
Aziz M. QaroushComputer Vision Birzeit University

Convolutional Neural
Networks

Uploaded By: anonymousSTUDENTS-HUB.com

Outline

 Deep Neural Network

 Image to Vector

 Convolutional Neural Networks

 CNN Architectures

 Data Augmentation

 Transfer Learning

 Summary

Uploaded By: anonymousSTUDENTS-HUB.com

Deep Neural Networks

 Deep-learning networks are distinguished from the more
commonplace single-hidden-layer neural networks by
their depth.

 A deep neural network is a neural network with a certain level
of complexity, a neural network with more than two layers.

 In deep-learning networks, each layer of nodes trains on a
distinct set of features based on the previous layer’s output.

 The further you advance into the neural net, the more complex
the features your nodes can recognize, since they aggregate and
recombine features from the previous layer.

Uploaded By: anonymousSTUDENTS-HUB.com

Deep Neural Networks

Uploaded By: anonymousSTUDENTS-HUB.com

Performance of Network Size

Uploaded By: anonymousSTUDENTS-HUB.com

Deep Neural Networks for Images

 Image to vector

Tree image. On the left is the original digital image, on the right is the
simplified pixelated tree image

Uploaded By: anonymousSTUDENTS-HUB.com

Deep Neural Networks for images

Uploaded By: anonymousSTUDENTS-HUB.com

Locality and translation invariance

Uploaded By: anonymousSTUDENTS-HUB.com

Topological Structure

Uploaded By: anonymousSTUDENTS-HUB.com

Drawback of using Fully Connected Deep NN

 Lack of Spatial Information Preservation
 Fully connected networks treat the input data as a flat vector, ignoring the spatial

relationships between pixels in an image.

 Lack of Feature Hierarchy:
 Fully connected networks do not have the capability learn hierarchical features.

 Fully connected networks require a significant amount of data to learn effective
feature representations from scratch.

 High Dimensionality
 Images are high-dimensional data, and fully connected layers in deep networks

require a massive number of parameters.

 This high dimensionality can lead to overfitting, especially when dealing with limited
training data.

 Computational Intensity
 The sheer number of parameters in a fully connected network makes it

computationally intensive to train and deploy. Training large fully connected networks
may require significant computational resources and time.

 Lack of Translation Invariance
 Fully connected networks are not inherently designed to capture translation-invariant

features.

Uploaded By: anonymousSTUDENTS-HUB.com

From fully connected to locally connected

Uploaded By: anonymousSTUDENTS-HUB.com

From locally connected to convolutional

Uploaded By: anonymousSTUDENTS-HUB.com

From locally connected to convolutional

Uploaded By: anonymousSTUDENTS-HUB.com

Implementation: the convolution operation

1 0 1

0 1 0

1 0 1

Weight
Filter

Terminology!: Also
referred to as a
“kernel”

Uploaded By: anonymousSTUDENTS-HUB.com

Implementation: the convolution operation

Uploaded By: anonymousSTUDENTS-HUB.com

Implementation: the convolution operation

Uploaded By: anonymousSTUDENTS-HUB.com

From locally connected to convolutional

Fully Connected NN Locally Connected NN

Convolutional Net.

Uploaded By: anonymousSTUDENTS-HUB.com

Pooling

 Convolutional layers are typically followed by pooling layers (e.g., max
pooling) that down sample feature maps, retaining the most important
information while reducing spatial dimensions.

 Pooling helps the network focus on the most salient features and
improves translation invariance.

Uploaded By: anonymousSTUDENTS-HUB.com

From locally connected to convolutional

 Hierarchical Feature Learning

 CNNs consist of multiple layers, with each layer capturing increasingly abstract and
complex features.

 The lower layers detect simple features like edges and textures, while higher layers learn to
recognize more complex patterns and object parts.

 This hierarchical feature learning makes CNNs highly effective at representing structured
data.

 Sparse Connectivity

 In a convolutional layer, each neuron (unit) is connected to only a small local region of the
input data, as determined by the receptive field size.

 This sparse connectivity reduces the number of computations required and promotes the
extraction of localized features.

 Weight Sharing Across Channels

 In multi-channel data (e.g., color images with RGB channels), convolutional kernels are
applied independently to each channel but share weights across channels.

 This allows the network to learn cross-channel relationships and detect features that span
multiple channels.

Uploaded By: anonymousSTUDENTS-HUB.com

From locally connected to convolutional

 Local Receptive Fields

 Convolutional operations use small, local receptive fields (kernels) to scan the input
data.

 This local focus allows the network to capture patterns and features in a localized and
translation-invariant manner.

 In the context of images, this means detecting small, local features like edges,
corners, and textures.

 Parameter Sharing

 Convolutional layers use parameter sharing, which means the same set of learnable
weights (kernel) is applied across the entire input image or feature map.

 This parameter sharing greatly reduces the number of parameters in the network,
making it more computationally efficient and reducing the risk of overfitting.

 Translation Invariance

 The use of shared weights and local receptive fields enables CNNs to learn features
that are invariant to translation.

 In other words, the network can recognize the same feature regardless of its position
in the input data. This property is essential for tasks like object recognition in images.

Uploaded By: anonymousSTUDENTS-HUB.com

Convolutional Neural Networks (CNN)

 CNN is a type of deep neural network that is particularly well-suited for
image classification and recognition tasks.

 CNNs are able to learn complex relationships between the pixels in an
image, which is essential for accurately classifying complex images.

 CNNs work by using a series of convolutional layers and pooling layers.

 Convolutional layers learn to extract features from the input image, such as edges,
corners, and shapes.

