
Objectives
 ■ To get an overview of exceptions and exception handling (§12.2).

 ■ To explore the advantages of using exception handling (§12.2).

 ■ To distinguish exception types: Error (fatal) vs. Exception (nonfatal)
and checked vs. unchecked (§12.3).

 ■ To declare exceptions in a method header (§12.4.1).

 ■ To throw exceptions in a method (§12.4.2).

 ■ To write a try-catch block to handle exceptions (§12.4.3).

 ■ To explain how an exception is propagated (§12.4.3).

 ■ To obtain information from an exception object (§12.4.4).

 ■ To develop applications with exception handling (§12.4.5).

 ■ To use the finally clause in a try-catch block (§12.5).

 ■ To use exceptions only for unexpected errors (§12.6).

 ■ To rethrow exceptions in a catch block (§12.7).

 ■ To create chained exceptions (§12.8).

 ■ To define custom exception classes (§12.9).

 ■ To discover file/directory properties, to delete and rename files/
directories, and to create directories using the File class (§12.10).

 ■ To write data to a file using the PrintWriter class (§12.11.1).

 ■ To use try-with-resources to ensure that the resources are closed
 automatically (§12.11.2).

 ■ To read data from a file using the Scanner class (§12.11.3).

 ■ To understand how data is read using a Scanner (§12.11.4).

 ■ To develop a program that replaces text in a file (§12.11.5).

 ■ To read data from the Web (§12.12).

 ■ To develop a Web crawler (§12.13).

EĐûýĈČāćĆ HùĆüĄāĆÿ
ùĆü TýĐČ I/O

CHAPTER

12

M12_LIAN9966_12_SE_C12.indd 453 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

454 Chapter 12 Exception Handling and Text I/O

12.1 Introduction
Exceptions are runtime errors. Exception handling enables a program to deal with
runtime errors and continue its normal execution.

Runtime errors occur while a program is running if the JVM detects an operation that is
 impossible to carry out. For example, if you access an array using an index that is out of
bounds, you will get a runtime error with an ArrayIndexOutOfBoundsException. If you
enter a double value when your program expects an integer, you will get a runtime error with
an InputMismatchException.

In Java, runtime errors are thrown as exceptions. An exception is an object that represents
an error or a condition that prevents execution from proceeding normally. If the exception is
not handled, the program will terminate abnormally. How can you handle the exception so the
program can continue to run or else terminate gracefully? This chapter introduces this subject,
and text input and output.

12.2 Exception-Handling Overview
Exceptions are thrown from a method. The caller of the method can catch and handle
the exception.

To demonstrate exception handling, including how an exception object is created and thrown, let’s
begin with the example in Listing 12.1, which reads in two integers and displays their quotient.

LISTING 12.1 Quotient.java
 1 import java.util.Scanner;
 2
 3 public class Quotient {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 // Prompt the user to enter two integers
 8 System.out.print("Enter two integers: ");
 9 int number1 = input.nextInt();
10 int number2 = input.nextInt();
11
12 System.out.println(number1 + " / " + number2 + " is " +
13 (number1 / number2));
14 }
15 }

Point
Key

Point
Key

Enter two integers: 5 2
5 / 2 is 2

Enter two integers: 3 0
Exception in thread "main" java.lang.ArithmeticException: / by zero
at Quotient.main(Quotient.java:13)

If you entered 0 for the second number, a runtime error would occur, because you cannot
divide an integer by 0. (Note a floating-point number divided by 0 does not raise an exception.)
A simple way to fix this error is to add an if statement to test the second number, as shown
in Listing 12.2.

exception

read two integers

integer division

VideoNote

Exception-handling
advantages

M12_LIAN9966_12_SE_C12.indd 454 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

12.2 Exception-Handling Overview 455

LISTING 12.2 QuotientWithIf.java
 1 import java.util.Scanner;
 2
 3 public class QuotientWithIf {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6
 7 // Prompt the user to enter two integers
 8 System.out.print("Enter two integers: ");
 9 int number1 = input.nextInt();
10 int number2 = input.nextInt();
11
12 if (number2 != 0)
13 System.out.println(number1 + " / " + number2
14 + " is " + (number1 / number2));
15 else
16 System.out.println("Divisor cannot be zero ");
17 }
18 }

Enter two integers: 5 0
Divisor cannot be zero

Before introducing exception handling, let us rewrite Listing 12.2 to compute a quotient using
a method, as shown in Listing 12.3.

LISTING 12.3 QuotientWithMethod.java
 1 import java.util.Scanner;
 2
 3 public class QuotientWithMethod {
 4 public static int quotient(int number1, int number2) {
 5 if (number2 == 0) {
 6 System.out.println("Divisor cannot be zero");
 7 System.exit(1);
 8 }
 9
10 return number1 / number2;
11 }
12
13 public static void main(String[] args) {
14 Scanner input = new Scanner(System.in);
15
16 // Prompt the user to enter two integers
17 System.out.print("Enter two integers: ");
18 int number1 = input.nextInt();
19 int number2 = input.nextInt();
20
21 int result = quotient(number1, number2);
22 System.out.println(number1 + " / " + number2 + " is "
23 + result);
24 }
25 }

read two integers

test number2

quotient method

terminate the program

read two integers

invoke method

M12_LIAN9966_12_SE_C12.indd 455 17/09/19 11:21 AM

STUDENTS-HUB.com

BelalHamdeh
Underline
إنهاء

https://students-hub.com

456 Chapter 12 Exception Handling and Text I/O

The method quotient (lines 4–11) returns the quotient of two integers. If number2 is 0, it
cannot return a value, so the program is terminated in line 7. This is clearly a problem. You
should not let the method terminate the program—the caller should decide whether to termi-
nate the program.

