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Deep Neural Networks

 Deep-learning networks are distinguished from the more 
commonplace single-hidden-layer neural networks by 
their depth.

 A deep neural network is a neural network with a certain level 
of complexity, a neural network with more than two layers. 

 In deep-learning networks, each layer of nodes trains on a 
distinct set of features based on the previous layer’s output. 

 The further you advance into the neural net, the more complex 
the features your nodes can recognize, since they aggregate and 
recombine features from the previous layer.
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Deep Neural Networks
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Performance of Network Size
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Deep Neural Networks for Images

 Image to vector

Tree image. On the left is the original digital image, on the right is the 
simplified pixelated tree image
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Deep Neural Networks for images
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Locality and translation invariance
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Topological Structure
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Drawback of using Fully Connected Deep NN

 Lack of Spatial Information Preservation
 Fully connected networks treat the input data as a flat vector, ignoring the spatial 

relationships between pixels in an image. 

 Lack of Feature Hierarchy: 
 Fully connected networks do not have the capability learn hierarchical features.

 Fully connected networks require a significant amount of data to learn effective 
feature representations from scratch.

 High Dimensionality
 Images are high-dimensional data, and fully connected layers in deep networks 

require a massive number of parameters. 

 This high dimensionality can lead to overfitting, especially when dealing with limited 
training data.

 Computational Intensity
 The sheer number of parameters in a fully connected network makes it 

computationally intensive to train and deploy. Training large fully connected networks 
may require significant computational resources and time.

 Lack of Translation Invariance
 Fully connected networks are not inherently designed to capture translation-invariant 

features. 
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From fully connected to locally connected
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From locally connected to convolutional 
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From locally connected to convolutional 
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Implementation: the convolution operation 

1 0 1

0 1 0

1 0 1

Weight 
Filter

Terminology!: Also 
referred to as a 
“kernel”
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Implementation: the convolution operation 
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Implementation: the convolution operation 
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From locally connected to convolutional 

Fully Connected NN Locally Connected NN

Convolutional Net.
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Pooling 

 Convolutional layers are typically followed by pooling layers (e.g., max 
pooling) that down sample feature maps, retaining the most important 
information while reducing spatial dimensions. 

 Pooling helps the network focus on the most salient features and 
improves translation invariance.
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From locally connected to convolutional 

 Hierarchical Feature Learning

 CNNs consist of multiple layers, with each layer capturing increasingly abstract and 
complex features. 

 The lower layers detect simple features like edges and textures, while higher layers learn to 
recognize more complex patterns and object parts. 

 This hierarchical feature learning makes CNNs highly effective at representing structured 
data.

 Sparse Connectivity

 In a convolutional layer, each neuron (unit) is connected to only a small local region of the 
input data, as determined by the receptive field size. 

 This sparse connectivity reduces the number of computations required and promotes the 
extraction of localized features.

 Weight Sharing Across Channels

 In multi-channel data (e.g., color images with RGB channels), convolutional kernels are 
applied independently to each channel but share weights across channels. 

 This allows the network to learn cross-channel relationships and detect features that span 
multiple channels.
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From locally connected to convolutional 

 Local Receptive Fields

 Convolutional operations use small, local receptive fields (kernels) to scan the input 
data. 

 This local focus allows the network to capture patterns and features in a localized and 
translation-invariant manner. 

 In the context of images, this means detecting small, local features like edges, 
corners, and textures.

 Parameter Sharing

 Convolutional layers use parameter sharing, which means the same set of learnable 
weights (kernel) is applied across the entire input image or feature map. 

 This parameter sharing greatly reduces the number of parameters in the network, 
making it more computationally efficient and reducing the risk of overfitting.

 Translation Invariance

 The use of shared weights and local receptive fields enables CNNs to learn features 
that are invariant to translation. 

 In other words, the network can recognize the same feature regardless of its position 
in the input data. This property is essential for tasks like object recognition in images.

Uploaded By: anonymousSTUDENTS-HUB.com



Convolutional Neural Networks (CNN)

 CNN is a type of deep neural network that is particularly well-suited for 
image classification and recognition tasks. 

 CNNs are able to learn complex relationships between the pixels in an 
image, which is essential for accurately classifying complex images.

 CNNs work by using a series of convolutional layers and pooling layers. 

 Convolutional layers learn to extract features from the input image, such as edges, 
corners, and shapes. 

 Pooling layers reduce the size of the output of the convolutional layers, and they 
also help to make the network more robust to noise and variations in the input 
image.

 Once the CNN has learned to extract features from the input image, it 
uses a fully connected layer to classify the image. 

 The fully connected layer takes the output of the pooling layers and combines it 
into a single output vector. 

