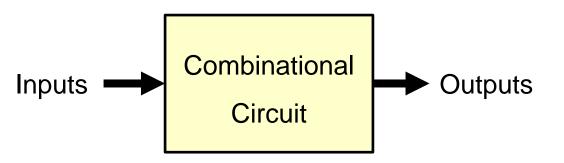
Synchronous Sequential Logic

STUDENTS-HUB.com

Combinational versus Sequential

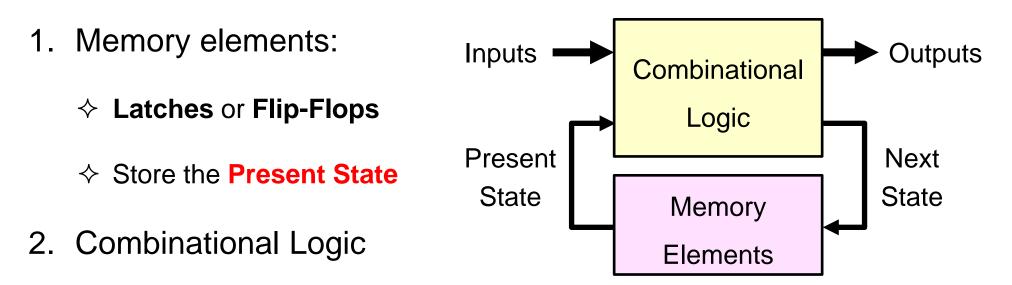
- Two classes of digital circuits
 - Combinational Circuits
 - ♦ Sequential Circuits
- Combinational Circuit
 - \diamond Outputs = F(Inputs)
 - ♦ Function of Inputs only
 - ♦ NO internal memory
- Sequential Circuit
 - ♦ Outputs is a function of Inputs and internal Memory
 - \diamond There is an internal memory that stores the state of the circuit
 - $\diamond\,$ Time is very important: memory changes with time

STUDENTS-HUB.com



Introduction to Sequential Circuits

A Sequential circuit consists of:



♦ Computes the Outputs of the circuit

Outputs depend on Inputs and Current State

♦ Computes the Next State of the circuit

Next State also depends on the Inputs and the Present State

STUDENTS-HUB.com

Two Types of Sequential Circuits

1. Synchronous Sequential Circuit

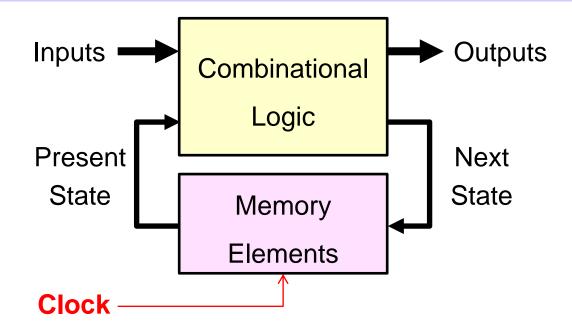
- ♦ Uses a clock signal as an additional input
- ♦ Changes in the memory elements are controlled by the clock
- ♦ Changes happen at discrete instances of time

2. Asynchronous Sequential Circuit

- ♦ No clock signal
- ♦ Changes in the memory elements can happen at any instance of time
- Our focus will be on Synchronous Sequential Circuits
 - ♦ Easier to design and analyze than asynchronous sequential circuits

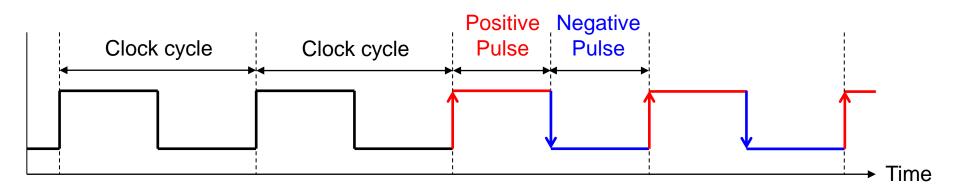
STUDENTS-HUB.com

Synchronous Sequential Circuits



- Synchronous sequential circuits use a clock signal
- The clock signal is an input to the memory elements
- The clock determines when the memory should be updated
- The present state = output value of memory (stored)
- The next state = input value to memory (not stored yet)
 STUDENTS-HUB.com
 Uploaded By: Mala

The Clock

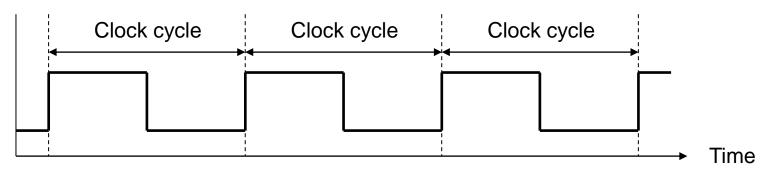


- Clock is a periodic signal = Train of pulses (1's and 0's)
- The same clock cycle repeats indefinitely over time
- Positive Pulse: when the level of the clock is 1
- Negative Pulse: when the level of the clock is 0
- Rising Edge: when the clock goes from 0 to 1

Falling Edge: when the clock goes from 1 down to 0

STUDENTS-HUB.com

Clock Cycle versus Clock Frequency



Clock cycle (or period) is a time duration

- ♦ Measured in seconds, milli-, micro-, nano-, or pico-seconds
- \Rightarrow 1 ms = 10⁻³ sec, 1 µs = 10⁻⁶ sec, 1 ns = 10⁻⁹ sec, 1 ps = 10⁻¹² sec
- Clock frequency = number of cycles per second (Hertz)

 \Rightarrow 1 Hz = 1 cycle/sec, 1 KHz = 10³ Hz, 1 MHz = 10⁶ Hz, 1 GHz = 10⁹ Hz

Clock frequency = 1 / Clock Cycle

 \diamond Example: Given the clock cycle = 0.5 ns = 0.5 × 10⁻⁹ sec

 \Rightarrow Then, the clock frequency = 1/(0.5×10⁻⁹) = 2×10⁹ Hz = 2 GHz

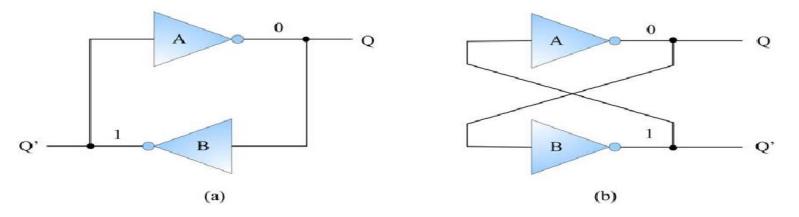
STUDENTS-HUB.com

Memory Elements

- Memory can store and maintain binary state (0's or 1's)
 - \diamond Until directed by an input signal to change state
- Main difference between memory elements
 - ♦ Number of inputs they have
 - \diamond How the inputs affect the binary state
- Two main types:
 - ♦ Latches are level-sensitive (the level of the clock)
 - ♦ Flip-Flops are edge-sensitive (sensitive to the edge of the clock)
- Flip-Flips are used in synchronous sequential circuits
- Flip-Flops are built with latches

STUDENTS-HUB.com

Memory Elements - Latches



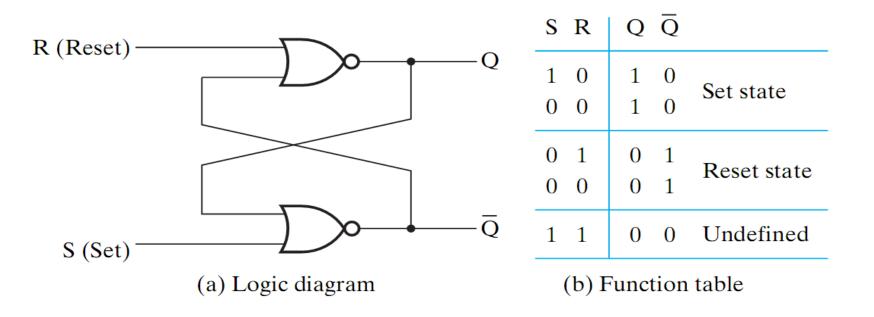
- ✤ A basic memory element, as shown in Figure (a), is the latch.
- ✤ A latch is a circuit capable of storing one bit of information.
- The latch circuit consists of two inverters; with the output of one connected to the input of the other.
- The latch circuit has two outputs, one for the stored value (Q) and one for its complement (Q').
- Figure (b) shows the same latch circuit re-drawn to illustrate the two complementary outputs.
- The problem with the latch formed by NOT gates is that we can't change the stored value. For example, if the output of inverter B has logic 1, then it will be latched forever; and there is no way to change this value.

STUDENTS-HUB.com

SR Latch

An SR Latch can be built using two NOR gates

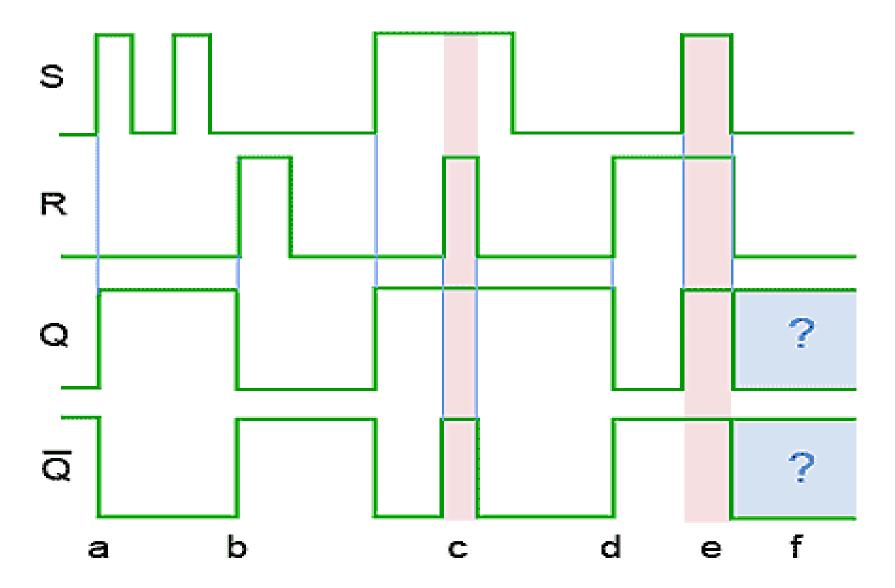
- ✤ Two inputs: S (Set) and R (Reset)
- **\bigstar** Two outputs: Q and \overline{Q}



SR Latch Operation

- ♦ If S = 1 and R = 0 then Set $(Q = 1, \overline{Q} = 0)$
- ♦ If S = 0 and R = 1 then **Reset** $(Q = 0, \overline{Q} = 1)$
- When S = R = 0, Q and \overline{Q} are unchanged
- ✤ The latch stores its outputs Q and \overline{Q} as long as S = R = 0
- ↔ When S = R = 1, Q and \overline{Q} are undefined (should never be used)

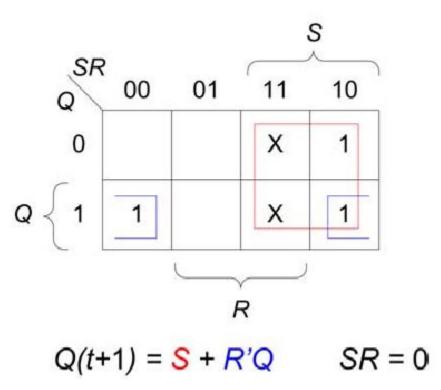
SR Latch Timing Diagram



STUDENTS-HUB.com

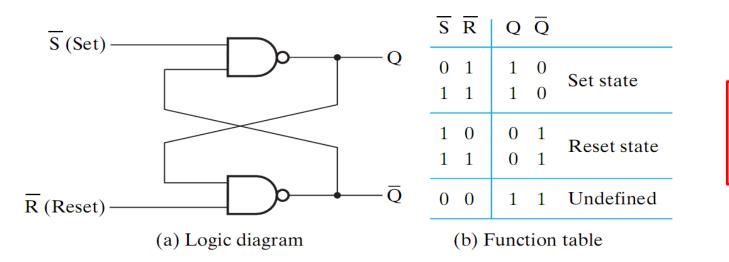
Characteristic Equation of the SR Latch

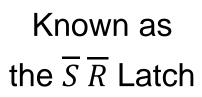
Q(t)	S	R	Q(t + 1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	Indeterminate
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	Indeterminate



STUDENTS-HUB.com

$\overline{S} \overline{R}$ Latch with NAND Gates

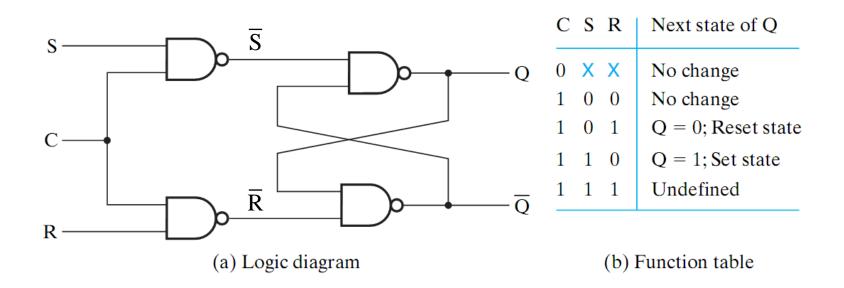




- If $\overline{S} = 0$ and $\overline{R} = 1$ then Set $(Q = 1, \overline{Q} = 0)$
- If $\overline{S} = 1$ and $\overline{R} = 0$ then **Reset** $(Q = 0, \overline{Q} = 1)$
- When $\overline{S} = \overline{R} = 1$, Q and \overline{Q} are unchanged (remain the same)
- ✤ The latch stores its outputs Q and \overline{Q} as long as $\overline{S} = \overline{R} = 1$

✤ When $\overline{S} = \overline{R} = 0$, Q and \overline{Q} are undefined (should never be used)
STUDENTS-HUB.com
Uploaded By: Malak Dar Obaid

SR Latch with a Clock Input



- ✤ An additional Clock input signal C is used
- Clock controls when the state of the latch can be changed
- ✤ When C=0, the S and R inputs have no effect on the latch

The latch will remain in the same state, regardless of S and R

When C=1, then normal SR latch operation

STUDENTS-HUB.com

SR Latch with a Clock Input

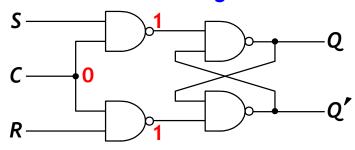
Function Table Logic Diagram С S R **Next State** Q Χ Χ No Change 0 No Change 0 0 Q' Q=0; Reset 0 1 **Q=1; Set** 1 1 0 1 1 Indeterminate

