th mt#ﬂfw

‘,.‘)L—-.‘J
ElRZElT UNlVERSlT"‘I’

Objects
& Classes

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

https://students-hub.com

OO Programming Concepts

¢ Object-oriented programming (OOP) involves
programming using objects.

*» An object represents an entity in the real world that
can be distinctly identified.

*» For example, a student, a desk, a circle, a button,
and even a loan can all be viewed as objects.

*» An object has a unique identity, state, and
behaviors.

= The state of an object consists of a set of data fields (also
known as properties) with their current values.

gﬁ. The behavior of an object is defined by a set of methods.

https://students-hub.com

Objects and Classes

¢+ An object has both a state and behavior.

* The state defines the object, and the behavior
defines what the object does.

*» Classes are constructs that define objects of the
same type.

«» A Java class uses variables to define data fields
and methods to define behaviors.

*» Additionally, a class provides a special type of

methods, known as constructors, which are
Invoked to construct objects from the class.

3
STUiEﬁ!EBcom

https://students-hub.com

Objects and Classes cont.

Class Name: Circle

Data Fields:
radius 1s

MMethods:
getArea

<

STU

Circle Object 1

Data Fields:
radiusis 10

Circle Object 2

Data Fields:
radiusis 25

Circle Object 3

Data Fields:
radiusis 125

\

/

|

Three objects ot
the Circle class

A class template

https://students-hub.com

Circle Class

STUDENTS-

B.col

class Circle {
J/** The radius of this circle */
double radius = 1.0; <€

/** Construct a circle object */ —j
Circle() {
}

/** Construct a circle object */
Circle(double newRadius) {
radius = newRadius;

}

/** Return the area of this circle */
double getAreal() { «

Data field

— Constructors

Method

return radius * radius * 3.14159:;

}

https://students-hub.com

UML Class Diagram

UML Class Diagram

Circle

Class name

radius: double

Data fields

Circle()
Circle(newRadius: double)
getArea(): double

Constructors and

circlel: Circle

methods

circle2: Circle

circle3: Circle

radius= 1.0

radius = 25

radius = 125

\

}

STU B.com

|
UML notation
for objects

https://students-hub.com

Constructors

¢ Constructors are a special kind of
methods that are invoked to construct objects.

Circle() {
}

Circle(double newRadius) {
radius = newRadius;

}

7
STUDE -HUB.com

https://students-hub.com

Constructors cont.

¢ A constructor with no parameters is referred to as
a no-arg constructor.

% Constructors MUSt have the same name as the
class itself.

¢ Constructors do not have a return type—not even
void.

¢ Constructors are invoked using the new operator
when an object is created.

¢ Constructors play the role of initializing objects.

STUiEﬁ!EBcom

https://students-hub.com

Creating Objects Using Constructors

new ClassName();

Example:

new Circle();

new Circle(5.0);

STUiEﬁ!EBcom

https://students-hub.com

Default Constructor

*» A class maybe defined without constructors.

*» In this case, a no-arg constructor with an
empty body is implicitly declared in the class.

< This constructor, called a default
constructor, is provided automatically

O N LY I F Nno constructors are

explicitly defined in the class.

% ’
STUDE -HUB.com

https://students-hub.com

Declaring Object Reference Variables

¢ To reference an object, assign the object
to a reference variable.

» To declare a reference variable, use the
syntax:

ClassName objectRefVar;
Example:

Circle myCircle;

% .
STUDE -HUB.com

https://students-hub.com

Declaring/Creating Objects in a Single Step

ClassName objectRefVar = new ClassName();

Assign object reference

Example: PN

Circle myCircle =

STUEEE!EBCO”‘

|

new Cii:cle)k

12

Create an object

https://students-hub.com

Accessing Object’s Members

*** Referencing the object’s data:
objectRefVar.data

e.g., MmyCircle.radius
*** Invoking the object’s method:

objectRefVar.methodName(arguments)

e.g., myCircle.getArea()

STUiEE!EBcom

https://students-hub.com

Reference Data Fields

¢ The data fields can be of reference types.

" |f a data field of a reference type does not reference
any object, the data field holds a special literal value,

null.

" For example, the following Student class contains a
data field name of the String type.

public class Student {
String name; // name has default value null
int age; // age has default value 0
boolean isScienceMajor; // default false
char gender; // default value "\u0000'

'* 14
STUDE -HUB.com

https://students-hub.com

Default Value for a Data Field

** The default value of a data field is:

null for a reference type
0 for a numeric type
false for a boolean type

"\u0000' for a char type

< However, Java assigns NO default value
to a local variable inside a method.