 The output vector is then used to classify the image into one of a set of 
predefined categories. Uploaded By: anonymousSTUDENTS-HUB.com



CNN: Architecture Overview

 Three main types of layers to build ConvNet
architectures: Convolutional Layer, Pooling Layer, and Fully-
Connected Layer
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Convolutional Layer

 The Conv layer is the core building block of a Convolutional Network that does 

most of the computational heavy lifting.

 The CONV layer’s parameters consist of a set of learnable filters. 

 Every filter is small spatially (along width and height), but extends through the full 

depth of the input volume. 

 For example, a typical filter on a first layer of a ConvNet might have size 5x5x3 (i.e. 

5 pixels width and height, and 3 because images have depth 3, the color channels).

 As we slide the filter over the width and height of the input volume we will 

produce a 2-dimensional activation map that gives the responses of that filter 

at every spatial position. 

 Intuitively, the network will learn filters that activate when they see some 

type of visual feature such as an edge of some orientation or a blotch of some 

color on the first layer, or eventually entire honeycomb or wheel-like patterns 

on higher layers of the network.
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Convolutional Layer

 Filters acts as feature detectors from 
the original input image.

 Different values of the filter will 
produce different Feature Maps 
for the same input image.

 The initialization can be random 
(typically mean zero), or can be 
based on pre-trained model weights

 uniform distribution [-1/fan-in, 1/fan-in]

◼ fan-in: the number of inputs to a hidden unit

Uploaded By: anonymousSTUDENTS-HUB.com



Convolution operation
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Convolution operation

1 0 1

0 1 0

1 0 1

Weight 
Filter

Terminology!: Also referred to as a “kernel”
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Convolution Operation
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Rectified Linear Unit (RelU)

 ReLU introduces non-linearity to the model. 

 The ability to capture non-linear relationships is crucial for the 
expressiveness of neural networks. 

 Without non-linear activation functions like ReLU, the entire network would 
behave like a linear function, limiting its capacity to learn complex patterns 
and representations.

 By applying a ReLU activation function after a convolution layer, 
the network can learn to focus on the most important features in 
the image and ignore the less important features.

 Other non linear functions such as tanh or sigmoid can also be 
used instead of ReLU, but ReLU has been found to perform better 
in most situations.
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Rectified Linear Unit
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Key Properties of Rectified Linear Unit

 Computational Efficiency

 ReLU is computationally efficient to compute compared to some other activation 
functions like sigmoid or tanh. 

 The ReLU operation involves a simple thresholding, and it avoids the computational 
cost associated with exponentials (as in sigmoid and tanh).

 Mitigating the Vanishing Gradient Problem

 ReLU helps mitigate the vanishing gradient problem, which can occur during 
backpropagation in deep networks. 

 The vanishing gradient problem arises when gradients become extremely small as 
they are propagated back through many layers, making it challenging to update the 
weights effectively. ReLU's derivative is 1 for positive inputs, allowing gradients to 
flow more easily.

 Sparse Activation

 ReLU activation leads to sparsity in the network. Since ReLU sets all negative values to 
zero, it can result in sparse activation patterns, where only a subset of neurons is 
activated. 

 This can be beneficial for memory efficiency and computational speed.
Uploaded By: anonymousSTUDENTS-HUB.com



Rectified Linear Unit Variants 
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Accuracy on CIFAR10

Don’t think too hard. Just use ReLU
- Try out Leaky ReLU / ELU / SELU / GELU if you need to squeeze that last 0.1%
- Don’t use sigmoid or tanh
- Some (very) recent architectures use GeLU instead of ReLU, but the gains are minimal
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Feature Map Parameters

 The size of the Feature Map (Convolved Feature) is 
controlled by three parameters that we need to decide 
before the convolution step is performed:

 Depth: Depth corresponds to the number of filters we use for 
the convolution operation.

 Stride: Stride is the number of pixels by which we slide our filter 
matrix over the input matrix.

 Zero-padding: Sometimes, it is convenient to pad the input 
matrix with zeros around the border, so that we can apply the 
filter to bordering elements of our input image matrix.
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Depth

 Using different filters (or kernels) for each convolutional layer in a 
Convolutional Neural Network (CNN) allows the network to learn a 
diverse set of features at different levels of abstraction.

 First layers: The first layers of a CNN for image classification typically use 
edge detection filters, color filters, and texture filters to extract different 
features from the input images.

 Intermediate layers: The intermediate layers of a CNN for image classification 
typically use more complex filters to learn more abstract features from the 
input images.

