
 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

55

Balanced Delimiters

Problem: Find out if programming code delimiters (“ [{ (] }) ”) are paired correctly  Compilers

Example 1: The contents of a stack during the scan of an expression that contains the balanced
delimiters { [()] }

Example 2: The contents of a stack during the scan of an expression that contains the unbalanced
delimiters { [(]) }

Example 3: The contents of a stack during the scan of an expression that contains the unbalanced
delimiters [()] }

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

56

Example 4: The contents of a stack during the scan of an expression that contains the unbalanced
delimiters { [()]

Algorithm to process balanced expression:

H.W. implement check balance algorithm using linked list/array stacks

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

57

Processing Algebraic Expressions

• Infix: each binary operator appears between its operands a + b
• Prefix: each binary operator appears before its operands + a b
• Postfix: each binary operator appears after its operands a b +

Evaluate infix expressions:

Example: evaluate a + b * c when a is 2, b is 3, and c is 4:

Step 1: Fill the two stacks until reaching the end of the expression:

Step 2: performing the multiplication:

Step 3: performing the addition:

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

58

Algorithm to evaluate infix expression:

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

59

Infix to Postfix Conversion

Example 1: Converting the infix expression a + b * c to postfix form

Example 2: Successive Operators with Same Precedence: a - b + c

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

60

Example 3: Successive Operators with Same Precedence: a ^ b ^ c

Example 4: The steps in converting the infix expression a / b * (c + (d – e)) to postfix form

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

61

Infix-to-postfix Algorithm:

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

62

Evaluating Postfix Expressions
 When an operand is seen, it is pushed onto a stack.
 When an operator is seen, the appropriate numbers of operands are popped from the stack, the

operator is evaluated, and the result is pushed back onto the stack.

o Note that the 1st item popped becomes the (right hand side) rhs parameter to the binary

operator and that the 2nd item popped is the (left hand side) lhs parameter; thus parameters
are popped in reverse order.

o For addition and multiplication, the order does not matter, but for subtraction and division, it
does.

 When the complete postfix expression is evaluated, the result should be a single item on the stack that
represents the answer.

Example 1: The stack during the evaluation of the postfix expression a b / when a is 2 and b is 4

Example 2: The stack during the evaluation of the postfix expression a b + c / when a is 2, b is 4, and c is 3

Self exercises:

 2 3 4 + * 6 -  8.0
 2 3 + 7 9 / -  4.222
 10 2 8 * + 3 -  23.0
 1 2 - 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / -  -8.67

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

63

Algorithm for evaluating postfix expressions.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

64

Queues
• A queue is another name for a waiting line:

• Used within operating systems and to simulate real-world events.

 Come into play whenever processes or events must wait
• Entries organized first-in, first-out.

Terminology
• Item added first, or earliest, is at the front of the queue
• Item added most recently is at the back of the queue
• Additions to a software queue must occur at its back.
• Client can look at or remove only the entry at the front of the queue

Tail
Last

Back

FIFO: First In First Out Head
First
Front

The ADT Queue

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

65

Linked-list Representation of a Queue

public class linkedQueue <T extends Comparable<T>> {
 private Node<T> first;
 private Node<T> last;

 public boolean isEmpty(){ return (first==null) && (last==null); }
 public void clear(){
 first = null;
 last = null;
 }
}

 The definition of enqueue Performance is O(1):
o Adding a new node to an empty chain

o Adding a new node to the end of a nonempty chain that has a tail reference

public void enqueue(T data){
 Node<T> newNode = new Node<T>(data);
 if(isEmpty())
 first=newNode;
 else
 last.next = newNode;
 last = newNode;
}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

