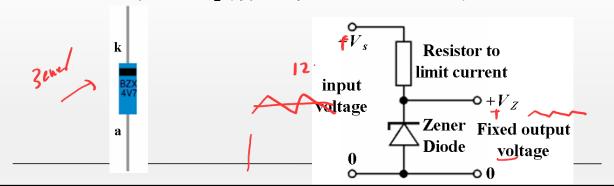


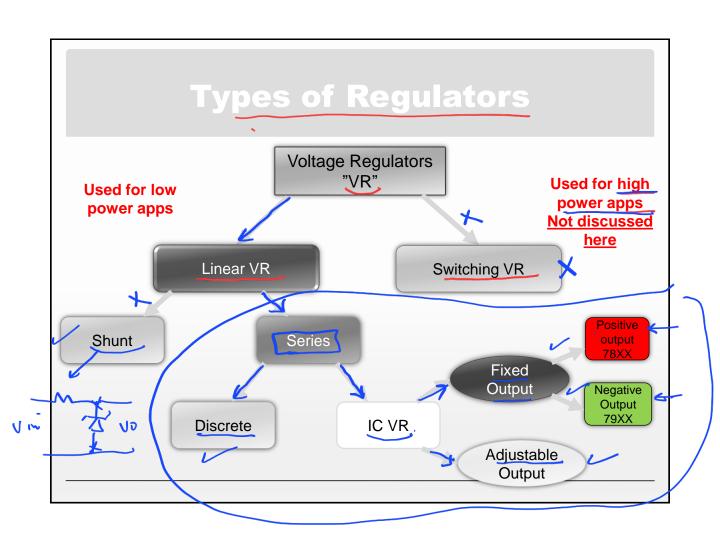
T13:
Voltage Regulator

Instructor: Nasser Ismail

Zener can be used as

Summer 2020-2021 B. John Instructor: Nasser Isma

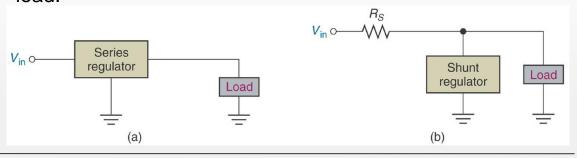



 Regulator. a circuit used to produces a constant dc output voltage by reducing the ripple to negligible amount regardless of variation of input voltage and load within reasonable limits

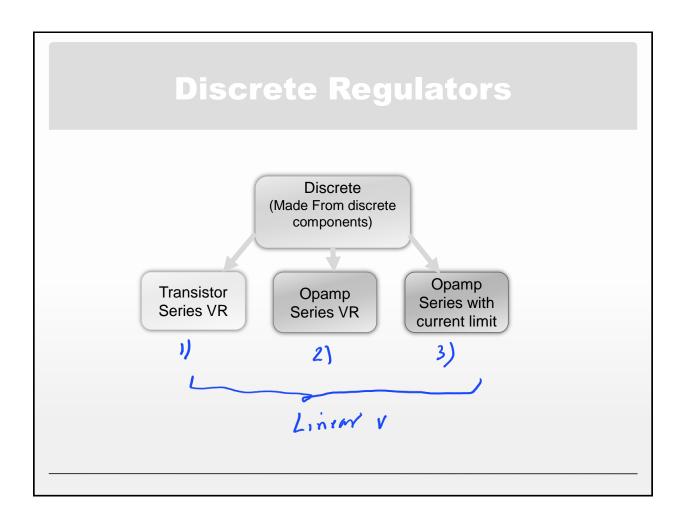
Voltage Regulators

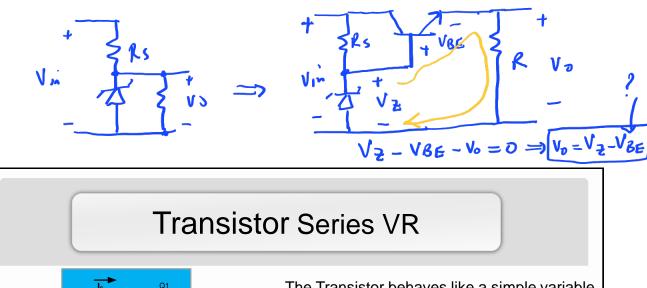
The simplest voltage regulator is Zener diode regulator studied in details earlier