 Final layers: The final layers of a CNN for image classification typically use 
object-specific filters to detect specific objects in the input images. These 
filters are typically complex and have large receptive fields.
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Different Activation Maps
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Receptive Fields

 Region of the input that each element of an activation map is influenced 
by

 Important to manage the size of the RF:

 A small RF can miss important information in an image

 But too big an RF causes overfitting (intuition: since a large enough RF 
eventually is the same as a dense nn)
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Receptive Fields

 For convolution with kernel size K, each element in the output depends 
on a K x K receptive field in the input

 Each successive convolution adds K – 1 to the receptive field size With L 
layers the receptive field size is 1 + L * (K – 1) 

 Problem: For large images we need many layers for each output to “see” 
the whole image

 Solution: Downsample inside the network
 Stride the convolution  
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Receptive Fields

 Are 2 - 3x3 convolutions the same as one 5x5 convolution?

 No 

◼ 2 3x3 convolutions has less parameters and more non-linearities 
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Stride

 The amount of pixels to slide the filter by (both horizontally and 
vertically):

 A stride of 1 will shift the filter every pixel

 A stride of 2 will shift the filter every 2 pixels
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Why using Stride

 Spatial Dimension Reduction
 By using a stride greater than 1, the convolution operation skips some 

positions, leading to a reduction in the spatial dimensions of the output 
feature map. 

 This reduction can be intentional, especially in the early layers of a CNN, 
where capturing fine-grained spatial details might be less critical.

 This reduction can be beneficial for computational efficiency and memory 
usage.

 Increased Receptive Field
 A larger stride allows the convolutional filter to cover a larger region of the 

input in each step. 

 This increased receptive field can help the network capture more global 
features and patterns.

 Reduce overfitting.
 Using a larger stride can help to reduce overfitting by making the network 

more robust to noise and variations in the input images.
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Padding

 Convolving an image with a filter results in a block with a smaller 
height and width — what if we want the height and width as 
before?
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A closer look at spatial dimensions
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A closer look at spatial dimensions
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A closer look at spatial dimensions
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A closer look at spatial dimensions
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Another way to think about Conv layers

The only reason our filters have to be 3 
tall (ie: span 3 channels) is because our 
input is 3 features tall (rgb)

Say our image is rgba (a for alpha a.k.a. 
brightness), we would need a filter that is 
4 channels deep
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A closer look at spatial dimensions
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Pooling Layer

 Spatial Pooling (also called subsampling or downsampling) reduces 
the dimensionality of each feature map but retains the most 
important information. 

 Spatial Pooling can be of different types: Max, Average, Sum etc.

 In particular, pooling: 
 Makes the input representations (feature dimension) smaller and more 

manageable

 Reduces the number of parameters and computations in the network, 
therefore, controlling overfitting

 Makes the network invariant to small transformations, distortions and 
translations in the input image (a small distortion in input will not change the 
output of Pooling – since we take the maximum / average value in a local 
neighborhood).

 Helps us arrive at an almost scale invariant representation of our image (the 
exact term is “equivariant”). This is very powerful since we can detect objects in 
an image no matter where they are located.

Uploaded By: anonymousSTUDENTS-HUB.com

https://en.wikipedia.org/wiki/Overfitting


Pooling Layer

 The Pooling Layer operates independently on every depth slice of the 
input and resizes it spatially. 

 The most common form is a pooling layer with filters of size 2x2 
applied with a stride of 2 downsamples every depth slice in the input 
by 2 along both width and height, discarding 75% of the activations.
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Pooling applied to Rectified Feature Maps
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Effect of Pooling on the Rectified Feature Map
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Fully Connected Layer

 The Fully Connected layer is a 
traditional Multi Layer Perceptron 
that uses a softmax activation 
function in the output layer (other 
classifiers like SVM can also be 
used).

 The output from the convolutional 
and pooling layers represent high-
level features of the input image.

 The purpose of the Fully Connected 
layer is to use these features for 
classifying the input image into 
various classes based on the 
training dataset. 

 Most of the features from 
convolutional and pooling layers 
may be good for the classification 
task, but combinations of those 
features might be even better

Features
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Putting it all together – LeNet Architecture (1998)

 LeNet-5 convnet for handwritten digit recognition
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Training CNN using Backpropagation

 Step1: We initialize all filters and parameters / weights with random values

 Step2: The network takes a training image as input, goes through the forward 
propagation step (convolution, ReLU and pooling operations along with forward 
propagation in the Fully Connected layer) and finds the output probabilities for each 
class.
 Lets say the output probabilities for an image are [0.2, 0.4, 0.1, 0.3]

 Since weights are randomly assigned for the first training example, output probabilities are also 
random.

 Step3: Calculate the total error at the output layer (summation over all 4 classes)
 Total Error = ∑ ½ (target probability – output probability) ²

 Step4: Use Backpropagation to calculate the gradients of the error with respect to all 
weights in the network and use gradient descent to update all filter values / weights and 
parameter values to minimize the output error.
 The weights are adjusted in proportion to their contribution to the total error.

 When the same image is input again, output probabilities might now be [0.1, 0.1, 0.7, 0.1], 
which is closer to the target vector [0, 0, 1, 0].

