Organic Chemistry, Fourth Edition

Janice Gorzynski Smith University of Hawai'i

Chapter 2

Acids and Bases

Prepared by Layne A. Morsch The University of Illinois - Springfield

Copyright © 2014 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 2 Acids and Bases

- 2.1 Brønsted-Lowry Acids and Bases
- 2.2 Reactions of Br0nsted-Lowry Acids and Bases
- 2.3 Acid Strength and pK_a
- 2.4 Predicting the Outcome of Acid-Base Reactions
- 2.5 Factors That Determine Acid Strength
- 2.6 Common Acids and Bases
- 2.7 Aspirin
- 2.8 Lewis Acids and Bases

Copyright © 2014 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2.1 Brønsted-Lowry Acids and Bases

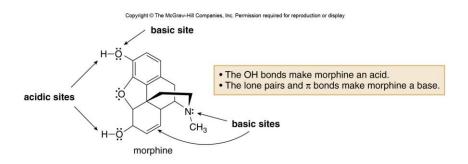
- A hydrogen atom without its electron is a proton.
 H⁺ = proton
- A Brønsted-Lowry acid is a proton donor.
 - •It must have a proton.
- A Brønsted-Lowry base is a proton acceptor.
 - •It must be able to form a bond to a proton.

3

Brønsted-Lowry Acids and Bases

Figure 2.1

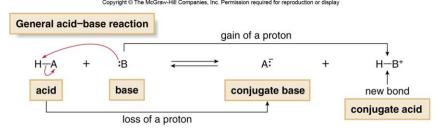
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display


Brønsted-Lowry acids [H – A]

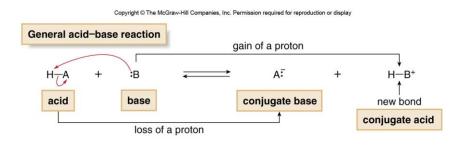
Brønsted-Lowry bases [B:]

Diblisted-Lowly acids [11 - A]		Diblisted-Lowly bases [b.]			
Inorganic	Organic	Inorganic		Organic	
HCI H ₂ SO ₄ HSO ₄	CH ₃ CO ₂ H acetic acid	H₂Ö:	∙NH ₃	CH ₃ NH ₂ methylamine	CH₃Ö:¯ methoxide
H ₂ O H ₃ O⁺	$\begin{array}{c} OH \\ HO_2CCH_2 - C - CH_2CO_2H \\ COOH \\ citric \ acid \end{array}$	∹ <mark>ö</mark> н	∵NH ₂	CH ₃ C=Ö CH ₃ acetone	CH ₂ =CH ₂ ethylene
 All Brønsted–Lowry acids contain a proton. The net charge may be zero, (+), or (–). 		 All Brønsted–Lowry bases contain a lone pair of electrons or a π bond. The net charge may be zero or (–). 			

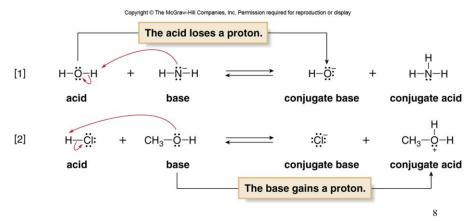
Acidic and Basic Sites in Morphine


Some molecules contain both hydrogen atoms and lone pairs and thus, can act either as acids or bases, depending on the particular reaction.

5


2.1 Reactions of Brønsted-Lowry Acids and Bases

- A Brønsted-Lowry acid base reaction results in the transfer of a proton from an acid to a base.
- The electron pair of the base B: forms a new bond to the proton of the acid forming the conjugate acid of the base.
- The acid H-A loses a proton, leaving the electron pair in the H-A bond on A. This forms the conjugate base of the acid.


Reactions of Brønsted-Lowry Acids and Bases

- The movement of electrons in reactions can be illustrated using curved arrow notation.
- Because two electron pairs are involved in this reaction, two curved arrows are needed.

Examples of Brønsted-Lowry Acid-Base Reactions

• A double reaction arrow (indicating equilibrium) is used between starting materials and products to indicate that the reaction can proceed in the forward and reverse directions.

