
Objects
& Classes

STUDENTS-HUB.com

https://students-hub.com

2

OO Programming Concepts
 Object-oriented programming (OOP) involves

programming using objects.

 An object represents an entity in the real world that

can be distinctly identified.

 For example, a student, a desk, a circle, a button,

and even a loan can all be viewed as objects.

 An object has a unique identity, state, and

behaviors.

 The state of an object consists of a set of data fields (also

known as properties) with their current values.

 The behavior of an object is defined by a set of methods.

STUDENTS-HUB.com

https://students-hub.com

3

Objects and Classes
 An object has both a state and behavior.

 The state defines the object, and the behavior

defines what the object does.

 Classes are constructs that define objects of the

same type.

 A Java class uses variables to define data fields

and methods to define behaviors.

 Additionally, a class provides a special type of

methods, known as constructors, which are

invoked to construct objects from the class.

STUDENTS-HUB.com

https://students-hub.com

4

Objects and Classes cont.

STUDENTS-HUB.com

https://students-hub.com

5

Circle Class

STUDENTS-HUB.com

https://students-hub.com

6

UML Class Diagram

STUDENTS-HUB.com

https://students-hub.com

7

Constructors

Circle() {
}

Circle(double newRadius) {
radius = newRadius;

}

 Constructors are a special kind of

methods that are invoked to construct objects.

STUDENTS-HUB.com

https://students-hub.com

8

Constructors cont.

 A constructor with no parameters is referred to as

a no-arg constructor.

 Constructors must have the same name as the

class itself.

 Constructors do not have a return type—not even

void.

 Constructors are invoked using the new operator

when an object is created.

 Constructors play the role of initializing objects.

STUDENTS-HUB.com

https://students-hub.com

9

Creating Objects Using Constructors

new ClassName();
Example:

new Circle();

new Circle(5.0);

STUDENTS-HUB.com

https://students-hub.com

10

Default Constructor
 A class maybe defined without constructors.

 In this case, a no-arg constructor with an

empty body is implicitly declared in the class.

 This constructor, called a default

constructor, is provided automatically

ONLY IF no constructors are

explicitly defined in the class.

STUDENTS-HUB.com

https://students-hub.com

11

Declaring Object Reference Variables

 To reference an object, assign the object
to a reference variable.

 To declare a reference variable, use the
syntax:

ClassName objectRefVar;
Example:

Circle myCircle;

STUDENTS-HUB.com

https://students-hub.com

12

Declaring/Creating Objects in a Single Step

ClassName objectRefVar = new ClassName();

STUDENTS-HUB.com

https://students-hub.com

13

Accessing Object’s Members

 Referencing the object’s data:

objectRefVar.data

e.g., myCircle.radius

 Invoking the object’s method:

objectRefVar.methodName(arguments)

e.g., myCircle.getArea()

STUDENTS-HUB.com

https://students-hub.com

14

Reference Data Fields
 The data fields can be of reference types.
 If a data field of a reference type does not reference
any object, the data field holds a special literal value,

null.
 For example, the following Student class contains a
data field name of the String type.

public class Student {

String name; // name has default value null

int age; // age has default value 0

boolean isScienceMajor; // default false

char gender; // default value '\u0000'

}
STUDENTS-HUB.com

https://students-hub.com

15

Default Value for a Data Field
 The default value of a data field is:

null for a reference type

0 for a numeric type

false for a boolean type

'\u0000' for a char type

 However, Java assigns no default value

to a local variable inside a method.

STUDENTS-HUB.com

https://students-hub.com

16

Example

public class Test {

public static void main(String[] args) {

int x; // x has no default value

String y; // y has no default value

System.out.println("x is " + x);

System.out.println("y is " + y);

}

}

Compilation error: variables not initialized

 Java assigns no default value to a local
variable inside a method.

STUDENTS-HUB.com

https://students-hub.com

17

Differences between Variables of
Primitive Data Types and Object Types

STUDENTS-HUB.com

https://students-hub.com

18

Copying Variables of Primitive Data
Types and Object Types

STUDENTS-HUB.com

https://students-hub.com

19

Garbage Collection
 As shown in the previous figure, after the
assignment statement c1 = c2, c1 points to
the same object referenced by c2.