 This means that the network has learnt to classify this particular image correctly by adjusting its 
weights / filters such that the output error is reduced.

 Parameters like number of filters, filter sizes, architecture of the network etc. have all been fixed 
before Step 1 and do not change during training process – only the values of the filter matrix and 
connection weights get updated.

 Step5: Repeat steps 2-4 with all images in the training set.
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Visualizing what a convnet learns at each Layer 
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Visualizing what a convnet learns 

Convolutional Neural Network trained on the MNIST Database of handwritten digits
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Visualizing what a convnet learns 
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Visualizing what a convnet learns 
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Well Known ConvNet Architectures

 LeNet (1990s)

 AlexNet (2012) 

 GoogLeNet (2014)

 VGGNet (2014) 

 ResNets (2015)

 DenseNet (August 2016)

 MobileNet

 ………..
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ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) winners
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AlexNet [Krizhevsky et al. 2012]

 Has a similar architecture to LeNet-5 but was deeper and bigger 
with five Conv layers stacked on top of each other, followed by 
three fully connected layers
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AlexNet

Input size Layer Output size

Layer C H / W filters kernel stride pad C H / W memory (KB) params (k) flop (M)

conv1 3 227 64 11 4 2 64 56 784 23 73

pool1 64 56 3 2 0 64 27 182 0 0

conv2 64 27 192 5 1 2 192 27 547 307 224

pool2 192 27 3 2 0 192 13 127 0 0

conv3 192 13 384 3 1 1 384 13 254 664 112

conv4 384 13 256 3 1 1 256 13 169 885 145

conv5 256 13 256 3 1 1 256 13 169 590 100

pool5 256 13 3 2 0 256 6 36 0 0

flatten 256 6 9216 36 0 0

fc6 9216 4096 4096 16 37,749 38

fc7 4096 4096 4096 16 16,777 17

fc8 4096 1000 1000 4 4,096 4

Details/Retrospectives:
-first use of ReLU
-used Norm layers (not common anymore)
-heavy data augmentation
-dropout 0.5
-batch size 128
-SGD Momentum 0.9
-Learning rate 1e-2, reduced by 10  
manually when val accuracy plateaus
-L2 weight decay 5e-4
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AlexNet
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VGGNet [Simonyan and Zisserman, 2014]

 VGGNet is a very deep convnet. It 
stacks many convolutional layers 
before pooling. Moreover, it uses 
“same” convolutions to avoid 
resolution reduction.

 VGG Design rules:

 All conv are 3x3 stride 1 pad 1

 All max pool are 2x2 stride 2

 After pool, double #channels

 Network has 5 convolutional stages:

 Stage 1: conv-conv-pool

 Stage 2: conv-conv-pool

 Stage 3: conv-conv-pool

 Stage 4: conv-conv-conv-[conv]-pool

 Stage 5: conv-conv-conv-[conv]-pool
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VGG16

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 -
May 1, 2018

VGGNet
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VGGNet
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Inception module

GoogLeNet (Inception-v1) [Szegedy et al., 2014]

 Deeper networks, with
computational  
efficiency
 22 layers

 Efficient “Inception” module

 No FC layers

 Only 5 million parameters!

 12x less than AlexNet

 ILSVRC’14 classification 
winner  (6.7% top 5 error)
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Key Features of GoogLeNet (Inception-v1)

 Inception Modules:

 The inception module consists of multiple parallel convolutional branches of different filter sizes 
(1x1, 3x3, 5x5), along with a max-pooling branch.

 The outputs of these branches are concatenated along the depth dimension.

 This allows the network to capture features at multiple scales simultaneously.

 Batch Normalization:

 Batch Normalization is applied to the input of each layer, contributing to faster convergence and 
improved training stability.

 Global Average Pooling:

 Instead of using fully connected layers at the end of the network, GoogLeNet uses global 
average pooling.

 Global average pooling reduces the number of parameters and helps with model generalization.

 Auxiliary Classifiers:

 Auxiliary classifiers, placed at intermediate layers, are introduced during training to provide 
additional gradient signals and combat the vanishing gradient problem.

 These auxiliary classifiers have their loss functions and contribute to the overall loss during 
training.
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GoogLeNet: Inception Module

 The Inception Module is a 
fundamental building block of 
GoogLeNet (Inception-v1), 

 The main purpose of the 
Inception Module is to enable 
the network to capture 
information at multiple scales 
by employing filters of 
different sizes in parallel. 

 This helps the network 
efficiently learn both fine-
grained and coarse-grained 
features within the same layer.

 Local unit with parallel 
branches

 Local structure repeated many 
times throughout the network
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Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 -
May 1, 2018

Structure of the Inception Module

1. 1x1 Convolution (Dimension Reduction):

 A 1x1 convolution is used to perform dimension reduction, reducing the number of channels:

output[i, j, k] = sum(input[i, j, c] * kernel[1, 1, c, k] for c channels

k is the index of the filter in the output.

c is the index of the channel in the input.

kernel[1,1,c,k] is the weight associated with channel c of the input for filter k.