 Pooling layers reduce the size of the output of the convolutional layers, and they
also help to make the network more robust to noise and variations in the input
image.

 Once the CNN has learned to extract features from the input image, it
uses a fully connected layer to classify the image.

 The fully connected layer takes the output of the pooling layers and combines it
into a single output vector.

 The output vector is then used to classify the image into one of a set of
predefined categories. Uploaded By: anonymousSTUDENTS-HUB.com

CNN: Architecture Overview

 Three main types of layers to build ConvNet
architectures: Convolutional Layer, Pooling Layer, and Fully-
Connected Layer

Uploaded By: anonymousSTUDENTS-HUB.com

Convolutional Layer

 The Conv layer is the core building block of a Convolutional Network that does

most of the computational heavy lifting.

 The CONV layer’s parameters consist of a set of learnable filters.

 Every filter is small spatially (along width and height), but extends through the full

depth of the input volume.

 For example, a typical filter on a first layer of a ConvNet might have size 5x5x3 (i.e.

5 pixels width and height, and 3 because images have depth 3, the color channels).

 As we slide the filter over the width and height of the input volume we will

produce a 2-dimensional activation map that gives the responses of that filter

at every spatial position.

 Intuitively, the network will learn filters that activate when they see some

type of visual feature such as an edge of some orientation or a blotch of some

color on the first layer, or eventually entire honeycomb or wheel-like patterns

on higher layers of the network.

Uploaded By: anonymousSTUDENTS-HUB.com

Convolutional Layer

 Filters acts as feature detectors from
the original input image.

 Different values of the filter will
produce different Feature Maps
for the same input image.

 The initialization can be random
(typically mean zero), or can be
based on pre-trained model weights

 uniform distribution [-1/fan-in, 1/fan-in]

◼ fan-in: the number of inputs to a hidden unit

Uploaded By: anonymousSTUDENTS-HUB.com

Convolution operation

Uploaded By: anonymousSTUDENTS-HUB.com

Convolution operation

1 0 1

0 1 0

1 0 1

Weight
Filter

Terminology!: Also referred to as a “kernel”

Uploaded By: anonymousSTUDENTS-HUB.com

Convolution Operation

Uploaded By: anonymousSTUDENTS-HUB.com

Rectified Linear Unit (RelU)

 ReLU introduces non-linearity to the model.

 The ability to capture non-linear relationships is crucial for the
expressiveness of neural networks.

 Without non-linear activation functions like ReLU, the entire network would
behave like a linear function, limiting its capacity to learn complex patterns
and representations.

 By applying a ReLU activation function after a convolution layer,
the network can learn to focus on the most important features in
the image and ignore the less important features.

 Other non linear functions such as tanh or sigmoid can also be
used instead of ReLU, but ReLU has been found to perform better
in most situations.

Uploaded By: anonymousSTUDENTS-HUB.com

Rectified Linear Unit

Uploaded By: anonymousSTUDENTS-HUB.com

Key Properties of Rectified Linear Unit

 Computational Efficiency

 ReLU is computationally efficient to compute compared to some other activation
functions like sigmoid or tanh.

 The ReLU operation involves a simple thresholding, and it avoids the computational
cost associated with exponentials (as in sigmoid and tanh).

 Mitigating the Vanishing Gradient Problem

 ReLU helps mitigate the vanishing gradient problem, which can occur during
backpropagation in deep networks.

 The vanishing gradient problem arises when gradients become extremely small as
they are propagated back through many layers, making it challenging to update the
weights effectively. ReLU's derivative is 1 for positive inputs, allowing gradients to
flow more easily.

 Sparse Activation

 ReLU activation leads to sparsity in the network. Since ReLU sets all negative values to
zero, it can result in sparse activation patterns, where only a subset of neurons is
activated.

 This can be beneficial for memory efficiency and computational speed.
Uploaded By: anonymousSTUDENTS-HUB.com

Rectified Linear Unit Variants

Uploaded By: anonymousSTUDENTS-HUB.com

Accuracy on CIFAR10

Don’t think too hard. Just use ReLU
- Try out Leaky ReLU / ELU / SELU / GELU if you need to squeeze that last 0.1%
- Don’t use sigmoid or tanh
- Some (very) recent architectures use GeLU instead of ReLU, but the gains are minimal

Uploaded By: anonymousSTUDENTS-HUB.com

Feature Map Parameters

 The size of the Feature Map (Convolved Feature) is
controlled by three parameters that we need to decide
before the convolution step is performed:

 Depth: Depth corresponds to the number of filters we use for
the convolution operation.

 Stride: Stride is the number of pixels by which we slide our filter
matrix over the input matrix.

 Zero-padding: Sometimes, it is convenient to pad the input
matrix with zeros around the border, so that we can apply the
filter to bordering elements of our input image matrix.

Uploaded By: anonymousSTUDENTS-HUB.com

Depth

 Using different filters (or kernels) for each convolutional layer in a
Convolutional Neural Network (CNN) allows the network to learn a
diverse set of features at different levels of abstraction.

 First layers: The first layers of a CNN for image classification typically use
edge detection filters, color filters, and texture filters to extract different
features from the input images.

 Intermediate layers: The intermediate layers of a CNN for image classification
typically use more complex filters to learn more abstract features from the
input images.

 Final layers: The final layers of a CNN for image classification typically use
object-specific filters to detect specific objects in the input images. These
filters are typically complex and have large receptive fields.

