10/21/2018

1.*._? *\% Vv
353 Wm0

BIRZEIT UNIVERSITY

Inheritance and
Polymorphism

Liang, Introduction to Java Pragramming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

Lt - o
! -: ,,__ S e = o MY e R i f
|S=2A7 0wl ONEMINION Gh R a2l
= ===T- = e==i - -y
By: Mamoun Nawahdah (Ph.D.)
2018

Motivations

¢ Suppose you will define classes to
model circles, rectangles, and triangl/es.
¢ These classes have many common
features.

** What is the best way to design these
classes so to avoid redundancy?

The answer is to use inheritance

- :

STUDENTS-HUB.com Uploaded By: anonymo1us

Superclasses and Subclasses

GeometricObject

-color: String
filled: boolean
-dateCreated: java.util Date

+GeometricObject()
+GeometricObject(color: String.
filled: boolean)
“+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.utilDate
+toString(): String

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject

Creates a Gi Object with the specified color and filled
values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

T =

Circle

-radius: double

+Circle()
+Circle(radius: double)

+Circle(radius: double, color: String,
filled: boolean)

+getRadius(): double
~+sefRadius(radius: double):void
~+getArea(): double
+getPerimeter(): double
+getDiameter(): double
+printCircle(): void

1
Rectangle

-width: double
-height: double
+Rectangle()
+Rectangle(width: double, height: double)
+Rectangle(width: double, height: double

color: String, filled: boolean)
+getWidth(): double
+setWidth(width: double): void
~+getHeight(): double
~setHeight(height: double): void
+getArea() double
~getPerimeter(): double

Superclass

Subclass

class Convertible {
// Key (private)
// Speed: 250 K/H
// Weight: 1600Kg
// Engine: 3.2L S54 inLine-6

class Roadster extends Convertible {
// Speed: 265 K/H
// Weight: 1400Kg

STUDENTS-HUB.com

10/21/2018

Uploaded By: anonymozus

10/21/2018

2

Are Superclass’s Constructor Inherited?

+* No. Unlike properties and methods, a superclass's
constructors are not inherited in the subclass.

+* They are invoked explicitly or implicitly.
% Explicitly using the SU per keyword.
¢ They can only be invoked from the subclasses'

constructors, using the keyword SUper.

If the keyword SUper is not explicitly used,
the superclass’s no-arg constructor /s
automatically invoked.

¢ For example:

is equivalent to

Superclass’s Constructor is Always Invoked
+** A constructor may invoke an overloaded constructor or
its superclass’s constructor.

+» If none of them is invoked explicitly, the compiler puts
super() as the first statement in the constructor.

2

public A(double d) {

}

S/ some statements

is equivalent to

.
r

public A()

super() s

public Aldouble d) {
super () ;
// some statements

}

STUDENTS-HUB.com

Uploaded By: anonymo3us

10/21/2018

Using the Keyword SUpPer

% The keyword super refers to the
superclass of the class in which super
appears.

% super keyword can be used in two ways:

= To call a superclass constructor.

= To call a superclass method.

- :

Caution

¢ You must use the keyword super to
call the superclass constructor.

= Invoking a superclass constructor’s name
in a subclass causes a syntax error.

+¢ Java requires that the statement that
uses the keyword super appear first in
the constructor.

e |

STUDENTS-HUB.com Uploaded By: anonymcflus

10/21/2018

Constructor Chaining €535 325%
Constructing an instance of a class invokes all the superclasses’ constructors
along the inheritance chain. This is called constructor chaining.

public class Faculty extends Employee {
public static void main(String[] args) {
Faculty £ = new Faculty()’
}
public Faculty() {
System.out.println (" (4) Faculty's no-arg constructor is invoked");
}
}

Super(); =

class Employee extends Person {
public Employee () {
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println (" (3) Employee's no-arg constructor is invoked");
}
public Employee (String s) {
Super(); 2> System.out.println(s);
}
}

class Person {
public Person() {
System.out.println(" (1) Person's no-arg constructor is invoked");
}
}

Super(); =

Example on the Impact of a Superclass
without no-arg Constructor

+¢ Find out the errors in the following program:

public class Apple extends Fruit {

}

public class Fruit {
public Fruit(String name) {
System.out.printin("Name: " + name);

}
E |

STUDENTS-HUB.com Uploaded By: anonymosus

10/21/2018

Defining a Subclass

¢ A subclass inherits from a superclass.
You can also:

= Add new properties.

= Add new methods.