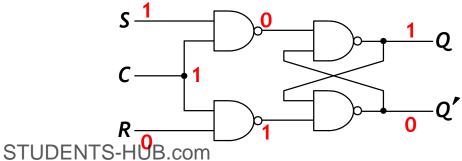
No Change

S

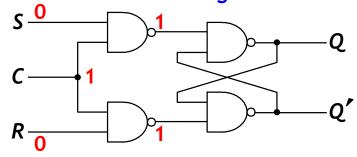
С

R

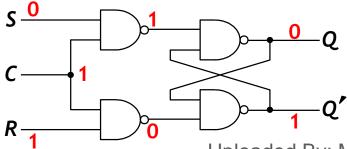




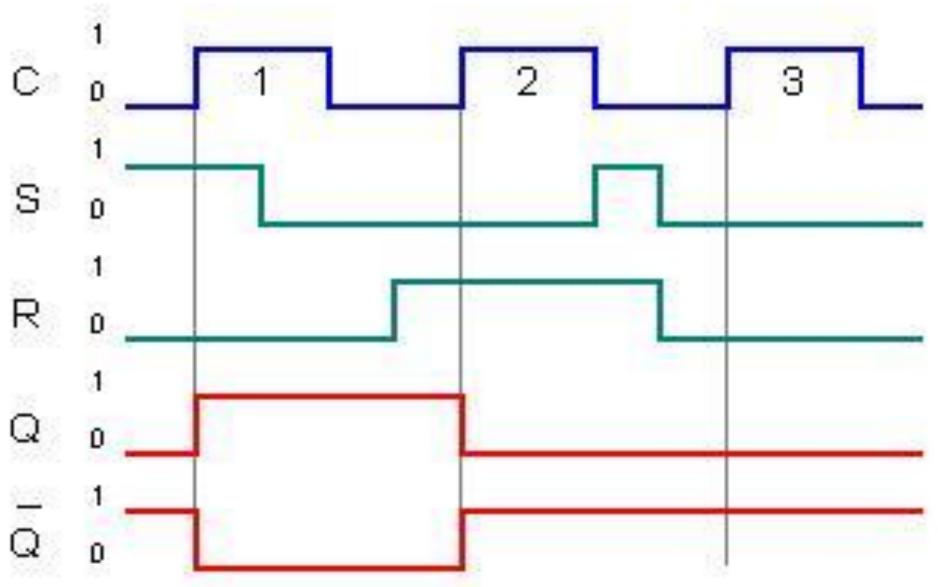
No Change



Reset

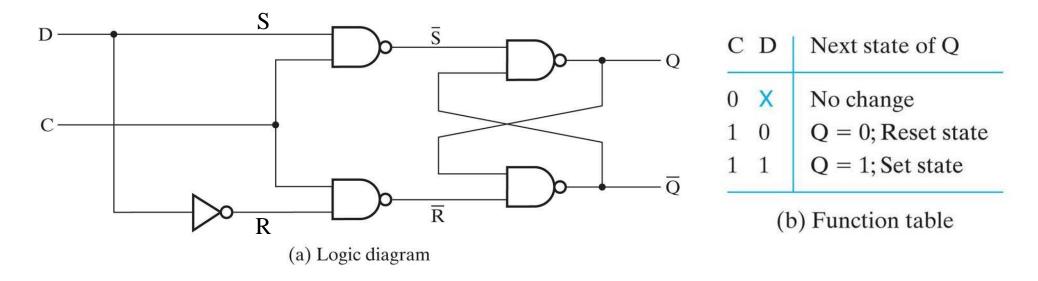


SR Latch with a Clock Input Timing Diagram



STUDENTS-HUB.com

D-Latch with a Clock Input

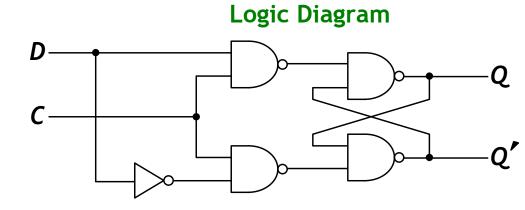


Elimination the undesirable condition of the indeterminate state in SR latch

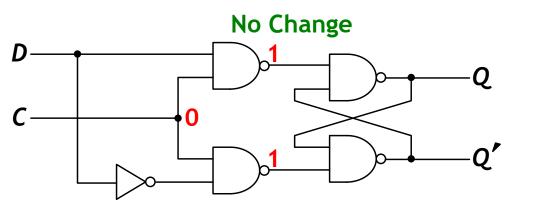
- \diamond Only one data input D
- ♦ An inverter is added: S = D and $R = \overline{D}$
- \diamond S and R can never be 11 simultaneously \rightarrow No undefined state
- \diamond When C = 0, Q remains the same (No change in state)
- ♦ When C = 1, Q = D and $\overline{Q} = \overline{D}$

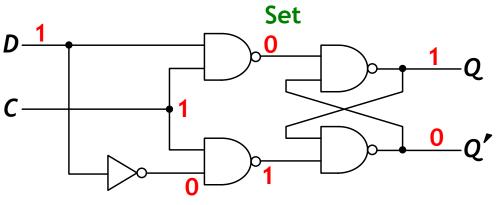
STUDENTS-HUB.com

D-Latch with a Clock Input



Function Table					
С	D	Next State			
0	X	No Change			
1	0	Q=0; Reset			
1	1	Q=1; Set			

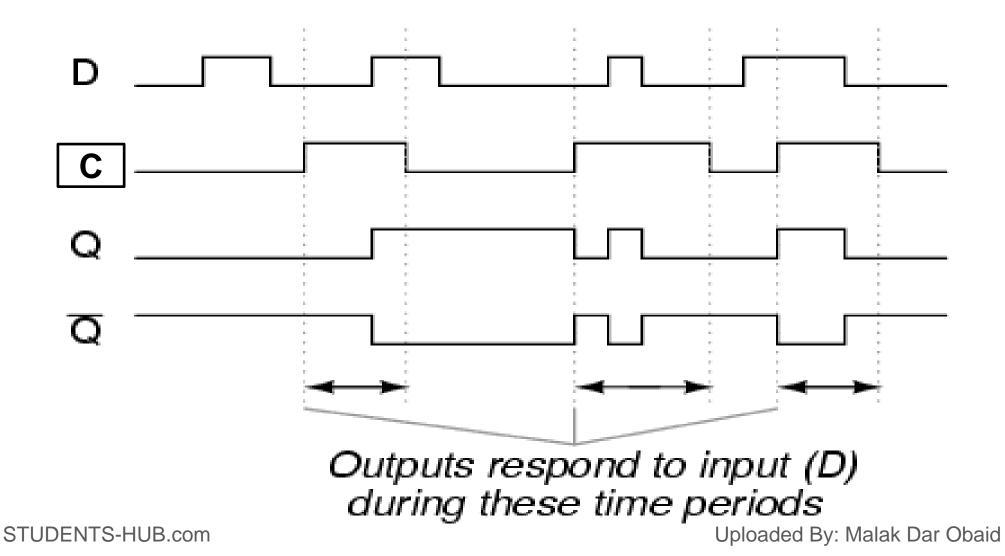




STUDENTS-HUB.com

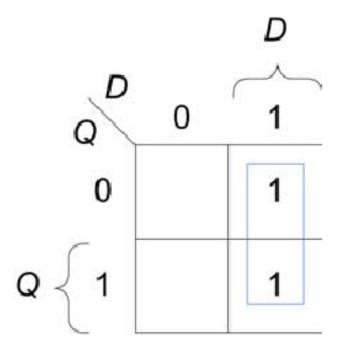
D-Latch with a Clock Input Timing Diagram

Regular D-latch response



Characteristic Equation of the D-Latch

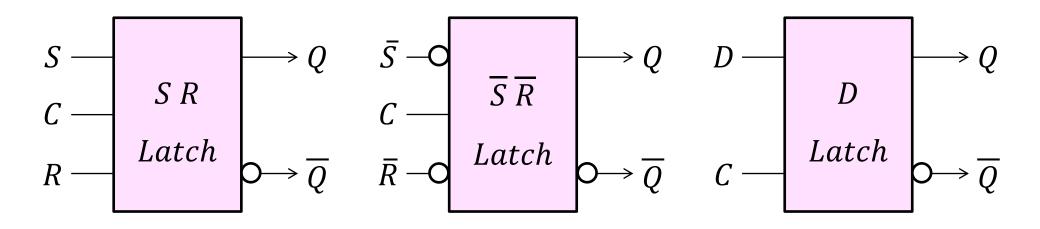
Q(t)	D	Q(t + 1)
0	0	0
0	1	1
1	0	0
1	1	1



Q(t+1) = D

STUDENTS-HUB.com

Graphic Symbols for Latches



* A bubble appears at the complemented output \overline{Q}

Indicates that \overline{Q} is the complement of Q

A bubble also appears at the inputs of an \overline{SR} latch

Indicates that **logic-0** is used (not logic-1) to set (or reset) the latch (as in the NAND latch implementation)

STUDENTS-HUB.com

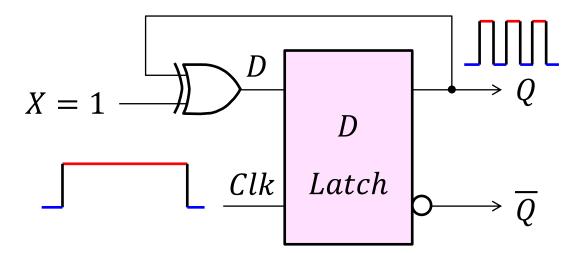
Problem with Latches

- A latch is **level-sensitive** (sensitive to the level of the clock)
- ✤ As long as the clock signal is high …

Any change in the value of input D appears in the output Q

- ✤ Output *Q* keeps changing its value during a clock cycle
- Final value of output Q is uncertain

Due to this uncertainty, latches are NOT used as memory elements in synchronous circuits

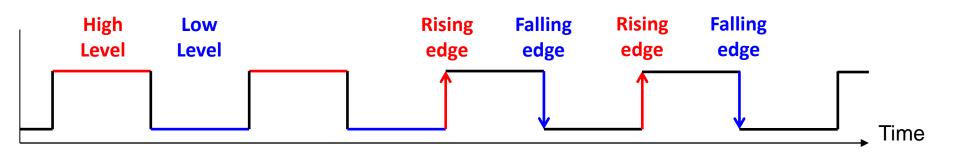


Uploaded By: Malak Dar Obaid

STUDENTS-HUB.com

Flip-Flops

- ✤ A Flip-Flop is a better memory element for synchronous circuits
- Solves the problem of latches in synchronous sequential circuits
- ✤ A latch is sensitive to the level of the clock
- However, a flip-flop is sensitive to the edge of the clock
- A flip-flop is called an **edge-triggered** memory element
- It changes it output value at the edge of the clock



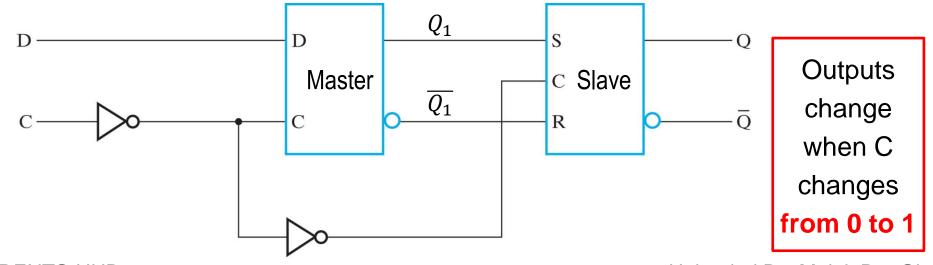
STUDENTS-HUB.com

Positive Edge-Triggered D Flip-Flop

- Built using two latches in a master-slave configuration
- ✤ A master latch (D-type) receives external inputs
- ✤ A slave latch (SR-type) receives inputs from the master latch
- Only one latch is enabled at any given time

When C=0, the master is enabled and the D input is latched (slave disabled)

When C=1, the slave is enabled to generate the outputs (master is disabled)

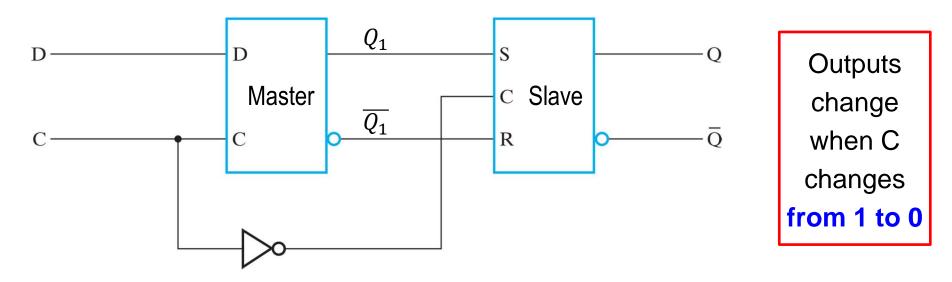


STUDENTS-HUB.com

Negative Edge-Triggered D Flip-Flop

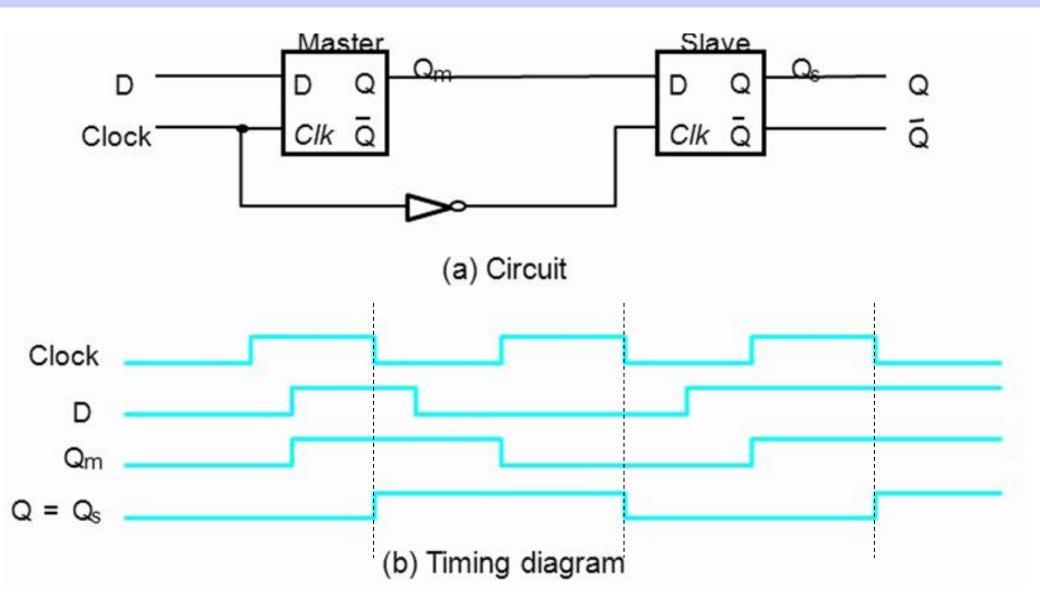
- Similar to positive edge-triggered flip-flop
- The first inverter at the Master C input is removed
- Only one latch is enabled at any given time

When **C=1**, the master is enabled and the D input is latched (slave disabled) When **C=0**, the slave is enabled to generate the outputs (master is disabled)