General Reactivity

These reactions illustrate a general pattern of reactivity:

- Electron-rich species react with electron-deficient species
 - Bases are electron rich
 - While the H of an acid has a partial positive charge making it electron deficient
- · Therefore, acids and bases react with one another

9

2.3 Acid Strength and pK_a

- · Acid strength is the tendency of an acid to donate a proton.
- The more readily a compound donates a proton, the stronger an acid it is.

Dissolving an acid in water

Dissolving an acid base solvent

Acid-Base Equilibrium

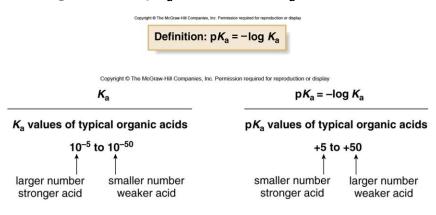
- Acidity is measured by an equilibrium constant.
- When a Brønsted-Lowry acid H-A is dissolved in water, an acid-base reaction occurs, and an equilibrium constant can be written for the reaction.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Equilibrium constant $K_{eq} = \frac{[products]}{[starting materials]} = \frac{[H_3O^+][A^{-1}]}{[H_-A][H_2O]}$

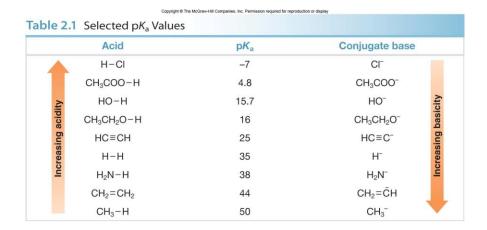
11

Acidity Constant

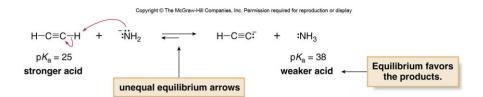

• Because the concentration of the solvent H_2O is essentially constant, the equation can be rearranged and a new equilibrium constant, called the acidity constant, K_a , can be defined.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Acidity constant =
$$K_a = [H_2O]K_{eq} = \frac{[H_3O^+][A:^-]}{[H-A]}$$

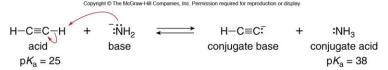

K_a and pK_a

• It is generally more convenient when describing acid strength to use " pK_a " values than K_a values.


13

Acidity of Some Common Compounds

2.4 Outcome of Acid-Base Reactions


- The position of the equilibrium depends on the relative strengths of the acids and bases.
- Equilibrium always favors formation of the weaker acid and base.

 Because the pK_a of the starting acid (25) is lower than that of the conjugate acid (38), equilibrium favors the products.

15

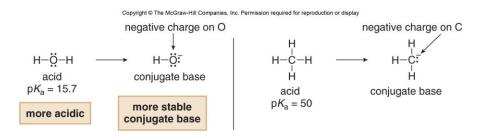
Steps in Solving Acid-Base Reaction Equilibria

- Step [1] Identify the acid and base in the starting materials. Assume ¬NH₂ is the base because it bears a net negative charge. That makes HC≡CH the acid.
- Step [2] Draw the products of proton transfer and identify the conjugate acid and base in the products.

 Acetylene gives up its proton to ¬NH₂.
- Step [3] Compare the p K_a values of the acid and the conjugate acid. Equilibrium favors formation of the weaker acid with the higher p K_a . The p K_a of NH₃ is higher; therefore products are favored.

2.5 Factors that Determine Acid Strength

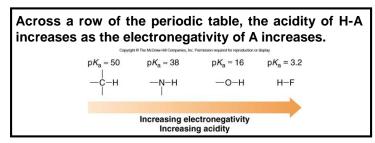
- Anything that stabilizes a conjugate base A: makes the starting acid H-A more acidic.
- Four factors affect the acidity of H-A. These are:
 - Element effects
 - Inductive effects
 - Resonance effects
 - Hybridization effects

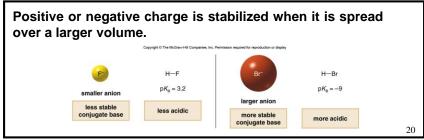

17

Comparing the Acidity of Any Two Acids

- Always draw the conjugate bases.
- · Determine which conjugate base is more stable.
- The more stable the conjugate base, the more acidic the acid.