= Override the methods of the
superclass.

i

Calling Superclass Methods

+¢* You could rewrite the printCircle() method
in the Circle class as follows:

public void printCircle() {
System.out.println("The circle is created " +

SUPEr getDateCreated() +
"and the radius is " + radius);

}

o u

STUDENTS-HUB.com Uploaded By: anonymo6us

10/21/2018

Superclasses and Subclasses

2

GeometricObject

-color: String
-filled: boolean
-dateCreated: java.util. Date

“+GeometricObject()

+GeometricObject(color: String,
filled: boolean)

+getColor(): String
tsetColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

The color of the object (default: white).
Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled
values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

T w

1

Circle

Rectangle

-radius: double

-width: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,
filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getArea(): double

+getPerimeter(): double

+getDiameter(): double

-height: double

+Rectangle()
+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double
color: String, filled: boolean)

+getWidth(): double
+setWidth(width: double): void
+getHeight(): double
+setHeight(height: double): void

+printCircle(): void

+getArea(): double

13

+getPerimeter(): double

Overriding Methods in the Superclass

2

*» Sometimes it is necessary for the subclass to
modify the implementation of a method defined in
the superclass.

<% This is referred to as method overriding.

public class Circle

// Other methods are omitted
/** Override the toString method defined in GeometricObject */
public String toString() {

return SU per.tOString() +"\n radius is " + radius;

extends GeometricObject {

STUDENTS-HUB.com

Uploaded By: anonymo7us

10/21/2018

Note

+* An instance method can be
overridden only if it is accessible.

= Thus a private method cannot be
overridden, because it is not accessible
outside its own class.

= |f a method defined in a subclass is
private in its superclass, the two methods
are completely unrelated.

e 15

Note cont.

¢ Like an instance method, a static method
can be inherited.

= However, a static method cannot be
overridden.

= |f 3 static method defined in the
superclass is redefined in a subclass, the
method defined in the superclass is
hidden.

e

STUDENTS-HUB.com Uploaded By: anonymosus

10/21/2018

Overriding vs. oOverloading

public class Test {
public static void main (String[] args) {
A a = new A();
a.p(10);
a.p(10.0);
}
}

class B {
public void p(double i) {
System.out.println(i * 2);
}
}

class A extends B {
// This method overrides the method in B
public void p(double i) {
System.out.println (i) ;
}
}

17

2

overriding VS. Overloading

public class Test {
public static void main (String[] args) {
A a = new A();
a.p(10);
a.p(10.0);
}
}

class B {
public void p(double i) {
System.out.println(i * 2);
}
}

class A extends B {
// This method overloads the method in B
public void p(int i) {
System.out.println (i) ;
}
}

18

2

STUDENTS-HUB.com

Uploaded By: anonymogus

10/21/2018

The Object Class

¢ Every class in Java is descended from the

java.lang.Object class.

+*» If no inheritance is specified when a class
is defined, the superclass of the class is

Object.

public class Circle { public class Circle extends Object|
Equivalent

} '

% v

The toString() method in Object

< The toString() method returns a
string representation of the object.
** The default implementation returns a
string consisting of:
= A class name of which the object is an
instance.

= The at sign (@).
= A number representing this object.

e zo

STUDENTS-HUB.com Uploaded By: anonym1oous

10/21/2018

The toString() method in Object

Circle c = new Circle();
System.out.println(c.toString());

< The code displays something like:

Circle@15037e5

< This message is not very helpful or informative.

< Usually you should override the toString method
so that it returns an informative string representing
the object.

e

class GraduateStudent extends Student {

}

class Student extends Person {
public String toString() {
return "Student";

}
}

class Person extends Object {
public String toString() {
return "Person";

}

S)

STUDENTS-HUB.com Uploaded By: anonym1o1us

10/21/2018

Polymorphism
public class Demo { M th d t k
public static void main(String[] a) { ethod m (akes a
m(new Object());
e ci parameter of the
m(new Student()); ObjeCt type

m(new GraduateStud
public static void M(Object x){ YOU can InV0ke It Wlth

System.out.printIn(x.toString()); a ny Obj eCt .

}
}

% An object of a subtype can be used wherever its
supertype value is required.

% This feature is known as polymorphism.

Dynamic Binding

public class Demo {
public static void main(String[] a) {
m(new GraduateStudent());
m(new Student()); . op. .
m(new Person()); ThIS Capab'llty IS known as
m(new Object()); o o 3
) dynamic binding
public static void m(Object x) {
System.out.printin(X.toString());
}
}

¢ When the method m(Object x) is executed, the argument
x’s toString method is invoked. x may be an instance of
GraduateStudent, Student, Person, or Object.

+» Classes GraduateStudent, Student, Person, and Object
have their own implementation of the toString method.
Which implementation is used will be determined

dynamically by the JVM at runtime.

24

STUDENTS-HUB.com Uploaded By: anonym102us

10/21/2018

Dynamic Binding

¢ Dynamic binding works as follows:

= Suppose an object o is an instance of
classes C,, C,, ..., C_,,and C , where C,is a
subclass of C,, C, is a subclass of C;, ..., and
C,..isasubclass of C .

