Chapter 2: Algorithm Analysis.
* Algorithm Analysis:
taking a CPU = 1 GHz = 10⁹ Hz
for (i=0, i < n , i+t) = --n
for (j=0, j < n , j+t) = --n
for (k=0, K
NGade
taking n=10⁶ , we have n³ iterations, and:
Time =
$$\frac{10^{3}}{10^{9}} = \frac{10^{19}}{10^{9}} = 10^{7}$$
 sec = 21 yr
if we have 2 loops only then:
Time = $\frac{(10^{12})^{2}}{10^{9}} = 10^{3}$ sec = 16 min
but if = we have blue loop only then:
Time = $\frac{10^{6}}{10^{9}} = 10^{-3}$ sec
D
So, we shalld study algorithms for huge dita only
mote i Algorithms I studied only in loops (for loop
while loop, do while loop and recorsions).

* Mathematical Definitions;

1)
$$T(n) = O(f(n))$$
, if there are constants C and
no, such that $T(n) \leq C.(f(n))$
when $n \geq n_0$

2)
$$T(M) = \Omega(g(M))$$
, if there are constants C and no
such that $T(m) \supseteq C_1(g(M))$ when

n>no,

3)
$$T(n) = \bigcirc$$
 (h(n)), if and only if $T(n) = \bigcirc$ (h(n))
and $T(n) = \bigcirc$ (h(n)).

Note that 1000 n <
$$n^2$$
, since that algorithing
should be studied only for huge data.

Taking
$$T_{1}(n) = O(f(n))$$
, $T_{2}(n) = O(g(n))$, then:
1) $T_{1}(n) + T_{2}(n) = max (O(f(n)), O(g(n)))$
2) $T_{1}(n) + T_{2}(n) = O(f(n) + g(n))$

STUDENTS-HUB.com

exis
$$f(M) = \pi n^{2} + is n^{2} + an + q = s \pi n^{3} + is n^{3} + a^{3} + q + h$$

$$\Rightarrow T(n) = O(n^{3}) \qquad \begin{bmatrix} T_{1} \\ T_{2} \\ T_{3} \\ T_{4} \\ T_{4$$

$$\frac{h^{2}}{h^{2} - h} = \int_{0}^{1} \int_$$

$$T(n) = T(n+1) + c$$

$$T(n+2) = T(n+1) + c$$

$$T(n+3) = d + n C$$

$$T(n) = d + n C$$

$$T(n) = d + n C$$

$$T(n) = \int d + n C$$

$$Swile ly = T(w) = 2^{2} \left[2 T \left(\frac{w}{2^{2}}\right) + \frac{1}{2^{2}} \right] + 2w$$

$$T(w) = 2^{3} T \left(\frac{w}{2^{2}}\right) + 3w$$

$$T(w) = 2^{k} T \left(\frac{w}{2^{k}}\right) + kw$$

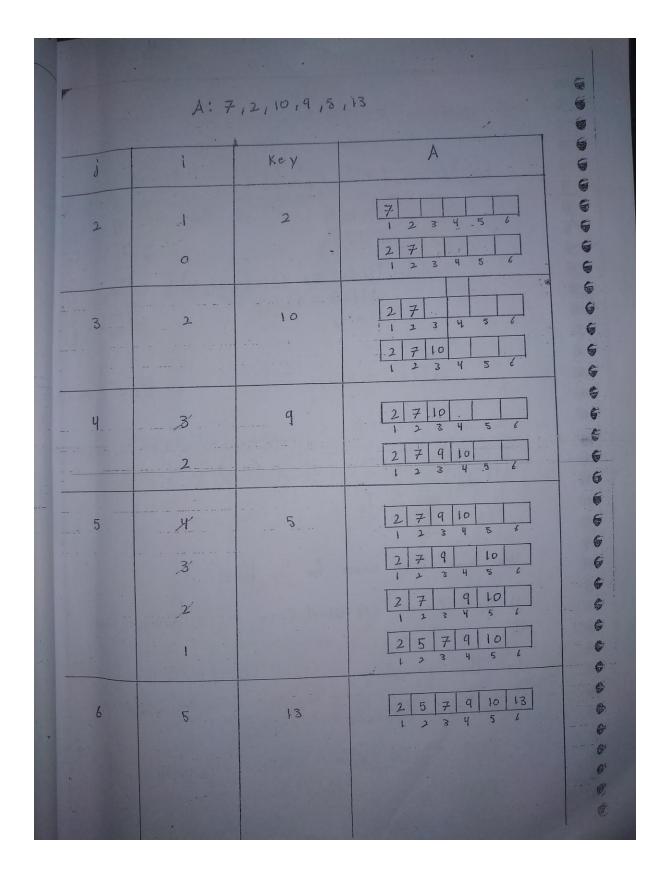
$$Now = ket = k = k \Rightarrow n = 2^{k} \Rightarrow k = \log n^{k}$$