 The object previously referenced by c1 is
no longer referenced.

 This object is known as garbage.

 Garbage is automatically collected by JVM.

STUDENTS-HUB.com

https://students-hub.com

20

The Date Class
 Java provides a system-independent encapsulation of
date and time in the java.util.Date class.

 You can use the Date class to create an instance for the
current date and time and use its toString method to return
the date and time as a string.

STUDENTS-HUB.com

https://students-hub.com

21

The Date Class Example

 For example, the following code:

java.util.Date date = new java.util.Date();

System.out.println(date.toString());

 displays a string like:

Mon Nov 04 19:50:54 IST 2013

STUDENTS-HUB.com

https://students-hub.com

22

The Random Class
 You have used Math.random() to obtain a random double
value between 0.0 and 1.0 (excluding 1.0).

 A more useful random number generator is provided in
the java.util.Random class.

STUDENTS-HUB.com

https://students-hub.com

23

Instance Variables, and Methods

 Instance variables belong to a

specific instance.

 Instance methods are invoked

by an instance of the class.

STUDENTS-HUB.com

https://students-hub.com

24

Static Variables, Constants, and Methods

 Static variables are shared by all the

instances of the class.

 Static methods are not tied to a specific

object.

 Static constants are final variables shared

by all the instances of the class.

 To declare static variables, constants, and

methods, use the static modifier.

STUDENTS-HUB.com

https://students-hub.com

25

Static

STUDENTS-HUB.com

https://students-hub.com

Static Variable
 It is a variable which belongs to the class and

not to the object (instance).

 Static variables are initialized only once, at the
start of the execution. These variables will be
initialized first, before the initialization of any
instance variables.

 A single copy to be shared by all instances of
the class.

 A static variable can be accessed directly by
the class name and doesn’t need any object.

Syntax : <class-name>.<static-variable-name>
STUDENTS-HUB.com

https://students-hub.com

Static Method
 It is a method which belongs to the class and not to the

object (instance).

 A static method can access only static data. It can not
access non-static data (instance variables).

 A static method can call only other static methods and
can not call a non-static method from it.

 A static method can be accessed directly by the class
name and doesn’t need any object.

Syntax : <class-name>.<static-method-name>

 A static method cannot refer to “this” or “super”
keywords in anyway.

main method is static, since it must be accessible for an

application to run, before any instantiation takes place.STUDENTS-HUB.com

https://students-hub.com

Static example

STUDENTS-HUB.com

https://students-hub.com

Static example cont.

 Following diagram shows , how reference
variables & objects are created and static variables
are accessed by the different instances.

STUDENTS-HUB.com

https://students-hub.com

30

Visibility Modifiers
 By default, the class, variable, or method can be
accessed by any class in the same package.

 public: The class, data, or method is visible to any

class in any package.

 private: The data or methods can be accessed only

by the declaring class.

 The get and set methods are used to read and modify
private properties.

STUDENTS-HUB.com

https://students-hub.com

31

The private modifier restricts access to within a class.

The default modifier restricts access to within a package.

The public modifier enables unrestricted access.
STUDENTS-HUB.com

https://students-hub.com

32

NOTE
 An object cannot access its private members, as
shown in (b). It is OK, however, if the object is
declared in its own class, as shown in (a).

STUDENTS-HUB.com

https://students-hub.com

33

Example of Data Field Encapsulation

STUDENTS-HUB.com

https://students-hub.com

Overloading Methods and Constructors

 In a class, there can be several methods

with the same name. However they must
have different signature.

 The signature of a method is comprised of
its name, its parameter types and the order
of its parameter.

 The signature of a method
is not comprised of its return type nor its
visibility nor its thrown exceptions.

STUDENTS-HUB.com

https://students-hub.com

35

Passing Objects to Methods

 Passing by value for primitive type
value (the value is passed to the
parameter).

 Passing by value for reference type
value (the value is the reference to
the object).