‘% .
STUDE -HUB.com

https://students-hub.com

Example

« Java assigns NO default value to a local
variable inside a method.

public class Test {
public static void main(String[] args) {
int x; // x has no default value
String y; // vy has no default value
System.out.printin("x is " + x);
System.out.printin("y is " +vy);

}
}

% Compilation error: variables not initialized

16

https://students-hub.com

Differences between Variables of
Primitive Data Types and Object Types

Primitive type imti=1 1 1

Created usinjﬂ:w Circle()

Object type Circle ¢ C reference » ¢ Circle

radius = 1

'* 17
STUDE -HUB.com

https://students-hub.com

Copying Variables of Primitive Data

Types and Object Types

Primitive type assignment i=j

Before:

1

1

2

Object type assignment ¢l = ¢2

Before:
cl
c2 T
Y
cl: Circle C2: Circle
radius = 5 radius =9
STUDE -HUB.com

After:
1 2
] 2
After:
cl
c2
l Y
cl: Circle C2: Circle
radius = 5 radius =9 18

https://students-hub.com

Garbage Collection

¢ As shown in the previous figure, after the
assignment statement cl1 = c2, c1 points to
the same object referenced by c2.

¢ The object previously referenced by c1 is
no longer referenced.

<+ This object is known as garbage.
** Garbage is automatically collected by JVM.

STUiEﬁ!EBcom

https://students-hub.com

The Date Class

¢ Java provides a system-independent encapsulation of
date and time in the java.util.Date class.

¢ You can use the Date class to create an instance for the
current date and time and use its toString method to return

the date and time as a string.

java.util Date

The + sign indicates

public modifer ——|+Date() Constructs a Date object for the current time.
+Date(elapseTime: long) Constructs a Date object fora given time in
milliseconds elapsed since January 1, 1970, GMT.
+toSting(): String Returns a string representing the date and time.
+getTime(): long Returns the number of milliseconds since Januarv 1,
1570, GMT.

+setTime(elapseTime: long): void | Sets anew elapse time in the object.

20

STUDE -HUB.com

https://students-hub.com

The Date Class Example

** For example, the following code:
java.util.Date date = new java.util.Date();
System.out.printin(date.toString());
= displays a string like:
Mon Nov 04 19:50:54 IST 2013

STUiEE!EBAcom

https://students-hub.com

The Random Class

+** You have used Math.random() to obtain a random double
value between 0.0 and 1.0 (excluding 1.0).

** A more useful random number generator is provided in
the java.util.Random class.

java.util. Random
+Randomy() Constructs a Random object with the current time as its seed.
+tRandom(seed: long) Constructs a Random object with a specified seed.
+nextlnt(): int Returns a random int value.
+nextInt(n: int): int Returns a random int value between 0 and n (exclusive).
+nextLong(): long Returns a random long value.
+nextDouble(): double Returns a random double value between 0.0 and 1.0 (exclusive).
+nextFloat(): float Returns a random float value between 0.0F and 1.0F (exclusive).

+nextBoolean(): boolean |Returnsa random boolean value.

22

STUDE -HUB.com

https://students-hub.com

Instance Variables, and Methods

** Instance variables belong to a
specific Instance.

* Instance methods are invoked
by an instance of the class.

STUiEﬁ!EBcom

https://students-hub.com

Static Variables, Constants, and Methods

*» Static variables are shared by all the
Instances of the class.

*» Static methods are not tied to a specific
object.

o» Static constants are final variables shared
by all the instances of the class.

+» To declare static variables, constants, and

methods, use the statiC modifier.

'* 24
STUDE -HUB.com

https://students-hub.com

Static

UML Notation:
underline: static

variables or methods

instantiate

Aftertwo Circle
Objects were created,
numberOfObjects
is 2.

radius: double
numberOfObjects: int

getNumberOfObjects(): int

getArea(): double

instantiate
——

STU B.com

circlel: Circle Memory
radius = 1 > | radius
number0fObjects = 2
—
number0OfObjects

circle2: Circle
radius = 5

number0fObjects = 2

“‘, = 5 | radius

25

https://students-hub.com

Static Variable

** It is a variable which belongs to the class and
not to the object (instance).

+* Static variables are initialized only once, at the
start of the execution. These variables will be
initialized first, before the initialization of any
instance variables.

*** A single copy to be shared by all instances of
the class.

¢ A static variable can be accessed directly by
the class name and doesn’t need any object.

