E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Balanced Delimiters

Problem: Find out if programming code delimiters (“[{(]})”) are paired correctly =» Compilers

Example 1: The contents of a stack during the scan of an expression that contains the balanced
delimiters {[()]}

{ i

oo

I
{ { { i {

After After After After After After
push('{') push('[') push(' (") popQ) pop() pop()

] } Delimiters in expression

[{ Delimiters popped from stack

—_—

Delimiters are not a pair

\] Delimiters in expression

Example 2: The contents of a stack during the scan of an expression that contains the unbalanced
(Delimiter popped from stack

delimiters {[(])}
b T
1 1] L
{ { {

After After After After
push('{') push('[') push(C'(') popQ)

Example 3: The contents of a stack during the scan of an expression that contains the unbalanced
delimiters [()]}

— o™~ -

=

A pair of parentheses

\ A pair of brackets
M

[() } Delimiters in expression
l l ([Delimiters popped from stack
[‘ ‘ [‘ [| ‘ | ‘ ‘ Stack is empty when
} is encountered
After After After After

push('[') push('(') popQ) pop()

55

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Example 4: The contents of a stack during the scan of an expression that contains the unbalanced

delimiters {[()]

A pair of parentheses

\ A pair of brackets
) \]
(

[Delimiters popped from stack

o T
|11 L)
{ { { { Brace is left over in stack

After After After After After
push('{') push(C'[') push(C'C') popQ) pop()

Delimiters in expression

1 ~ -

=
=

Algorithm to process balanced expression:

Algorithm checkBalance(expression)

isBalanced = true
while ((isBalanced == true) and nof at end of expression) {
nextCharacter = mext character in expression
cswitch (nextCharacter) {
case "(": case "["': case '{'
Push nextCharacter onto stack
break

(]

case ')": case ']"': case '}
if (stack is empty)

isBalanced = false
else |
openDelimiter = lop enhry of stack
Pop stack
isBalanced = true or false according to whether openDelimiter

and nextCharacter are a pair of delimiters
1
}
break

;]
J

if (stack is not empty) isBalanced = false
return isBalanced

H.W. implement check balance algorithm using linked list/array stacks

56

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

Processing Algebraic Expressions

Infix: each binary operator appears between its operands a + b
Prefix: each binary operator appears before its operands +ab
Postfix: each binary operator appears after its operands a b +

Evaluate infix expressions:

C1L+#LL2+3)*%(4%5)))
operand operator

Two-stack algorithm. [E. W. Dijkstra]
» Value: push onto the value stack.
+ Operator: push onto the operator stack.
+ Left parenthesis: ignore.
+ Right parenthesis: pop operator and two values;
push the result of applying that operator
to those values onto the operand stack.
Example: evaluate a+b * cwhenais 2, bis 3, and cis 4:
Step 1: Fill the two stacks until reaching the end of the expression:

Bl

4 *4 3%4 3%4

(T

Step 3: performing the addition:

P

Step 2: performing the multiplication:

+12 2+ 12 2+ 12

N \
J L L

57
7

STUDENTS-HUB.com

+
RS

Uploaded By: Jibreel Bornat

Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Algorithm to evaluate infix expression:

Algorithm evaluateInfix(infix)

operatorStack = a new empty stack
valueStack = a new empty stack
while (infix has characters left to process) {
nextCharacter = next nonblank character of infix
switch (nextCharacter) {
case variable:
valueStack.push(yalue of the variable nextCharacter)

break

case 'A'
operatorStack.push(nextCharacter)
break

case '+' : case "-' : case '*' : case "/’

while (loperatorStack.isEmpty() and
precedence of nextCharacter <= precederice of operatorStack.peek()) {
// Execute operator at top of operatorStack
topOperator = operatorStack.pop()
operandTwo = valueStack.pop()
operandOne = valueStack.pop()
result = the result of the operation in topOperator and its operands
operandOne and operandTwo
valueStack.push(result)