STUDENTS-HUB.com

https://students-hub.com

36

Passing Objects to Methods

public class TestPassObject {
public static void main(String[] args) {

Circle myCircle = new Circle(1);
// Print areas for radius 1, 2, 3, 4, and 5.
int n = 5;
printAreas(myCircle, n);
System.out.println("\n" + "Radius is " + myCircle.getRadius());
System.out.println("n is " + n);

}

/** Print a table of areas for radius */
public static void printAreas(Circle c, int times) {

System.out.println("Radius \t\tArea");
while (times >= 1) {

System.out.println(c.getRadius() + "\t\t" + c.getArea());
c.setRadius(c.getRadius() + 1);
times--;

}
}

}
STUDENTS-HUB.com

https://students-hub.com

37

Array of Objects

Circle[] circleArray = new Circle[10];

 An array of objects is actually an array
of reference variables.

 So invoking circleArray[1].getArea()
involves two levels of referencing as
shown in the next figure.

circleArray references to the entire array.

circleArray[1] references to a Circle object.

STUDENTS-HUB.com

https://students-hub.com

Array of Objects

Circle[] circleArray = new Circle[10];

NULL

NULL

NULL

circleArray[0] = new Circle();
circleArray[1] = new Circle();

:
circleArray[9] = new Circle();

STUDENTS-HUB.com

https://students-hub.com

39

Immutable Objects and Classes

 If the contents of an object

(instance) can't be changed once

the object is created, the object is

called an immutable object
and its class is called an

immutable class.

STUDENTS-HUB.com

https://students-hub.com

40

Immutable Objects and Classes
 If you delete the
set method in the
Circle class, the
class would be

immutable
because radius is
private and cannot
be changed
without a set
method.

public class Circle {
private double radius = 1;

public double getArea() {
return radius * radius * Math.PI;

}

public void setRadius(double r) {
radius = r;

}
}

STUDENTS-HUB.com

https://students-hub.com

Immutable Objects and Classes

 A class with all private data fields
and without mutators is not
necessarily immutable.

 For example, the following class
Student has all private data fields
and no mutators, but it is
mutable!!!

STUDENTS-HUB.com

https://students-hub.com

Example
import java.util.Date;
public class Student {

private int id;
private Date birthDate;

public Student(int ssn, Date newBD) {
id = ssn;
birthDate = newBD;

}

public int getId() { return id; }

public Date getBirthDate() { return birthDate; }
}

public class Test {
public static void main(String[] args) {
java.util.Date bd = new java.util.Date();
Student student = new Student(111223333, bd);
java.util.Date date = student.getBirthDate();
date.setMonth(5); // Now the student birthdate is changed!

}
}

STUDENTS-HUB.com

https://students-hub.com

43

What Class is Immutable?

 For a class to be immutable:

 It must mark all data fields private.

 Provide no mutator methods.

 No accessor methods that would
return a reference to a mutable data
field object.

STUDENTS-HUB.com

https://students-hub.com

44

Scope of Variables
 The scope of instance and static variables is the

entire class. They can be declared anywhere
inside a class.

 The scope of a local variable starts from its
declaration and continues to the end of the
block that contains the variable.

 A local variable must be initialized explicitly

before it can be used.

STUDENTS-HUB.com

https://students-hub.com

Scope of Variables

public class A{
int year = 2014; // instance variable

void p() {
System.out.println(“Year: ”+ year);
int year = 2015; // local variable

System.out.println(“Year: ”+ year);
}

}

What is the output?

STUDENTS-HUB.com

https://students-hub.com

46

The this Keyword

 The this keyword is the name of a reference

that refers to an object itself.

 One common use of the this keyword is

reference a class’s hidden data fields.

 Another common use of the this keyword to

enable a constructor to invoke another

constructor of the same class.

STUDENTS-HUB.com

https://students-hub.com

47

Reference the Hidden Data Fields

STUDENTS-HUB.com

https://students-hub.com

48

Calling Overloaded Constructor
public class Circle {

private double radius;

public Circle(double radius) {

this.radius = radius;

}

public Circle() {

this(1.0);

}

public double getArea() {

return this.radius * this.radius * Math.PI;

}

}

Every instance variable belongs to an instance
represented by this, which is normally omitted

this must be explicitly used to reference the data
field radius of the object being constructed

this is used to invoke another constructor

STUDENTS-HUB.com

https://students-hub.com

