Convolutional Neural
Networks

DENTS-HUB.com Uploaded By: anonymous



Qutline

Deep Neural Network

Image to Vector

Convolutional Neural Networks
CNN Architectures

Data Augmentation

Transfer Learning

Summary

STUDENTS-HUB.com Uploaded By: anonymous



Deep Neural Networks

Deep-learning networks are distinguished from the more
commonplace single-hidden-layer neural networks by
their depth.

A deep neural network is a neural network with a certain level
of complexity, a neural network with more than two layers.

In deep-learning networks, each layer of nodes trains on a
distinct set of features based on the previous layer’s output.

The further you advance into the neural net, the more complex
the features your nodes can recognize, since they aggregate and
recombine features from the previous layer.
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Deep Neural Networks
S

"Non-deep" feedforward Deep neural network
neural network
hidden layer ot Ia hidden layer 1 hidden layer 2 hidden layer 3
input layer
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Performance of Network Size
T e

Deep Neural Networks

Medium Neural Networks
Shallow Neural Networks
Tradtional Machine Leaming

Data
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Deep Neural Networks for Images
]

o1 Image to vector

Tree image. On the left is the original digital image, on the right is the
simplified pixelated tree image

A digital image is a 2D grid of pixels.

A neural network expects a vector of numbers as input.
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Deep Neural Networks for images

1
e Example: 200x200 image, 40K hidden units, ~2B parameters!

>  Spatial correlation is local
»  Too many parameters, will require a
lot of training data!
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Locality and translation invariance

Locality: nearby pixels are more strongly correlated

Translation invariance: meaningful patterns can occur anywhere in the image
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Topological Structure

Weight sharing: use the same network parameters to
detect local patterns at many locations in the image

Hierarchy: local low-level features are
composed into larger, more abstract features

edges and textures object parts objects
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Drawback of using Fully Connected Deep NN

Lack of Spatial Information Preservation

Fully connected networks treat the input data as a flat vector, ignoring the spatial
relationships between pixels in an image.

Lack of Feature Hierarchy:
Fully connected networks do not have the capability learn hierarchical features.

Fully connected networks require a significant amount of data to learn effective
feature representations from scratch.

High Dimensionality

Images are high-dimensional data, and fully connected layers in deep networks
require a massive number of parameters.

This high dimensionality can lead to overfitting, especially when dealing with limited
training data.

Computational Intensity

The sheer number of parameters in a fully connected network makes it
computationally intensive to train and deploy. Training large fully connected networks
may require significant computational resources and time.

Lack of Translation Invariance

Fully connected networks are not inherently designed to capture translation-invariant
features.
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From fully connected to locally connected
S =

N S S ¢ ANEAN
RN ‘
\\
fully-connected unit
= 1€1mage

Yy = 2{: w;X; + b

1€3X 3

locally-connected units
3 X3 receptive field
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From locally connected to convolutional

Yy=W*xX+0b

convolutional units
3 X 3 receptive field
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From locally connected to convolutional

Feature map
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Implementation: the convolution operation

1x1 1><I‘J 1x1 0 0

1|01 ol1/1/1]0| |4
010 0/04 3, 1)1
11ol1 0/|0|1|1]|0

_ ol1{1|o]0
Welgh Convolved
Filter » Image

Terminology!: Also Fe at ure

referred to as a
“kernel”
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Implementation: the convolution operation
S

The kernel slides across the image and
produces an output value at each position
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Implementation: the convolution operation
S

We convolve multiple kernels and obtain
multiple feature maps or channels
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From locally connected to convolutional
_

Fully Connected NN

IM hidden units
m) 10712 parameters!!

Share the same parameters across
N different locations:

’ Y Onvolutions with learned kernels
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Locally Connected NN

Example: 1000x1000 image
1M hidden units
Filter size: 10x10
100M parameters

E.g.: 1000x1000 image
100 Filters
Filter size: 10x10
10K parameters
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Pooling
]

o Convolutional layers are typically followed by pooling layers (e.g., max
pooling) that down sample feature maps, retaining the most important
information while reducing spatial dimensions.

o Pooling helps the network focus on the most salient features and
improves translation invariance.

—\--

.

Pooling: compute mean or max over small windows to reduce resolution




From locally connected to convolutional

Hierarchical Feature Learning

CNNs consist of multiple layers, with each layer capturing increasingly abstract and
complex features.

The lower layers detect simple features like edges and textures, while higher layers learn to
recognize more complex patterns and object parts.

This hierarchical feature learning makes CNNs highly effective at representing structured
data.
Sparse Connectivity

In a convolutional layer, each neuron (unit) is connected to only a small local region of the
input data, as determined by the receptive field size.

This sparse connectivity reduces the number of computations required and promotes the
extraction of localized features.
Weight Sharing Across Channels

In multi-channel data (e.g., color images with RGB channels), convolutional kernels are
applied independently to each channel but share weights across channels.

This allows the network to learn cross-channel relationships and detect features that span
multiple channels.
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From locally connected to convolutional

Local Receptive Fields

Convolutional operations use small, local receptive fields (kernels) to scan the input
data.

This local focus allows the network to capture patterns and features in a localized and
translation-invariant manner.

In the context of images, this means detecting small, local features like edges,
corners, and textures.

Parameter Sharing

Convolutional layers use parameter sharing, which means the same set of learnable
weights (kernel) is applied across the entire input image or feature map.

This parameter sharing greatly reduces the number of parameters in the network,
making it more computationally efficient and reducing the risk of overfitting.

Translation Invariance

The use of shared weights and local receptive fields enables CNNs to learn features
that are invariant to translation.

In other words, the network can recognize the same feature regardless of its position
in the input data. This property is essential for tasks like object recognition in images.
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Convolutional Neural Networks (CNN)
]

[l

CNN is a type of deep neural network that is particularly well-suited for
image classification and recognition tasks.

CNNs are able to learn complex relationships between the pixels in an
image, which is essential for accurately classifying complex images.

CNNs work by using a series of convolutional layers and pooling layers.

Convolutional layers learn to extract features from the input image, such as edges,
corners, and shapes.

Pooling layers reduce the size of the output of the convolutional layers, and they
also help to make the network more robust to noise and variations in the input
image.

Once the CNN has learned to extract features from the input image, it
uses a fully connected layer to classify the image.

The fully connected layer takes the output of the pooling layers and combines it
into a single output vector.