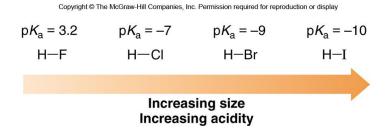
Element Effects—Trends in the Periodic Table


Why does H_2O have a much lower p K_a than CH_4 ?



Since oxygen is much more electronegative than carbon, it more readily accepts a negative charge.

19


Element Effects—Trends in the Periodic Table

Element Effects Down a Column in the Periodic Table

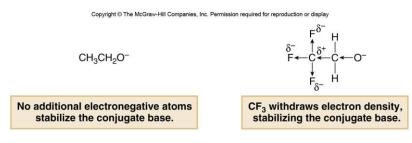
- Down a column of the periodic table, size, and not electronegativity, determines acidity.
- The acidity of H-A increases as the size of A increases.

21

Inductive Effects

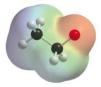
- An inductive effect is the pull of electron density through σ bonds caused by electronegativity differences of atoms.
- More electronegative atoms stabilize regions of high electron density by an electron withdrawing inductive effect.
- The more electronegative the atom and the closer it is to the site of the negative charge, the greater the effect.
- The acidity of H-A increases with the presence of electron withdrawing groups in A.

Inductive Effects in Trifluoroethanol


• In the example below, note that 2,2,2-trifluoroethanol is more acidic than ethanol.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display $\begin{array}{ccc} CH_3CH_2O-H & CF_3CH_2O-H \\ \\ ethanol & 2,2,2-trifluoroethanol \\ pK_a = 16 & pK_a = 12.4 & \hline & stronger acid \\ \end{array}$

 The reason for the increased acidity of 2,2,2trifluoroethanol is that the three electronegative fluorine atoms stabilize the negatively charged conjugate base.


23

Rationale for Inductive Effects

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Figure 2.2

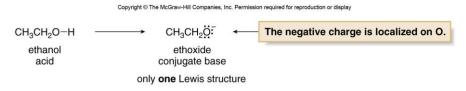
CH₃CH₂O⁻

The dark red of the O atom indicates a region of high electron density.

CF₃CH₂O

The O atom is yellow, indicating it is less electron rich.

Resonance Effects

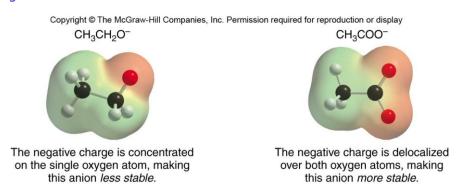

- Delocalization of charge through resonance influences acidity.
- Acetic acid is more acidic than ethanol, even though both conjugate bases have the negative charge on the same element, O.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display $CH_3 - C$ $CH_3CH_2O - H$ ethanol $pK_a = 16$ $CH_3 - C$ O - H acetic acid $pK_a = 4.8$ control = 4.8 control = 4.8

25

Comparison of Ethoxide and Acetate ions

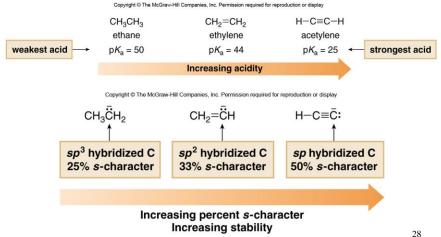
The conjugate base of ethanol has a localized charge.


 The conjugate base of acetic acid is resonance delocalized.

The negative charge is delocalized on two O atoms.

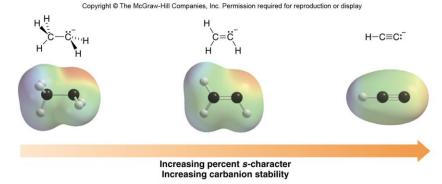
CH₃ C CH

Electrostatic Potential Plots of Ethoxide and Acetate


Figure 2.3

27

Hybridization Effects


Consider the relative acidities of three different compounds containing C-H bonds.

Stability of Conjugate Bases

The higher the percent of s-character of the hybrid orbital, the more stable the conjugate base.

Figure 2.4

 As the lone pair of electrons is pulled closer to the nucleus, the negatively charged carbon appears less intensely red.