}
operatorStack.push(nextCharacter)
break
case '('
operatorStack.push(nextCharacter)
break
case ')' : // Stackis not empty if infix expression is valid
topOperator = operatorStack.pop()
while (topOperator != "(") {

operandTwo = valueStack.pop()

operandOne = valueStack.pop()

result = the result of the operation in topOperator and its operands
operandOne and operandTwo

valueStack.push(result)

topOperator = operatorStack.pop()

}
break

default: break // Ignore unexpected characters
}
}

while (loperatorStack.isEmpty()) {

topOperator = operatorStack.pop()
operandTwo = valueStack.pop()
operandOne = valueStack.pop()
result = the result of the operation in topOperator and its operands
operandOne and operandTwo
valueStack.push(result)
}

return valueStack.peek()

58

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Infix to Postfix Conversion

* Operand Append each operand to the end of the output expression.
* Operator A Push A onto the stack.
* Operator +, -. *. or / Pop operators from the stack. appending them to the output

expression. until the stack is empty or its top entry has a lower
precedence than the new operator. Then push the new operator
onto the stack.

* Open parenthesis Push (onto the stack.

* Close parenthesis Pop operators from the stack and append them to the output
expression until an open parenthesis is popped. Discard both
parentheses.

Example 1: Converting the infix expression a + b * c to postfix form

Next Character in Postfix Form Operator Stack
Infix Expression (bottom to top)
a a
+ a +
b ab +
= ab +*
¢ abe +*
abe® +
abc*+

Example 2: Successive Operators with Same Precedence: a-b + ¢

Next Character in Postfix Operator Stack
Infix Expression Form (bottom to top)
a a
— a =
b ab =
-+ ab—
ab— +
¢ ab—c +
ab—c+

59

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note

2020/2021

Prepared by: Dr. Mamoun Nawahdah

Example 3: Successive Operators with Same Precedence:a”b " c

Next Character in
Infix Expression

a

A
b
M

o

Postfix
Form

a

a

ab

ab
abc
abect
abec™”

Operator Stack
(bottom to top)

A A

AA

Example 4: The steps in converting the infix expressiona /b * (c+ (d —e)) to postfix form

Next Character

from Infix
Expression

L~ T S

STUDENTS-HUB.com

Postfix
Form

a

a

ab

ab/

ab/

ab/

ab/c

ab/c

ab/c
ab/cd
ab/cd
ab/cde
ab/cde —
ab/cde—
ab/cde— +
ab/cde— +
ab/cde— + *

Operator Stack
(bottom to top)

*(

*(+
bl
* (+(
*{+{_
*{.[_(_
*(

60

Uploaded By: Jibreel Bornat

Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Infix-to-postfix Algorithm:

Algorithm convertToPostfix(infix)

operatorStack = a new empty stack

postfix = a new empiy string

while (infix has characters left to parse) {
nextCharacter = next nonblank character of infix
switch (nextCharacter) {

case variable:
Append nextCharacter fo postfix

break

case 'A’
operatorStack.push(nextCharacter)
break

case '+' : case '-' : case '*' : case '/'

while (loperatorStack.isEmpty () and
precedence of nextCharacter <= precedence of operatorStack.peek()){

Append operatorStack.peek() fo postfix
operatorStack.pop()

}

operatorStack.push(nextCharacter)
break

case '('
operatorStack.push(nextCharacter)
break

case ')' : // Stackis not empty if infix expression is valid
topOperator = operatorStack.pop()
while (topOperator != "('){

Append topOperator to postfix
topOperator = operatorStack.pop()

}

break
default: break // Ignore umexpected characters

}

while (!loperatorStack.isEmpty()) {

topOperator = operatorStack.pop()
Append topOperator fo postfix

return postfix

61

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Evaluating Postfix Expressions

e When an operand is seen, it is pushed onto a stack.
e When an operator is seen, the appropriate numbers of operands are popped from the stack, the
operator is evaluated, and the result is pushed back onto the stack.

o Note that the 1%t item popped becomes the (right hand side) rhs parameter to the binary
operator and that the 2" item popped is the (left hand side) lhs parameter; thus parameters
are popped in reverse order.

o For addition and multiplication, the order does not matter, but for subtraction and division, it
does.

e When the complete postfix expression is evaluated, the result should be a single item on the stack that
represents the answer.