Uploaded By: anonymousSTUDENTS-HUB.com

Different Activation Maps

Uploaded By: anonymousSTUDENTS-HUB.com

Receptive Fields

 Region of the input that each element of an activation map is influenced
by

 Important to manage the size of the RF:

 A small RF can miss important information in an image

 But too big an RF causes overfitting (intuition: since a large enough RF
eventually is the same as a dense nn)

Uploaded By: anonymousSTUDENTS-HUB.com

Receptive Fields

 For convolution with kernel size K, each element in the output depends
on a K x K receptive field in the input

 Each successive convolution adds K – 1 to the receptive field size With L
layers the receptive field size is 1 + L * (K – 1)

 Problem: For large images we need many layers for each output to “see”
the whole image

 Solution: Downsample inside the network
 Stride the convolution

Uploaded By: anonymousSTUDENTS-HUB.com

Receptive Fields

 Are 2 - 3x3 convolutions the same as one 5x5 convolution?

 No

◼ 2 3x3 convolutions has less parameters and more non-linearities

Uploaded By: anonymousSTUDENTS-HUB.com

Stride

 The amount of pixels to slide the filter by (both horizontally and
vertically):

 A stride of 1 will shift the filter every pixel

 A stride of 2 will shift the filter every 2 pixels

Uploaded By: anonymousSTUDENTS-HUB.com

Why using Stride

 Spatial Dimension Reduction
 By using a stride greater than 1, the convolution operation skips some

positions, leading to a reduction in the spatial dimensions of the output
feature map.

 This reduction can be intentional, especially in the early layers of a CNN,
where capturing fine-grained spatial details might be less critical.

 This reduction can be beneficial for computational efficiency and memory
usage.

 Increased Receptive Field
 A larger stride allows the convolutional filter to cover a larger region of the

input in each step.

 This increased receptive field can help the network capture more global
features and patterns.

 Reduce overfitting.
 Using a larger stride can help to reduce overfitting by making the network

more robust to noise and variations in the input images.

Uploaded By: anonymousSTUDENTS-HUB.com

Padding

 Convolving an image with a filter results in a block with a smaller
height and width — what if we want the height and width as
before?

Uploaded By: anonymousSTUDENTS-HUB.com

A closer look at spatial dimensions

Uploaded By: anonymousSTUDENTS-HUB.com

A closer look at spatial dimensions

Uploaded By: anonymousSTUDENTS-HUB.com

A closer look at spatial dimensions

Uploaded By: anonymousSTUDENTS-HUB.com

A closer look at spatial dimensions

Uploaded By: anonymousSTUDENTS-HUB.com

Another way to think about Conv layers

The only reason our filters have to be 3
tall (ie: span 3 channels) is because our
input is 3 features tall (rgb)

Say our image is rgba (a for alpha a.k.a.
brightness), we would need a filter that is
4 channels deep

Uploaded By: anonymousSTUDENTS-HUB.com

A closer look at spatial dimensions

Uploaded By: anonymousSTUDENTS-HUB.com

Pooling Layer

 Spatial Pooling (also called subsampling or downsampling) reduces
the dimensionality of each feature map but retains the most
important information.

 Spatial Pooling can be of different types: Max, Average, Sum etc.

 In particular, pooling:
 Makes the input representations (feature dimension) smaller and more

manageable

 Reduces the number of parameters and computations in the network,
therefore, controlling overfitting

 Makes the network invariant to small transformations, distortions and
translations in the input image (a small distortion in input will not change the
output of Pooling – since we take the maximum / average value in a local
neighborhood).

 Helps us arrive at an almost scale invariant representation of our image (the
exact term is “equivariant”). This is very powerful since we can detect objects in
an image no matter where they are located.

Uploaded By: anonymousSTUDENTS-HUB.com

https://en.wikipedia.org/wiki/Overfitting

Pooling Layer

 The Pooling Layer operates independently on every depth slice of the
input and resizes it spatially.

 The most common form is a pooling layer with filters of size 2x2
applied with a stride of 2 downsamples every depth slice in the input
by 2 along both width and height, discarding 75% of the activations.

Uploaded By: anonymousSTUDENTS-HUB.com

Pooling applied to Rectified Feature Maps

Uploaded By: anonymousSTUDENTS-HUB.com

Effect of Pooling on the Rectified Feature Map

Uploaded By: anonymousSTUDENTS-HUB.com

Fully Connected Layer

 The Fully Connected layer is a
traditional Multi Layer Perceptron
that uses a softmax activation
function in the output layer (other
classifiers like SVM can also be
used).

 The output from the convolutional
and pooling layers represent high-
level features of the input image.

 The purpose of the Fully Connected
layer is to use these features for
classifying the input image into
various classes based on the
training dataset.

 Most of the features from
convolutional and pooling layers
may be good for the classification
task, but combinations of those
features might be even better

Features

Uploaded By: anonymousSTUDENTS-HUB.com

Putting it all together – LeNet Architecture (1998)

 LeNet-5 convnet for handwritten digit recognition

Uploaded By: anonymousSTUDENTS-HUB.com

Training CNN using Backpropagation

 Step1: We initialize all filters and parameters / weights with random values

 Step2: The network takes a training image as input, goes through the forward
propagation step (convolution, ReLU and pooling operations along with forward
propagation in the Fully Connected layer) and finds the output probabilities for each
class.
 Lets say the output probabilities for an image are [0.2, 0.4, 0.1, 0.3]

 Since weights are randomly assigned for the first training example, output probabilities are also
random.