The output vector is then used to classify the image into one of a set of
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CNN: Architecture Overview
1

1 Three main types of layers to build ConvNet
architectures: Convolutional Layer, Pooling Layer, and Fully-
Connected Layer

Convolution Neural Network (CNN)

-
-
—‘-

Pooling Pooling Pooling

pneumonie

Covid 19

SoftMa_\x
Convolution Convolution  Convolution /;ﬁt:gitg]n
e s +
Kernel RelU RelU RelU
Fully
- Feature Maps > Connected
Layer
| | | | | |
Feature Extraction Classification g:‘:gfgﬂ't'g:f
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Convolutional Layer

The Conv layer is the core building block of a Convolutional Network that does
most of the computational heavy lifting.

The CONV layer’s parameters consist of a set of learnable filters.

Every filter is small spatially (along width and height), but extends through the full
depth of the input volume.

For example, a typical filter on a first layer of a ConvNet might have size 5x5x3 (i.e.
5 pixels width and height, and 3 because images have depth 3, the color channels).

As we slide the filter over the width and height of the input volume we will
produce a 2-dimensional activation map that gives the responses of that filter
at every spatial position.

Intuitively, the network will learn filters that activate when they see some
type of visual feature such as an edge of some orientation or a blotch of some
color on the first layer, or eventually entire honeycomb or wheel-like patterns
on higher layers of the network.
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Convolutional Layer

]
. Operation Filter Convolved
o1 Filters acts as feature detectors from _\meee
the original input image. idontty

-1 Different values of the filter will
produce different Feature Maps
for the same input image.

Edge detection

o The initialization can be random
(typically mean zero), or can be
based on pre-trained model weights

uniform distribution [-1/fan-in, 1/fan-in]

m fan-in: the number of inputs to a hidden unit Bisarpen

Box blur

(normalized)

Gaussian blur

(approximation)
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Convolution operation

VUM
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Convolution operation

1::1 1><I‘J 1><1 0 0
1 O 1 Oxu 1::1 1><El 1 0 4
O 1 O 0::1 Oxﬂ 1::1 1 1
ERE 0/011(1(0
_ 011(11(0/(0
\é\-ﬁlgh | Convolved
Iicer Terminology!: Also referred to as a “kernel” m age Fe at ure
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Convolution Operation
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Rectified Linear Unit (RelU)

RelLU introduces non-linearity to the model.

The ability to capture non-linear relationships is crucial for the
expressiveness of neural networks.

Without non-linear activation functions like ReLU, the entire network would
behave like a linear function, limiting its capacity to learn complex patterns
and representations.
By applying a ReLU activation function after a convolution layer,
the network can learn to focus on the most important features in
the image and ignore the less important features.

Other non linear functions such as tanh or sigmoid can also be
used instead of ReLU, but ReLU has been found to perform better
in most situations.
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Rectified Linear Unit

R(z) =maz(0, z)




Key Properties of Rectified Linear Unit

Computational Efficiency
RelLU is computationally efficient to compute compared to some other activation
functions like sigmoid or tanh.
The RelLU operation involves a simple thresholding, and it avoids the computational
cost associated with exponentials (as in sigmoid and tanh).

Mitigating the Vanishing Gradient Problem
ReLU helps mitigate the vanishing gradient problem, which can occur during
backpropagation in deep networks.

The vanishing gradient problem arises when gradients become extremely small as
they are propagated back through many layers, making it challenging to update the
weights effectively. ReLU's derivative is 1 for positive inputs, allowing gradients to

flow more easily.

Sparse Activation
RelLU activation leads to sparsity in the network. Since RelLU sets all negative values to
zero, it can result in sparse activation patterns, where only a subset of neurons is
activated.

This can be beneficial for memory efficiency and computational speed.
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Rectified Linear Unit Variants

Leaky RelLU Parametric RelLU Gaussian Error Linear Unit
o
Sigmoid Linear Unit Softplus

softplus(x)

-2 0 2 4
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Accuracy on CIFAR10
S

M RelU m Leaky ReLU m Parametric ReLU m Softplus m ELU m SELU m GELU M Swish

96
95.5 95.5

95 948947 94.8 94.8
94  93.8

93

92

91

90

ResNet Wide ResNet DenseNet

Don’t think too hard. Just use RelLU

- Try out Leaky ReLU / ELU / SELU / GELU if you need to squeeze that last 0.1%

- Don’t use sigmoid or tanh

- Some (very) recent architectures use GelLU instead of ReLU, but the gains are minimal
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Feature Map Parameters

The size of the Feature Map (Convolved Feature) is
controlled by three parameters that we need to decide
before the convolution step is performed:

Depth: Depth corresponds to the number of filters we use for
the convolution operation.

Stride: Stride is the number of pixels by which we slide our filter
matrix over the input matrix.

Zero-padding: Sometimes, it is convenient to pad the input
matrix with zeros around the border, so that we can apply the
filter to bordering elements of our input image matrix.
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Depth

Using different filters (or kernels) for each convolutional layer in a
Convolutional Neural Network (CNN) allows the network to learn a
diverse set of features at different levels of abstraction.

First layers: The first layers of a CNN for image classification typically use
edge detection filters, color filters, and texture filters to extract different
features from the input images.

Intermediate layers: The intermediate layers of a CNN for image classification
typically use more complex filters to learn more abstract features from the
input images.

Final layers: The final layers of a CNN for image classification typically use
object-specific filters to detect specific objects in the input images. These
filters are typically complex and have large receptive fields.
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Different Activation Maps

28x28 grid, at each
point a 6-dim vector
Convolution

Layer
32 T /
32 6Xx3x5x5 “HHEAEA UUUUN

3 filters Illll l Stack activations to get a
6x28x28 output image!
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Receptive Fields
_

- Region of the input that each element of an activation map is influenced
by
- Important to manage the size of the RF:
A small RF can miss important information in an image

But too big an RF causes overfitting (intuition: since a large enough RF
eventually is the same as a dense nn)

two successive

g 5x5 convolution
3x3 convolutions
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Receptive Fields
_

= For convolution with kernel size K, each element in the output depends
on a K x K receptive field in the input

- Each successive convolution adds K — 1 to the receptive field size With L
layers the receptive field sizeis 1+ L * (K—1)

= Problem: For large images we need many layers for each output to “see”
the whole image

o1 Solution: Downsample inside the network
Stride the convolution

Input Output
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Receptive Fields

Are 2 - 3x3 convolutions the same as one 5x5 convolution?
No

2 3x3 convolutions has less parameters and more non-linearities

5x5 receptive field 3x3 receptive field
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Stride

The amount of pixels to slide the filter by (both horizontally and
vertically):

A stride of 1 will shift the filter every pixel

A stride of 2 will shift the filter every 2 pixels

Stride 1 Feature Map Stride 2 Feature Map
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Why using Stride

Spatial Dimension Reduction

By using a stride greater than 1, the convolution operation skips some
positions, leading to a reduction in the spatial dimensions of the output

feature map.