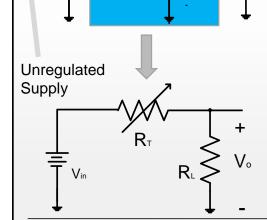
- Zener is used for low current power supplies –
 a simple voltage regulator can be made with a resistor and
 a zener diode connected in reverse.
- Zener diodes are rated by their breakdown voltage V_z and maximum power P_z (typically 400mW or 1.3W)



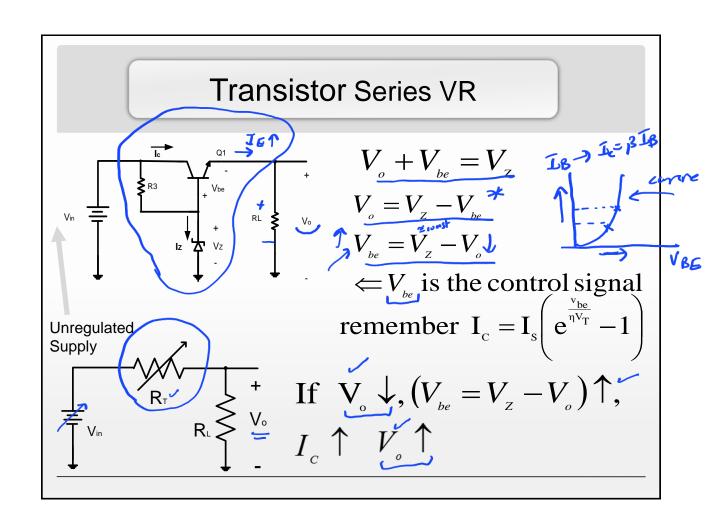
End of L28

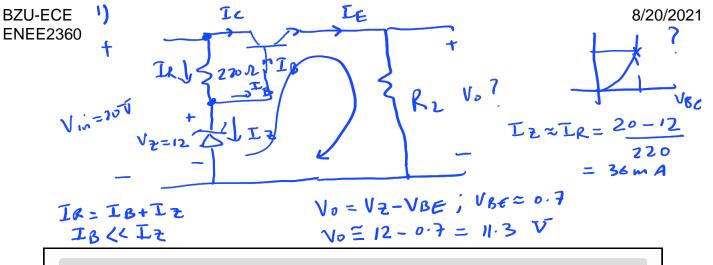

Types of Regulator


- Fundamental classes of voltage regulators are linear regulators and switching regulators.
- Two basic types of linear regulator are the series regulator and the shunt regulator.
- The series regulator is connected in series with the load and the shunt regulator is connected in parallel with the load.