 This operation helps control the computational cost and provides a linear combination of features.

2. 3x3 Convolution:

 A 3x3 convolution captures features over a medium-sized receptive field.

 It helps capture spatial hierarchies within the image.

3. 5x5 Convolution:

 A 5x5 convolution captures features over a larger receptive field.

 It helps capture more global features and structures.

4. Max-Pooling:

 Max-pooling is used to capture the most important features within a local region.

 It provides some translation invariance and reduces spatial dimensions.

5. Concatenation:

 The outputs from all branches are concatenated along the depth dimension.

 This creates a rich set of features that can capture information at different scales.Uploaded By: anonymousSTUDENTS-HUB.com



Naive Inception module

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 -
May 1, 2018

Example:

Module input:  
28x28x256

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672

Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256  
[3x3 conv, 192] 28x28x192x3x3x256  
[5x5 conv, 96] 28x28x96x5x5x256  
Total: 854M ops
Very expensive compute

Pooling layer preserves feature depth, 
which means total depth after  
concatenation can only grow at every  
layer!

Structure of the Inception Module
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Structure of the Inception Module

 Using same parallel layers as naive example, and adding “1x1 conv, 
64 filter” bottlenecks:
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Inception module with dimension reduction

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 -
May 1, 2018

Naive Inception module

1x1 conv “bottleneck” layers

Total: 358M opsTotal: 854M ops

GoogLeNet: Inception Module
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Batch Normalization 
74

➢ Inception: Inception-v1 without BN
➢ BN-Baseline: Inception with BN
➢ BN-×5: Initial learning rate is increased 

by a factor of 5 to 0.0075
➢ BN-×30: Initial learning rate is 

increased by a factor of 30 to 0.045
➢ BN-×5-Sigmoid: BN-×5 but with 

Sigmoid

Since the introduction of GoogLeNet, Batch Normalization has become a 
standard component in many deep learning architectures, providing 

benefits in terms of training stability, convergence speed, and 
generalization performance.

➢ BatchNorm helps mitigate the internal covariate shift. This helps stabilize and 
accelerate the training process by mitigating issues like vanishing/exploding 
gradients.
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Full GoogleLeNet Arch.
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Full GoogleLeNet Arch.
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GoogLeNet: Aggressive Stem

Input size Layer Output size

Layer C

H / 
W filters kernel stride pad C H/W memory (KB)

params

(K) flop (M)

conv 3 224 64 7 2 3 64 112 3136 9 118

max-pool 64 112 3 2 1 64 56 784 0 2

conv 64 56 64 1 1 0 64 56 784 4 13

conv 64 56 192 3 1 1 192 56 2352 111 347
max-pool 192 56 3 2 1 192 28 588 0 1

Total from 224 to 28 spatial resolution:
Memory: 7.5 MB
Params: 124K
MFLOP: 418

Compare VGG-16:
Memory: 42.9 MB (5.7x)
Params: 1.1M (8.9x)
MFLOP: 7485 (17.8x)

Stem network at the start aggressively downsamples input
(Recall in VGG-16: Most of the compute was at the start)
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Full GoogleLeNet Arch.
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Auxiliary Classifiers

 Training using loss at the end of the network didn’t work well: Network is 
too deep, gradients don’t propagate cleanly

 Auxiliary classifiers are used in GoogLeNet for two main reasons: 

 To improve the convergence of the network. Auxiliary classifiers provide 
additional gradients to the lower layers of the network, which can help the 
network to converge to a better solution more quickly. 

 To regularize the network and prevent overfitting. Auxiliary classifiers act as 
regularizers by forcing the network to learn to classify images at different levels 
of abstraction. This can help to prevent the network from overfitting to the 
training data.

 In GoogLeNet, the auxiliary classifiers are each composed of a global 
average pooling layer, a fully connected layer, and a softmax layer.

 On the ImageNet dataset, GoogLeNet with auxiliary classifiers achieves 
an accuracy of 93.6%, which is significantly higher than the 89.3% 
accuracy achieved by GoogLeNet without auxiliary classifiers.
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Full GoogleLeNet Arch.
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GoogLeNet: Global Average Pooling

➢ No large FC layers at the end! Instead uses “global average 
pooling” to collapse spatial dimensions, and one linear layer to 
produce class scores

➢ (Recall VGG-16: Most parameters were in the FC layers!)