This reduction can be intentional, especially in the early layers of a CNN,
where capturing fine-grained spatial details might be less critical.

This reduction can be beneficial for computational efficiency and memory
usage.

Increased Receptive Field

A larger stride allows the convolutional filter to cover a larger region of the
input in each step.

This increased receptive field can help the network capture more global
features and patterns.

Reduce overfitting.

Using a larger stride can help to reduce overfitting by making the network
more robust to noise and variations in the input images.
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Padding
_

- Convolving an image with a filter results in a block with a smaller
height and width — what if we want the height and width as
before?
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A closer look at spatial dimensions

Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!

(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g. 6 e.g. 10
5x5x3 5x5x6
32 filters 28 filters 24
3 6 10
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A closer look at spatial dimensions

STUDENTS-HUB.com

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 => zero pad with 1

F =5 => zero pad with 2

F =7 =>zero pad with 3
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A closer look at spatial dimensions

STUDENTS-HUB.com

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

=> 3x3 output!
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A closer look at spatial dimensions

Examples time: / /

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2 _/ _/

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params  (+1 for bias)
=> /610 =760
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Another way to think about Conv layers

STUDENTS-HUB.com

height: 224

<>
depth: 4

The only reason our filters have to be 3
tall (ie: span 3 channels) is because our
input is 3 features tall (rgb)

Say our image is rgba (a for alpha a.k.a.

brightness), we would need a filter that is
4 channels deep
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A closer look at spatial dimensions
_

Input: C;, x Hx W
Hyperparameters:

- Kernel size: K x Ky

- Number filters: C_,

-  Padding: P

- Stride: S

Weight matrix: C_,, x C;, x Ky X Ky,

giving C_, filters of size C;, x K, x Ky ,
Common settings:

Bias VECt_or: Cout Ky = Ky (Small square filters)
Output size: C . x H' x W where: P=(K-1)/2 ("Same” padding)
- H=H-K+2P)/S+1 Cinv Cout = 32, 64, 128, 256 (powers of 2)

_ W'=(W—K+2P)/S+1 =1,S=1(3x3 conv)
=2,S5=1(5x5 conv)

=0,S =1 (1x1 conv)

=1,S =2 (Downsample by 2)

7
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Pooling Layer

Spatial Pooling (also called subsampling or downsampling) reduces
the dimensionality of each feature map but retains the most
important information.

Spatial Pooling can be of different types: Max, Average, Sum etc.

In particular, pooling:

Makes the input representations (feature dimension) smaller and more
manageable

Reduces the number of parameters and computations in the network,
therefore, controlling

Makes the network invariant to small transformations, distortions and
translations in the input image (a small distortion in input will not change the
output of Pooling — since we take the maximum / average value in a local
neighborhood).

Helps us arrive at an almost scale invariant representation of our image (the
exact term is “equivariant”). This is very powerful since we can detect objects in
an image no matter where they are located.
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https://en.wikipedia.org/wiki/Overfitting

Pooling Layer

The Pooling Layer operates independently on every depth slice of the

input and resizes it spatially.

The most common form is a pooling layer with filters of size 2x2
applied with a stride of 2 downsamples every depth slice in the input
by 2 along both width and height, discarding 75% of the activations.

817|513

2x2 pooling,
1219157 stride 2
131 2 (10| 3
914|514

STUDENTS-HUB.com

/

Max pooling

12| 7

13| 14

Average pooling

9| 5

71 8
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Pooling applied to Rectified Feature Maps

-
_ Pooling applied
Convolution separately on each
using 3 filters feature map
+ RelU

Rectified

Input Image Feature Maps

STUDENTS-HUB.com Uploaded By: anonymous



Effect of Pooling on the Rectified Feature Map

Only non-negative valy

Rectified Feature Map

STUDENTS-HUB.com

8 Pooling

Sum
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Fully Connected Layer
_

O

The Fully Connected layer is a
traditional Multi Layer Perceptron
that uses a softmax activation
function in the output layer (other
classifiers like SVM can also be
used).

The output from the convolutional
and pooling layers represent high-
level features of the input image.

The purpose of the Fully Connected
layer is to use these features for
classifying the input image into
various classes based on the
training dataset.

Most of the features from
convolutional and pooling layers
may be good for the classification
task, but combinations of those
features might be even better
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Putting it all together — LeNet Architecture (1998)

1 LeNet-5 convnet for handwritten digit recognition

S/ 7747

Convolution

(5X5)

Input

32X
STUDENTS-HU

221
B.com

Subsampling

Convolution

(5X5)

e

A

-

I

—

Feature Map
28X 28X6

Feature Map
14X14X6

Feature Map
10X 10X 16

N
“—U:@

Subsampling (5X5)

A

Feature Map
5X5X16

‘ Fully
Convolution connected Output

layer

pr— ge—

120 84 10
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Training CNN using Backpropagation

Stepl: We initialize all filters and parameters / weights with random values

Step2: The network takes a training image as input, goes through the forward
propagation step (convolution, ReLU and pooling operations along with forward

propagation in the Fully Connected layer) and finds the output probabilities for each
class.

Lets say the output probabilities for an image are [0.2, 0.4, 0.1, 0.3]

Since weights are randomly assigned for the first training example, output probabilities are also
random.

Step3: Calculate the total error at the output layer (summation over all 4 classes)
Total Error = 3 % (target probability — output probability) 2
Step4: Use Backpropagation to calculate the gradients of the error with respect to all

weights in the network and use gradient descent to update all filter values / weights and
parameter values to minimize the output error.

The weights are adjusted in proportion to their contribution to the total error.

When the same image is input again, output probabilities might now be [0.1, 0.1, 0.7, 0.1],
which is closer to the target vector [0, O, 1, 0].

This means that the network has learnt to classify this particular image correctly by adjusting its
weights / filters such that the output error is reduced.