L29 26-8-2021

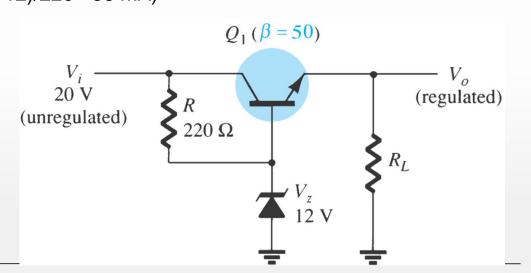


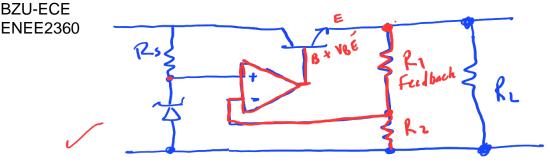


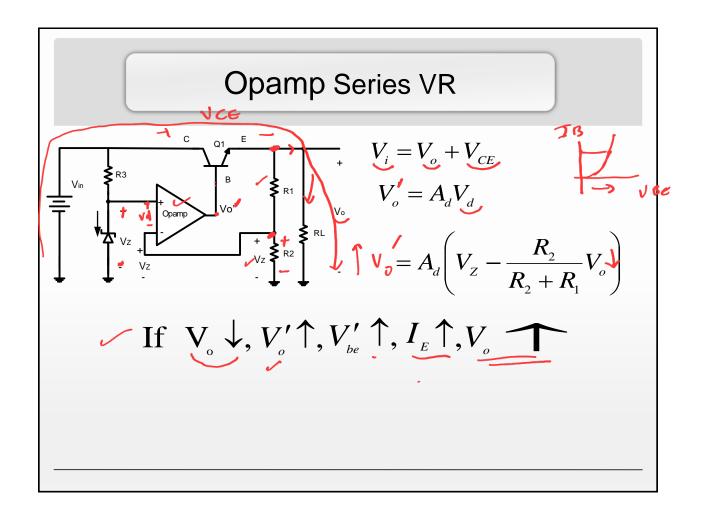
The Transistor behaves like a simple variable resistor whose resistance is determined by the operating conditions

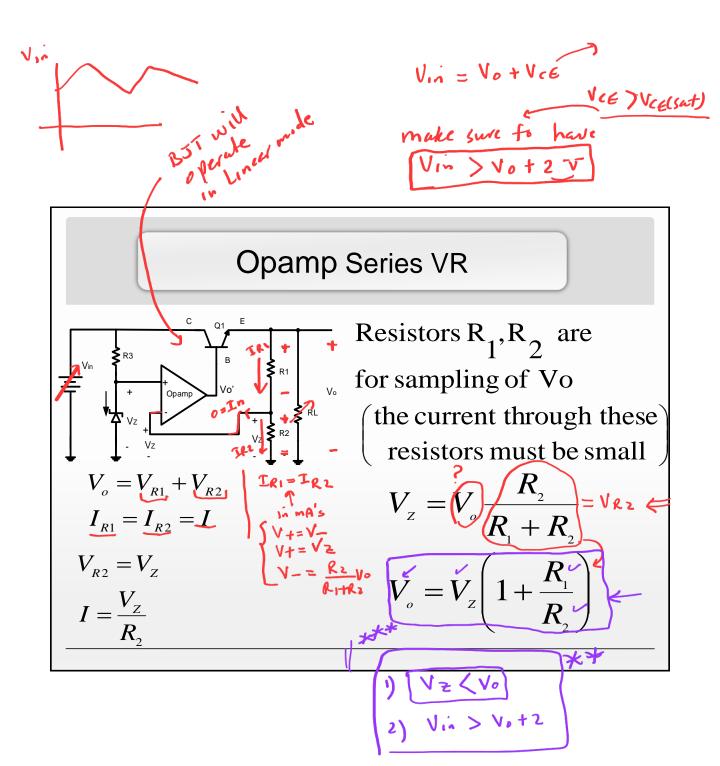
$$V_{\scriptscriptstyle O} = \frac{R_{\scriptscriptstyle L}}{R_{\scriptscriptstyle L} + R_{\scriptscriptstyle T}} V_{\scriptscriptstyle IN}$$

RT is changed in response to changes in Vin and RL such that to keep Vo almost constant

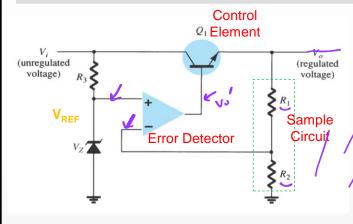





Example


• Calculate the output voltage and Zener current for $R_L=1k\Omega$. (Solution: $V_o=Vz-Vbe=12-0.7=11.3 V$;

