 1

(g(1) = 0hind f(x,y) = (x — 1)2 (y+1)/(y§{.x-)-},-Lh.&u_L53re is
an L € Rsuch that f(x,y) - Las (x,y) = (1,b) forall b € R\ {0}.
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9.4.4. Sup;pose that A is closed in R” and f : A — R”. Prove that f is contin-

uous on A if and only if f~'(E) is closed in R” for every closed subset
E of R™.
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9.4.5. Suppose that E € R” and thatf: E — R".

a) Prove that f is continuous on E if and only if f~!(B) is relatively
closed in E for every closed subset B of R™.

b) Suppose that f is continuous on E. Prove that if V is relatively
open in f(E), then £~ (V) is relatively open in E, and if B is rela-
tively closed in f(E), then f “1(B) is relatively closed in E.
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b) Suppose at f is inuous on E. Prove that if( élS relatively
_open in f(E), the f L(v)is relatwely open 111 E and if B 1s rela-
tlvely closed in f(E), then f l(B) is relatively closed in E.
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