$$lo_{3} n = \begin{cases} lo_{3} n < 1 & n < t \\ \frac{1}{2} n > 1 & n > t \end{cases}$$

$$So_{1} - T(w) = n T(w) + n \log n = nd + n \log n$$
and since $n \log n > n$

$$T(w) = O(n \log n)$$

-書 * Insertion Sort : for (j=2; j <=n ; j++) { -Key = A [j];i = j - 1;-while ((1>0) && (AE13 > Key)){ A [i+i] = A [i];-1--- ; A [1+1] = Key;



for
$$(j=r)$$
, $j = n$, $j \neq ++)$

$$Key = A [j];$$

$$i = j - 1;$$

$$Mi c_{3}$$

$$H c_{4}$$

$$H c_{5}$$

$$H c_{5}$$

$$H c_{5}$$

$$H c_{6}$$

$$H c_{6}$$

$$H c_{6}$$

$$H c_{7}$$

$$H$$

note: the difference between bubble surfley to interference is that:
In bubble sorting:

$$for (i=1) i < n \ j \ i++) = -n$$

$$for (i=1) i < n \ j \ i++) = -n$$

$$for (i=1) i < n \ j \ i++) = -n$$

$$for (i=1) i < n \ j \ i++) = -n$$

$$for (i=1) i < n \ j \ i++) = -n$$

$$for (i=1) i < n \ j \ i++) = -n$$

$$for (i=1) i < n \ j \ i++) = -n$$

$$for (i=1) i < n \ j \ i++) = -n$$

$$for (i=1) i < n \ j \ i++) = -n$$

$$for (i=1) i < n \ j \ i++) = -n$$

$$for (i=1) i < n \ j \ i++) = -n$$

$$for (i=1) i < n \ j \ i++) = -n$$

$$for (i=1) i < n \ j \ i++) = -n$$

$$for (i=1) i < n \ i++) = -n$$

$$for (i=1) i < n \ i++) = -n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$for (i=1) i < n \ i++ i < n$$

$$T(n) = s^{2} T(n/s^{2}) + s^{2} (10) + s(10) + 10$$

$$T(n) = s^{K} T(n/s^{K}) + s^{K^{n}} (10) + s^{K^{n}} (10) + 10$$

$$= s^{K} T(n/s^{K}) + 10 (s^{K^{n}} + s^{K^{n}} + s^{K^{n}})$$

$$= s^{K} T(n/s^{K}) + 10 (s^{K^{n}} + s^{K^{n}} + s^{K^{n}})$$

$$= s^{K} T(n/s^{K}) + 10 (s^{K^{n}} + s^{K^{n}} + s^{K^{n}})$$

$$= s^{K} T(n/s^{K}) + 10 (s^{K^{n}} + s^{K^{n}}) + s^{K^{n}} (s^{K^{n}} + s^{K^{n}})$$

$$= s^{K} T(n/s^{K}) + 10 (s^{K^{n}} + s^{K^{n}}) + s^{K^{n}} (s^{K^{n}} + s^{K^{n}})$$

$$T(n) = n T(n) + 10 (n^{n})$$

$$= n d + 10 n^{-10}$$

$$= 0 (n)$$

$$n t_{k}: \qquad \begin{cases} K^{k} + a^{K^{n}} + a^{K^{n}} + a^{K^{n}} + s^{K^{n}} +$$

Uploaded By: anonymous

q

exa: Find T(n) for the following code:
i=n;
while (i>o)?
for (i=o)! j < i ; j ++!)?
$$\xi =$$

i!=2;
7
T(n) = $\int n + n + n + n + n + \frac{1}{2} + \frac{1}{12} + \frac{1}{12}$