%Syntax . <class-name>.<static-variable-name>

https://students-hub.com

Static Method

* It is a method which belongs to the class and not to the
object (instance).

s A static method can access only static data. It can not
access non-static data (instance variables).

** A static method can call only other static methods and
can not call a non-static method from it.

** A static method can be accessed directly by the class
name and doesn’t need any object.

Syntax : <class-name>.<static-method-name>

¢ A static method cannot refer to “this” or “super”
keywords in anyway.

main method is static, since it must be accessible for an
Bl (ot application to run, before any instantiation takes place.

https://students-hub.com

Static example

class Student {
int a; //initialized to zero
static int b; //initialized to zero only when class is loaded

Student(){
//Constructor incrementing static variable b
b++;
1
J

public void showData(){
System.out.println("value of a
System.out.println("value of b

1

)
//public static void increment(){
//at++;

/1}

1
J

class Demo{
public static void main(String args[]){

Student s1 = new Student(); -
s1.showbData(); cn C:\WINDOWS\system32\cmd.exg

:\workspace>java Demo
alue of a

Student s2 = new Student();
s2.showData();

//Student.b++; alue of b

//s1.showData(); alue of a
: ' alue of b

[N—_—

byl

https://students-hub.com

Static example cont.

¢ Following diagram shows , how reference
variables & objects are created and static variables
are accessed by the different instances.

Ny b ¥

)
...
by
L ...
...

https://students-hub.com

Visibility Modifiers

¢ By default, the class, variable, or method can be
accessed by any class in the same package.

<= puU blic: The class, data, or method is visible to any

class in any package.

& private: The data or methods can be accessed only

by the declaring class.
<+ The get and set methods are used to read and modify
private properties.

% .
STUDE -HUB.com

https://students-hub.com

package p1l;

public class C1 {
public 1int x;
int y;
private int z;

public void m1() {

101d m2({

irivate void m3() {
, }

package pl;

public class C2 {
void aMethod() {
Cl o = new C1Q);
can access 0.X;
can access 0.Y;
cannot access 0.Z;

can invoke o.m1();
can invoke o.m2();
cannot invoke o0.m3();

package p2;

public class C3 {
void aMethod() {
Cl o = new C1Q);
can access 0.X;
cannot access 0.Y;
cannot access 0.z;

can invoke o.m1();
cannot invoke o0.m2();
cannot invoke 0.m3():

package pl;
class C1 {

: e

package pl;

public class C2 {
can access C1

}

package p2;

public class C3 {
cannot access (C1;
canh access (C2;

}

The private modifier restricts access to within a class.

The default modifier restricts access to within a package.

STUDENTS-

% The public modifier enables unrestricted access.

https://students-hub.com

NOTE

¢ An object cannot access its private members, as
shown in (b). It is OK, however, if the object is
declared in its own class, as shown in (a).

public class C { public class Test {
private boolean x; public static void main(String[] args) {
C c = new CQO;

System.out.printin(c.x);
System.out.printin(c.cghvert());

}
¥

private int convert() {

return x 7 1 : -1;
¥

}
4
(a) This is okay because object C is used inside the class C. (b) This is wrong because X and convert are private in class C.

32

https://students-hub.com

Example of Data Field Encapsulation

Circle

The - sign indicates
private modifier =3 -radius: double

pumberOfObiects: i

+Circle()

+Circle(rads: double)

+getR adius(): double

+setR adu s(radius: double): void
+getNumberOfObject(): int
+getArea(): double

STU -HUB.com

The radms o this crcle (default: 1.0).

The number of circle objects created.

Constructs adefault circle object.
Constructs acircle object with the specified radius.
Retums the radius of this circle.
Set s anew radius forthis circle.
Retums the number of circle objects created.

Retums the area of this circle

33

https://students-hub.com

Overloading Methods and Constructors

** In a class, there can be several methods

with the same name. However they must
have different signature.

** The signature of a method is comprised of
its name, its parameter types and the order
of its parameter.

¢ The signature of a method
is not comprised of its return type nor its
visibility nor its thrown exceptions.

STUiEﬁ!EBcom

https://students-hub.com

Passing Objects to Methods

» Passing by value for primitive type
value (the value is passed to the
parameter).

» Passing by value for reference type
value (the value is the reference to
the object).