Example 1: The stack during the evaluation of the postfix expressionab/ whenais2andbis 4

a b / / /4 /4 2/4 274

I

Example 2: The stack during the evaluation of the postfix expression ab +c/whenais2,bis4,andcis 3
a b + + +4 +4 244 244 ¢ / / /3 I3 6/3 6/3

O Y N A A

4 4 4 3 3 3
2 6 6 6 6 6 2

[§]
L]
2
2
[+
(=1

Self exercises:

o 234+*6- = 8.0
e 23+79/- = 4.222
e 1028*+3- = 23.0
e 12-45A3*%6*722AAN /- = -8.67

62

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Algorithm for evaluating postfix expressions.

Algorithm evaluatePostfix(postfix)

[/ BEvaluares a posifix expri
I I

valueStack = a new empiy stack
while (postfix has characters left to parse)
{
nextCharacter = next nonblank character of postfix
switch (nextCharacter)
{
case variable:
valueStack.push(value of the variable nextCharacter)
break

) L))) |

case '+' : case '-' : case '*' : case '/' : case 'A’
operandTwo = valueStack.pop(Q)
operandOne = valueStack.pop()
result = the result of the operation in nextCharacter and its operands
operandOne and operandTwo
valueStack.push(result)
break

default: break // Ignore unexpected characters

. _

63

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Queues

* A gueue is another name for a waiting line:

* Used within operating systems and to simulate real-world events.
= Come into play whenever processes or events must wait
* Entries organized first-in, first-out.
Terminology
* Item added first, or earliest, is at the front of the queue
* Item added most recently is at the back of the queue
* Additions to a software queue must occur at its back.
* Client can look at or remove only the entry at the front of the queue

/

Tail FIFO: First In First Out Head
Last First
Back Front
The ADT Queue
Data

® A collection of objects in chronological order and having the same data type

OPERATIONS
Pseupocobe UML DescrirTion

enqueue(newEntry) +enqueue(newEntry: integer): void Task: Adds a new entry to the back of
the queue.

dequeue() +dequeue(J: T Task: Removes and returns the entry at
the front of the queue.

getFront() +gatFrontQ: T Task: Retnieves the queue’s front entry
without changing fhe queue
any way.

isEmpty() +isEmpty(): boolean Task: Detects whether the queus 15 empty

clear() +clear(): void Task: Removes all entries from the queue.

64

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Linked-list Representation of a Queue

B-CGl=>—-Gl=o-Glo—Glo-A

firstNode i & TlastNode
Entry at front Entry at back
of queue of queue

public class linkedQueue <T extends Comparable<T>> {
private Node<T> first;
private Node<T> last;

public boolean isEmpty(){ return (first==null) && (last==null); }
public void clear(){
first = null;
last = null;
}
}

e The definition of enqueue Performance is O(1):

o Adding a new node to an empty chain
(a) (b)

B o H= E—CIo~F

firstNode L lastNode firstNode TastNode
]
newNode

o Adding a new node to the end of a nonempty chain that has a tail reference
(a)

i ¥ — @ ‘
& [2 & | o)
TastNode newNode
(b)
es e fi - T\ After execuling
— ¢ o I ®) JastNode.setNextNode(newNode) ;
TastNode newNode
(<)
R After executing

T l 2 /' TastNode = newNode;

TastNode newNode

public void enqueue(T data){
Node<T> newNode = new Node<T>(data);
if(isEmpty())
first=newNode;
else
last.next = newNode;
last = newNode;

65

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