Parameters like number of filters, filter sizes, architecture of the network etc. have all been fixed

before Step 1 and do not change during training process — only the values of the filter matrix and
connection weights get updated.

Step5: Repeat steps 2-4 with all images in the training set.
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Visualizing what a convnet learns at each Layer
S
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Visualizing what a convnet learns

Convolutional Neural Network trained on the MINIST Database of handwritten digits
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Visualizing what a convnet learns
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Visualizing what a convnet learns

0 500 1000 1500 2000

0 1000 2000 3000 4000

max_pooling2d_2
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0 250 500 750 1000 1250 1500 1750 2000

conv2d_3

max_pooling2d_3
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0 100 200 300 400 500 600 700 800
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Well Known ConvNet Architectures

LeNet (1990s)

AlexNet (2012)
GooglLeNet (2014)
VGGNet (2014)

ResNets (2015)
DenseNet (August 2016)
MobileNet
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ImageNet Large Scale Visual Recognition Challenge

&SVRC‘ winners

30 2872 152 152 || 152

25.8 layers layers layers
25
20
16.4
15
11.7 | 19 22
ayers layers
10
8Iayers
0 - - —

2010 2011 2012 2013 2014 2014 2015 2016 2017

Error Rate

Lin et al Sanchez &  rizhevsky etal  Zeiler &  Simonyan & Szegedy et al He et al Shao et al Hu et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet) (ResNet) (SENet)

STUDENTS-HUB.com Uploaded By: anonymous



AlexNet [Krizhevsky et al. 201 2]
_

1 Has a similar architecture to LeNet-5 but was deeper and bigger
with five Conv layers stacked on top of each other, followed by

three fully connected layers

-3
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AlexNet

Layer

convl
pooll
conv2
pool2
conv3
conv4
conv)
pool5
flatten
fcb
fc7
fc8

C

Max

128

g \dense

R
o
r

pooling

Input size
3 227
64 56
64 27
192 27
192 13
384 13
256 13
256 13
256 6
9216
4096
4096
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Max
pooling

64

192

384
256
256

4096
4096
1000

Layer
H/ W filters kernel

W wwwwouw-—

stride

N — — = N —= N N

128 Max

pooling

pad C

O — = — O NON

dense

Output size

64
64
192
192
384
256
256
256
9216
4096
4096
1000

densel

1000

2048

H/ W
56

Details/Retrospectives:

-first use of ReLU

-used Norm layers (not common anymore)
-heavy data augmentation

-dropout 0.5

-batch size 128

-SGD Momentum 0.9

-Learning rate 1le-2, reduced by 10
manually when val accuracy plateaus

-L2 weight decay 5e-4

emory (KB)

params (k) flop (M)



AlexNet
T e

Most of the memory - Most floating-point
usage is in the early Nearly all parameters are in ops occur in the
i the fully-connected layers :
convolution layers y ¥ convolution layers
Memory (KB) Params (K) MFLOP
800 35000
. 20000 -
: : I I
200 I 10000
50
100 5000
SRR > H Lo A b
(5)"\Q go*\ o° (_,o(\ (Jo(é SEE o“\\\ o*\\\ (Jo*\\\ (Jo*\\\ go{\\\ e (5)"\A go*\ o° (_,o(\ (Jo(é S
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VGGNet [Simonyan and Zisserman, 201 4]

1 VGGNet is a very deep convnet. It
stacks many convolutional layers
before pooling. Moreover, it uses
“same” convolutions to avoid
resolution reduction.

7 VGG Design rules:
All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2

After pool, double #channels

1 Network has 5 convolutional stages:

Stage 1: conv-conv-pool
Stage 2: conv-conv-pool
Stage 3: conv-conv-pool
Stage 4: conv-conv-conv-[conv]-pool

Stage 5: conv-conv-conv-[conv]-pool
STUDENTS-HUB.com

Softmax

FC 1000

FC 4096

FC 4096

Poo

| Input

AlexNet

Softmax

FC 1000

Softmax

FC 4096

FC 1000

FC 4096

FC 4096

Pool

FC 4096

Pool

Input

Input |

VGG16

VGGI19
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https://www.robots.ox.ac.uk/~vgg/research/very_deep/

VGGNet

]
INPUT: [224x224x3]  memory: 224*224*3=150K params: 0 (not counting biases)
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 Note:
CONV3-64: [224x224x64] memory: 224*224*64=3.2M . (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K par:rﬁ;b .
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 Most memory is in
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 early CONV

POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [66x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

POOL2: [14x14x512] memory: 14*14*512=100K params: 0 Most params are
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 in late FC
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
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VGGNet

AlexNet vs VGG-16
(Memory, KB)

30000
25000
20000

15000

m:IJJJ,

> © S
H O L QS

& &g oK
& (9 E EE

W AlexNet mVGG-16
AlexNet total: 1.9 MB

VGG-16 total: 48.6 MB (25x)
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AlexNet vs VGG-16
(Params, M)

120000 5000

AlexNet vs VGG-16
(MFLOPs)

4500

100000 2000

3500
80000

3000

2500
2000
1500
1000
500
N | . — 0 e —
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L& ECE L

60000

40000

20000

0

©

AN &
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b
&
000 00(\ 00{\ 00(\ &® *

W AlexNet mVGG-16

AlexNet total: 61M
VGG-16 total: 138M (2.3x)

B AlexNet mVGG-16

AlexNet total: 0.7 GFLOP
VGG-16 total: 13.6 GFLOP (19.4x)
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GoogleNet (Inception-v1) [Szegedy et al., 201 4]

N
0 Deeper networks, with
computational

efficiency
22 layers

Efficient “Inception” module
No FC layers

Only 5 million parameters!
12x less than AlexNet

ILSVRC’14 classification
winner (6.7% top 5 error)

Inception module

P
a¥a
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Key Features of GoogleNet (Inception-v1)

Inception Modules:

The inception module consists of multiple parallel convolutional branches of different filter sizes
(1x1, 3x3, 5x5), along with a max-pooling branch.

The outputs of these branches are concatenated along the depth dimension.

This allows the network to capture features at multiple scales simultaneously.

Batch Normalization:

Batch Normalization is applied to the input of each layer, contributing to faster convergence and
improved training stability.

Global Average Pooling:

Instead of using fully connected layers at the end of the network, GooglLeNet uses global
average pooling.