" That is, C_ is the most general class, and
C, is the most specific class.

[K[k— ... o KT]
Since o is an instance of Cy, o is also an
Object instance of C5,Cs, ..., Co1, and C,

Dynamic Binding cont.

¢ Dynamic binding works as follows:

= |f 0 invokes a method p, the JVM searches the
implementation for the method pin C,, C,, ...,
C.,and C_, in this order, until it is found.

= Once an implementation is found, the search
stops and the first-found implementation is

invoked.
& Ko k— e K]
Since o is an instance of Cy, o is also an
Object instance of C,, Cs, ..., Cy.1, and C,

STUDENTS-HUB.com Uploaded By: anonym1o3us

10/21/2018

Generic Programming

public class Demo { .

public static void main(String[] a) { POlymorphlsm a”OWS methOdS
m(new GraduateStudent()); . .
m{new Stadent(); to be used generlcally for a wide
m(new Person()); range of object arguments.
m(new Object()); L.

} This is known as:

public static void m(Object x){ . .

System.out.printIn(x.toString()); ge neric p rogra mmi ng

}
}

% If a method’s parameter type is a superclass (e.g., Object), you
may pass an object to this method of any of the parameter’s
subclasses (e.g., Student).

+* When an object (e.g., a Student object) is used in the method,
the particular implementation of the method of the object that is
invoked (e.g., toString) is determined dynamically.

e y

Casting Objects

++ Casting can also be used to convert an object of one
class type to another within an inheritance hierarchy.

m(new Student());

assigns the object new Student() to a parameter of the
Object type. This statement is equivalent to:

Object o = new Student(); // Implicit casting
m(o);

The statement Object o = new Student(), known as
implicit casting, is legal because an instance of

E! Student is automatically an instance of Object.

28

STUDENTS-HUB.com Uploaded By: anonym1c§1us

10/21/2018

Why Casting is Necessary?

+»* Suppose you want to assign the object reference 0 to a
variable of the Student type using the following statement:

Student b = o; // A compile error would occur.

+* Why does the statement Object o = new Student() work
and the statement Student b = o doesn’t?
» This is because a Student object is always an
instance of Object, but an Object is not
necessarily an instance of Student.
= Even though you can see that o is really a
Student object, the compiler is not so clever to
know it.

29

Why Casting is Necessary?

+¢ To tell the compiler that o is a Student
object, use an explicit casting.

¢ The syntax is similar to the one used for
casting among primitive data types.

¢ Enclose the target object type in
parentheses and place it before the object to
be cast, as follows:

Student b = (Student) o ; // Explicit casting

STUDENTS-HUB.com Uploaded By: anonym105us

10/21/2018

Casting from Superclass to Subclass

+* Explicit casting must be used when casting an
object from a superclass to a subclass.
Fruit fruit = new Apple(); o e

.- _J
Apple a = (Apple) fruit; ' = ‘
Orange o = (Orange) fruit; 9 -

¢ This type of casting may not always succeed.

Fruit

A

Apple Orange Mango
% 31

The instanceof Operator

+** Use the instanceof operator to test
whether an object is an instance of a class:

Object myObject = new Circle();

J/ Perform casting if myObject is an instance of Circle
if (myObject instanceof Ccircle){
System.out.printIn("The circle diameteris " +
((Circle)myObject).getDiameter());
}

2 H

STUDENTS-HUB.com Uploaded By: anonym1o6us

The equals Method

¢ The equals() method meant to compare the contents

of two objects.

¢ The default implementation of the equals method in
the Object class is not doing the job:

public boolean equals (Object obj) {
return (this == obj);

< For example, the equals
method is overridden in
the Circle class.

public boolean equals(Object o) {
if (0 instanceof Circle) {
return radius == ((Circle)o).radius;

}
cea

10/21/2018

return false;
% }

Note

¢ The == comparison operator is used for
comparing two primitive data type values
or for determining whether two objects
have the same references.

** The equals method is intended to test
whether two objects have the same
contents, provided that the method is
modified in the defining class of the objects.

STUDENTS-HUB.com Uploaded By: anonym1o7us

10/21/2018

The Arraylist Class

¢ You can create an array to store
objects.

¢ But the array’s size is fixed once the
array is created.

% Java provides the ArraylList class
that can be used to store an unlimited
number of objects.

”

The Arraylist Class

java.util ArrayList<E>

+ArrayList () Creates an empty list

+add (o EY 1 wold Appends anew ekment o at the end of this list.
+add{index: int, o: E) : void Addsa new element o at the specifiedindex n this list.
+clear(): void Removesallthe elements fi om thislist.

+contains{o: Object): boolean Retimstrue if this list contains the element .