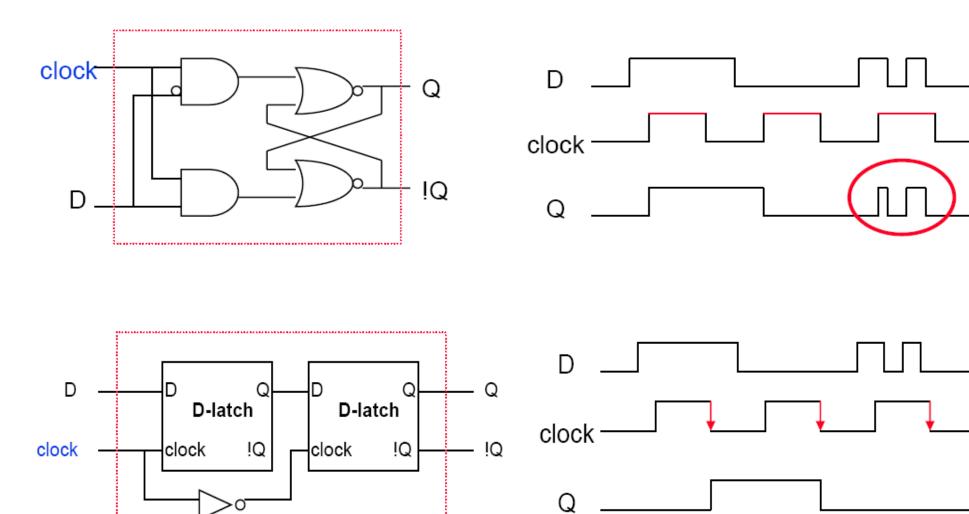
STUDENTS-HUB.com

Negative-Edge D Flip-Flop Timing Diagram



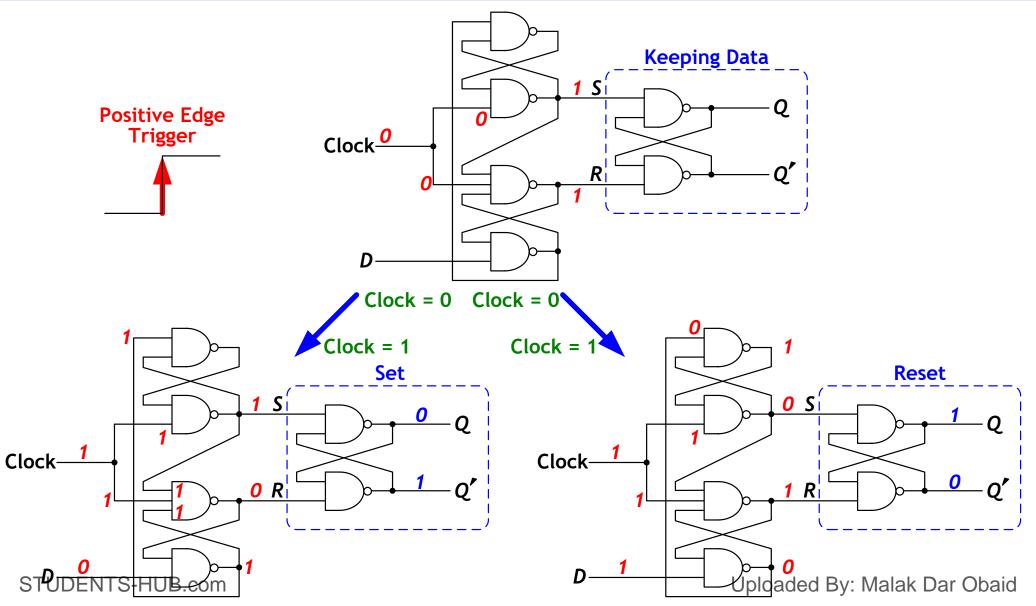
STUDENTS-HUB.com

D-Latch vr. Edge-Triggered D Flip-Flop

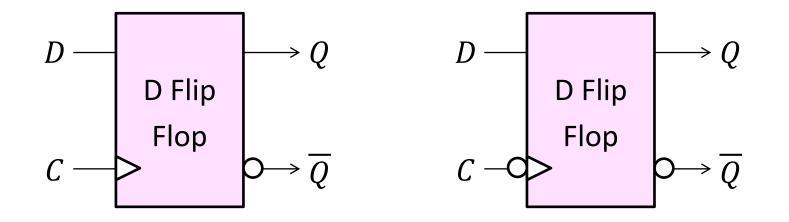


STUDENTS-HUB.com

Positive Edge-Triggered D Flip-Flop Another Construction



Graphic Symbols for Flip-Flops



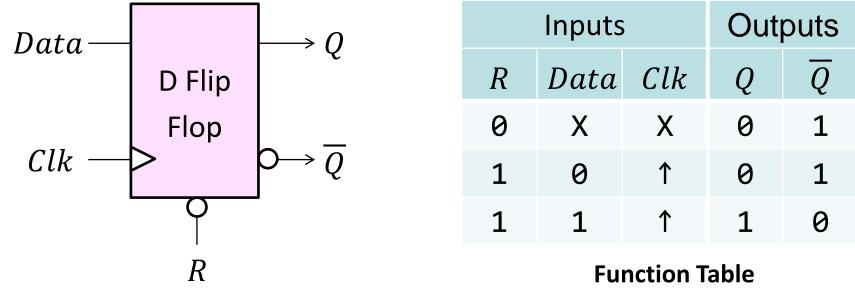
✤ A Flip-Flop has a similar symbol to a Latch

- \clubsuit The difference is the arrowhead at the clock input C
- The arrowhead indicates sensitivity to the edge of the clock
- ✤ A bubble at the C input indicates negative edge-triggered FF

STUDENTS-HUB.com

D Flip-Flop with Asynchronous Reset

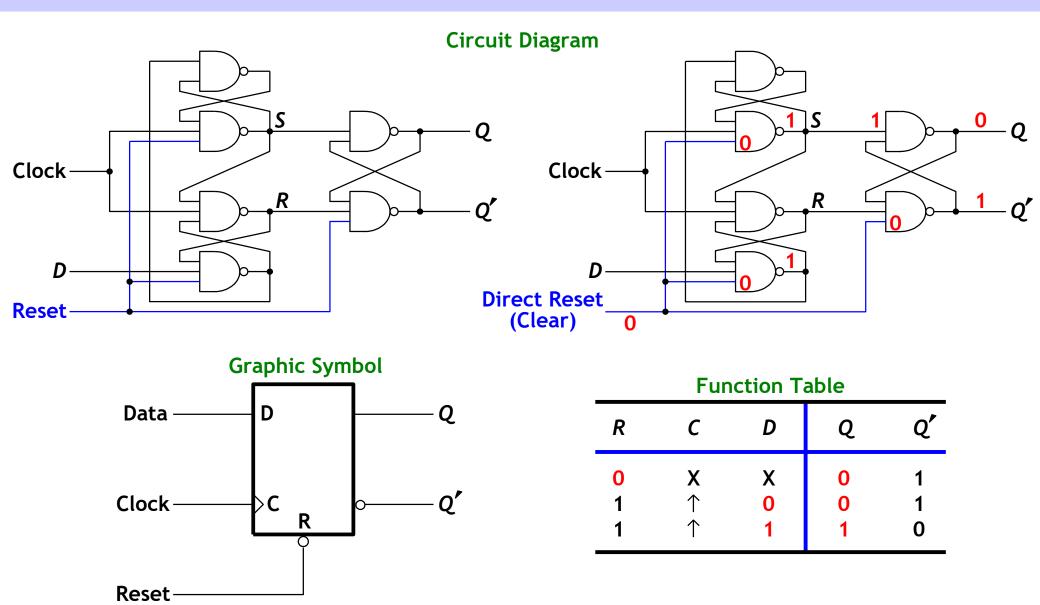
- When Flip-Flops are powered, their initial state is unknown
- Some flip-flops have an Asynchronous Reset input R
- Resets the state (to logic value 0), independent of the clock
- This is required to initialize a circuit before operation
- ✤ If the *R* input is inverted (bubble) then R = 0 resets the flip-flop



Uploaded By: Malak Dar Obaid

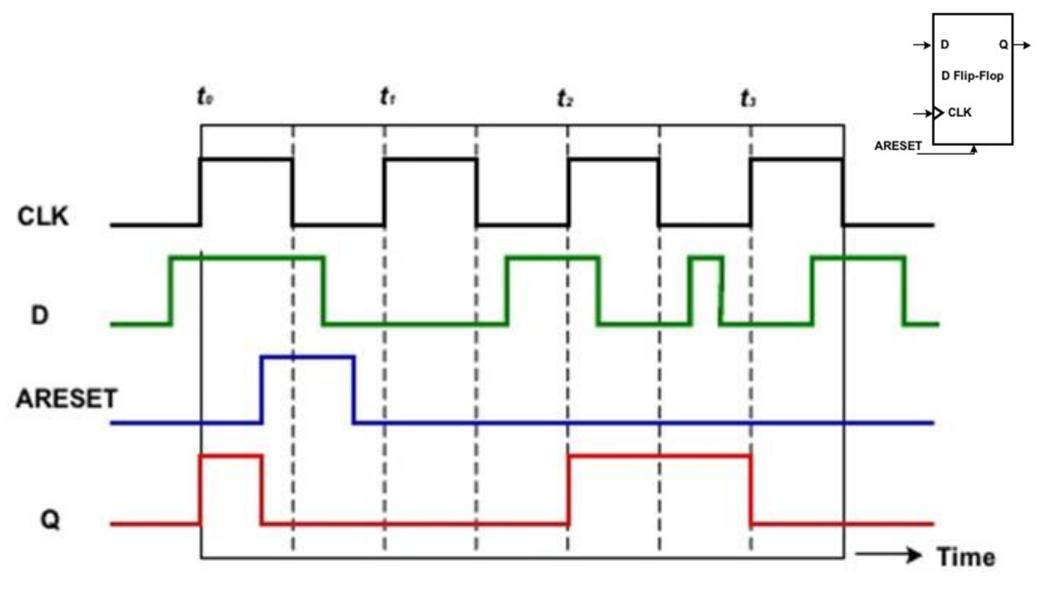
STUDENTS-HUB.com

D Flip-Flop with Asynchronous Reset



STUDENTS-HUB.com

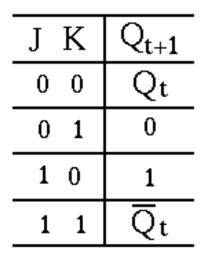
D Flip-Flop with Asynchronous Reset

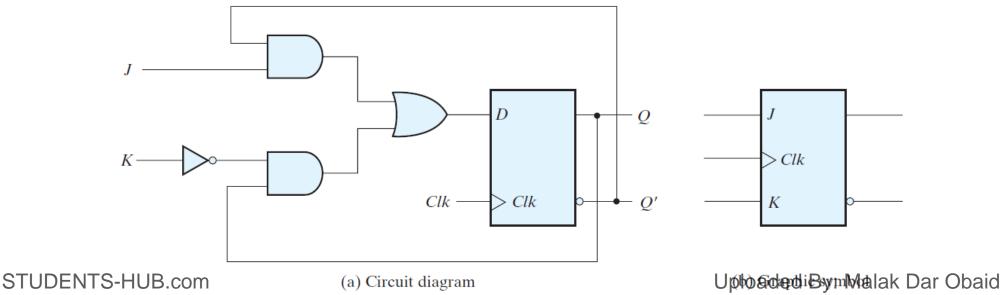


STUDENTS-HUB.com

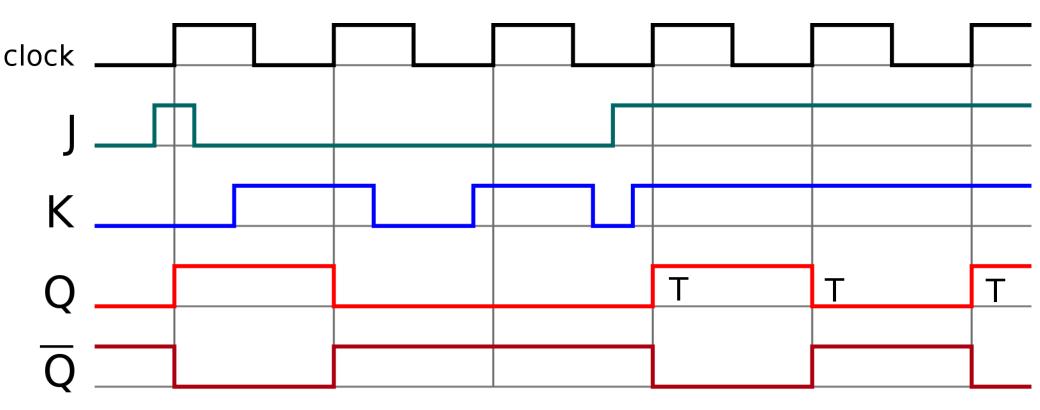
JK Flip-Flop

- The D Flip-Flop is the most commonly used type
- The JK is another type of Flip-Flop with inputs: J, K, and Clk
- ♦ When $JK = 10 \rightarrow Set$, When $JK = 01 \rightarrow Reset$
- ♦ When JK = 00 → No change, When JK = 11 → Invert outputs
- JK can be implemented using D FF





JK Flip-Flop Timing Diagram



T = toggle

STUDENTS-HUB.com

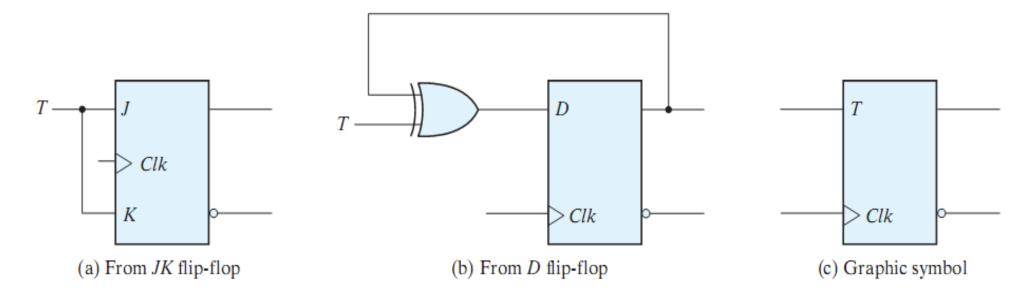
Characteristic Equation of the JK Flip-Flop

Q(t)	J	K	Q(t + 1)					J
0	0	0	0	Q	00	01	໌11	10
0	0	1	0	o			1	1
0	1	0	1	C -				
0	1	1	1	Q { 1	1			1
1	0	0	1					
1	0	1	0				ĸ	
1	1	0	1					
1	1	1	0		Q(t+	-1) =	JQ' +	K'Q

STUDENTS-HUB.com

T Flip-Flop

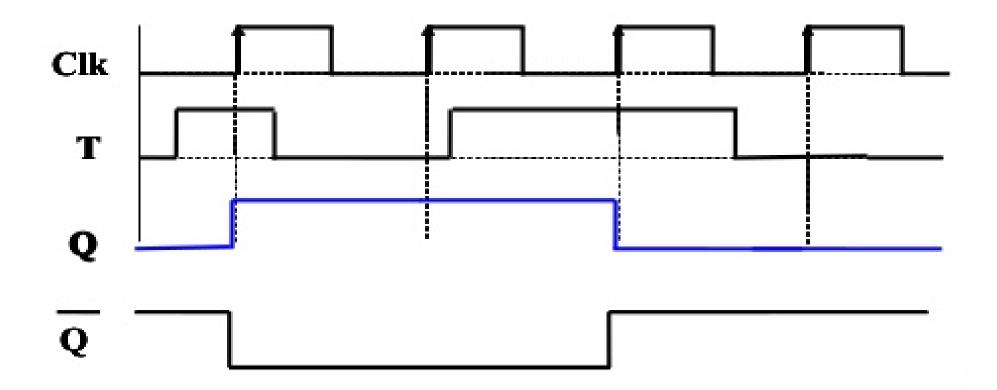
- The T (Toggle) flip-flop has inputs: T and Clk
- ♦ When T = 0 → No change, When T = 1 → Invert outputs
- The T flip-flop can be implemented using a JK flip-flop
- It can also be implemented using a D flip-flop and a XOR gate



 $\begin{array}{c|c}
T & Q_{t+1} \\
\hline
0 & Q_t \\
\hline
1 & \overline{Q}_t
\end{array}$

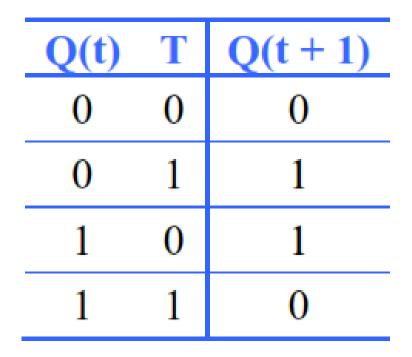
STUDENTS-HUB.com

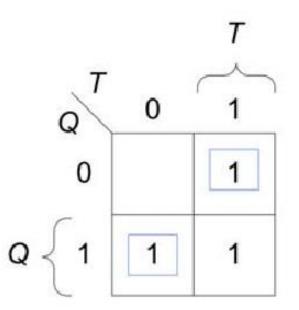
T Flip-Flop Timing Diagram



STUDENTS-HUB.com

Characteristic Equation of the T- Flip Flop





Q(t+1) = TQ' + T'Q

STUDENTS-HUB.com

Flip-Flop Characteristic Table

- Defines the operation of a flip-flop in a tabular form
- Next state is defined in terms of the current state and the inputs
 - Q(t) refers to current state **before** the clock edge arrives
 - Q(t + 1) refers to next state after the clock edge arrives

DF	lip-Flop		JK Flip-Flop		T Flip-Flop
D	Q(t+1)	JK	Q(t+1)	Τ	Q(t+1)
0	0 Reset	00	Q(t) No change	0	Q(t) No change
1	1 Set	0 1	Ø Reset	1	Q'(t) Complement
		10	1 Set		
		1 1	Q'(t) Complement		

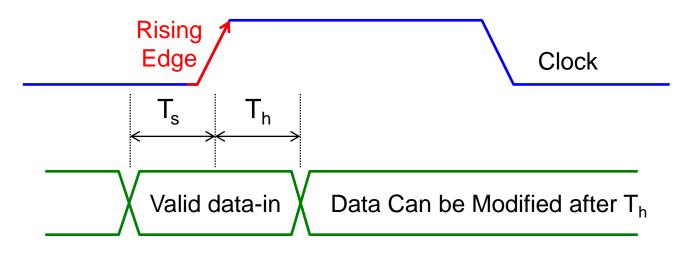
Flip-Flop Characteristic Equation

- The characteristic equation defines the operation of a flip-flop
- For D Flip-Flop: Q(t+1) = D
- ♦ For JK Flip-Flop: Q(t + 1) = J Q'(t) + K' Q(t)
- ♦ For T Flip-Flop: $Q(t + 1) = T \oplus Q(t)$
- Clearly, the D Flip-Flop is the simplest among the three

DF	D Flip-Flop		JK Flip-Flop	T Flip-Flop	
D	Q(t+1)	JK	Q(t+1)	Τ	Q(t+1)
0	Ø Reset	00	Q(t) No change	0	Q(t) No change
1	1 Set	01	Ø Reset	1	Q'(t) Complement
		10	1 Set		
		1 1	Q'(t) Complement		

Timing Considerations for Flip-Flops

- Setup Time (T_s): Time duration for which the data input must be valid and stable before the arrival of the clock edge.
- Hold Time (T_h): Time duration for which the data input must not be changed after the clock transition occurs.
- T_s and T_h must be ensured for the proper operation of flip-flops



STUDENTS-HUB.com

Analysis of Clocked Sequential Circuits

- Analysis is describing what a given circuit will do
- The output of a clocked sequential circuit is determined by
 - 1. Inputs
 - 2. State of the Flip-Flops

Analysis Procedure:

- 1. Obtain the equations at the inputs of the Flip-Flops
- 2. Obtain the output equations
- 3. Fill the state table for all possible input and state values
- 4. Draw the state diagram

Analysis Example

Is this a clocked sequential circuit?