Global average pooling reduces the number of parameters and helps with model generalization.
Auxiliary Classifiers:

Auxiliary classifiers, placed at intermediate layers, are introduced during training to provide
additional gradient signals and combat the vanishing gradient problem.

These auxiliary classifiers have their loss functions and contribute to the overall loss during
training.
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GoogleNet: Inception Module
—

O

The Inception Module is a
fundamental building block of
GoogleNet (Inception-vl),

The main purpose of the
Inception Module is to enable
the network to capture
information at multiple scales
by employing filters of
different sizes in parallel.

This helps the network
efficiently learn both fine-
grained and coarse-grained
features within the same layer.

Local unit with parallel
branches

Local structure repeated many
times throughout the network

STUDENTS-HUB.com

Filter
concatenation

}

}K
$ } ==
3x3 max ~ [

pooling F)%’/'

Previous Layer

——
Uploaded By: apgnymous



Structure of the Inception Module

1x1 Convolution (Dimension Reduction):
A 1x1 convolution is used to perform dimension reduction, reducing the number of channels:
outputli, j, k] = sum(input[i, j, c] * kernel[1, 1, c, k] for c channels
k is the index of the filter in the output.

c is the index of the channel in the input.
kernel[1,1,c,k] is the weight associated with channel ¢ of the input for filter k.

This operation helps control the computational cost and provides a linear combination of features.

3x3 Convolution:
A 3x3 convolution captures features over a medium-sized receptive field.

It helps capture spatial hierarchies within the image.

5x5 Convolution:
A 5x5 convolution captures features over a larger receptive field.
It helps capture more global features and structures.

Max-Pooling:
Max-pooling is used to capture the most important features within a local region.
It provides some translation invariance and reduces spatial dimensions.

Concatenation:
The outputs from all branches are concatenated along the depth dimension.

STUDENT3his ereates a rich set of features that can capture information at different sgallesaded By: anonymous



Structure of the Inception Module

]
Example:
Conv Ops:
28x28x(128+192+96+256) = 28x28X672 [1X1 cony, 128] 28x28x128x1x1x256
Fiter [3x3 conv, 192] 28x28x192x3x3x256
concatenation
= [5x5 conv, 96] 28x28x96x5x5x256
28x28x128 28x28x192 ~ 28x28x96  28x28x256
] - N — Total: 854M ops
x1 conv, 3x3 conv, 5x5 conv, 3x3 pool .
1%%%' Very expensive compute
Module input: Input Pooling layer preserves feature depth,
28x28x256 which means total depth after
Naive Inception module concatenation can only grow at every
layer!
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Structure of the Inception Module

o1 Using same parallel layers as naive example, and adding “1x1 conv,

64 filter” bottlenecks:

28x28x480
Filter
concatenation
28x28x128 _ 28x28x192 28x28x96  28x28x64
1x1 conv, 3x3 &)nv, 5x5 }:onv, 1 )Fconv,
128 1?2 9A6 6A4
28x28x64  28x28x64 28x28x256
| I 1
1x1 convy, 1x1 convy,
64 64 3x3 pool

~

Module inPUt: Previous Layer
28x28x256

Inception module with dimension reduction

STUDENTS-HUB.com

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x64
[5x5 conv, 96] 28x28x96x5x5x64
[1x1 conv, 64] 28x28x64x1x1x256
Total: 358M ops

Compared to 854M ops for naive version
Bottleneck can also reduce depth after
pooling layer
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GoogleNet: Inception Module
S =

1x1 conv “bottleneck” layers

Filter Filter
concatenation concatenation

1x1 3x3 5x5 3x3 max 1% 3x3 5x5 1x1
convolution convolution convolution pooling convolution convolution convolution convolution
1xd 1x1 3x3 max

Previous Layer convolution convolution pooling

Previous Layer

Naive Inception module Inception module with dimension reduction

Total: 854M ops Total: 358M ops
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Batch Normalization
74 |

» BatchNorm helps mitigate the internal covariate shift. This helps stabilize and
accelerate the training process by mitigating issues like vanishing/exploding
gradients.

0.8

Inception: Inception-vl without BN
BN-Baseline: Inception with BN
BN-x5: Initial learning rate is increased
by a factor of 5 to 0.0075

+ .'/
)
\
v
)
\
\
1
\
1
Y V V

= = = Inception » BN-x30: Initial learning rate is
i gnggse""e increased by a factor of 30 to 0.045
BN-x30 » BN-x5-Sigmoid: BN-x5 but with
o+ e+ BN-x5-Sigmoid - .
4 Steps to match Inception Sigmoid

1 |
10M 15M 20M 25M 30M

Since the introduction of GooglLeNet, Batch Normalization has become a
standard component in many deep learning architectures, providing
benefits in terms of training stability, convergence speed, and

generalization performance.
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Full GoogleLeNet Arch.

519 512 512

256 480

Width of inception modules ranges from 256 filters to 1024.
Can remove fully connected layers on top completely.
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Full GooglelLeNet Arch.

Full GooglLeNet
architecture

Stem Network:
Conv-Pool-
2x Conv-Pool
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GoogleNet: Aggressive Stem

Stem network at the start aggressively downsamples input E
(Recall in VGG-16: Most of the compute was at the start) e -
| L . -~ g
nput size ayer utput size =
H / params \'\,/7\\{:
Layer cC W filters kernelstride pad C H/W memory (KB) (K) flop (M) \‘\; %
conv 3 224 64 7 2 3 64 112 3136 9 118 f=SE) =
max-pool 64 112 3 2 1 64 56 784 0 2 S g
conv 64 56 64 1 1 0 64 56 784 4 N
cony 64 56 192 3 1 1 192 56 2352 111 347
max-pool 192 56 3 2 1 192 28 588 0
Total from 224 to 28 spatial resolution: Compare VGG-16:
Memory: 7.5 MB Memory: 42.9 MB (5.7x)
Params: 124K Params: 1.1M (8.9x)
MFLOP: 418 MFLOP: 7485 (17.8x)
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Full GooglelLeNet Arch.
_

Full GooglLeNet
architecture

Stacked Inception
Modules
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Auxiliary Classifiers

Training using loss at the end of the network didn’t work well: Network is
too deep, gradients don’t propagate cleanly

Auxiliary classifiers are used in GooglLeNet for two main reasons:

To improve the convergence of the network. Auxiliary classifiers provide
additional gradients to the lower layers of the network, which can help the
network to converge to a better solution more quickly.