+get{index: inkt) : B Retimstheelementfrom this list at the specified index
+indexof{o: Object) : int Retimsthe index of the first matching element in this list.
+isEmpty{): boolean Refums true if this list contains no elements.
+last Index0fi{o: Cbject) : int Retimsthe index of the & matching element in this list.
+remove [o: Object): boolean Remaovesthe element o from this list.
+size (): int Rennmsthe mumber of elem ents in this list.
+remove (index: int) : boolean | Removesthe element atthe specified index.

P +set{index: int, o: E) : E Sets the element at the specified index.

i

STUDENTS-HUB.com Uploaded By: anonym108us

10/21/2018

Generic Type <E>

¢ ArraylList is known as a generic class with a
generic type E.

¢ You can specify a concrete type to replace E
when creating an ArraylList.

+* For example, the following statement creates an
ArraylList and assigns its reference to variable cities.
This ArraylList object can be used to store strings:

ArrayList<String> cities = new ArrayList<String>();

new ArrayList<>();

ArrayList<String> cities

Differences and Similarities
between Arrays and ArraylList

Operation Array ArrayList

Creating an array/ArrayList String[] a = new String[10] Arraylist<String» list = new

Accessing an element alindex] ligt.get(index):

Updating an element alindex] = "London"; list . set(index, "London");
Returning size a.length list.size():

Adding a new element list. add{"London"};
Inserting a new element list.add(index, "London"):
Removing an element list .remove(index)
Removing an element list.remove(Object);
Removing all elements list.clear();

% -

STUDENTS-HUB.com Uploaded By: anonym109us

10/21/2018

ArrayLists from/to Arrays

+* Creating an ArraylList from an array of objects:

String[] array = {"red", "green", "blue"};
ArrayList<String> list = new

ArrayList<>(Arrays.asList(array));

< Creating an array of objects from an ArrayList:
String[] arrayl = new String[list.size()];
list.toArray(arrayl);

max and min in an ArrayList

java.util.Collections.max(list)
java.util.Collections.min(list)

Shuffling an ArraylList
Integer(] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<integer> list = new
Arraylist<>(Arrays.asList(array));
java.util.Collections.shuffle(list);

System.out.printin(list); .

STUDENTS-HUB.com Uploaded By: anonymzoous

10/21/2018

The MyStack Classes

A stack to hold objects.

MyStack

-list: ArrayList A list to store elements.

+isEmpty(): boolean Returns true if this stack is empty.

+getSize(): int Returns the number of elements in this stack.

+peek(): Object Retumns the top element in this stack.

+pop(): Object Returns and removes the top element in this stack.

+push(o: Object): void | Adds anew element to the top of this stack.

+search(o: Object): int | Returns the position of the first element in the stack from
the top that matches the specified element.

2

The protected Mmodifier

< The protected modifier can be applied on
data and methods in a class.

¢ A protected data/method in a public class can be
accessed by any class in the same package OF its

subclasses, even if the subclasses are in a
different package.
Visibility increases

—
private, none (if no modifier is used), protected, public

e M

STUDENTS-HUB.com Uploaded By: anonym201us

10/21/2018

Accessibility Summary

Modhfier Accessed Accessed Accessed Accessed
on members from the from the from a from a different
in a class same class same package subclass package

public v v/ W W/

protected V4 v / -
default v v - -
private v - - -

e “

Visibility Modifiers

package pl;
public class Cc1 { public class C2 {
public int =; Cl o = new Cl1{);
protected int ¥; can access 0.7
int z; can access 0.V7
private int u; can access 0.z;

cannot access o.u;
protected void m{} {
} can invoke o.m{};

Py
package p2;
public class C3 public class <4 public class C5 |
extends C1 { extends Cl1 { Cl o = new Cl{};
can access ¥; can access Xj Ccan access o.X;
can access y; can access y; cannot access o.y;
can access z; cannot access z7 cannot access o0.z;
cannot access u; cannot access u; cannot access o.u;
can invoke m{); can invoke m{); cannot invoke o.m{};
} } I

STUDENTS-HUB.com Uploaded By: anonymzozus

10/21/2018

A Subclass Cannot Weaken the Accessibility

¢ A subclass may override a protected
method in its superclass and change its
visibility to public.

+» However, a subclass cannot weaken the
accessibility of a method defined in the
superclass.

s For example, if a method is defined as
public in the superclass, it must be defined as
public in the subclass.

ol 45

The final Modifier

% The final class cannot be extended:
final class Math {

}

*» The final variable is a constant:
final static double Pl = 3.14159;

% The final method cannot be
overridden by its subclasses.

e

STUDENTS-HUB.com Uploaded By: anonym%?’us

10/21/2018

Note

s The modifiers are used on classes
and class members (data and
methods), except that the final modifier
can also be used on local variables in a
method.

+» A final local variable is a constant
inside a method.

e 47

STUDENTS-HUB.com Uploaded By: anonymchlus