YES!

- What type of Memory?
 D Flip-Flops
- How many state variables?

Two state variables: A and B

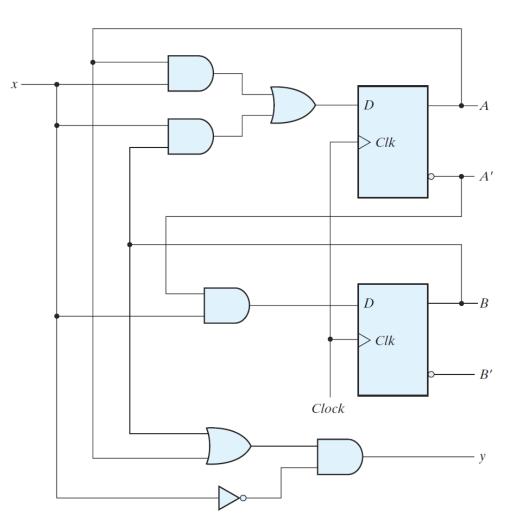
What are the Inputs?

One Input: x

What are the Outputs?

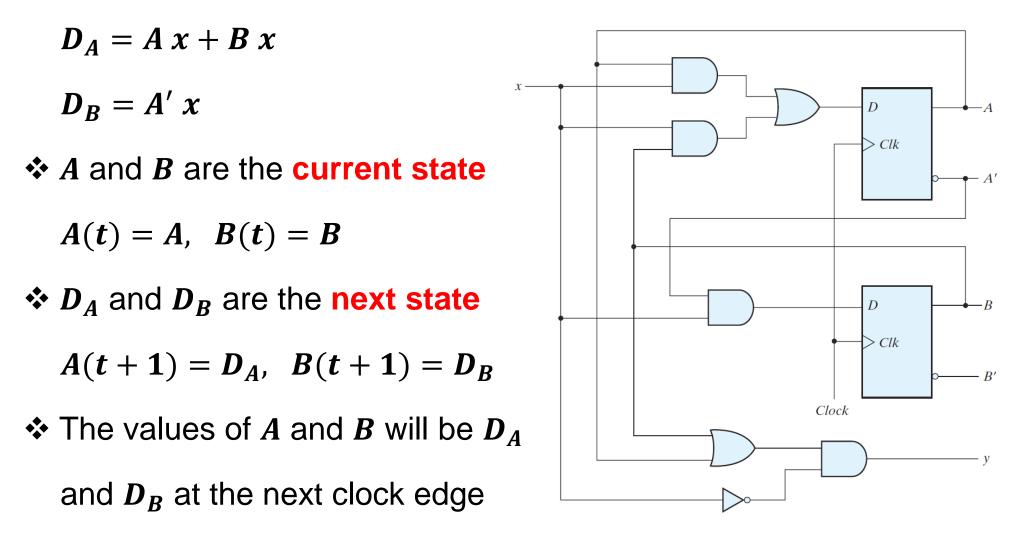
One Output: y

STUDENTS-HUB.com



Flip-Flop Input Equations

✤ What are the equations on the *D* inputs of the flip-flops?



STUDENTS-HUB.com

Uploaded By: Malak Dar Obaid

Next State and Output Equations

The next state equations define the next state

At the **inputs** of the Flip-Flops D✤ Next state equations? > Clk $A(t+1) = D_A = A x + B x$ $B(t+1) = D_R = A' x$ D \Rightarrow There is only one output y > ClkWhat is the output equation? Clock $\mathbf{y} = (\mathbf{A} + \mathbf{B}) \mathbf{x}'$

Uploaded By: Malak Dar Obaid

STUDENTS-HUB.com

State Table

- State table shows the Next State and Output in a tabular form
- * Next State Equations: A(t + 1) = A x + B x and B(t + 1) = A' x
- Output Equation: y = (A + B) x'

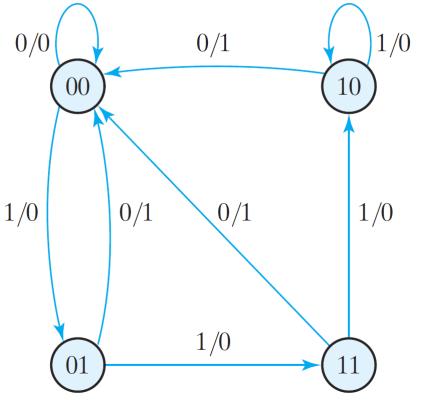
Pres Sta		Input		ext ate	Output	Another form of the state				tate tab	e table		
A	В	x	A	B	У								
0	0	0	0	0	0			N	lext	Stat	e	Out	tput
0	0	1	0	1	0		sent						-
0	1	0	0	0	1	St	ate	<i>x</i> =	0	X :	= 1	$\mathbf{x} = 0$	<i>x</i> = 1
0	1	1	1	1	0	Α	B	Α	B	A	В	y	y
1	0	0	0	0	1	0	0	0	0	0	1	0	0
1	0	1	1	0	0	0	1	0	0	1	1	1	0
1	1	0	0	0	1	1	0	0	0	1	0	1	0
1	1	1	1	0	0	1	1	0	0	1	0	1	0

State Diagram

- State diagram is a graphical representation of a state table
- The circles are the states
- **\bullet** Two state variable **\rightarrow** Four states (ALL values of *A* and *B*)
- Arcs are the state transitions

Present State		N	Next State				tput
		x = 0		<i>x</i> = 1		x = 0	<i>x</i> = 1
Α	В	A	B	A	B	Y	y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Labeled with: Input x / Output y



Uploaded By: Malak Dar Obaid

STUDENTS-HUB.com

Combinational versus Sequential Analysis

Analysis of Combinational Circuits

- Obtain the Boolean Equations
- Fill the Truth Table

Output is a function of input only

Analysis of Sequential Circuits

- Obtain the Next State Equations
- Obtain the Output Equations
- Fill the State Table
- Draw the State Diagram

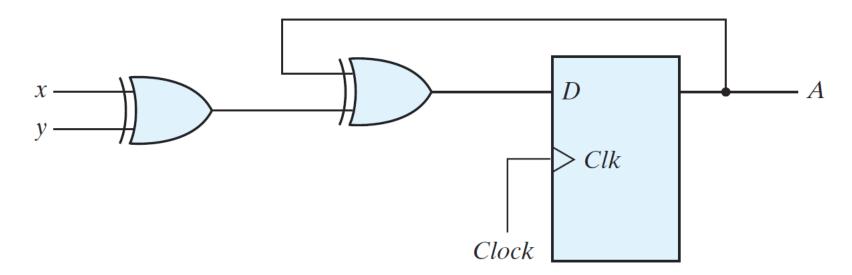
Next state is a function of input and current state

Output is a function of input and current state

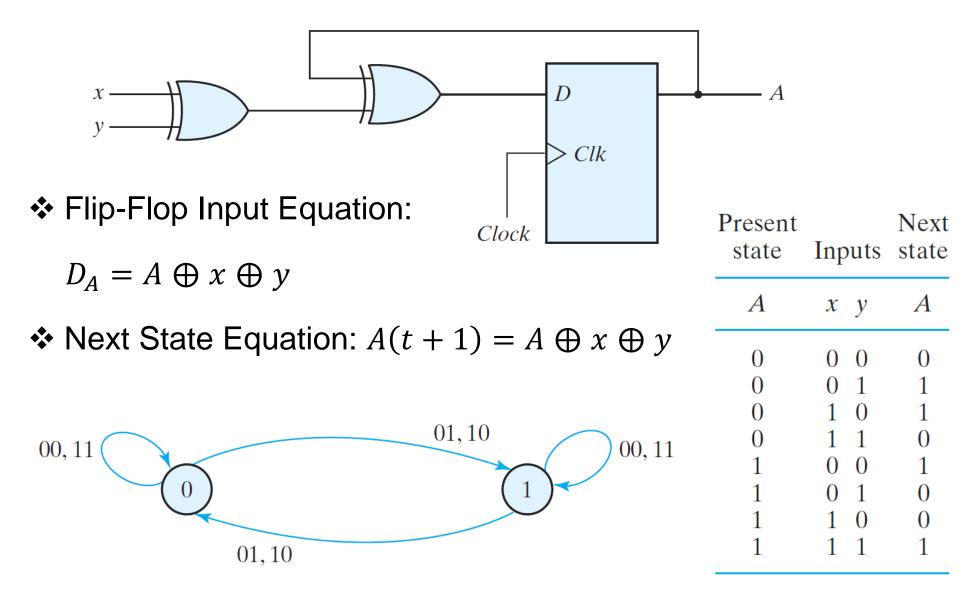
STUDENTS-HUB.com

Example with Output = Current State

- Analyze the sequential circuit shown below
- **\bigstar** Two inputs: *x* and *y*
- One state variable A
- No separate output \rightarrow Output = current state *A*
- Obtain the next state equation, state table, and state diagram

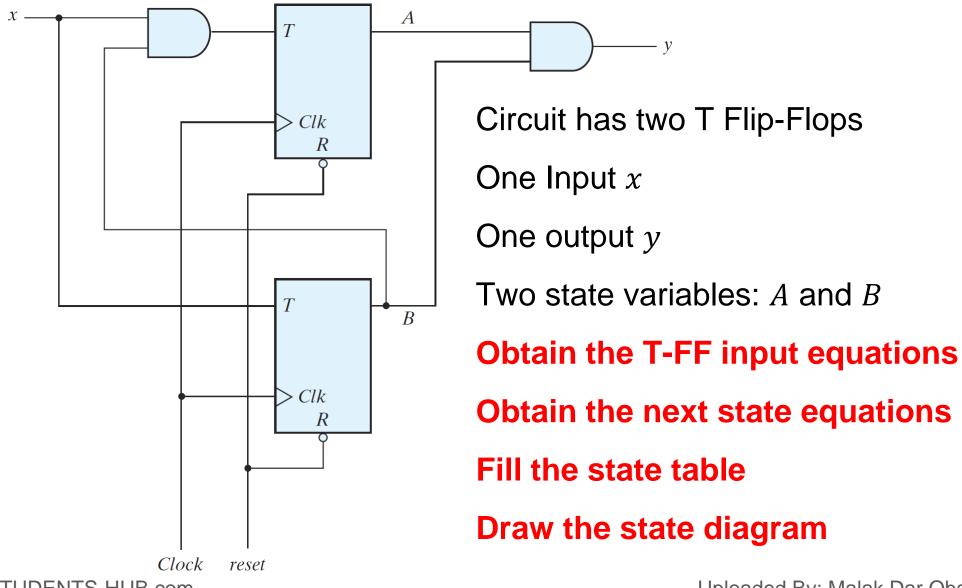


Example with Output = Current State



STUDENTS-HUB.com

Sequential Circuit with T Flip-Flops



STUDENTS-HUB.com

Recall: Flip-Flop Characteristic Equation

• For D Flip-Flop: Q(t+1) = D

♦ For T Flip-Flop: $Q(t+1) = T \oplus Q(t)$

These equations define the Next State

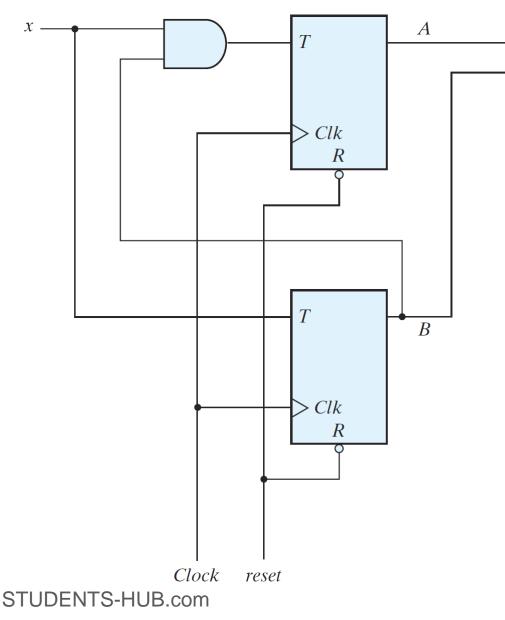
♦ For JK Flip-Flop: Q(t + 1) = J Q'(t) + K' Q(t)

D F	D Flip-Flop		T Flip-Flop	JK Flip-Flop			
D	Q(t+1)	Т	Q(t+1)	JK	Q(t+1)		
0	0 Reset	0	Q(t) No change	00	Q(t) No change		
1	1 Set	1	Q'(t) Complement	0 1	Ø Reset		
				10	1 Set		
				1 1	Q'(t) Complement		

Uploaded By: Malak Dar Obaid

STUDENTS-HUB.com

Sequential Circuit with T Flip-Flops



T Flip-Flop Input Equations:

$$T_A = B x$$

$$T_B = x$$

Next State Equations:

y

 $A(t+1) = T_A \oplus A = (B x) \oplus A$

$$B(t+1) = T_B \oplus B = x \oplus B$$

Output Equation:

y = A B

From Next State Equations to State Table

T Flip-Flop Input Equations:

 $T_A = B x$ $T_B = x$ Next State Equations: $A(t+1) = (B x) \oplus A$ $B(t+1) = x \oplus B$ Output Equation:

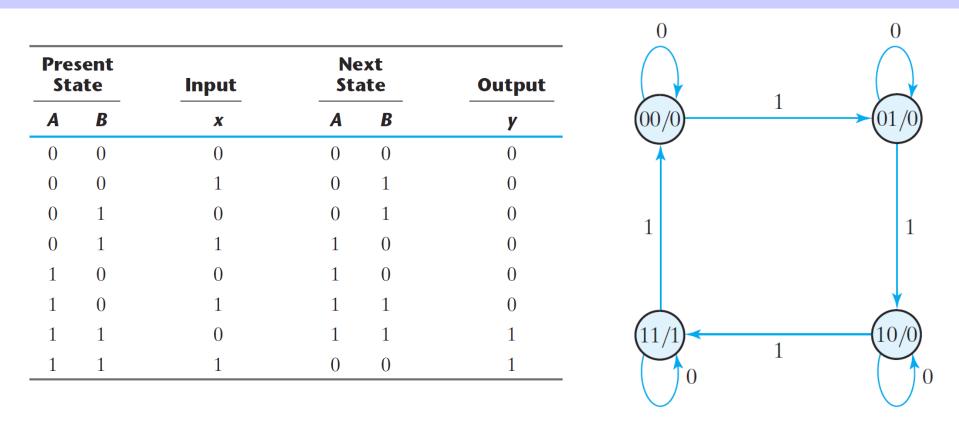
y = A B

STUDENTS-HUB.com

Present State		Input		ate	Output	
Α	В	x	Α	В	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	1	0	
0	1	1	1	0	0	
1	0	0	1	0	0	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	1	

Notice that the output is a function of the present state only. It does **NOT** depend on the input *x*

From State Table to State Diagram



• Four States: AB = 00, 01, 10, 11 (drawn as circles)

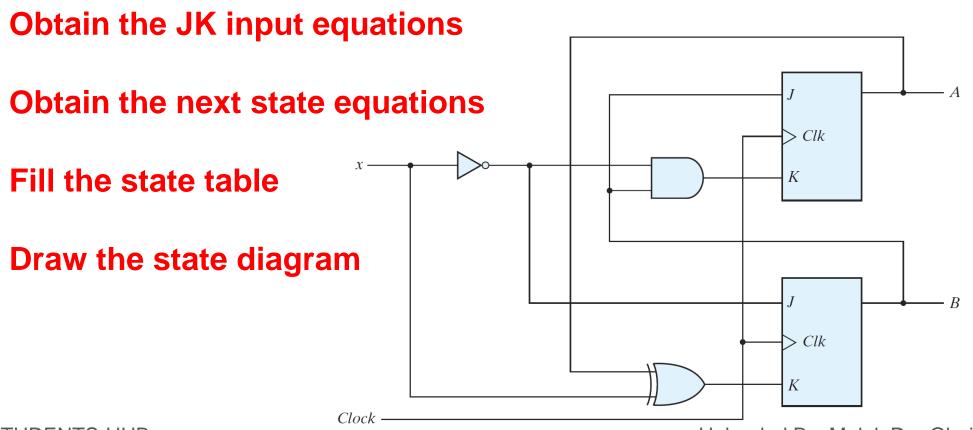
• Output Equation: y = A B (does not depend on input x)

Output y is shown inside the state circle (AB/y)
STUDENTS-HUB.com

Sequential Circuit with a JK Flip-Flops

One Input x and two state variables: A and B (outputs of Flip-Flops)

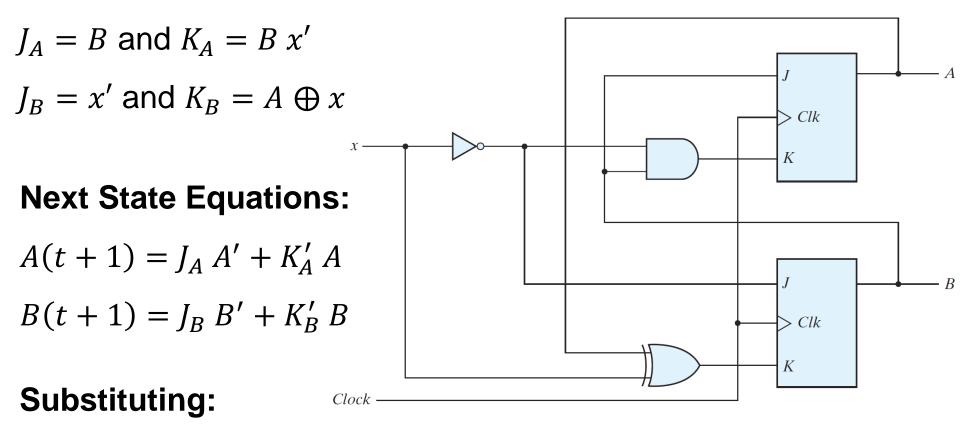
No separate output \rightarrow Output = Current state *A B*



STUDENTS-HUB.com

JK Input and Next State Equations

JK Flip-Flop Input Equations:



A(t + 1) = B A' + (Bx')'A = A'B + AB' + Ax

 $B(t+1) = x'B' + (A \oplus x)'B = B'x' + A B x + A'B x'$ STUDENTS-HUB.com Uploaded

From JK Input Equations to State Table

JK Input Equations:
$$J_A = B$$
, $K_A = B x'$, $J_B = x'$ and $K_B = A \oplus x$

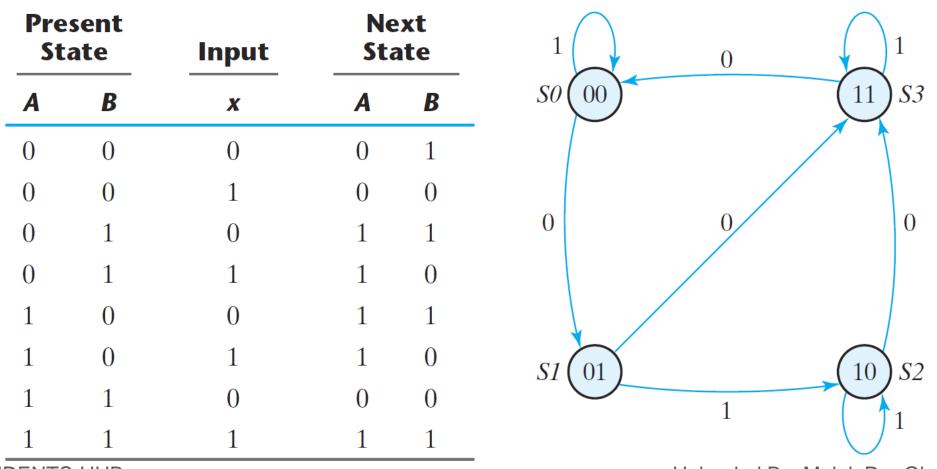
Present State		Input	Next State			Flip-Floj Inputs		
A	B	x	Α	В	J _A	K _A	J _B	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

STUDENTS-HUB.com

From State Table to State Diagram

Four states: A B = 00, 01, 10, and 11 (drawn as circles)

Arcs show the input value x on the state transition

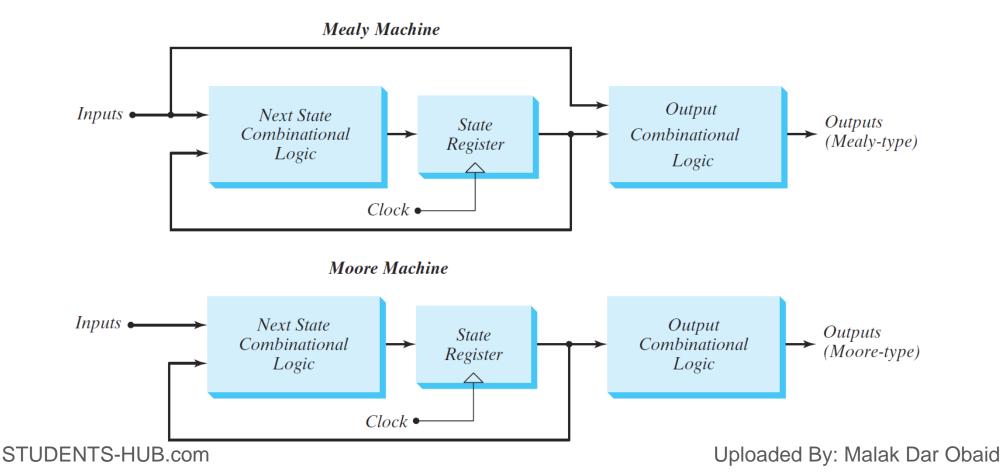


STUDENTS-HUB.com

Mealy versus Moore Sequential Circuits

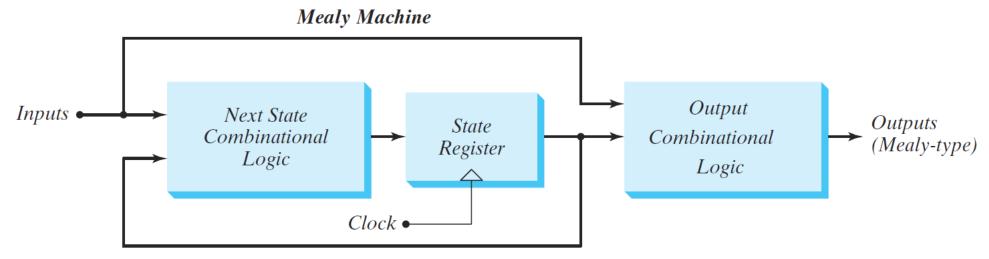
There are two ways to design a clocked sequential circuit:

- 1. Mealy Machine: Outputs depend on present state and inputs
- 2. Moore Machine: Outputs depend on present state only



Mealy Machine

- The outputs are a function of the present state and Inputs
- The outputs are NOT synchronized with the clock
- The outputs may change if inputs change during the clock cycle
- The outputs may have momentary false values (called glitches)
- The correct outputs are present just before the edge of the clock

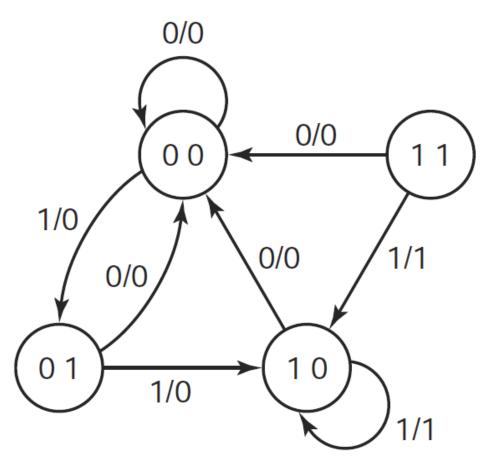


STUDENTS-HUB.com

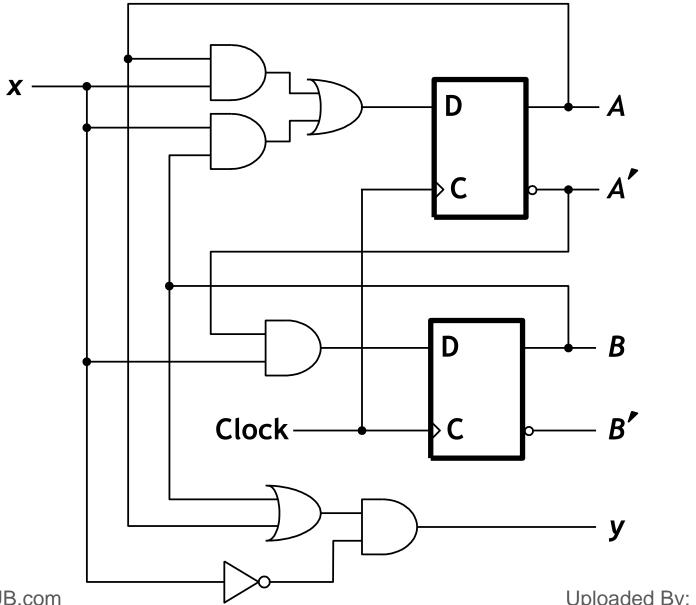
Mealy State Diagram

- An example of a Mealy state diagram is shown on the right
- Each arc is labeled with: Input / Output
- The output is shown on the arcs of the state diagram
- The output depends on the current state and input
- Notice that State 11 cannot be reached from the other states

STUDENTS-HUB.com



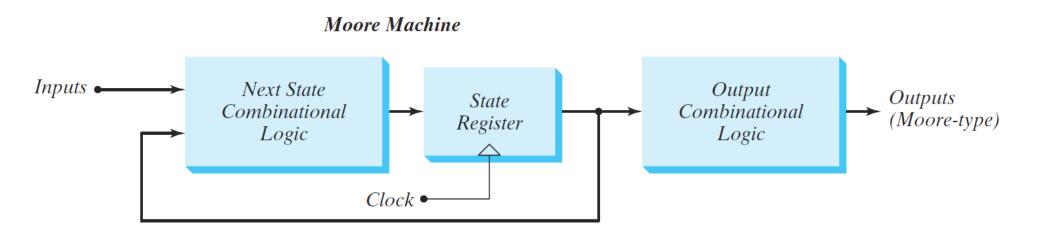
Example of Mealy Model



STUDENTS-HUB.com

Moore Machine

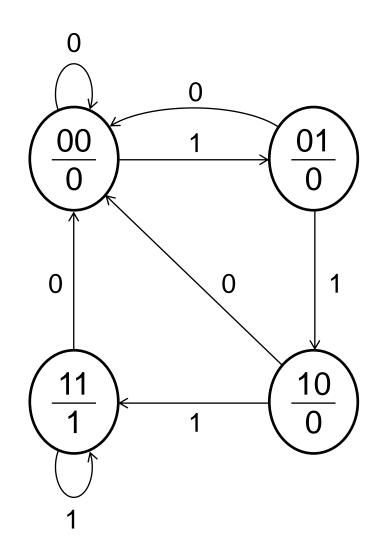
- The outputs are a function of the Flip-Flop outputs only
- The outputs depend on the current state only
- The outputs are synchronized with the clock
- Glitches cannot appear in the outputs (even if inputs change)
- ✤ A given design might mix between Mealy and Moore



STUDENTS-HUB.com

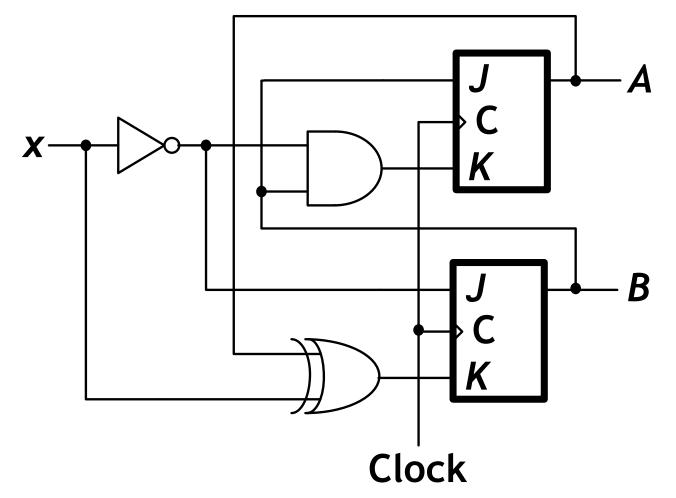
Moore State Diagram

- An example of a Moore state diagram is shown on the right
- ✤ Arcs are labeled with input only
- The output is shown inside the state: (State / Output)
- The output depends on the current state only



Example of Moore Model

Sequential Circuit with JK Flip-Flop



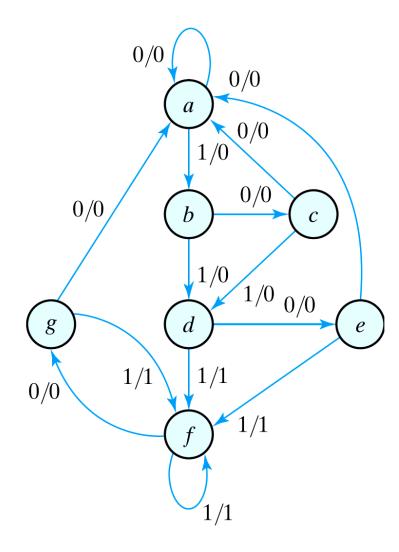
STUDENTS-HUB.com

State Reduction and Assignment

- Design starts with state table or diagram
- State reduction aims at exhibiting the same input-output behavior but with a lower number of internal states

State Reduction

- Reductions on the number of flip-flops and the number of gates.
- A reduction in the number of states may result in a reduction in the number of flipflops.
- ♦ May lead to use more gates



STUDENTS-HUB.com

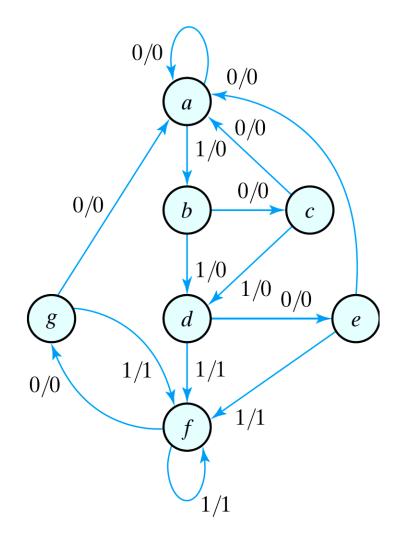
State Reduction

 State:
 a
 b
 c
 d
 e
 f
 g
 f
 g
 a

 Input:
 0
 1
 0
 1
 0
 1
 0
 1
 0
 0

 Output:
 0
 0
 0
 0
 1
 1
 0
 1
 0
 0

- Only the input-output sequences are important.
- ♦ Two circuits are equivalent
 - Have identical outputs for all input sequences;
 - The number of states is not important.