To regularize the network and prevent overfitting. Auxiliary classifiers act as
regularizers by forcing the network to learn to classify images at different levels
of abstraction. This can help to prevent the network from overfitting to the
training data.

In GooglLeNet, the auxiliary classifiers are each composed of a global
average pooling layer, a fully connected layer, and a softmax layer.

On the ImageNet dataset, GoogleNet with auxiliary classifiers achieves
an accuracy of 93.6%, which is significantly higher than the 89.3%
accuracy achieved by GoogleNet without auxiliary classifiers.
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Full GoogleLeNet Arch.
_

Full GoogLeNet
architecture

Note: after the last convolutional layer, a global
average pooling layer is used that spatially averages
across each feature map, before final FC layer. No
longer multiple expensive FC layers!

Classifier output
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GoogleNet: Global Average Pooling
_

» No large FC layers at the end! Instead uses “global average

pooling” to collapse spatial dimensions, and one linear layer to
produce class scores

» (Recall VGG-16: Most parameters were in the FC layers!) &

Input size Layer Output size Eﬁi pY——
Layer C H/W filters kernel stride pad C H/'W memory (KB) params (k) flop (M) X rh
avg- g
pool 1024 7 7 1 0 1024 1 4 0 0 a4k Bl DepthConcat
fe 1024 1000 1000 0 1025 iy P

= BT
Compare with VGG-16: i

Layer C H/W filters kernel stride padC H/W memory (KB) params (K) flop (M) >(
flatten 512 7 25088 98
fcb 25088 4096 4096 16 102760 103
fc7 4096 4096 4096 16 16777 17
fc8 4096 1000 1000 4 4096 4

STUDENTS-HUB.com
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Training very Deep Models

Once we have Batch Normalization, we can train networks with
10+ layers. What happens as we go deeper?
Deeper model does worse than shallow model!

Initial guess: Deep model is overfitting since it is much bigger than
the other model

In fact the deep model seems to be underfitting since it also performs worse
than the shallow model on the training set! It is actually underfitting

207 201
_ 56-layer

—_
S _

g =

= =

O 10 g 10 20-1&}/81‘
ch 3]

k= 56-layer =

: L7}

1= 9

E

20-layer

L L I i I
5 6 0 1 5 6

-
=

-
=N

~ter. (le4)

~ter. (le4)
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Residual Networks
]

o Residual Networks, often referred to as ResNets, are a type of deep
neural network architecture designed to address the challenges of
training very deep networks.

-1 Residual networks (ResNets) are a type of neural network architecture
that introduced the concept of skip connections.

o A skip connection is a connection that allows information to flow from
one layer of the network to a later layer without passing through any
intermediate layers.

1 The basic idea behind ResNets is to learn residual functions instead of
direct mappings. A residual function is a function that learns the
difference between the desired output and the input.

-1 ResNets have been shown to achieve state-of-the-art results on a wide
range of tasks, including image classification, object detection, and
segmentation. They are now one of the most popular types of neural

network architectures in use.
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Residual Networks

Advantages of Residual Networks:

It makes it easier to train deep networks.

Skip connections help to alleviate the vanishing gradient problem,
which can make it difficult to train deep networks.

It allows the network to learn more complex mappings.

By learning residual functions, the network can learn to modify the
input in more subtle ways, which can lead to better performance on
complex tasks.

Scalability

ResNets are scalable to deep architectures, making them suitable for
state-of-the-art models in computer vision and other domains.

It makes the network more robust to noise.

Skip connections allow the network to bypass noisy or irrelevant
features in the input, which can lead to better performance on noisy
datasets.
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ResNet [He et al., 2016]

ResNet (2016): is the residual network which features
special skip (residual) connections and a heavy use of batch
normalization layer. The residual connections facilitate training deep

networks.

A

B-oE. .

residual connection

Able to train very deep networks
Deeper networks do better than shallow
networks (as expected)

Swept 1st place in all ILSVRC and

COCO 2015 competitions

‘sTOREN el seseshioday!

MSRA @ ILSVRC & COCO 2015 Competitions

* 1st places in all five main tracks

* ImageNet Classification: “Ultra-deep” (quote vann) 152-layer nets
* ImageNet Detection: 16% better than 2nd

* ImageNet Localization: 27% better than 2nd

* COCO Detection: 11% better than 2nd

* COCO Segmentation: 12% better than 2nd
Uploaded By: anonymous



https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1502.03167

Key Concepts of Residual Networks

Residual Blocks:
The basic building block of a ResNet is the residual block.

A residual block consists of a shortcut connection (skip connection) that bypasses
one or more layers and is added to the output of those layers.

Mathematically, for a residual block with input x and output H(x), the block
computes H(x)—x, and the final output is F(x)=H(x)+x.

Instead of directly learning the mapping from input to output, a residual block
learns the residual (difference) between the input and the desired output.

Residual blocks enable the learning of residual mappings, making it easier to
train very deep networks.

This is because the residual is the difference between the desired output and the input,
which is a smaller and simpler function to learn than the entire mapping.

I tit ing:
o HX) = F(x) +x ~_ [ retw Hden iy r_r]lanplnE; 0
H() H(x) = F(x) + x (0 = X1 F(x) =
W If you set these to Use layers to
0, the whole block F 0 X fit residual
: X | o
o compue e e ) ety P 2 HOg - x
instead of
T H(x) directly

X X
STUDENTS-HUH ¥ Residual block Uploaded By: anonymous



Key Concepts of Residual Networks

]
= A residual network is a stack of

[ Pool |
O
3x3 conv, 512
3x3 conv, 512
O
3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512, /2

o
®

many residual blocks

-1 Regular design, like VGG: each

residual block has two 3x3 conv I relu
F(x) + x

1 Network is divided into stages:
the first block of each stage
halves the resolution (with F(x) T relu
stride-2 conv) and doubles the
number of channels

X
Residual block
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Key Concepts of Residual Networks
]

Bottleneck Residual block

More layers, less computational cost!

FLOPs: 4HWC?2 | Conv(1x1, C->4C)
Conv(3x3, C->C) | FLOPs: 9HWC? t

$ FLOPs: 9HWC? | Conv(3x3, C->C)
Conv(3x3, C->C) | FLOPs: 9HWC? 1
FLOPs: 4HWC2 | Conv(1x1, 4C->C)

RB‘?Z'C | Total FLOPS: . -
esidua 18HWC2 _ Bottleneck
Total FLOPs: A
block 5 Residual
17HWC
block
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Key Concepts of Residual Networks

Skip Connections (ldentity Shortcuts):

Skip connections allow the gradient to flow directly through the network without
passing through the intermediate layers.

