

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

Circuits LAB (ENEE2102)

Pre-LAB of Experiment #4

Network Theorems

Prepared by:

Name: Sara Totah Number: 1181779

Instructor:

Jaser Sa'Ed

Date:

20/9/2020

Section: #1

Part A: Proportionality:

Fig (4-1)

Plot (4-1)

• When $V_{in} = 5$:

 $V_O = 896.122 \text{mV}.$

• When $V_{in} = 10$:

 $V_0 = 1.7841V$.

Part B: Superposition:

Fig (4-2)

Fig (4-3)

Fig (4-4)

Part C: Thevenin's Theorem:

A.

Fig (4-5) a

To find R_{th} remove R4 and replace it with open circuit, and replace V1 with short circuit:

$$R_{th} = (2.2 \text{k} // 820) + 390 = 987.35 \Omega$$

To find V_{th} replace R4 with short circuit, with KCL:

$$V_{th} = 7.2v$$

Fig (4-5) b

Part D: Δ-Y Transformation:

Fig (4-8) a

Y-Delta Transformation:

$$R_{y1} = R_{y2} = R_{y3} = \frac{3.3k}{3.3k*3} = 1100 \Omega$$

Fig (4-8) b

Part E: The Reciprocity Theorem:

Fig (4-9)

Fig (4-10)