 $I_z \approx (20-12)/220 = 36 \text{ mA}$



Op-Amp Series Regulator

- The resistor R₁ and R₂ sense a change in the output voltage and provide a feedback voltage.
- Values must be high to limit current value to mA
- The error detector compares the feedback voltage with a Zener diode reference voltage.
- The resulting difference voltage causes the transistor Q₁ to control the conduction to compensate the variation of the output voltage.
- The output voltage will be maintained at a constant value of:

$$V_o = \left(1 + \frac{R_1}{R_2}\right) V_Z$$

Example

Determine the output voltage for the regulator below.

$$V_{o} = \left(1 + \frac{R_{2}}{R_{3}}\right)V_{Z}$$

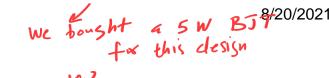
$$V_{o} = \left(1 + \frac{10k}{10k}\right)5.1 = 10.2 \text{ V}$$

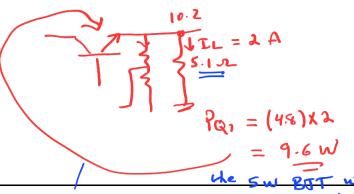
$$V_{cc} = I_{cc} + I_{cc} = I_{cc}$$

$$V_0 = V_z \left(1 + \frac{R_z}{R_b}\right)$$

$$= 5.1 \left(1 + \frac{101^L}{10R}\right) = 5.1 \text{ X2} = 10.2 \text{ V}$$

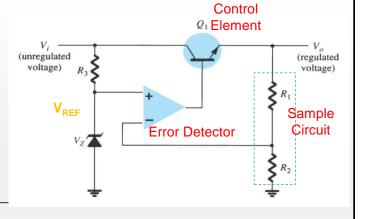
$$V_0 = V_z \left(1 + \frac{R_z}{R_b}\right)$$