STUiEﬁ!EBcom

https://students-hub.com

Passing Objects to Methods

public class TestPassObject {
public static void main(String[] args) {

Circle myCircle = new Circle(1);
// Print areas for radius 1, 2, 3, 4, and 5.
intn=25;
printAreas(myCircle, n);
System.out.printIn("\n" + "Radius is " + myCircle.getRadius());
System.out.printin("nis " + n);

}

/** Print a table of areas for radius */
public static void printAreas(Circle c, int times) {
System.out.printIn("Radius \t\tArea");
while (times >= 1) {
System.out.printIn(c.getRadius() + "\t\t" + c.getArea());
c.setRadius(c.getRadius() + 1);
times--;

}

EE }
}

36

https://students-hub.com

Array of Objects

Circle[] circleArray = new Circle[10];
¢ An array of objects is actually an array
of reference variables.

¢* So invoking circleArray[1].getArea()
involves two levels of referencing as
shown in the next figure.

circleArray references to the entire array.
circleArray[1] references to a Circle object.

STUiEﬁ!EBcom

https://students-hub.com

Array of Objects

Circle[] circleArray = new Circle[10];

circ]eArray‘jiﬁfzﬂfi}---*-circ1eArray[0]

Circle object 0

circleArray[1]

Circle object 1

circleArray[9]

11

Circle object9

circleArray[0] = new Circle();
circleArray[1] = new Circle();

circleArray[9] = new Circle();

https://students-hub.com

Immutable Objects and Classes

* If the contents of an object

(instance) can't be changed once
the object is created, the object is

called animmutable object
and its class is called an

immutable class.

STUiEE!EBAcom

https://students-hub.com

Immutable Objects and Classes

* If you delete the ,pjic class Circle {

set method in the private double radius = 1;

Circle class, the

class would be public double getArea() {
immutable return radius * radius * Math.Pl;

because radius is }

private and cannot public void setRadius(double r) {
be changed radius = r;

without a set ;

method. }

'* 40
STUDE -HUB.com

https://students-hub.com

Immutable Objects and Classes

** A class with all private data fields
and without mutators is not
necessarily immutable.

*** For example, the following class
Student has all private data fields
and no mutators, but it is
mutable!!!

STUiEﬁ!EBcom

https://students-hub.com

import java.util.Date;

Exa m p I e public class Student {

private int id;
private Date birthDate;

public Student(int ssn, Date newBD) {
id = ssn;
birthDate = newBD;

}

publicint getld(){ returnid; }

public Date getBirthDate() { return birthDate; }
}

public class Test {
public static void main(String[] args) {
java.util.Date bd = new java.util.Date();
Student student = new Student(111223333, bd);
java.util.Date date = student.getBirthDate();
date.setMonth(5); // Now the student birthdate is changed!

}

}

STUDE -HUB.com

https://students-hub.com

What Class is Immutable?

¢ For a class to be immutable:
" [t must mark all data fields private.
® Provide no mutator methods.

= No accessor methods that would
return a reference to a mutable data
field object.

STUiEE!EBcom

https://students-hub.com

Scope of Variables

** The scope of instance and static variables is the
entire class. They can be declared anywhere
inside a class.

** The scope of a local variable starts from its
declaration and continues to the end of the
block that contains the variable.

< A local variable MUST be initialized explicitly
before it can be used.

STUiEﬁ!EBcom

https://students-hub.com

Scope of Variables

*** What is the output?

public class A{
int year = 2014;

void p() {
System.out.printIn(“Year: ”+ year);

int year = 2015;
System.out.printIn(“Year: ”+ year);

J

STUiEﬁ!EBcom

https://students-hub.com

The this Keyword

¢ The this keyword is the name of a reference

that refers to an Object itself.
¢ One common use of the this keyword is

reference a class’s hidden data fields.

¢ Another common use of the this keyword to
enable a constructor to invoke another
constructor of the same class.

STUiEE!EBcom

46

https://students-hub.com

Reference the Hidden Data Fields

public class F
private int 1 = 5;
private static double k = 0;

void setI(int 1) {
this.i = i;

}

static wvoid setE (double k) |
F.k = k;
}
]

Suppose that fl1 and f2 are two objects of F.
F f1 = new F(); F £Z2 = new F():

Invoking fl.setI(10) 1s to execute
this.1 = 10, where this refers fl

Invoking f2.setI (45) 1s to execute
Bl et this.1 = 45, where this refers f2

https://students-hub.com

Calling Overloaded Constructor

public class Circle {
private double radius;

public Circle (double radius) {
this.radius = radius;

}
this must be explicitly used to reference the data

public Circle () { field radius of the object being constructed
this(1.0) ;

}

—> this is used to invoke another constructor

public double getArea () {
return this.radius * this.radius * Math.PI;

] |

Every instance variable belongs to an instance

represented by this, which is normally omitted
48

STUDE -HUB.com

https://students-hub.com