Help to alleviate the vanishing gradient problem by allowing the gradients to
bypass some of the layers of the network. This allows the gradients to flow more
easily through the network, which makes it easier for the network to learn the
weights of all of the layers.

Deep Network Architecture:

ResNets are characterized by their deep architectures, often with hundreds of
layers.

The use of residual blocks and skip connections enables the training of deeper
networks without suffering from degradation in performance.

Batch Normalization:

Batch normalization is commonly used in ResNets to stabilize and accelerate
training.

Global Average Pooling (GAP):

ResNets often use Global Average Pooling (GAP) as an alternative to fully
connected layers for dimensionality reduction at the end of the network.
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Key Concepts of Residual Networks
]

Uses the same aggressive stem as GoogleNet to

downsample the input 4x before applying residual
blocks:

Like GooglLeNet, no big fully-connected-layers:

O

instead use global average pooling and a single linear

layer at the end

Output
Input size Layer size 3x3 conv. 64
params flop 3x3 cony 64
Layer C H/W filters kernel stride pad C H/W memory (KB) (k) (M) o
conv 3 224 64 7 2 364 112 3136 9 118 3x3 conv, 64
max-pool 64 112 3 2 164 56 784 0 2

STUDENTS-HUB.com

| Softmax |
l FC 1000 |

| Poo |

l
l
l
l
l
l
| 3x3 conv, 64
l
l
l
l
l
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ResNet Architectures
1

o ResNets are scalable to different depths, and variants like ResNet-

18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152 have been
o oo

introduced with varying numbers of layers.

O
3x3 conv, 512
3x3 conv, 512

1 ResNet-50 is the same as ResNet-34, but replaces Basic blocks with
Bottleneck Blocks. This is a great baseline architecture for many
tasks even today!

| 3x3conv, 512 |
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512, /2

1 Deeper ResNet-101 and ResNet-152 models are more accurate, but
also more computationally heavy

Stage 1 Stage 2 Stage 3 Stage 4

Stem |
Block layer FC GFLO ImageNet
type s Blocks LayersBlocks LayersBlocks LayersBlocks Layerslayers P top-5 error

ResNet-18 Basic 2 4 2 4 2 4 2 4 1 1.8 10.92

3x3 conv, 64
O

1
ResNet-34 Basic 1 3 6 4 8 6 12 3 6 1 3.6 8.58 ————
ResNet-50 Bottle 1 3 9 4 12 6 18 3 9 1 3.8 7.13 m}
ResNet-101 Bottle 1 3 % 4 12 23 69 3 9 1 7.6 6.44 [l ]
ResNet-152Bottle 1 3 9 8 24 36 108 3 9 1 11.3 5.94
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Other CNN Networks

DenseNet

DenseNet is another deep residual neural network architecture that is known for its
efficiency and accuracy.

DenseNet has achieved state-of-the-art results on a variety of computer vision tasks,
including image classification, object detection, and semantic segmentation.
EfficientNet

EfficientNet is a family of efficient CNN architectures that are designed to achieve
high accuracy with minimal computational resources.

EfficientNet has achieved state-of-the-art results on a variety of computer vision
tasks, including image classification, object detection, and semantic segmentation.
MobileNetV2:

Designed for mobile and edge devices, offering a good balance between accuracy and
computational efficiency.

Uses depthwise separable convolutions to reduce the number of parameters.

Vision Transformer (ViT)

ViT is a recent CNN architecture that has achieved state-of-the-art results on a variety
of computer vision tasks, including image classification, object detection, and
semantic segmentation.

ViT is based on the transformer architecture, which was originally developed for

natural language processing.
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ImageNet Competition Winners
_

Traditional computer
vision techniques

Top-5 classification error rate of
the competition winners

2010 2011 2012 2013 2014 2015 2016 2017
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Comparing Well-Known Archs.
_

NASNet-A-Large
SE-ResNeX1-101(32x4d)
~Inception-ResNet-v2
80 Sihception v SENet-154
SE-ResNeH-SG%Zx-‘M) Xeoption A _@IPamNﬂJM
SE-ResNet- i Re eXt-101(64x4d)
SE-ResNet ception va.! t-101(32x4d)
DenseNet-201{) nseNet-151 shet-101
®  Oresnet-50 Caffe-ResNet-101 VGG-19_BN
45 | DualPathiet-68 E oasobiet 168 VGG-16_
DenseNet-121
= @ NASNet-A-Mobile
=]
E BN-IncShtion @ ResNet-34 VGG-13_BN
e @ MobileNet-v2 VGG-11_BN
8
@ VGG-19
— 70 A o ResMet-18 VGG-16
|
E)L MobileMet-v1
—
PshuffleNet
.GnogLaNat
o |/
Vs V'
&3~ 7
1M 5M 10M 50M  75M  100M 150M
SqueezeNet-v1.1 el
‘e SqueezeNet-v1.0 .
.Alaxhlal
55‘ T L L L
0 5 10 15 20 25
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CNN vs ViT
T

ImageNet top-1 accuracy vs FLOPS vs parameters

ViT

DeiT

T2T

TNT

PVT

CaiT

OT

PiT
CrossviT
DeepViT
Swin

CeiT

WViL

So-MIT
EfficientMet
ResNet-RS
MNFNet
EfficientNetv2

86

82

80

Top-1 accuracy In %

78 @

o0 0000000000 00O

76
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CNN Architectures Summary

Early work (AlexNet -> ZFNet -> VGG) shows that bigger networks
work better

GooglLeNet one of the first to focus on efficiency (aggressive stem,
1x1 bottleneck convolutions, global avg pool instead of FC layers)

ResNet showed us how to train extremely deep networks — limited
only by GPU memory! Started to show diminishing returns as
networks got bigger

After ResNet: Efficient networks became central: how can we
improve the accuracy without increasing the complexity?

Lots of tiny networks aimed at mobile devices: MobileNet,
ShuffleNet, etc

Neural Architecture Search promises to automate architecture
design
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Which Architecture should | use?

Don’t be a hero. For most problems you should use an
off-the-shelf architecture; don’t try to design your own!