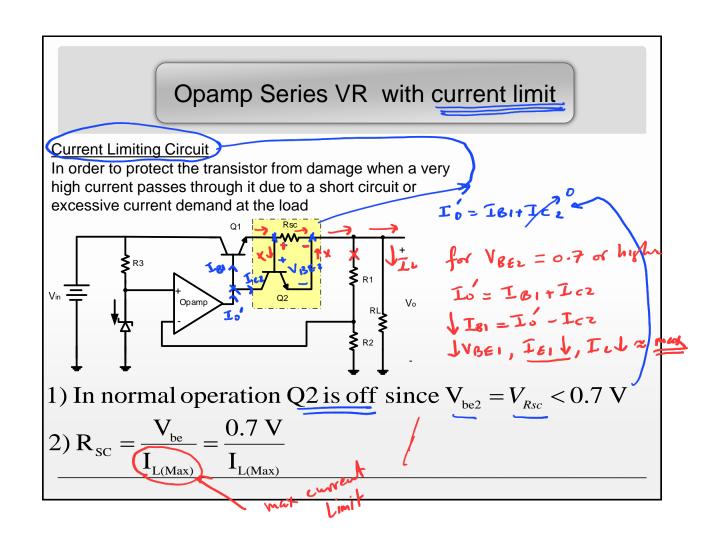

$$= 5.1 \left(1 + \frac{101^L}{10R}\right) = 5.1 \text{ X2} = 10.2 \text{ V}$$

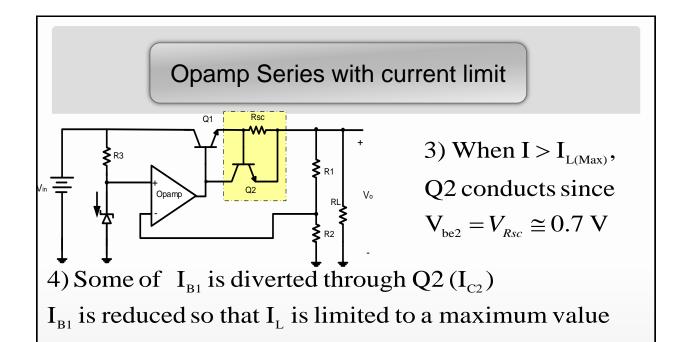

$$V_0 = V_z \left(1 + \frac{R_z}{R_b}\right)$$

$$= V_0 = V_0 = V_0$$

$$= \left(1 - V_0\right) \cdot L_0$$

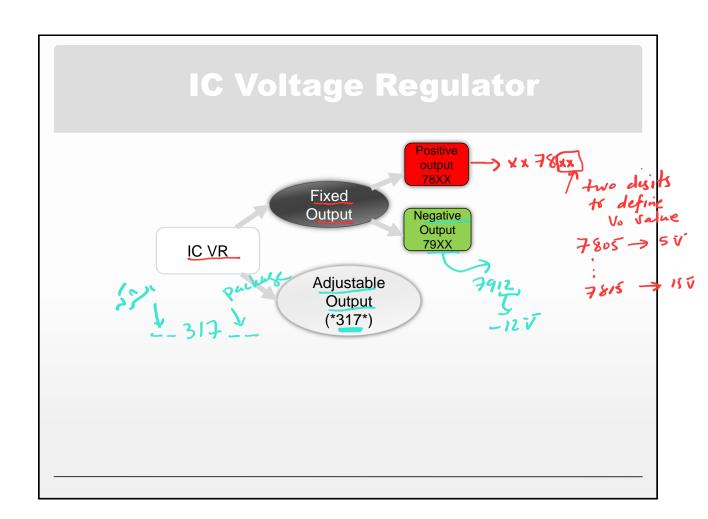

Summer 2020 321 B.com Instructor: Nasser Ismail

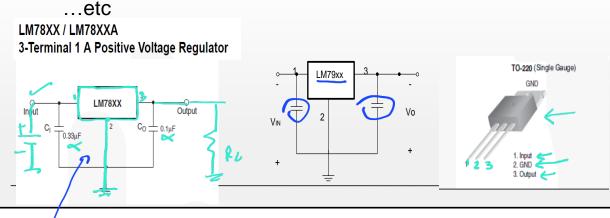




Choosing the right Transistor

- The transistor must be chosen such that its power rating is suitable
- PQ > Or = VCE*IE otherwise BJT will be damaged
- Vce=Vc-Ve=Vin-Vo
- | E=|L+|R1 , but IL>> IR1

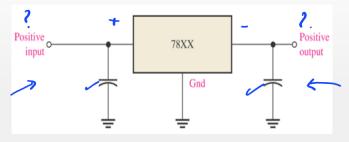



calculated as: $I_{L(Max)} = \frac{V_{be}}{R_{SC}} = \frac{0.7 \text{ V}}{R_{SC}}$ 5) Since V_{be2} cannot exceed 0.7 V, $V_{R_{SC}}$ is limited

- 6) This is constant current limiting

3 Terminal IC Voltage Regulators

- Fixed output voltage type
- Two families exist:
- Fixed positive output (78xx), where xx defines the value of output voltage such as 5, 6, 8,9,12 ...etc
- Fixed negative output (79xx), where xx defines the value of output voltage such as -5, -6, -8,-9,-12


(no culculations)

Fixed Voltage Regulator (for reference only)

 The fixed voltage regulator has an unregulated dc input voltage V_i applied to one input terminal, a regulated output dc voltage V_o from a second terminal, and the third terminal connected to ground.

Fixed-Positive Voltage Regulator

 The series 78XX regulators are the three-terminal devices that provide a fixed positive output voltage.