29

Summary of Factors that Determine Acid Strength

Figure 2.5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Factor Example 1. Element effects: The acidity of H-A Increasing acidity increases both left-to-right across a row and down a column of the periodic table. H-CI H-Br H-I2. Inductive effects: The acidity of CH₃CH₂O-H CF3CH2O-H H-A increases with the presence of more acidic electron-withdrawing groups in A. 3. Resonance effects: The acidity of CH3CH2O-H CH₃COO-H H-A increases when the conjugate more acidic base A: is resonance stabilized. 4. Hybridization effects: The acidity CH₃CH₃ CH₂=CH₂ H-C≡C-H of H-A increases as the percent Increasing acidity s-character of A: increases.

How To: Determine the Relative Acidity of Protons

Step [1] Identify the atoms bonded to hydrogen, and use periodic trends to assign relative acidity.

- The most common H-A bonds in organic compounds are C-H, N-H and O-H.
- Acidity increases left to right across a row, the relative acidity of these bonds is C-H<N-H<O-H.
- H atoms bonded to C atoms are usually *less acidic* than H atoms bonded to any heteroatom.

Step [2] If the two H atoms in question are bonded to the same element, draw the conjugate bases and look for other points of difference.

- Do electron-withdrawing groups stabilize the conjugate base?
- · Is the conjugate base resonance stabilized?
- How is the conjugate base hybridized?

31

2.6 Commonly Used Acids in Organic Chemistry

- The familiar acids HCl and H₂SO₄ are often used in organic reactions.
- Various organic acids are also commonly used (e.g., acetic acid and p-toluenesulfonic acid (TsOH)).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

CH₃COOH

$$CH_3 \longrightarrow \begin{matrix} O \\ | S \\ | O \end{matrix}$$

$$CH_3 \longrightarrow \begin{matrix} O \\ | S \\ | O \end{matrix}$$

$$CH_3 \longrightarrow \begin{matrix} O \\ | S \\ | O \end{matrix}$$

$$CH_3 \longrightarrow \begin{matrix} O \\ | S \\ | O \end{matrix}$$

$$CH_3 \longrightarrow \begin{matrix} O \\ | S \\ | O \end{matrix}$$

$$CH_3 \longrightarrow \begin{matrix} O \\ | S \\ | O \end{matrix}$$

$$CH_3 \longrightarrow \begin{matrix} O \\ | S \\ | O \end{matrix}$$

$$CH_3 \longrightarrow \begin{matrix} O \\ | S \\ | O \end{matrix}$$

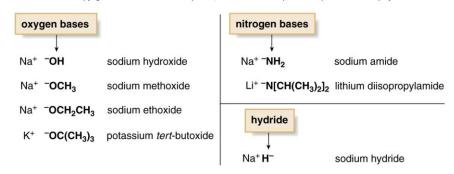
$$CH_3 \longrightarrow \begin{matrix} O \\ | S \\ | O \end{matrix}$$

$$CH_3 \longrightarrow \begin{matrix} O \\ | S \\ | O \end{matrix}$$

$$CH_3 \longrightarrow \begin{matrix} O \\ | S \\ | O \end{matrix}$$

$$CH_3 \longrightarrow \begin{matrix} O \\ | S \\ | O \end{matrix}$$

$$CH_3 \longrightarrow \begin{matrix} O O \end{matrix}$$


$$CH$$

Commonly Used Bases in Organic Chemistry

 Common strong bases used in organic reactions are more varied in structure.

Figure 2.6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

33

Characteristics of Strong Organic Bases

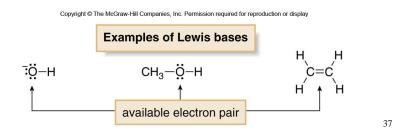
- Strong bases have weak conjugate acids with high pK_a values, usually > 12.
- Strong bases have a net negative charge, but not all negatively charged species are strong bases. For example, none of the halides F⁻, Cl⁻, Br⁻, or l⁻, is a strong base.
- Carbanions, negatively charged carbon atoms, are especially strong bases. A common example is butyllithium:

Other Common Bases in Organic Chemistry

- · Amines (e.g., triethylamine and pyridine) are organic bases.
- They are basic due to having a lone pair on N.
- They are weaker bases since they are neutral, not negatively charged.