If you just care about accuracy, ResNet-50 or ResNet-101
are great choices

If you want an efficient network (real-time, run on
mobile, etc) try MobileNets and ShuffleNets
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Data Augmentation

Data augmentation is a technique used to artificially increase the size of
a training dataset by applying various transformations to the existing

data.
Data augmentation encodes invariances in your model

Think for your problem: what changes to the image should not change the
network output?

By design, convnets are only robust against translation.

Data augmentation makes them robust against other transformations: rotation,
scaling, shearing, warping, ...

Purpose:

Increased Diversity: Introduces diversity into the training set, preventing the
model from memorizing specific examples.

Robustness to Variability: Trains the model to be more robust to variations and
transformations that might occur in real-world scenarios.

Regularization: Acts as a form of regularization, helping prevent overfitting by
making the model less sensitive to minor variations in the training data.
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Data Augmentation Example
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Effect on Data Augmentation
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Transfer Learning

You need a lot of a data if you want to train/use CNNs

Training a Network From Scratch
Time
Compute

Training data — the more, the better. Models benefit significantly from A LOT of

data — especially in computer vision, a few thousand examples usually doesn’t
cut it.

Money for all of the above
When trained from scratch, a model’s parameters are initialized

randomly and then updated through some optimization algorithm like
gradient descent

So, if there are two tasks to be solved with deep learning, this process is
repeated separately both times.

However, does it really need to be? Consider the case when we humans
learn something new: do we ALWAYS start from the ground up?
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Transfer Learning
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O

Deep learning models are typically trained on large datasets, which can
be expensive and time-consuming to collect and label.

Transfer learning allows to leverage the knowledge that has already been
learned by a pre-trained model on a different task, and apply it to a new
task.

Transfer learning with CNNs involves leveraging pre-trained models that
were initially trained on large image datasets, such as ImageNet, and
adapting them for new tasks.

How transfer learning is applied with CNNs:

Task 1: Pre-Trained CNN Models

Models like VGG, ResNet, Inception, and MobileNet are pre-trained on
massive datasets, typically for image classification tasks.

Task 2: Transfer Learning
Feature Extraction
Fine-Tuning
Fine-Tuning the whole network
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Transfer Learning

Advantages of Transfer Learning:

Data Efficiency: Transfer learning enables effective learning with
smaller datasets, as the model leverages knowledge from a larger
dataset.

Faster Training: Training a model from scratch can be time-
consuming. Transfer learning speeds up training by starting with a
pre-trained model.

Improved Performance: Transfer learning often leads to improved
performance compared to training a model from scratch, especially
when the pre-trained model has been trained on a similar task.

Generalization: Transfer learning helps in generalizing knowledge
gained from one domain to another, tend to generalize well and are
less prone to overfitting, especially when applied to related tasks.

Is easy to implement: Transfer learning is a relatively simple
technigue to implement. There are many different transfer learning
libraries available, such as TensorFlow Hub and PyTorch Torchvision.
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Choosing the right transfer learning approach
]

-1 Choosing the right transfer learning approach depends on various factors,
including the amount of data available for the target task, the similarity
between the source and target tasks, and computational resources.

-1 Feature Extraction (Freezing Layers):

When to Choose: Choose feature extraction when you have a limited amount of data

for the target task, and the features learned by the pre-trained model are expected to
be relevant to the new task.

How it Works: Remove the final layers of the pre-trained model, keeping the feature
extraction layers. Add new layers (usually fully connected layers) for the target task.
The pre-trained layers are frozen, and only the added layers are trained.

Frozen Discarded Frozen Custom
Layers Layers Layers Layers

m ml M 7o
x|”.. U,, XN Uy

Freeze some (or all) layers of network 1, but add and train o o
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Choosing the right transfer learning approach

105 |
7 Fine-Tuning:

When to Choose: Choose fine-tuning when you have a moderate data for the
target task, and you expect the pre-trained model to adapt well to the new

task.

How it Works: Instead of discarding the non-frozen layers of the pretrained

network, they are fine-tuned, i.e., simultaneously trained further (starting

with the same pretrained weights from task 1) on the new data for task 2.

Frozen Non-frozen
Layers Layers

non-frozen layers from network 1

STUDENT “COM

X
v
Freeze some layers of network 1, add any optional
[ | output layers and train them along with the

X

Frozen Trainable
Layers Layers

|| | |
|

e

e

1y

(Optional)

OQutput Layer
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Choosing the right transfer learning approach

Fine-Tuning the whole network
When to Choose: Choose fine-tuning when you have a big data for

the target task, and you expect the pre-trained model to adapt well to
the new task.

In some cases, it might be favorable to fine-tune the entire pretrained
network rather than some subset of layers. This can equivalently be
viewed as initializing the second network’s parameters to the
pretrained network’s parameters, instead of the usual random

initialization. In other words, a good pretrained network gives you a
“head-start” in the training process.

Data Augmentation: Regardless of the chosen approach, consider

incorporating data augmentation techniques to artificially increase
the size of the target dataset.
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Choosing the right transfer learning approach

Choosing the number of frozen, fine-tunable and custom layers
greatly depends on the problem at hand. Nonetheless, here are
some suggestions for four common scenarios in which transfer

learning is generally applicable:

Large Task 2 Dataset

Small Task 2 Dataset

Task 2 dataset
similar to task 1
dataset

Should be ok to fine-tune
the entire network.

No need to fine-tune. Fix
most of the initial layers
and train a linear classifier
on top of them.

Task 2 dataset
different from
task 1 dataset

Should be ok to fine-tune
the entire network.

Don’t fine-tune. Fix some
of the initial layers and
train a custom network on
top of them.
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Transfer Learning with CNNs

Transfer learning with CNNs has become a pervasive and highly
effective technique in the field of deep learning, particularly in
computer vision tasks.

1. Train on Imagenet

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool

Conv-256

MaxPool

Conv-128

MaxPool
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2. Small Dataset (C classes)
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MaxPool
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3. Bigger dataset

Train these

With bigger
dataset, train
more layers

> Freeze these

Lower learning rate
when finetuning;
1/10 of original LR

—

is good starting
point
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Does Transfer Learning Work?
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Training from Scratch vs. Transfer Learning
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Transfer Learning with CNNs: Architecture Matters!
_

ImageNet Classification Challenge
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Transfer Learning with CNNs: Architecture Matters!

=
Object Detection on COCO
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