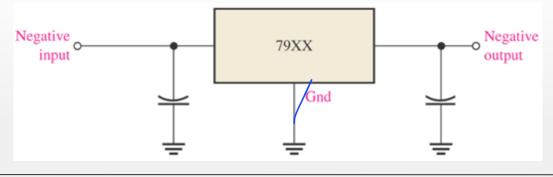
2. Ground

3. Output

Fixed Voltage Regulator

Positive-Voltage Regulators in the 78XX Series

IC Part	Output Voltage (V)	Minimum V _i (V)
→ 78 <u>05</u>	<u>+5</u>	+7.3
7806	+6 -	+8.3
78 <u>08</u>	+8 —	→ +1 <u>0.5</u> 2.5
7810	+10	+12.5
7812	+12	+14.5 2 5
7815	+15	+17.7
7818	+18	+21.0 ³
7824	+24	+27.1

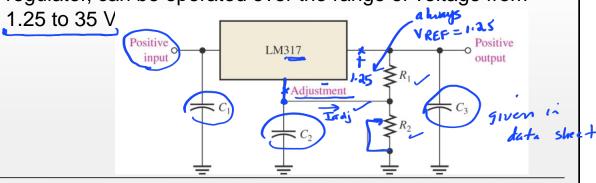

Vin must be higher than Vo by at least 2V for proper operation of the voltage regulator

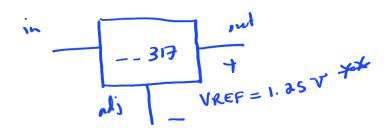
Fixed Voltage Regulator

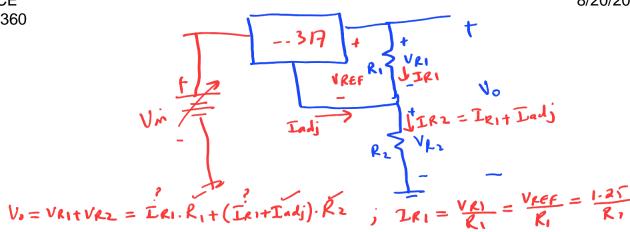
Fixed-Negative Voltage Regulator

- The series 79XX regulators are the three-terminal IC regulators that provide a fixed negative output voltage.
- This series has the same features and characteristics as the series 78XX regulators except the pin numbers are different.

Fixed Voltage Regulator

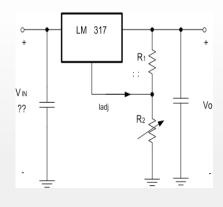

Negative-Voltage Regulators in the 79XX Series

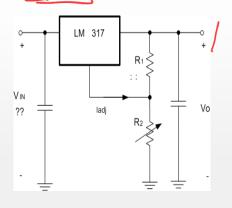

IC Part	Output Voltage (V)	Minimum V _i (V)
7905	<u>-5</u>	-7.3
7906	-6	-8.4
7908	-8	-10.5
7909	-9	-11.5
7912	-12	-14.6
7915	-15	-17.7
7918	-18	-20.8
7924	-24	-27.1


Adjustable-Voltage Regulator

Adjustable-Voltage Regulator

- Voltage regulators are also available in circuit configurations that allow to set the output voltage to a desired regulated value.
- The LM317 is an example of an adjustable-voltage regulator, can be operated over the range of voltage from




Voltage Regulators

- ladj=~ 50 uA (constant From data sheet)
- VREF=1.25 (always true for the 317 family)
- Vo=~ 1.25 − 35V
- Vo is defined by proper choice of R1 & R2
- V0=VR1+VR2
- VR1=VREF=IR1*R1
- IR1=IREF=VREF/R1
- VR2=(IREF+IADJ)*R2
- Vo=IREF*(R1+R2)+ladj*R2

<u>Example</u>

- Given R1=220 Ω ; R2= $5k\Omega$ potentiometer
- ladj=~ 50 uA (constant From data sheet) { R_{2(min)} = 05L
- Find Vo(min) and Vo(max)
- Find range of Vin ?

