Q#1 Compare zero-, one-, two-, and three-address machines by writing programs to compute X = (A + B * C)/(D - E * F)

for each of the four machines. The instructions available for use are as follows:

0 Address	1 Address	2 Address	3 Address
PUSH M	LOAD M	$MOVE (X \leftarrow Y)$	$MOVE (X \leftarrow Y)$
POP M	STORE M	$ADD (X \leftarrow X + Y)$	$ADD (X \leftarrow Y + Z)$
ADD	ADD M	$SUB (X \leftarrow X - Y)$	$SUB (X \leftarrow Y - Z)$
SUB	SUB M	$MUL(X \leftarrow X \times Y)$	$MUL(X \leftarrow Y \times Z)$
MUL	MUL M	$DIV (X \leftarrow X/Y)$	DIV $(X \leftarrow Y/Z)$
DIV	DIV M		

solution:

بس اطلع على اول 3 والاخيرة انساك منها.

PUSH A PUSH B	LOAD E MUL F	MOV R0, E MUL RO, F	MUL R0, E, F SUB R0, D, R0
PUSH C	STORE T	MOV R1, D	MUL R1, B, C
MUL ADD	LOAD D SUB T	SUB R1, R0 MOV R0, B	ADD R1, A, R1 DIV X, R0, R1
PUSH D PUSH E	STORE T LOAD B	MOV R0, C ADD R0, A	, ,
PUSH F	MUL C	DIV R0, R1	
MUL SUB	ADD A DIV T	MOV X, R0	
DIV POP X	STO X		