Equivalent states

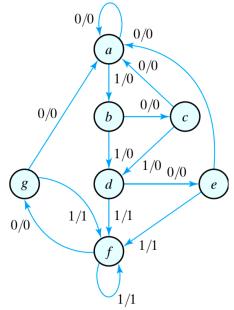
Two states are said to be equivalent

- For each member of the set of inputs, they give exactly the same output and send the circuit to the same state or to an equivalent state.
- One of them can be removed.

Table 5.6

State Table

31								
		Next	State	Output				
P	esent State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1			
	a	а	Ь	0	0			
	b	С	d	0	0			
	С	а	d	0	0			
	d	е	f	0	1			
	e	а	f	0	1			
e = g	f	g	f	0	1			
•	g	а	f	0				
STUDENTS-HUB.	com							



Equivalent states Remove state

Reducing the state table

- e = g (remove g);
- d = f (remove f);

Table 5.7Reducing the State Table

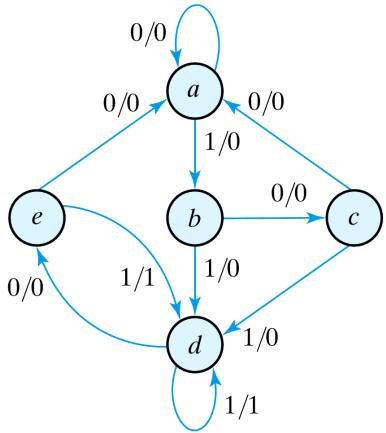
	Next	State	Output		
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	е	f	0	1	
e	а	f	0	1	
f	е	f	0	1	

State Reduction

- The checking of each pair of states for possible equivalence can be done systematically
- ✤ The unused states are treated as don't-care condition ⇒ fewer combinational gates.

Table 5.8Reduced State Table

	Next 9	itate	Output		
Present State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	С	d	0	0	
С	а	d	0	0	
d	e	d	0	1	
е	а	d	0	1	



STUDENTS-HUB.com

State Assignment

To minimize the cost of the combinational circuits.

Three possible binary state assignments. (*m* states need *n*-bits, where 2ⁿ > m)

Table 5.9Three Possible Binary State Assignments

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
a	000	000	00001
b	001	001	00010
С	010	011	00100
d	011	010	01000
е	100	110	10000

What code assignment would you choose? Why?

STUDENTS-HUB.com

State Assignment

- Any binary number assignment is satisfactory as long as each state is assigned a unique number.
- ✤ Use binary assignment 1.

Table 5.10Reduced State Table with Binary Assignment 1

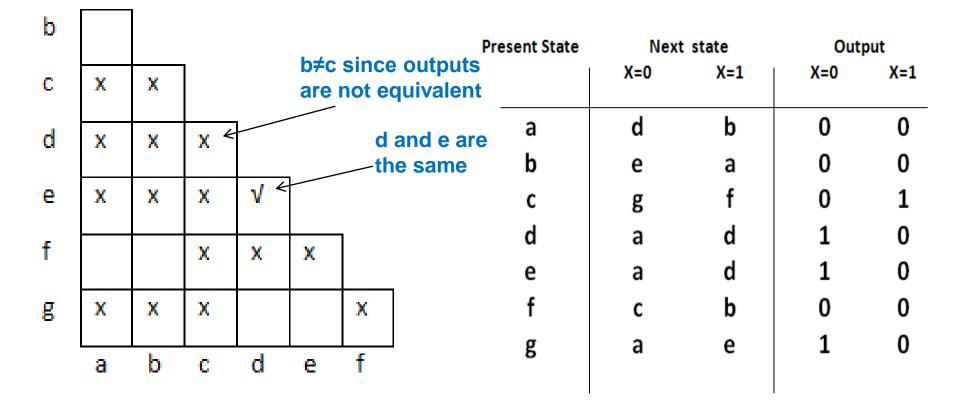
	Next	State	Output		
Present State	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1	
000	000	001	0	0	
001	010	011	0	0	
010	000	011	0	0	
011	100	011	0	1	
100	000	011	0	1	

- To check possible equivalent states in table with large number of states.
- ✤ Example

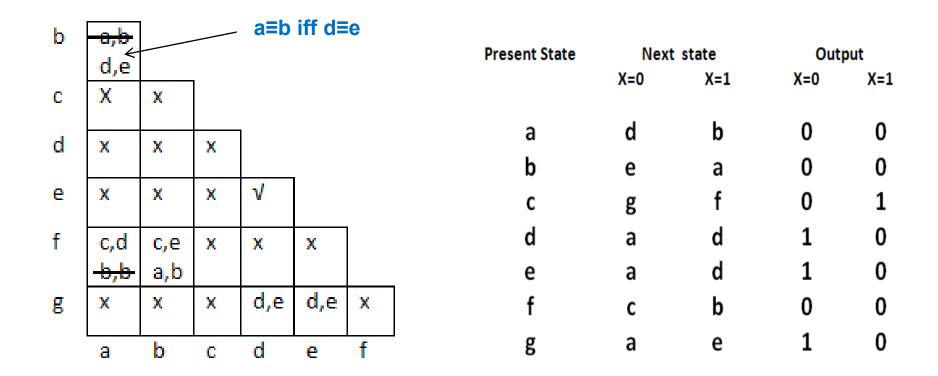
Present State	Next	t state	Output		
	X=0	X=1	X=0	X=1	
а	d	b	0	0	
b	е	а	0	0	
с	g	f	0	1	
d	а	d	1	0	
е	а	d	1	0	
f	с	b	0	0	
g	а	е	1	0	

STUDENTS-HUB.com

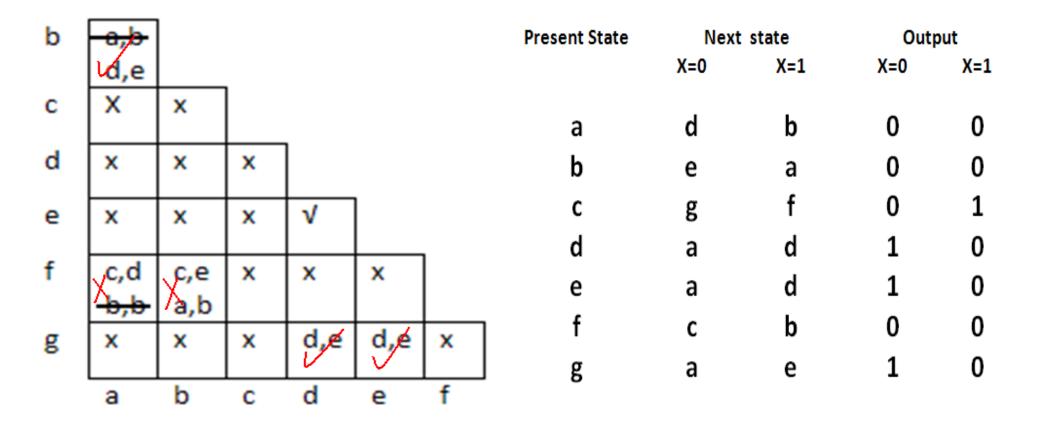
- Step1: draw the implication chart and place (X) in any square of a pair of states whose outputs are not equivalent.
 - ♦ Place ($\sqrt{}$) for equivalent states (same outputs, same next state).



Step2: for remaining squares, enter the implied states

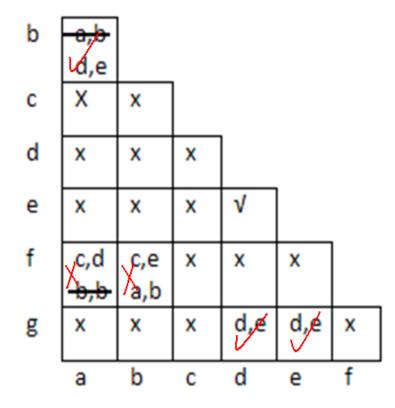


Step3: Place (√) for equivalent states and (X) for not equivalent states



- * Step4: list equivalent states from squares with ($\sqrt{}$)

Step5: combine pairs of states into large group



Step6: the final states are the equivalent states and all remaining states in state table:

(C)

$(d,e,g) \implies d$

(f)

STUDENTS-HUB.com

The table can be reduced from seven states into four states:

Present State	Next	t state	Out	.put					
	X=0	X=1	X=0	X=1	Present State	Next	t state	Out	put
а	d	b	0	0		X=0	X=1	X=0	X=1
- b	e	a	0	— 0 _	а	d	а	0	0
c d	g a	f d	0 1	1 0	с	d	f	0	1
e	a	d	1	0 -	d	а	d	1	0
f	c	b	0	0	f	С	а	0	0
- Š	đ	e	1						

STUDENTS-HUB.com

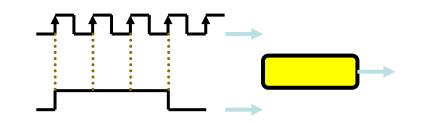
Design of Sequential Logic

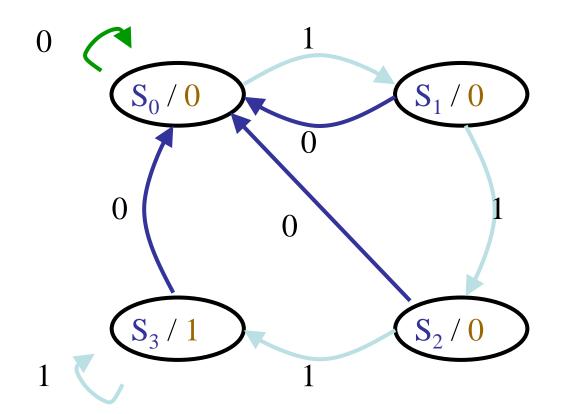
Design Procedure

- 1. From the word description and specifications of the desired operation, derive a state diagram for the circuit.
- 2. Reduce the number of states if necessary
- 3. Assign binary values to the states
- 4. Obtain the binary-coded state table
- 5. Choose the type of flip-flops to be used
- 6. Derive the simplified flip-flop input equations and output equations
- 7. Draw the logic diagram

Design of Clocked Sequential Circuits

Example:
 Detect 3 or more consecutive 1's

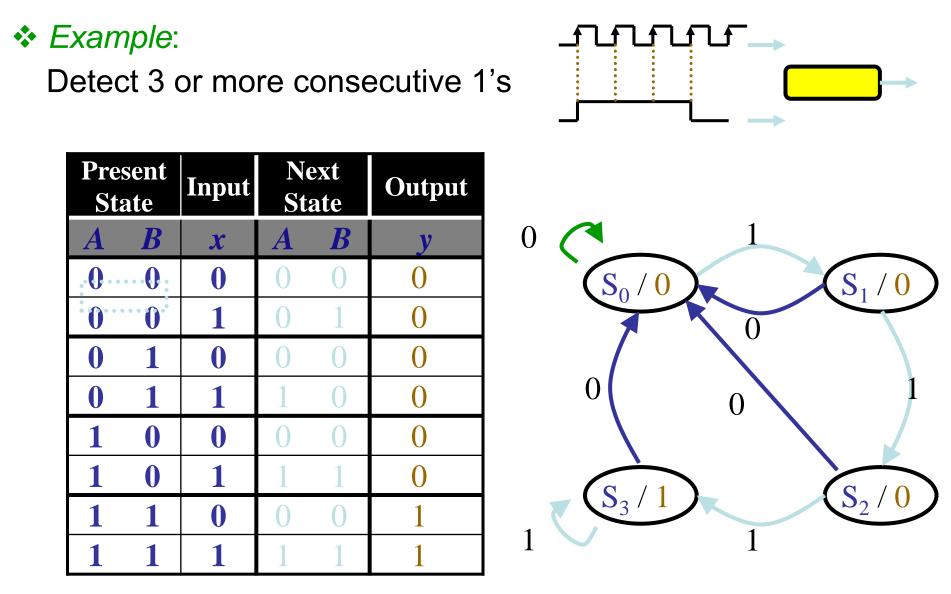




State	A B
S ₀	00
S ₁	01
S ₂	10
S ₃	11

STUDENTS-HUB.com

Design of Clocked Sequential Circuits



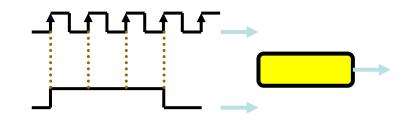
STUDENTS-HUB.com

Design of Clocked Sequential Circuits

✤ Example:

Detect 3 or more consecutive 1's

Present State		Input	Next State		Output	
A	B	x	A	B	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	0	
1	1	0	0	0	1	
1	1	1	1	1	1	

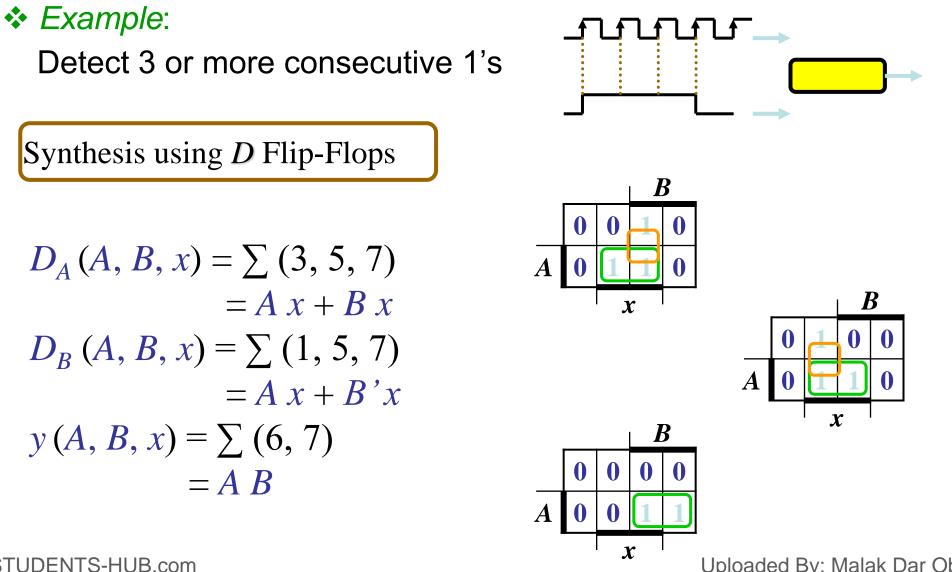


Synthesis using *D* Flip-Flops

$$A(t+1) = D_A(A, B, x)$$

= $\sum (3, 5, 7)$
 $B(t+1) = D_B(A, B, x)$
= $\sum (1, 5, 7)$
 $y(A, B, x) = \sum (6, 7)$

Design of Clocked Sequential Circuits with D F.F.

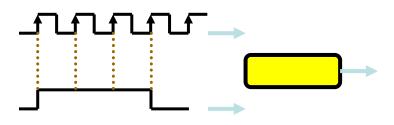


STUDENTS-HUB.com

Design of Clocked Sequential Circuits with D F.F.