 Step3: Calculate the total error at the output layer (summation over all 4 classes)
 Total Error = ∑ ½ (target probability – output probability) ²

 Step4: Use Backpropagation to calculate the gradients of the error with respect to all
weights in the network and use gradient descent to update all filter values / weights and
parameter values to minimize the output error.
 The weights are adjusted in proportion to their contribution to the total error.

 When the same image is input again, output probabilities might now be [0.1, 0.1, 0.7, 0.1],
which is closer to the target vector [0, 0, 1, 0].

 This means that the network has learnt to classify this particular image correctly by adjusting its
weights / filters such that the output error is reduced.

 Parameters like number of filters, filter sizes, architecture of the network etc. have all been fixed
before Step 1 and do not change during training process – only the values of the filter matrix and
connection weights get updated.

 Step5: Repeat steps 2-4 with all images in the training set.
Uploaded By: anonymousSTUDENTS-HUB.com

Visualizing what a convnet learns at each Layer

Uploaded By: anonymousSTUDENTS-HUB.com

Visualizing what a convnet learns

Convolutional Neural Network trained on the MNIST Database of handwritten digits

Uploaded By: anonymousSTUDENTS-HUB.com

Visualizing what a convnet learns

Uploaded By: anonymousSTUDENTS-HUB.com

Visualizing what a convnet learns

Uploaded By: anonymousSTUDENTS-HUB.com

Well Known ConvNet Architectures

 LeNet (1990s)

 AlexNet (2012)

 GoogLeNet (2014)

 VGGNet (2014)

 ResNets (2015)

 DenseNet (August 2016)

 MobileNet

 ………..

Uploaded By: anonymousSTUDENTS-HUB.com

ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) winners

Uploaded By: anonymousSTUDENTS-HUB.com

AlexNet [Krizhevsky et al. 2012]

 Has a similar architecture to LeNet-5 but was deeper and bigger
with five Conv layers stacked on top of each other, followed by
three fully connected layers

Uploaded By: anonymousSTUDENTS-HUB.com

AlexNet

Input size Layer Output size

Layer C H / W filters kernel stride pad C H / W memory (KB) params (k) flop (M)

conv1 3 227 64 11 4 2 64 56 784 23 73

pool1 64 56 3 2 0 64 27 182 0 0

conv2 64 27 192 5 1 2 192 27 547 307 224

pool2 192 27 3 2 0 192 13 127 0 0

conv3 192 13 384 3 1 1 384 13 254 664 112

conv4 384 13 256 3 1 1 256 13 169 885 145

conv5 256 13 256 3 1 1 256 13 169 590 100

pool5 256 13 3 2 0 256 6 36 0 0

flatten 256 6 9216 36 0 0

fc6 9216 4096 4096 16 37,749 38

fc7 4096 4096 4096 16 16,777 17

fc8 4096 1000 1000 4 4,096 4

Details/Retrospectives:
-first use of ReLU
-used Norm layers (not common anymore)
-heavy data augmentation
-dropout 0.5
-batch size 128
-SGD Momentum 0.9
-Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
-L2 weight decay 5e-4

Uploaded By: anonymousSTUDENTS-HUB.com

AlexNet

Uploaded By: anonymousSTUDENTS-HUB.com

VGGNet [Simonyan and Zisserman, 2014]

 VGGNet is a very deep convnet. It
stacks many convolutional layers
before pooling. Moreover, it uses
“same” convolutions to avoid
resolution reduction.

 VGG Design rules:

 All conv are 3x3 stride 1 pad 1

 All max pool are 2x2 stride 2

 After pool, double #channels

 Network has 5 convolutional stages:

 Stage 1: conv-conv-pool

 Stage 2: conv-conv-pool

 Stage 3: conv-conv-pool

 Stage 4: conv-conv-conv-[conv]-pool

 Stage 5: conv-conv-conv-[conv]-pool
Uploaded By: anonymousSTUDENTS-HUB.com

https://www.robots.ox.ac.uk/~vgg/research/very_deep/

VGG16

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 -
May 1, 2018

VGGNet

Uploaded By: anonymousSTUDENTS-HUB.com

VGGNet

Uploaded By: anonymousSTUDENTS-HUB.com

Inception module

GoogLeNet (Inception-v1) [Szegedy et al., 2014]

 Deeper networks, with
computational
efficiency
 22 layers

 Efficient “Inception” module

 No FC layers

 Only 5 million parameters!

 12x less than AlexNet

 ILSVRC’14 classification
winner (6.7% top 5 error)

Uploaded By: anonymousSTUDENTS-HUB.com

Key Features of GoogLeNet (Inception-v1)

 Inception Modules:

 The inception module consists of multiple parallel convolutional branches of different filter sizes
(1x1, 3x3, 5x5), along with a max-pooling branch.

 The outputs of these branches are concatenated along the depth dimension.

 This allows the network to capture features at multiple scales simultaneously.

 Batch Normalization:

 Batch Normalization is applied to the input of each layer, contributing to faster convergence and
improved training stability.

 Global Average Pooling:

 Instead of using fully connected layers at the end of the network, GoogLeNet uses global
average pooling.

 Global average pooling reduces the number of parameters and helps with model generalization.

 Auxiliary Classifiers:

 Auxiliary classifiers, placed at intermediate layers, are introduced during training to provide
additional gradient signals and combat the vanishing gradient problem.

 These auxiliary classifiers have their loss functions and contribute to the overall loss during
training.

Uploaded By: anonymousSTUDENTS-HUB.com

GoogLeNet: Inception Module

 The Inception Module is a
fundamental building block of
GoogLeNet (Inception-v1),

 The main purpose of the
Inception Module is to enable
the network to capture
information at multiple scales
by employing filters of
different sizes in parallel.