 $V_0 = I_{REF}(R_1 + R_2) + I_{Adj}(R_2)$ $I_{REF} = I_{R_1} = \frac{1.25}{220} = 5.68 \text{mA}$; $I_{Adj} = 50 \mu \text{A}$ $V_0 = 5.68 \text{ mA} (220 + 5 \text{K}) + 50 \mu \text{ X} 5 \text{K} = 29.91 \text{ V}$

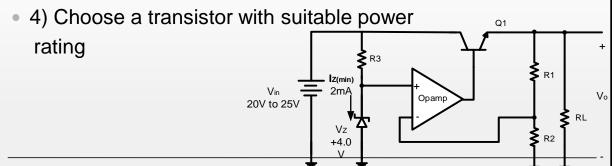
Volum = 1.25 V , Vin(min) = 1.25+2 = 3.25 V

Uploaded By: anonymous

Voltage Regulators

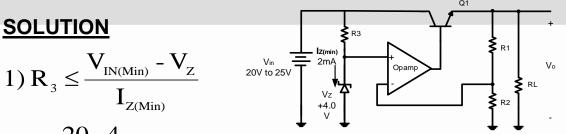
$$\begin{split} &I_{\text{REF}} = \frac{V_{\text{REF}}}{R_{_{1}}} = \frac{1.25}{220\,\Omega} \\ &V_{\text{O}} = I_{\text{REF}} \big(R_{_{1}} + R_{_{2}} \big) + I_{\text{adj}} \big(R_{_{2}} \big) \\ &V_{\text{O(MAX)}}_{|R2=5k\Omega} = \big(26.66 + 0.25 \big) = 29.91\,\text{V} \\ &V_{\text{O(MIN)}}_{|R2=0k\Omega} = V_{\text{REF}} = 1.25\,\text{V} \end{split}$$

The input voltage must be higher than the output by at least 2 V


$$V_{IN(MIN)} \cong 1.25 + 2 = 3.25 \text{ V}$$

$$V_{IN(MAX)} \cong 29.91 + 2 = 31.91V$$

Voltage Regulators example


- Given the following series voltage regulator
- 1) Complete the design of the following voltage regulator (Find of R1, R2 and R3) assuming that the voltage across the load resistor R₁ is equal to 12V. Assume Iz(min) = 2mA.
- 2)Show how to modify the circuit to limit the load current to 1A.
- 3)Find the output voltage for the modified circuit of part 2) when the load resistor $R_L = 100\Omega$ and when $R_L = 8\Omega$.

Example Continued

SOLUTION

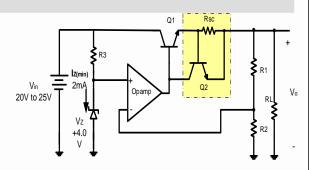
$$1) R_3 \le \frac{V_{\text{IN(Min)}} - V_{\text{Z}}}{I_{\text{Z(Min)}}}$$

$$R_3 \le \frac{20-4}{2 \text{ mA}} = 8 \text{ k}\Omega$$
 in order to make sure $I_Z > I_{Z(Min)}$

If $I_{\text{Z(max)}}$ was known , then lower limit for R3

can also be found

$$V_o = \left(1 + \frac{R_1}{R_2}\right) V_Z = 12 \text{ V}$$


$$\rightarrow$$

choose $R_1 = 20 \text{ k}\Omega$

$$\therefore R_2 = 10 \,\mathrm{k}\Omega$$

Voltage Regulators

SOLUTION

2) — The change for current limit is done by adding Q2 and Rsc as shown

&
$$R_{SC} = \frac{V_{be}}{I_{L(Max)}} = \frac{0.7 \text{ V}}{1 \text{ A}} = 0.7 \Omega$$