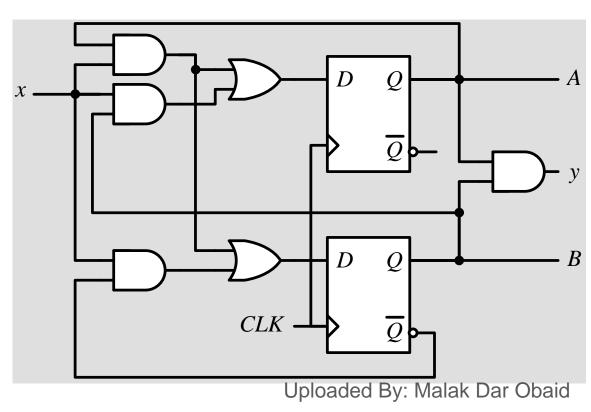
✤ Example:

Detect 3 or more consecutive 1's



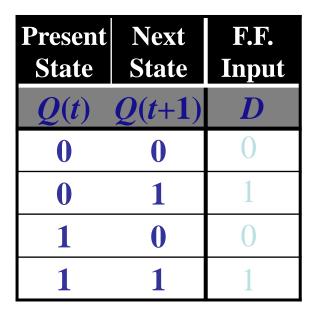
Synthesis using *D* Flip-Flops

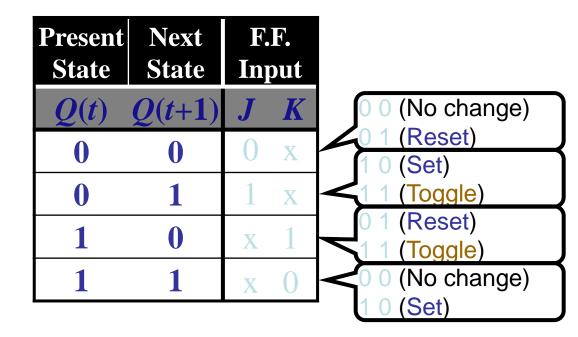
 $D_A = A x + B x$ $D_B = A x + B'x$ y = A B

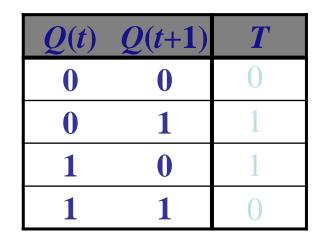


STUDENTS-HUB.com

Flip-Flop Excitation Tables







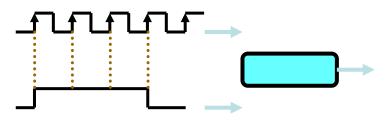
STUDENTS-HUB.com

Design of Clocked Sequential Circuits with JK F.F.

✤ Example:

Detect 3 or more consecutive 1's

Present State		Input	Next State		Flip-Flop Inputs			
A	B	x	A	B	JA	KA	J_{B}	K _B
0	•••	•••••		0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	0	0	0	X	Χ	1
0	1	1	1	0	1	X	X	1
1	0	0	0	0	X	1	0	X
1	0	1	1	1	X	0	1	X
1	1	0	0	0	X	1	Χ	1
1	1	1	1	1	X	0	X	0



Synthesis using JK F.F.

$$J_{A}(A, B, x) = \sum (3)$$

$$d_{JA}(A, B, x) = \sum (4,5,6,7)$$

$$K_{A}(A, B, x) = \sum (4, 6)$$

$$d_{KA}(A, B, x) = \sum (0,1,2,3)$$

$$J_{B}(A, B, x) = \sum (1, 5)$$

$$d_{JB}(A, B, x) = \sum (2,3,6,7)$$

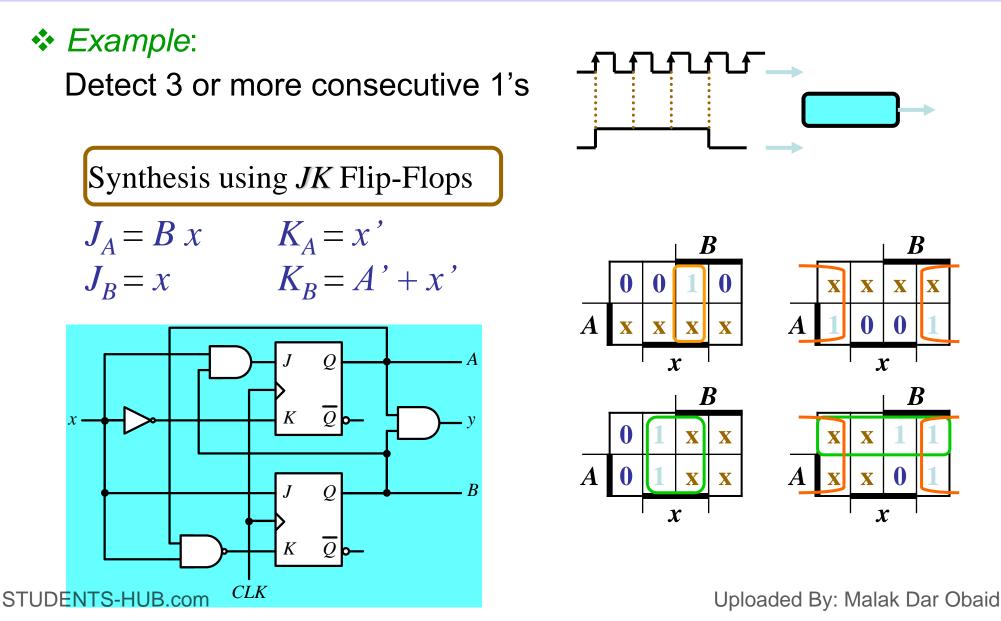
$$K_{B}(A, B, x) = \sum (2,3,6)$$

$$d_{KB}(A, B, x) = \sum (0,1,4,5)$$

Uploaded By: Malak Dar Obaid

STUDENTS-HUB.com

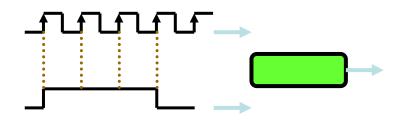
Design of Clocked Sequential Circuits with JK F.F.



Design of Clocked Sequential Circuits with T F.F.

✤ Example:

Detect 3 or more consecutive 1's



Present State		Input	Next State			.F. put
A	B	x	A	B	T _A	T_{B}
0	••••	0	▶0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	0	0	1
0	1	1	1	0	1	1
1	0	0	0	0	1	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	1	1	1	0	0

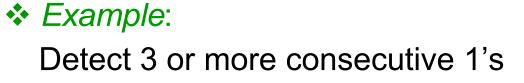
Synthesis using *T* Flip-Flops

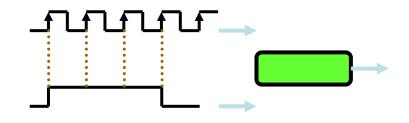
$$T_A(A, B, x) = \sum (3, 4, 6)$$

$$T_B(A, B, x) = \sum (1, 2, 3, 5, 6)$$

STUDENTS-HUB.com

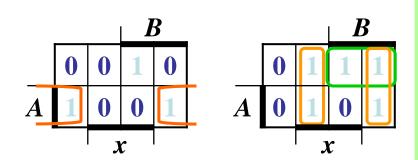
Design of Clocked Sequential Circuits with T F.F.

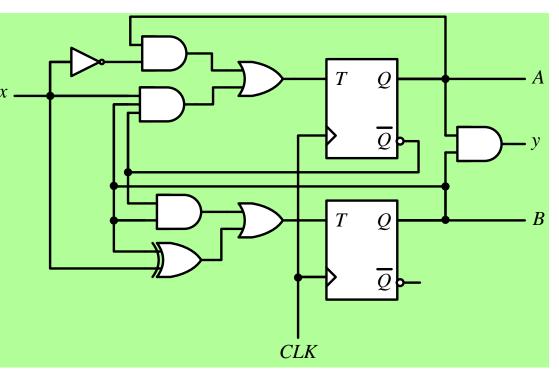




Synthesis using *T* Flip-Flops

 $T_A = A x' + A'B x$ $T_B = A'B + B \oplus x$





STUDENTS-HUB.com

Design of a Binary Counter

Problem Specification:

Design a circuit that counts up from 0 to 7 then back to 0

 $000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111 \rightarrow 000$

When reaching 7, the counter goes back to 0 then goes up again

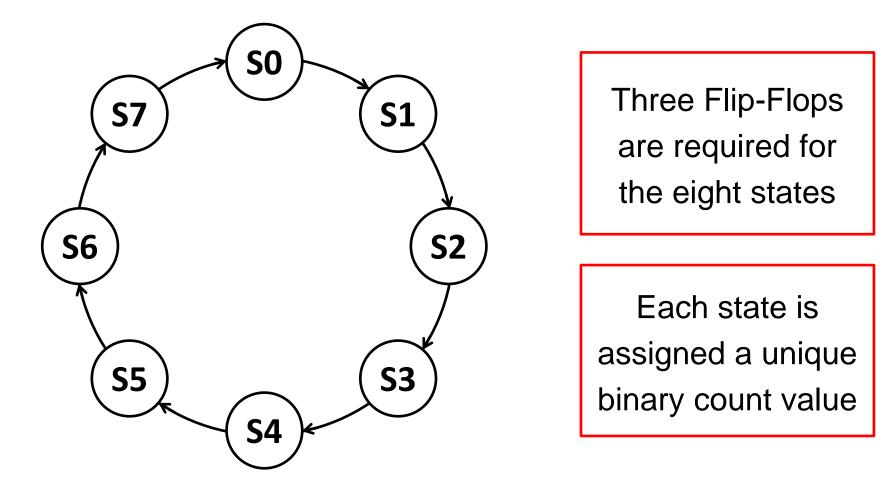
- There is no input to the circuit
- The counter is incremented each cycle
- The output of the circuit is the present state (count value)
- The circuit should be designed using D-type Flip-Flops

STUDENTS-HUB.com

Designing the State Diagram

Eight states are needed to store the count values 0 to 7

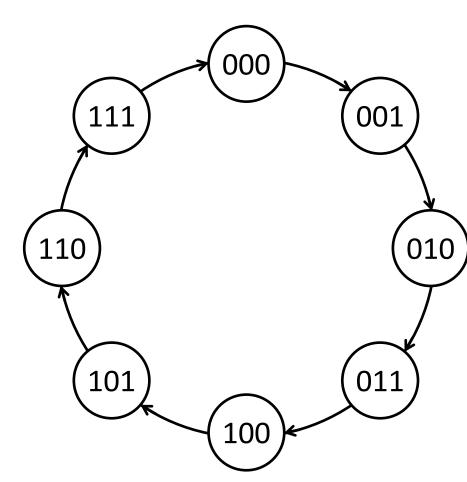
✤ No input, state transition happens at the edge of each cycle



State Table

Only two columns: Present State and Next State

State changes each cycle



Present State Q ₂ Q ₁ Q ₀	Next State $D_2 D_1 D_0$
0 0 0	0 0 1
0 0 1	0 1 0
0 1 0	0 1 1
0 1 1	100
100	101
1 0 1	1 1 0
1 1 0	1 1 1
1 1 1	0 0 0

Uploaded By: Malak Dar Obaid

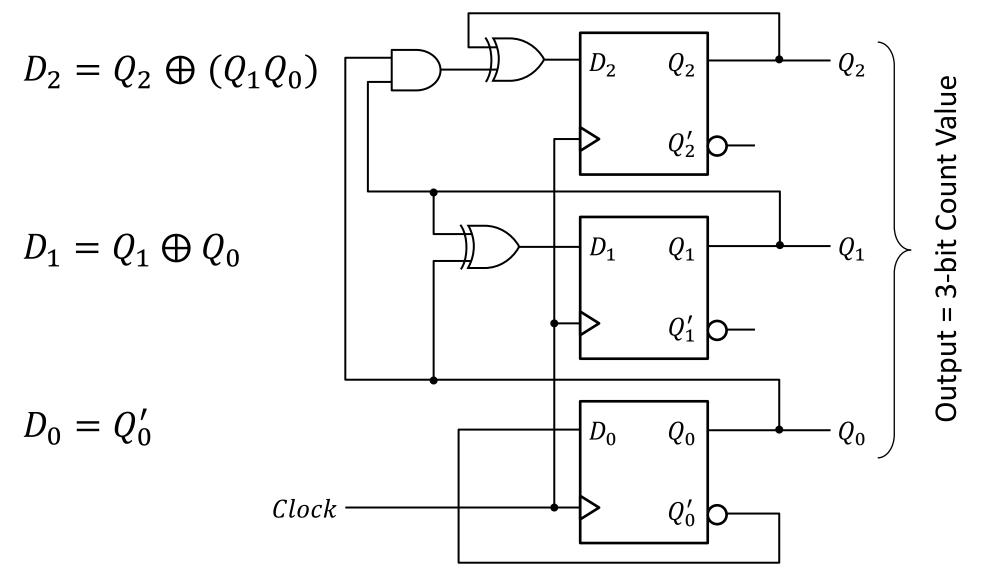
STUDENTS-HUB.com

Deriving the Next State Equations

Present State	Next State	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\mathbf{Q}_{2} \mathbf{Q}_{1} \mathbf{Q}_{0}$	$D_2 D_1 D_0$	00 0 0 0 0 1 00 1 0
000	0 0 1	01 0 1 01 1 0 01 1 0
001	0 1 0	11 1 0 11 1 0 11 1 0
0 1 0	0 1 1	10 1 1 10 0 1 10 1 0
0 1 1	100	$D_2 = Q_2 Q_1' + Q_2 Q_0' + Q_2' Q_1 Q_0$
100	101	$D_2 = Q_2(Q_1' + Q_0') + Q_2'Q_1Q_0$
101	1 1 0	$D_2 = Q_2(Q_1Q_0)' + Q_2'(Q_1Q_0) = Q_2 \oplus (Q_1Q_0)$
1 1 0	1 1 1	$D_1 = Q_1 Q'_0 + Q'_1 Q_0 = Q_1 \oplus Q_0$
1 1 1	0 0 0	
	2	$D_0 = Q'_0$

STUDENTS-HUB.com

3-Bit Counter Circuit Diagram



STUDENTS-HUB.com

Design Example: 3-bit Binary Counter Using T FFs.

State Diagram and State Table of 3-bit Binary Counter \mathbf{x}

State Diagram State Table **Flip-Flop Inputs** Present State Next State $T_{A2} T_{A1} T_{A0}$ $A_2 A_1 A_0$ $A_2 A_1 A_0$ $\overline{0} - \theta - \overline{0}$ - 0 - 0 - \mathbf{O} $(\mathbf{0})$ (1)(1)() \mathbf{T} **Excitation Table Refer to T-FF Excitation Table** Т Q(t)Q(t+1)STUDENTS¹HUB.dom

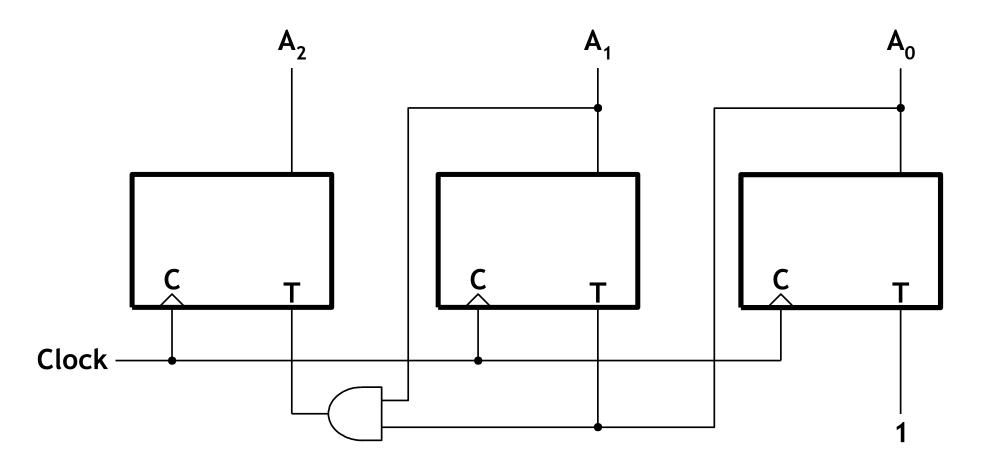
Design Example: 3-bit Binary Counter Using T FFs.