 This helps the network
efficiently learn both fine-
grained and coarse-grained
features within the same layer.

 Local unit with parallel
branches

 Local structure repeated many
times throughout the network

Uploaded By: anonymousSTUDENTS-HUB.com

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 -
May 1, 2018

Structure of the Inception Module

1. 1x1 Convolution (Dimension Reduction):

 A 1x1 convolution is used to perform dimension reduction, reducing the number of channels:

output[i, j, k] = sum(input[i, j, c] * kernel[1, 1, c, k] for c channels

k is the index of the filter in the output.

c is the index of the channel in the input.

kernel[1,1,c,k] is the weight associated with channel c of the input for filter k.

 This operation helps control the computational cost and provides a linear combination of features.

2. 3x3 Convolution:

 A 3x3 convolution captures features over a medium-sized receptive field.

 It helps capture spatial hierarchies within the image.

3. 5x5 Convolution:

 A 5x5 convolution captures features over a larger receptive field.

 It helps capture more global features and structures.

4. Max-Pooling:

 Max-pooling is used to capture the most important features within a local region.

 It provides some translation invariance and reduces spatial dimensions.

5. Concatenation:

 The outputs from all branches are concatenated along the depth dimension.

 This creates a rich set of features that can capture information at different scales.Uploaded By: anonymousSTUDENTS-HUB.com

Naive Inception module

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 -
May 1, 2018

Example:

Module input:
28x28x256

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672

Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x256
[5x5 conv, 96] 28x28x96x5x5x256
Total: 854M ops
Very expensive compute

Pooling layer preserves feature depth,
which means total depth after
concatenation can only grow at every
layer!

Structure of the Inception Module

Uploaded By: anonymousSTUDENTS-HUB.com

Structure of the Inception Module

 Using same parallel layers as naive example, and adding “1x1 conv,
64 filter” bottlenecks:

Uploaded By: anonymousSTUDENTS-HUB.com

Inception module with dimension reduction

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 -
May 1, 2018

Naive Inception module

1x1 conv “bottleneck” layers

Total: 358M opsTotal: 854M ops

GoogLeNet: Inception Module

Uploaded By: anonymousSTUDENTS-HUB.com

Batch Normalization
74

➢ Inception: Inception-v1 without BN
➢ BN-Baseline: Inception with BN
➢ BN-×5: Initial learning rate is increased

by a factor of 5 to 0.0075
➢ BN-×30: Initial learning rate is

increased by a factor of 30 to 0.045
➢ BN-×5-Sigmoid: BN-×5 but with

Sigmoid

Since the introduction of GoogLeNet, Batch Normalization has become a
standard component in many deep learning architectures, providing

benefits in terms of training stability, convergence speed, and
generalization performance.

➢ BatchNorm helps mitigate the internal covariate shift. This helps stabilize and
accelerate the training process by mitigating issues like vanishing/exploding
gradients.

Uploaded By: anonymousSTUDENTS-HUB.com

Full GoogleLeNet Arch.

Uploaded By: anonymousSTUDENTS-HUB.com

Full GoogleLeNet Arch.

Uploaded By: anonymousSTUDENTS-HUB.com

GoogLeNet: Aggressive Stem

Input size Layer Output size

Layer C

H /
W filters kernel stride pad C H/W memory (KB)

params

(K) flop (M)

conv 3 224 64 7 2 3 64 112 3136 9 118

max-pool 64 112 3 2 1 64 56 784 0 2

conv 64 56 64 1 1 0 64 56 784 4 13

conv 64 56 192 3 1 1 192 56 2352 111 347
max-pool 192 56 3 2 1 192 28 588 0 1

Total from 224 to 28 spatial resolution:
Memory: 7.5 MB
Params: 124K
MFLOP: 418

Compare VGG-16:
Memory: 42.9 MB (5.7x)
Params: 1.1M (8.9x)
MFLOP: 7485 (17.8x)

Stem network at the start aggressively downsamples input
(Recall in VGG-16: Most of the compute was at the start)

Uploaded By: anonymousSTUDENTS-HUB.com

Full GoogleLeNet Arch.

Uploaded By: anonymousSTUDENTS-HUB.com

Auxiliary Classifiers

 Training using loss at the end of the network didn’t work well: Network is
too deep, gradients don’t propagate cleanly

 Auxiliary classifiers are used in GoogLeNet for two main reasons:

 To improve the convergence of the network. Auxiliary classifiers provide
additional gradients to the lower layers of the network, which can help the
network to converge to a better solution more quickly.

 To regularize the network and prevent overfitting. Auxiliary classifiers act as
regularizers by forcing the network to learn to classify images at different levels
of abstraction. This can help to prevent the network from overfitting to the
training data.

 In GoogLeNet, the auxiliary classifiers are each composed of a global
average pooling layer, a fully connected layer, and a softmax layer.

 On the ImageNet dataset, GoogLeNet with auxiliary classifiers achieves
an accuracy of 93.6%, which is significantly higher than the 89.3%
accuracy achieved by GoogLeNet without auxiliary classifiers.

Uploaded By: anonymousSTUDENTS-HUB.com

Full GoogleLeNet Arch.

Uploaded By: anonymousSTUDENTS-HUB.com

GoogLeNet: Global Average Pooling

➢ No large FC layers at the end! Instead uses “global average
pooling” to collapse spatial dimensions, and one linear layer to
produce class scores

➢ (Recall VGG-16: Most parameters were in the FC layers!)