Input size Layer Output size

Layer C H/W filters kernel stride pad C H/W memory (KB) params (k) flop (M)

avg-

pool 1024 7 7 1 0 1024 1 4 0 0

fc 1024 1000 1000 0 1025 1

Layer C H/W filters kernel stride pad C H/W memory (KB) params (K) flop (M)

flatten 512 7 25088 98

fc6 25088 4096 4096 16 102760 103

fc7 4096 4096 4096 16 16777 17

fc8 4096 1000 1000 4 4096 4

Compare with VGG-16:
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Training very Deep Models

 Once we have Batch Normalization, we can train networks with 
10+ layers. What happens as we go deeper?

 Deeper model does worse than shallow model!

 Initial guess: Deep model is overfitting since it is much bigger than 
the other model

 In fact the deep model seems to be underfitting since it also performs worse 
than the shallow model on the training set! It is actually underfitting
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Residual Networks

 Residual Networks, often referred to as ResNets, are a type of deep 
neural network architecture designed to address the challenges of 
training very deep networks. 

 Residual networks (ResNets) are a type of neural network architecture 
that introduced the concept of skip connections. 

 A skip connection is a connection that allows information to flow from 
one layer of the network to a later layer without passing through any 
intermediate layers. 

 The basic idea behind ResNets is to learn residual functions instead of 
direct mappings. A residual function is a function that learns the 
difference between the desired output and the input.

 ResNets have been shown to achieve state-of-the-art results on a wide 
range of tasks, including image classification, object detection, and 
segmentation. They are now one of the most popular types of neural 
network architectures in use.

Uploaded By: anonymousSTUDENTS-HUB.com



Residual Networks

 Advantages of Residual Networks:

 It makes it easier to train deep networks. 
◼ Skip connections help to alleviate the vanishing gradient problem, 

which can make it difficult to train deep networks.

 It allows the network to learn more complex mappings. 
◼ By learning residual functions, the network can learn to modify the 

input in more subtle ways, which can lead to better performance on 
complex tasks.

 Scalability
◼ ResNets are scalable to deep architectures, making them suitable for 

state-of-the-art models in computer vision and other domains.

 It makes the network more robust to noise. 
◼ Skip connections allow the network to bypass noisy or irrelevant 

features in the input, which can lead to better performance on noisy 
datasets.
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ResNet [He et al., 2016]

 ResNet (2016): is the residual network which features 
special skip (residual) connections and a heavy use of batch 
normalization layer. The residual connections facilitate training deep 
networks.

• Able to train very deep networks
• Deeper networks do better than shallow 

networks (as expected)
• Swept 1st place in all ILSVRC and
• COCO 2015 competitions
• Still widely used today! Uploaded By: anonymousSTUDENTS-HUB.com

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1502.03167


Key Concepts of Residual Networks

 Residual Blocks:
 The basic building block of a ResNet is the residual block. 

 A residual block consists of a shortcut connection (skip connection) that bypasses 
one or more layers and is added to the output of those layers.

 Mathematically, for a residual block with input x and output H(x), the block 
computes H(x)−x, and the final output is F(x)=H(x)+x.

 Instead of directly learning the mapping from input to output, a residual block 
learns the residual (difference) between the input and the desired output.

 Residual blocks enable the learning of residual mappings, making it easier to 
train very deep networks.
◼ This is because the residual is the difference between the desired output and the input, 

which is a smaller and simpler function to learn than the entire mapping.
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Key Concepts of Residual Networks

 A residual network is a stack of 
many residual blocks

 Regular design, like VGG: each 
residual block has two 3x3 conv

 Network is divided into stages: 
the first block of each stage 
halves the resolution (with 
stride-2 conv) and doubles the 
number of channels

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

.

.

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

relu

Residual block

3x3 conv

3x3 conv

F(x) + x

F(x)

relu

X
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Key Concepts of Residual Networks

“Basic”
Residual 

block

Conv(3x3, C->C)

Conv(3x3, C->C)

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

FLOPs: 9HWC2

FLOPs: 9HWC2

FLOPs: 4HWC2

FLOPs: 9HWC2

FLOPs: 4HWC2

Total FLOPs:
18HWC2

Total FLOPs:
17HWC2

“Bottleneck”
Residual 

block

More layers, less computational cost!

Bottleneck Residual block
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Key Concepts of Residual Networks

 Skip Connections (Identity Shortcuts):
 Skip connections allow the gradient to flow directly through the network without 

passing through the intermediate layers.

 Help to alleviate the vanishing gradient problem by allowing the gradients to 
bypass some of the layers of the network. This allows the gradients to flow more 
easily through the network, which makes it easier for the network to learn the 
weights of all of the layers.

 Deep Network Architecture:
 ResNets are characterized by their deep architectures, often with hundreds of 

layers.

 The use of residual blocks and skip connections enables the training of deeper 
networks without suffering from degradation in performance.

 Batch Normalization:
 Batch normalization is commonly used in ResNets to stabilize and accelerate 

training.