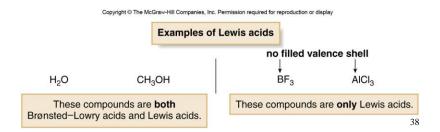
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$\begin{array}{ccc} \operatorname{CH_3CH_2}-\ddot{\operatorname{N}}-\operatorname{CH_2CH_3} & & & \\ \operatorname{CH_2CH_3} & & & \\ \operatorname{triethylamine} & & \operatorname{pyridine} \end{array}$$


2.7 Example: Aspirin

 Aspirin (acetylsalicylic acid) is one of the most well known drugs. It functions as an analgesic مسكن, anti-pyretic خافض and anti-inflammatory agent للحرارة.

- In ionic form, it is soluble in the aqueous blood stream and transported to tissues where it is needed.
- When protonated, it becomes neutral and can pass through cell membranes to inhibit certain chemical reactions.


2.8 Lewis Acids and Bases

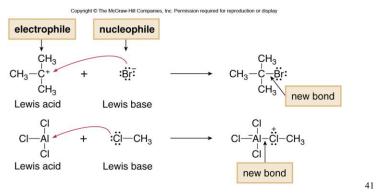
- · A Lewis base is an electron pair donor.
- Lewis bases are structurally the same as Brønsted-Lowry bases. Both have an available electron pair—a lone pair or an electron pair in a π bond.
- A Brønsted-Lowry base always donates this electron pair to a proton, but a Lewis base donates this electron pair to anything that is electron deficient.

Lewis Acids

- A Lewis acid is an electron pair acceptor.
- Any species that is electron deficient and capable of accepting an electron pair is also a Lewis acid.
- All Brønsted-Lowry acids are also Lewis acids, but the reverse is not necessarily true.
- Common Lewis acids (which are not Brønsted-Lowry acids) contain elements in group 3A that can accept an electron pair because they do not have filled valence shells.

Lewis Acid-Base Reactions

- In a Lewis acid-base reaction, a Lewis base donates an electron pair to a Lewis acid.
- This is illustrated in the reaction of BF₃ with H₂O. H₂O donates an electron pair to BF₃ to form a new bond.

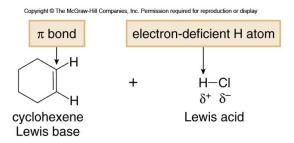

39

Electrophiles and Nucleophiles

- Lewis acid-base reactions illustrate a general pattern in organic chemistry.
- Electron-rich species react with electron-poor species.
- · A Lewis acid is also called an electrophile.
- When a Lewis base reacts with an electrophile other than a proton, the Lewis base is also called a nucleophile.
- In this example, BF₃ is the electrophile and H₂O is the nucleophile.

Lewis Acid-Base Reactions that Form One New Covalent Bond

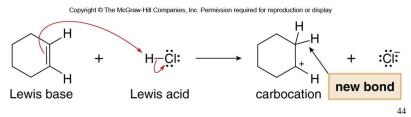
- Note that in each reaction below, the electron pair is not removed from the Lewis base.
- Instead, it is donated to an atom of the Lewis acid and one new covalent bond is formed.



Drawing Products of Lewis Acid-Base Reactions

- In other Lewis acid-base reactions, one bond is formed and one bond is broken.
- To draw the products of these reactions, keep in mind the following steps:
 - · Always identify the Lewis acid and base first.
 - Draw a curved arrow from the electron pair of the base to the electron-deficient atom of the acid.
 - Count electron pairs and break a bond when needed to keep the correct number of valence electrons.

Alkene-HCI Reaction


- The reaction between cyclohexene and HCl can be treated as a Lewis acid-base interaction.
- HCl acts as the Lewis acid, and cyclohexene, having a π bond, is the Lewis base.

43

Drawing the Product of the Reaction of HCI with Cyclohexene

- The electron pair in the π bond of the Lewis base forms a new bond to the proton of the Lewis acid, generating a carbocation.
- The H-Cl bond must break, giving its two electrons to Cl, forming Cl⁻.
- Because two electron pairs are involved, two curved arrows are needed.

Uploaded By: anonymous