Input size Layer Output size

Layer C H/W filters kernel stride pad C H/W memory (KB) params (k) flop (M)

avg-

pool 1024 7 7 1 0 1024 1 4 0 0

fc 1024 1000 1000 0 1025 1

Layer C H/W filters kernel stride pad C H/W memory (KB) params (K) flop (M)

flatten 512 7 25088 98

fc6 25088 4096 4096 16 102760 103

fc7 4096 4096 4096 16 16777 17

fc8 4096 1000 1000 4 4096 4

Compare with VGG-16:

Uploaded By: anonymousSTUDENTS-HUB.com

Training very Deep Models

 Once we have Batch Normalization, we can train networks with
10+ layers. What happens as we go deeper?

 Deeper model does worse than shallow model!

 Initial guess: Deep model is overfitting since it is much bigger than
the other model

 In fact the deep model seems to be underfitting since it also performs worse
than the shallow model on the training set! It is actually underfitting

Uploaded By: anonymousSTUDENTS-HUB.com

Residual Networks

 Residual Networks, often referred to as ResNets, are a type of deep
neural network architecture designed to address the challenges of
training very deep networks.

 Residual networks (ResNets) are a type of neural network architecture
that introduced the concept of skip connections.

 A skip connection is a connection that allows information to flow from
one layer of the network to a later layer without passing through any
intermediate layers.

 The basic idea behind ResNets is to learn residual functions instead of
direct mappings. A residual function is a function that learns the
difference between the desired output and the input.

 ResNets have been shown to achieve state-of-the-art results on a wide
range of tasks, including image classification, object detection, and
segmentation. They are now one of the most popular types of neural
network architectures in use.

Uploaded By: anonymousSTUDENTS-HUB.com

Residual Networks

 Advantages of Residual Networks:

 It makes it easier to train deep networks.
◼ Skip connections help to alleviate the vanishing gradient problem,

which can make it difficult to train deep networks.

 It allows the network to learn more complex mappings.
◼ By learning residual functions, the network can learn to modify the

input in more subtle ways, which can lead to better performance on
complex tasks.

 Scalability
◼ ResNets are scalable to deep architectures, making them suitable for

state-of-the-art models in computer vision and other domains.

 It makes the network more robust to noise.
◼ Skip connections allow the network to bypass noisy or irrelevant

features in the input, which can lead to better performance on noisy
datasets.

Uploaded By: anonymousSTUDENTS-HUB.com

ResNet [He et al., 2016]

 ResNet (2016): is the residual network which features
special skip (residual) connections and a heavy use of batch
normalization layer. The residual connections facilitate training deep
networks.

• Able to train very deep networks
• Deeper networks do better than shallow

networks (as expected)
• Swept 1st place in all ILSVRC and
• COCO 2015 competitions
• Still widely used today! Uploaded By: anonymousSTUDENTS-HUB.com

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1502.03167

Key Concepts of Residual Networks

 Residual Blocks:
 The basic building block of a ResNet is the residual block.

 A residual block consists of a shortcut connection (skip connection) that bypasses
one or more layers and is added to the output of those layers.

 Mathematically, for a residual block with input x and output H(x), the block
computes H(x)−x, and the final output is F(x)=H(x)+x.

 Instead of directly learning the mapping from input to output, a residual block
learns the residual (difference) between the input and the desired output.

 Residual blocks enable the learning of residual mappings, making it easier to
train very deep networks.
◼ This is because the residual is the difference between the desired output and the input,

which is a smaller and simpler function to learn than the entire mapping.

Uploaded By: anonymousSTUDENTS-HUB.com

Key Concepts of Residual Networks

 A residual network is a stack of
many residual blocks

 Regular design, like VGG: each
residual block has two 3x3 conv

 Network is divided into stages:
the first block of each stage
halves the resolution (with
stride-2 conv) and doubles the
number of channels

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

.

.

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

relu

Residual block

3x3 conv

3x3 conv

F(x) + x

F(x)

relu

X

Uploaded By: anonymousSTUDENTS-HUB.com

Key Concepts of Residual Networks

“Basic”
Residual

block

Conv(3x3, C->C)

Conv(3x3, C->C)

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

FLOPs: 9HWC2

FLOPs: 9HWC2

FLOPs: 4HWC2

FLOPs: 9HWC2

FLOPs: 4HWC2

Total FLOPs:
18HWC2

Total FLOPs:
17HWC2

“Bottleneck”
Residual

block

More layers, less computational cost!

Bottleneck Residual block

Uploaded By: anonymousSTUDENTS-HUB.com

Key Concepts of Residual Networks

 Skip Connections (Identity Shortcuts):
 Skip connections allow the gradient to flow directly through the network without

passing through the intermediate layers.

 Help to alleviate the vanishing gradient problem by allowing the gradients to
bypass some of the layers of the network. This allows the gradients to flow more
easily through the network, which makes it easier for the network to learn the
weights of all of the layers.

 Deep Network Architecture:
 ResNets are characterized by their deep architectures, often with hundreds of

layers.

 The use of residual blocks and skip connections enables the training of deeper
networks without suffering from degradation in performance.

 Batch Normalization:
 Batch normalization is commonly used in ResNets to stabilize and accelerate

training.

 Global Average Pooling (GAP):
 ResNets often use Global Average Pooling (GAP) as an alternative to fully

connected layers for dimensionality reduction at the end of the network.