 Global Average Pooling (GAP): 
 ResNets often use Global Average Pooling (GAP) as an alternative to fully 

connected layers for dimensionality reduction at the end of the network.
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Key Concepts of Residual Networks

 Uses the same aggressive stem as GoogleNet to 
downsample the input 4x before applying residual 
blocks:

 Like GoogLeNet, no big fully-connected-layers: 
instead use global average pooling and a single linear 
layer at the end

Input size Layer

Output 

size

Layer C H/W filters kernel stride pad C H/W memory (KB)

params 

(k)

flop 

(M)

conv 3 224 64 7 2 3 64 112 3136 9 118

max-pool 64 112 3 2 1 64 56 784 0 2
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ResNet Architectures 

 ResNets are scalable to different depths, and variants like ResNet-
18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152 have been 
introduced with varying numbers of layers.

 ResNet-50 is the same as ResNet-34, but replaces Basic blocks with 
Bottleneck Blocks. This is a great baseline architecture for many 
tasks even today!

 Deeper ResNet-101 and ResNet-152 models are more accurate, but 
also more computationally heavy

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

.

.

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Stage 1 Stage 2 Stage 3 Stage 4

Block 

type

Stem 

layer

s Blocks LayersBlocks Layers Blocks Layers Blocks Layers

FC 

layers

GFLO

P

ImageNet 

top-5 error

ResNet-18 Basic 1 2 4 2 4 2 4 2 4 1 1.8 10.92

ResNet-34 Basic 1 3 6 4 8 6 12 3 6 1 3.6 8.58

ResNet-50 Bottle 1 3 9 4 12 6 18 3 9 1 3.8 7.13

ResNet-101Bottle 1 3 9 4 12 23 69 3 9 1 7.6 6.44

ResNet-152Bottle 1 3 9 8 24 36 108 3 9 1 11.3 5.94
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Other CNN Networks

 DenseNet
 DenseNet is another deep residual neural network architecture that is known for its 

efficiency and accuracy. 

 DenseNet has achieved state-of-the-art results on a variety of computer vision tasks, 
including image classification, object detection, and semantic segmentation.

 EfficientNet
 EfficientNet is a family of efficient CNN architectures that are designed to achieve 

high accuracy with minimal computational resources. 

 EfficientNet has achieved state-of-the-art results on a variety of computer vision 
tasks, including image classification, object detection, and semantic segmentation.

 MobileNetV2:
 Designed for mobile and edge devices, offering a good balance between accuracy and 

computational efficiency.

 Uses depthwise separable convolutions to reduce the number of parameters.

 Vision Transformer (ViT)
 ViT is a recent CNN architecture that has achieved state-of-the-art results on a variety 

of computer vision tasks, including image classification, object detection, and 
semantic segmentation. 

 ViT is based on the transformer architecture, which was originally developed for 
natural language processing.
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ImageNet Competition Winners 
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Comparing Well-Known Archs.
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CNN vs ViT
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CNN Architectures Summary

 Early work (AlexNet -> ZFNet -> VGG) shows that bigger networks 
work better

 GoogLeNet one of the first to focus on efficiency (aggressive stem, 
1x1 bottleneck convolutions, global avg pool instead of FC layers)

 ResNet showed us how to train extremely deep networks – limited 
only by GPU memory! Started to show diminishing returns as 
networks got bigger

 After ResNet: Efficient networks became central: how can we 
improve the accuracy without increasing the complexity?

 Lots of tiny networks aimed at mobile devices: MobileNet, 
ShuffleNet, etc

 Neural Architecture Search promises to automate architecture 
design
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Which Architecture should I use?

 Don’t be a hero. For most problems you should use an 
off-the-shelf architecture; don’t try to design your own!

 If you just care about accuracy, ResNet-50 or ResNet-101
are great choices

 If you want an efficient network (real-time, run on 
mobile, etc) try MobileNets and ShuffleNets
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Data Augmentation
98

 Data augmentation is a technique used to artificially increase the size of 
a training dataset by applying various transformations to the existing 
data. 

 Data augmentation encodes invariances in your model 
 Think for your problem: what changes to the image should not change the 

network output?

 By design, convnets are only robust against translation.

 Data augmentation makes them robust against other transformations: rotation, 
scaling, shearing, warping, ...

 Purpose:
 Increased Diversity: Introduces diversity into the training set, preventing the 

model from memorizing specific examples.

 Robustness to Variability: Trains the model to be more robust to variations and 
transformations that might occur in real-world scenarios.

 Regularization: Acts as a form of regularization, helping prevent overfitting by 
making the model less sensitive to minor variations in the training data.
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Data Augmentation Example
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Effect on Data Augmentation
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Transfer Learning
101

 You need a lot of a data if you want to train/use CNNs

 Training a Network From Scratch
 Time

 Compute

 Training data — the more, the better. Models benefit significantly from A LOT of 
data — especially in computer vision, a few thousand examples usually doesn’t 
cut it.