Ex. Continued

• SOLUTION

SOLUTION

For $R_L = 100$ ohm, Vo = 12V, then $I_L = \frac{12V}{100\Omega} = 0.12A$

which is smaller than $I_{L(max)}$,

 \therefore V_o = 12 V and is not affected by the current limit circuit

For $R_L = 8 \text{ ohm}$, Vo = 12V, then $I_L = \frac{12V}{8\Omega} = 1.5A$

which is bigger than $I_{L(max)}$, and the current limit circuit

limits the current to the maximum allowable value which is 1 A

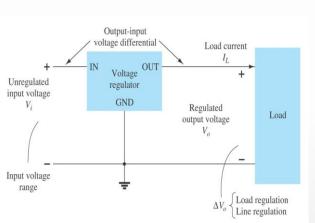
$$\therefore V_{O} = I_{L(Max)} * R_{L} = 1A * 8\Omega = 8 V$$

Example Continued

$$P_{_{Q1}}=V_{_{CE(MAX)}}*I_{_{E(MAX)}}$$

$$V_{CE(MAX)} = V_{IN(MAX)} - V_{O(MIN)} = 25 - 8 = 17 \text{ V}$$

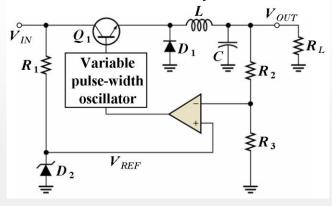
$$I_{E(MAX)} = I_{R1} + I_{L(MAX)} = \frac{V_Z}{R_1} + I_{L(MAX)}$$
8 V


$$= \frac{8 \text{ V}}{20 \text{ k}\Omega} + 1 \text{ A} = 1.0004 \text{ A}$$

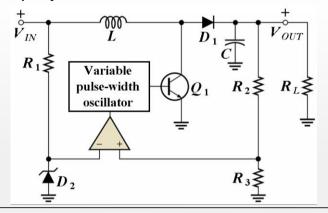
$$P_{Q1} = 17 \text{ V} * 1.0004 \text{ A} = 17.0068 \text{ W}$$

The End

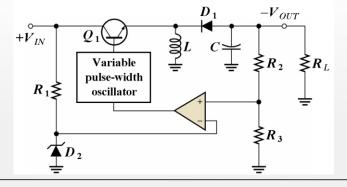
Good Luck in your exams


- The switching regulator is a type of regulator circuit which its efficient transfer of power to the load is greater than series and shunt regulators because the transistor is not always conducting.
- The switching regulator passes voltage to the load in pulses, which then filtered to provide a smooth dc voltage.

- The switching regulator is more efficient than the linear series or shunt type.
- This type regulator is ideal for high current applications since less power is dissipated.
- Voltage regulation in a switching regulator is achieved by the on and off action limiting the amount of current flow based on the varying line and load conditions.
- With switching regulators 90% efficiencies can be achieved.


Step-Down Configuration

- With the step-down (output is less than the input) configuration the control element Q₁ is pulsed on and off at variable rate based on the load current.
- The pulsations are filtered out by the LC filter.


Step-up configuration

- The difference is in the placement of the inductor and the fact that Q₁ is shunt configured.
- During the time when Q₁ is off the V_L adds to V_C stepping the voltage up by some amount.

Voltage-inverter configuration

- output voltage is of opposite polarity of the input.
- This is achieved by V_L forward-biasing reverse-biased diode during the off times producing current and charging the capacitor for voltage production during the off times.
- With switching regulators 90% efficiencies can be achieved.

Summary

- Voltage regulators keep a constant dc output despite input voltage or load changes.
- The two basic categories of voltage regulators are linear and switching.
- The two types of linear voltage regulators are series and shunt.
- The three types of switching are step-up, stepdown, and inverting.

Summary

- Switching regulators are more efficient than linear making them ideal for low voltage high current applications.
- IC regulators are available with fixed positive or negative output voltages or variable negative or positive output voltages.
- Both linear and switching type regulators are available in IC form.
- Current capacity of a voltage regulator can be increased with an external pass transistor.