Uploaded By: anonymousSTUDENTS-HUB.com

Key Concepts of Residual Networks

 Uses the same aggressive stem as GoogleNet to
downsample the input 4x before applying residual
blocks:

 Like GoogLeNet, no big fully-connected-layers:
instead use global average pooling and a single linear
layer at the end

Input size Layer

Output

size

Layer C H/W filters kernel stride pad C H/W memory (KB)

params

(k)

flop

(M)

conv 3 224 64 7 2 3 64 112 3136 9 118

max-pool 64 112 3 2 1 64 56 784 0 2

Uploaded By: anonymousSTUDENTS-HUB.com

ResNet Architectures

 ResNets are scalable to different depths, and variants like ResNet-
18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152 have been
introduced with varying numbers of layers.

 ResNet-50 is the same as ResNet-34, but replaces Basic blocks with
Bottleneck Blocks. This is a great baseline architecture for many
tasks even today!

 Deeper ResNet-101 and ResNet-152 models are more accurate, but
also more computationally heavy

Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

.

.

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

Stage 1 Stage 2 Stage 3 Stage 4

Block

type

Stem

layer

s Blocks LayersBlocks Layers Blocks Layers Blocks Layers

FC

layers

GFLO

P

ImageNet

top-5 error

ResNet-18 Basic 1 2 4 2 4 2 4 2 4 1 1.8 10.92

ResNet-34 Basic 1 3 6 4 8 6 12 3 6 1 3.6 8.58

ResNet-50 Bottle 1 3 9 4 12 6 18 3 9 1 3.8 7.13

ResNet-101Bottle 1 3 9 4 12 23 69 3 9 1 7.6 6.44

ResNet-152Bottle 1 3 9 8 24 36 108 3 9 1 11.3 5.94

Uploaded By: anonymousSTUDENTS-HUB.com

Other CNN Networks

 DenseNet
 DenseNet is another deep residual neural network architecture that is known for its

efficiency and accuracy.

 DenseNet has achieved state-of-the-art results on a variety of computer vision tasks,
including image classification, object detection, and semantic segmentation.

 EfficientNet
 EfficientNet is a family of efficient CNN architectures that are designed to achieve

high accuracy with minimal computational resources.

 EfficientNet has achieved state-of-the-art results on a variety of computer vision
tasks, including image classification, object detection, and semantic segmentation.

 MobileNetV2:
 Designed for mobile and edge devices, offering a good balance between accuracy and

computational efficiency.

 Uses depthwise separable convolutions to reduce the number of parameters.

 Vision Transformer (ViT)
 ViT is a recent CNN architecture that has achieved state-of-the-art results on a variety

of computer vision tasks, including image classification, object detection, and
semantic segmentation.

 ViT is based on the transformer architecture, which was originally developed for
natural language processing.

Uploaded By: anonymousSTUDENTS-HUB.com

ImageNet Competition Winners

Uploaded By: anonymousSTUDENTS-HUB.com

Comparing Well-Known Archs.

Uploaded By: anonymousSTUDENTS-HUB.com

CNN vs ViT

Uploaded By: anonymousSTUDENTS-HUB.com

CNN Architectures Summary

 Early work (AlexNet -> ZFNet -> VGG) shows that bigger networks
work better

 GoogLeNet one of the first to focus on efficiency (aggressive stem,
1x1 bottleneck convolutions, global avg pool instead of FC layers)

 ResNet showed us how to train extremely deep networks – limited
only by GPU memory! Started to show diminishing returns as
networks got bigger

 After ResNet: Efficient networks became central: how can we
improve the accuracy without increasing the complexity?

 Lots of tiny networks aimed at mobile devices: MobileNet,
ShuffleNet, etc

 Neural Architecture Search promises to automate architecture
design

Uploaded By: anonymousSTUDENTS-HUB.com

Which Architecture should I use?

 Don’t be a hero. For most problems you should use an
off-the-shelf architecture; don’t try to design your own!

 If you just care about accuracy, ResNet-50 or ResNet-101
are great choices

 If you want an efficient network (real-time, run on
mobile, etc) try MobileNets and ShuffleNets

Uploaded By: anonymousSTUDENTS-HUB.com

Data Augmentation
98

 Data augmentation is a technique used to artificially increase the size of
a training dataset by applying various transformations to the existing
data.

 Data augmentation encodes invariances in your model
 Think for your problem: what changes to the image should not change the

network output?

 By design, convnets are only robust against translation.

 Data augmentation makes them robust against other transformations: rotation,
scaling, shearing, warping, ...

 Purpose:
 Increased Diversity: Introduces diversity into the training set, preventing the

model from memorizing specific examples.

 Robustness to Variability: Trains the model to be more robust to variations and
transformations that might occur in real-world scenarios.

 Regularization: Acts as a form of regularization, helping prevent overfitting by
making the model less sensitive to minor variations in the training data.

Uploaded By: anonymousSTUDENTS-HUB.com

Data Augmentation Example
99

Uploaded By: anonymousSTUDENTS-HUB.com

Effect on Data Augmentation
100

Uploaded By: anonymousSTUDENTS-HUB.com

Transfer Learning
101

 You need a lot of a data if you want to train/use CNNs

 Training a Network From Scratch
 Time

 Compute

 Training data — the more, the better. Models benefit significantly from A LOT of
data — especially in computer vision, a few thousand examples usually doesn’t
cut it.

 Money for all of the above

 When trained from scratch, a model’s parameters are initialized
randomly and then updated through some optimization algorithm like
gradient descent

 So, if there are two tasks to be solved with deep learning, this process is
repeated separately both times.

 However, does it really need to be? Consider the case when we humans
learn something new: do we ALWAYS start from the ground up?

Uploaded By: anonymousSTUDENTS-HUB.com

Transfer Learning
102

 Deep learning models are typically trained on large datasets, which can
be expensive and time-consuming to collect and label.