 Money for all of the above

 When trained from scratch, a model’s parameters are initialized 
randomly and then updated through some optimization algorithm like 
gradient descent

 So, if there are two tasks to be solved with deep learning, this process is 
repeated separately both times.

 However, does it really need to be? Consider the case when we humans 
learn something new: do we ALWAYS start from the ground up?

Uploaded By: anonymousSTUDENTS-HUB.com



Transfer Learning
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 Deep learning models are typically trained on large datasets, which can 
be expensive and time-consuming to collect and label. 

 Transfer learning allows to leverage the knowledge that has already been 
learned by a pre-trained model on a different task, and apply it to a new 
task.

 Transfer learning with CNNs involves leveraging pre-trained models that 
were initially trained on large image datasets, such as ImageNet, and 
adapting them for new tasks. 

 How transfer learning is applied with CNNs:
❑ Task 1: Pre-Trained CNN Models

▪ Models like VGG, ResNet, Inception, and MobileNet are pre-trained on 
massive datasets, typically for image classification tasks.

❑ Task 2: Transfer Learning

▪ Feature Extraction

▪ Fine-Tuning

▪ Fine-Tuning the whole network
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Transfer Learning
103

❑ Advantages of Transfer Learning:

1. Data Efficiency: Transfer learning enables effective learning with 
smaller datasets, as the model leverages knowledge from a larger 
dataset.

2. Faster Training: Training a model from scratch can be time-
consuming. Transfer learning speeds up training by starting with a 
pre-trained model.

3. Improved Performance: Transfer learning often leads to improved 
performance compared to training a model from scratch, especially 
when the pre-trained model has been trained on a similar task.

4. Generalization: Transfer learning helps in generalizing knowledge 
gained from one domain to another, tend to generalize well and are 
less prone to overfitting, especially when applied to related tasks.

5. Is easy to implement: Transfer learning is a relatively simple 
technique to implement. There are many different transfer learning 
libraries available, such as TensorFlow Hub and PyTorch Torchvision.
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Choosing the right transfer learning approach
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 Choosing the right transfer learning approach depends on various factors, 
including the amount of data available for the target task, the similarity 
between the source and target tasks, and computational resources. 

 Feature Extraction (Freezing Layers):
 When to Choose: Choose feature extraction when you have a limited amount of data 

for the target task, and the features learned by the pre-trained model are expected to 
be relevant to the new task.

 How it Works: Remove the final layers of the pre-trained model, keeping the feature 
extraction layers. Add new layers (usually fully connected layers) for the target task. 
The pre-trained layers are frozen, and only the added layers are trained.

Uploaded By: anonymousSTUDENTS-HUB.com



Choosing the right transfer learning approach
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 Fine-Tuning: 

 When to Choose: Choose fine-tuning when you have a moderate data for the 
target task, and you expect the pre-trained model to adapt well to the new 
task. 

 How it Works: Instead of discarding the non-frozen layers of the pretrained
network, they are fine-tuned, i.e., simultaneously trained further (starting 
with the same pretrained weights from task 1) on the new data for task 2.

Uploaded By: anonymousSTUDENTS-HUB.com



Choosing the right transfer learning approach
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 Fine-Tuning the whole network
 When to Choose: Choose fine-tuning when you have a big data for 

the target task, and you expect the pre-trained model to adapt well to 
the new task. 

 In some cases, it might be favorable to fine-tune the entire pretrained 
network rather than some subset of layers. This can equivalently be 
viewed as initializing the second network’s parameters to the 
pretrained network’s parameters, instead of the usual random 
initialization. In other words, a good pretrained network gives you a 
“head-start” in the training process.

 Data Augmentation: Regardless of the chosen approach, consider 
incorporating data augmentation techniques to artificially increase 
the size of the target dataset.
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Choosing the right transfer learning approach
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 Choosing the number of frozen, fine-tunable and custom layers 
greatly depends on the problem at hand. Nonetheless, here are 
some suggestions for four common scenarios in which transfer 
learning is generally applicable:

Large Task 2 Dataset Small Task 2 Dataset

Task 2 dataset 
similar to task 1 
dataset

Should be ok to fine-tune 
the entire network.

No need to fine-tune. Fix 
most of the initial layers 
and train a linear classifier 
on top of them.

Task 2 dataset 
different from 
task 1 dataset

Should be ok to fine-tune 
the entire network.

Don’t fine-tune. Fix some 
of the initial layers and 
train a custom network on 
top of them.
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Transfer Learning with CNNs
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Transfer learning with CNNs has become a pervasive and highly 
effective technique in the field of deep learning, particularly in 
computer vision tasks. 
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Does Transfer Learning Work?
109
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Transfer Learning with CNNs: Architecture Matters!
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Transfer Learning with CNNs: Architecture Matters!
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