K-Map Logic Simplification for 3-bit Binary Counter



Design Example: 3-bit Binary Counter Using T FFs.

Draw the 3-bit Binary Counter Circuits with T FFs



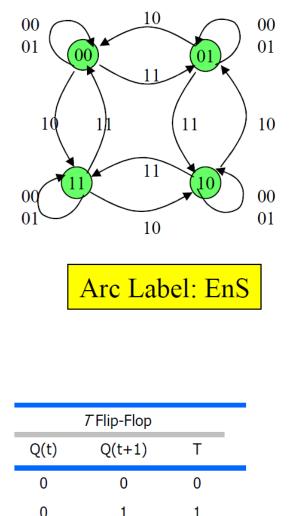
Up/Down Counter with Enable

- Problem: Design a synchronous up-down T flip-flop 2-bit binary counter with a select input line S and a count enable En input. When S = 0, the counter counts down; and when S = 1, the counter counts up. When En = 1, the counter is in normal up- or down- counting; and En = 0 for disabling both counts.
- **Solution**: Required mode of operation:

Inp	uts	Operation				
En	S					
0	Х	Hold status				
1	0	Count Down				
1	1	Count Up				

STUDENTS-HUB.com

State Diagram/Table for 2-bit Up-**Down Binary Counter**



F	Pres	sent S	State	Inp	outs		Ne	xt St	ate	Τf	lip-flo	ps
ſ	lo	Q1	<u>Q</u> 0	En	S	· · · ·	No	Q1	Q0		T _{O1}	Ton
	0	0	0	0	0		0	0	0		0	0
	0	0	0	0	1		0	0	0		0	0
	0	0	0	1	0		3	1	1		1	1
	0	0	0	1	1		1	0	1		0	1
	1	0	1	0	0		1	0	1		0	0
	1	0	1	0	1		1	0	1		0	0
	1	0	1	1	0		0	0	0		0	1
	1	0	1	1	1		2	1	0		1	1
	2	1	0	0	0		2	1	0		0	0
	2	1	0	0	1		2	1	0		0	0
	2	1	0	1	0		1	0	1		1	1
	2	1	0	1	1		3	1	1		0	1
	3	1	1	0	0		3	1	1		0	0
	3	1	1	0	1		3	1	1		0	0
	3	1	1	1	0		2	1	0		0	1
	3	1	1	1	1		0			Mala	k Dar	

Input Equations for 2-bit Up-Down Binary Counter

Ens Q ₁ Q ₀	00	01	11	10				
00	0	0	0	1				
01	0	0	1	0				
11	0	0	1	0				
10	0	0	0	1				
$T_{Q1} = Q_0 EnS + Q_0' EnS'$ $EnS 00 01 11 10$ $Q_1 Q_0$								
EnS Q1Q0								
\mathbf{X}								
EnS Q1Q0	00	01	11	10				
EnS Q ₁ Q ₀ 00	00	01	11	10 1				
EnS Q ₁ Q ₀ 00 01	00	01 0 0	11 1 1	10 1 1				

STUDENTS-HUB.com

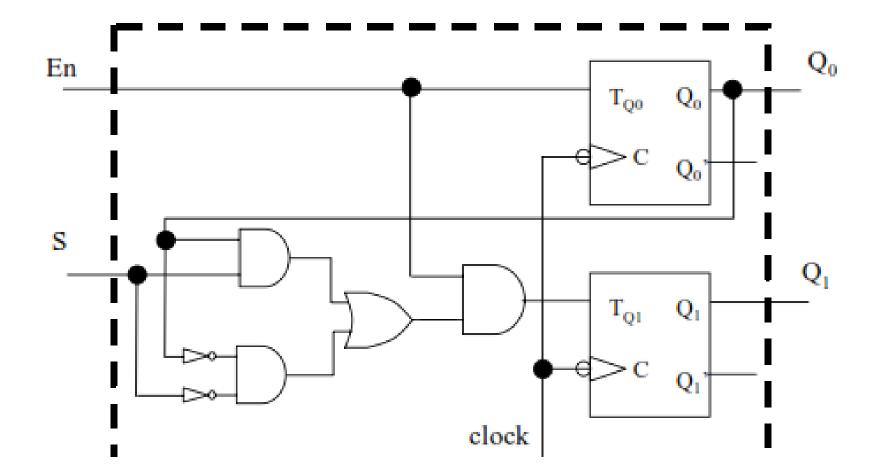
• The carry out signals:

• CO_{up} and CO_{down}

 $CO_{up} = Q_0 Q_1 EnS \rightarrow counter reached 11 and it is counting up$

 $CO_{down} = Q_0'Q_1'EnS' \rightarrow counter reached 00 and it is counting down$

Circuit for 2-bit Up-Down Binary Counter



STUDENTS-HUB.com

Dealing with Unused States

- An n-bit counter has 2n states, but there are occasions when we wish to use less than the total number of states available.
- The unused states may be treated as "don't care" conditions (or assigned to specific next states).
- Because outside interference may land the counter in these states, we must ensure that the counter can find its way back to a valid state.

Dealing with Unused States

Self-correcting counter

- Ensure that when a counter enter one of its unused states, it eventually goes into one of the valid states after one or more clock pulses so it can resume normal operation.
- Analyze the counter to determine the next state from an unused state after it is designed
- If the unused states are assigned specific next states, this ensures that the circuit is self correcting by design
- An alternative design could use additional logic to direct every unused state to a specific next state.
- Design your counters to be self-starting
 - ♦ Draw all states in the state diagram
 - ♦ Fill in the entire state-transition table
 - \diamond May limit your ability to exploit don't cares
 - Choose startup transitions that minimize the logic

STUDENTS-HUB.com

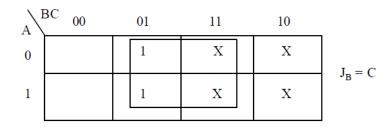
Counters with unused states

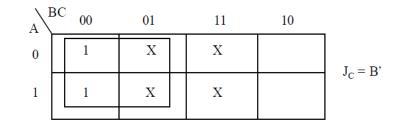
State Table for Counter

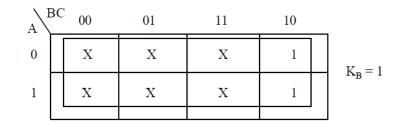
Present State		Next State		Flip-Flop Inputs							
A	B	c	A	B	c	JA	K _A	JB	K _B	Jc	Kc
0	0	0	0	0	1	0	Х	0	Х	1	Х
0	0	1	0	1	0	0	X	1	X	X	1
0	1	0	1	0	0	1	X	X	1	0	Х
1	0	0	1	0	1	Х	0	0	X	1	Х
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	0	0	0	Х	1	Х	1	0	Х

STUDENTS-HUB.com

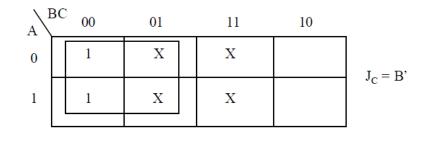
K-Maps for JK Flip Flop Inputs

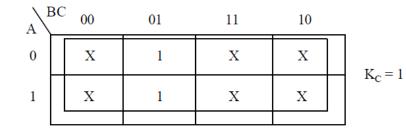






A	BC 00	01	11	10	_
0	Х	1	Х	Х	V _ 1
1	Х	1	Х	Х	$-K_{\rm C} = 1$

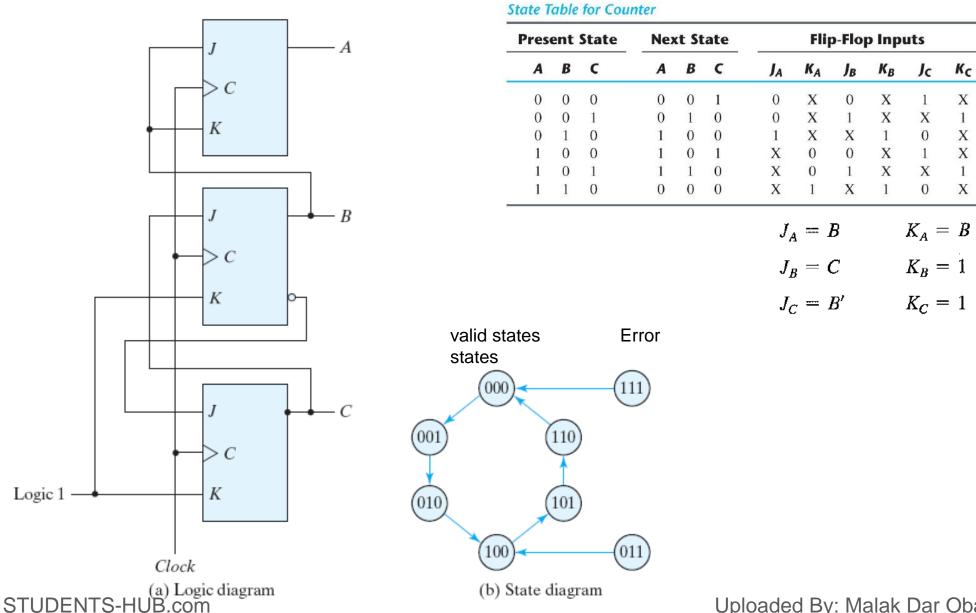




Uploaded By: Malak Dar Obaid

STUDENTS-HUB.com

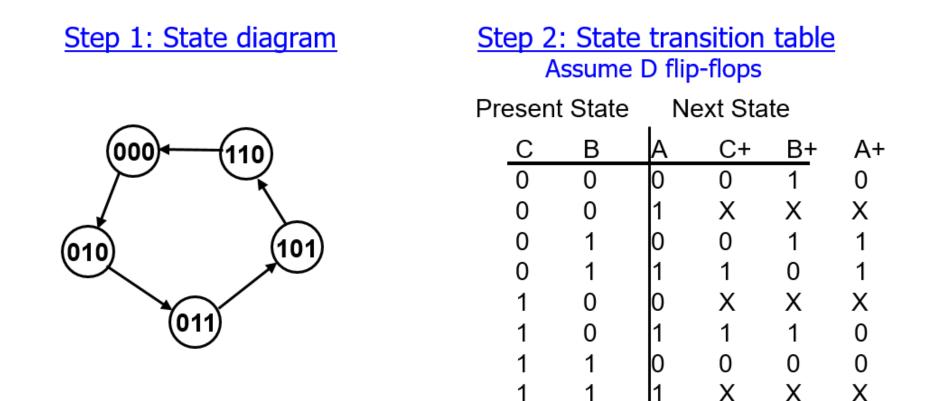
Counter with unused states



Example: 5-state counter

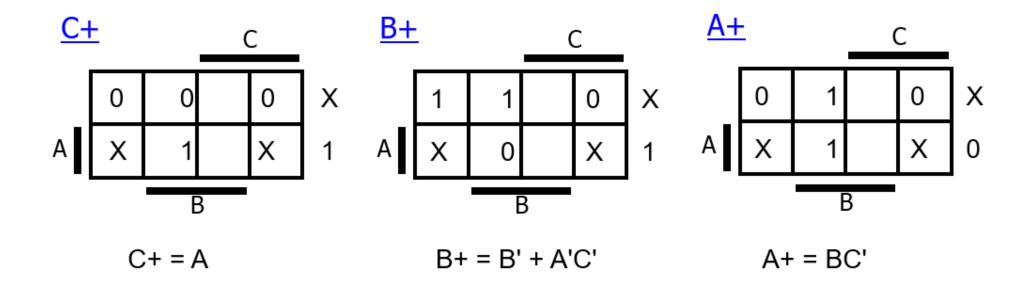
Counter repeats 5 states in sequence

♦ Sequence is 000, 010, 011, 101, 110, 000



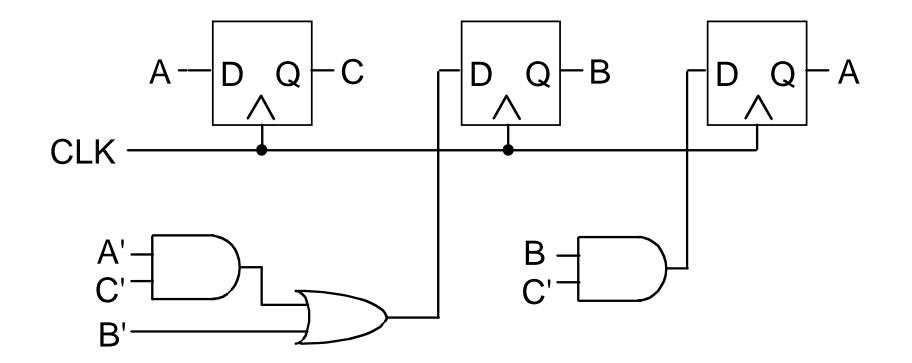
Example: 5-state counter

Step 3: Encode next state functions



Example: 5-state counter

Step 4: Implement the design

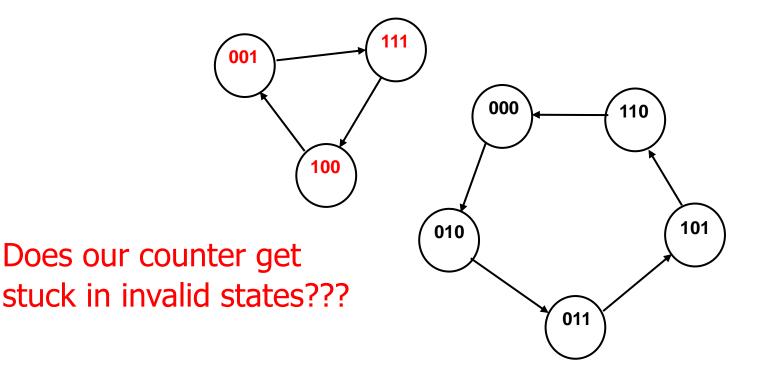


Recall that a D flip flop also produces Q' so A', B', and C' would all be available without any extra inverters

STUDENTS-HUB.com

Is our design robust?

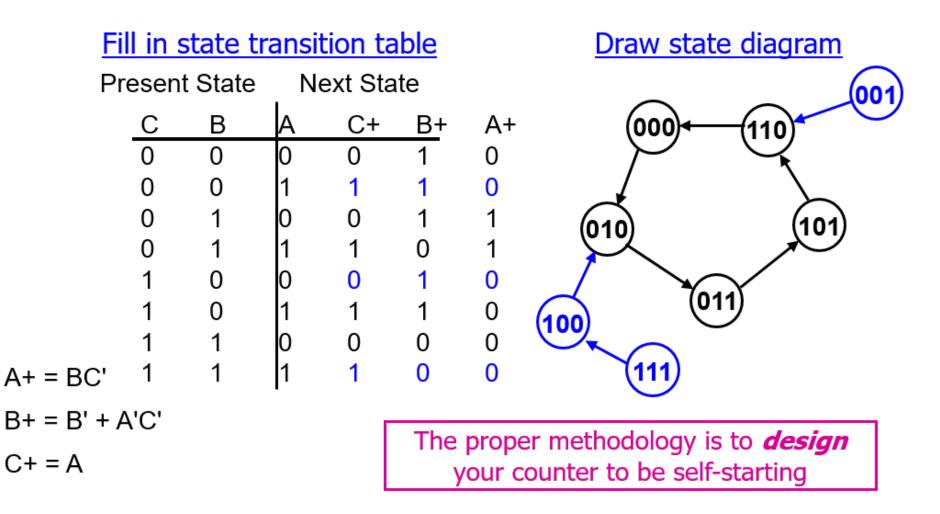
✤ What if the counter starts in a 111 state?



STUDENTS-HUB.com

5-state counter

Back-annotate our design to check it



STUDENTS-HUB.com