 Transfer learning allows to leverage the knowledge that has already been
learned by a pre-trained model on a different task, and apply it to a new
task.

 Transfer learning with CNNs involves leveraging pre-trained models that
were initially trained on large image datasets, such as ImageNet, and
adapting them for new tasks.

 How transfer learning is applied with CNNs:
❑ Task 1: Pre-Trained CNN Models

▪ Models like VGG, ResNet, Inception, and MobileNet are pre-trained on
massive datasets, typically for image classification tasks.

❑ Task 2: Transfer Learning

▪ Feature Extraction

▪ Fine-Tuning

▪ Fine-Tuning the whole network

Uploaded By: anonymousSTUDENTS-HUB.com

Transfer Learning
103

❑ Advantages of Transfer Learning:

1. Data Efficiency: Transfer learning enables effective learning with
smaller datasets, as the model leverages knowledge from a larger
dataset.

2. Faster Training: Training a model from scratch can be time-
consuming. Transfer learning speeds up training by starting with a
pre-trained model.

3. Improved Performance: Transfer learning often leads to improved
performance compared to training a model from scratch, especially
when the pre-trained model has been trained on a similar task.

4. Generalization: Transfer learning helps in generalizing knowledge
gained from one domain to another, tend to generalize well and are
less prone to overfitting, especially when applied to related tasks.

5. Is easy to implement: Transfer learning is a relatively simple
technique to implement. There are many different transfer learning
libraries available, such as TensorFlow Hub and PyTorch Torchvision.

Uploaded By: anonymousSTUDENTS-HUB.com

Choosing the right transfer learning approach
104

 Choosing the right transfer learning approach depends on various factors,
including the amount of data available for the target task, the similarity
between the source and target tasks, and computational resources.

 Feature Extraction (Freezing Layers):
 When to Choose: Choose feature extraction when you have a limited amount of data

for the target task, and the features learned by the pre-trained model are expected to
be relevant to the new task.

 How it Works: Remove the final layers of the pre-trained model, keeping the feature
extraction layers. Add new layers (usually fully connected layers) for the target task.
The pre-trained layers are frozen, and only the added layers are trained.

Uploaded By: anonymousSTUDENTS-HUB.com

Choosing the right transfer learning approach
105

 Fine-Tuning:

 When to Choose: Choose fine-tuning when you have a moderate data for the
target task, and you expect the pre-trained model to adapt well to the new
task.

 How it Works: Instead of discarding the non-frozen layers of the pretrained
network, they are fine-tuned, i.e., simultaneously trained further (starting
with the same pretrained weights from task 1) on the new data for task 2.

Uploaded By: anonymousSTUDENTS-HUB.com

Choosing the right transfer learning approach
106

 Fine-Tuning the whole network
 When to Choose: Choose fine-tuning when you have a big data for

the target task, and you expect the pre-trained model to adapt well to
the new task.

 In some cases, it might be favorable to fine-tune the entire pretrained
network rather than some subset of layers. This can equivalently be
viewed as initializing the second network’s parameters to the
pretrained network’s parameters, instead of the usual random
initialization. In other words, a good pretrained network gives you a
“head-start” in the training process.

 Data Augmentation: Regardless of the chosen approach, consider
incorporating data augmentation techniques to artificially increase
the size of the target dataset.

Uploaded By: anonymousSTUDENTS-HUB.com

Choosing the right transfer learning approach
107

 Choosing the number of frozen, fine-tunable and custom layers
greatly depends on the problem at hand. Nonetheless, here are
some suggestions for four common scenarios in which transfer
learning is generally applicable:

Large Task 2 Dataset Small Task 2 Dataset

Task 2 dataset
similar to task 1
dataset

Should be ok to fine-tune
the entire network.

No need to fine-tune. Fix
most of the initial layers
and train a linear classifier
on top of them.

Task 2 dataset
different from
task 1 dataset

Should be ok to fine-tune
the entire network.

Don’t fine-tune. Fix some
of the initial layers and
train a custom network on
top of them.

Uploaded By: anonymousSTUDENTS-HUB.com

Transfer Learning with CNNs
108

Transfer learning with CNNs has become a pervasive and highly
effective technique in the field of deep learning, particularly in
computer vision tasks.

Uploaded By: anonymousSTUDENTS-HUB.com

Does Transfer Learning Work?
109

Uploaded By: anonymousSTUDENTS-HUB.com

Transfer Learning with CNNs: Architecture Matters!

Uploaded By: anonymousSTUDENTS-HUB.com

Transfer Learning with CNNs: Architecture Matters!

Uploaded By: anonymousSTUDENTS-HUB.com

Acknowledgement
113

 The material in these slides are based on:
 Digital Image Processing: Rafael C. Gonzalez, and Richard

 Forsythe and Ponce: Computer Vision: A Modern Approach

 Rick Szeliski’s book: Computer Vision: Algorithms and Applications

 cs131@ Stanford University

 cs131n@ Stanford University

 CS198-126@ University of California, Berkely

 CAP5415@ University of Central Florida

 CSW182 @ University of California, Berkely

 Deep Learning Lecture Series @UCL

 EECS 498.008 @ University of Michigan

 CSE576 @ Washington University

 11-785@ Carnegie Mellon University

 CSCI1430@ Brown University

 Computer Vision@ Bonn University

 ICS 505@ KFUPM

 Digital Image Processing@ University of Jordan
Uploaded By: anonymousSTUDENTS-HUB.com

http://www.cmu.edu/