How can a method notify its caller when an exception has occurred? Java enables a method
to throw an exception that can be caught and handled by the caller. Listing 12.3 can be rewrit-
ten, as shown in Listing 12.4.

LISTING 12.4 QuotientWithException.java
 1 import java.util.Scanner;
 2
 3 public class QuotientWithException {
 4 public static int quotient(int number1, int number2) {
 5 if (number2 == 0)
 6 throw new ArithmeticException("Divisor cannot be zero");
 7
 8 return number1 / number2;
 9 }
10
11 public static void main(String[] args) {
12 Scanner input = new Scanner(System.in);
13
14 // Prompt the user to enter two integers
15 System.out.print("Enter two integers: ");
16 int number1 = input.nextInt();
17 int number2 = input.nextInt();
18
19 try {
20 int result = quotient(number1, number2);
21 System.out.println(number1 + " / " + number2 + " is "
22 + result);
23 }
24 catch (ArithmeticException ex) {
25 System.out.println("Exception: an integer " +
26 "cannot be divided by zero ");
27 }
28
29 System.out.println("Execution continues ...");
30 }
31 }

quotient method

throw exception

read two integers

try block
invoke method

catch block

If an
Arithmetic
Exception
occurs

Enter two integers: 5 3
5 / 3 is 1

Enter two integers: 5 0
Divisor cannot be zero

Enter two integers: 5 3
5 / 3 is 1
Execution continues ...

M12_LIAN9966_12_SE_C12.indd 456 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

12.2 Exception-Handling Overview 457

If number2 is 0, the method throws an exception (line 6) by executing

throw new ArithmeticException("Divisor cannot be zero");

The value thrown, in this case new ArithmeticException("Divisor cannot be
zero"), is called an exception. The execution of a throw statement is called throwing an
exception. The exception is an object created from an exception class. In this case, the
exception class is java.lang.ArithmeticException. The constructor Arithmetic-
Exception(str) is invoked to construct an exception object, where str is a message
that describes the exception.

When an exception is thrown, the normal execution flow is interrupted. As the name
suggests, to “throw an exception” is to pass the exception from one place to another. The
statement for invoking the method is contained in a try block. The try block (lines 19–23)
contains the code that is executed in normal circumstances. The exception is caught by the
catch block. The code in the catch block is executed to handle the exception. Afterward,
the statement (line 29) after the catch block is executed.

The throw statement is analogous to a method call, but instead of calling a method, it
calls a catch block. In this sense, a catch block is like a method definition with a param-
eter that matches the type of the value being thrown. Unlike a method, however, after the
catch block is executed, the program control does not return to the throw statement;
instead, it executes the next statement after the catch block.

The identifier ex in the catch–block header

catch (ArithmeticException ex)

acts very much like a parameter in a method. Thus, this parameter is referred to as a catch–
block parameter. The type (e.g., ArithmeticException) preceding ex specifies what
kind of exception the catch block can catch. Once the exception is caught, you can access
the thrown value from this parameter in the body of a catch block.

In summary, a template for a try-throw-catch block may look as follows:

try {
 Code to run;
 A statement or a method that may throw an exception;
 More code to run;
}
catch (type ex) {
 Code to process the exception;
}

An exception may be thrown directly by using a throw statement in a try block, or by
 invoking a method that may throw an exception.

The main method invokes quotient (line 20). If the quotient method executes nor-
mally, it returns a value to the caller. If the quotient method encounters an exception,
it throws the exception back to its caller. The caller’s catch block handles the exception.

Now you can see the advantage of using exception handling: It enables a method to
throw an exception to its caller, enabling the caller to handle the exception. Without this
capability, the called method itself must handle the exception or terminate the program.
Often the called method does not know what to do in case of error. This is typically the
case for the library methods. The library method can detect the error, but only the caller

throw statement

exception
throw exception

handle exception

catch–block parameter

advantage

Enter two integers: 5 0
Exception: an integer cannot be divided by zero
Execution continues ...

M12_LIAN9966_12_SE_C12.indd 457 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

BelalHamdeh
Underline
توقف.

mnawahdah
Underline
مماثل

https://students-hub.com

458 Chapter 12 Exception Handling and Text I/O

knows what needs to be done when an error occurs. The key benefit of exception handling is
separating the detection of an error (done in a called method) from the handling of an error
(done in the calling method).

Many library methods throw exceptions. Listing 12.5 gives an example that handles an
InputMismatchException when reading an input.

LISTING 12.5 InputMismatchExceptionDemo.java
 1 import java.util.*;
 2
 3 public class InputMismatchExceptionDemo {
 4 public static void main(String[] args) {
 5 Scanner input = new Scanner(System.in);
 6 boolean continueInput = true;
 7
 8 do {
 9 try {
10 System.out.print("Enter an integer: ");
11 int number = input.nextInt();
12
13 // Display the result
14 System.out.println(
15 "The number entered is " + number);
16
17 continueInput = false;
18 }
19 catch (InputMismatchException ex) {
20 System.out.println("Try again. (" +
21 "Incorrect input: an integer is required)");
22 input.nextLine(); // Discard input
23 }
24 } while (continueInput);
25 }
26 }

create a Scanner

try block

catch block

If an
InputMismatch
Exception
occurs

When executing input.nextInt() (line 11), an InputMismatchException occurs if
the input entered is not an integer. Suppose 3.5 is entered. An InputMismatchException
occurs and the control is transferred to the catch block. The statements in the catch block
are now executed. The statement input.nextLine() in line 22 discards the current input line
so the user can enter a new line of input. The variable continueInput controls the loop. Its
initial value is true (line 6) and it is changed to false (line 17) when a valid input is received.
Once a valid input is received, there is no need to continue the input.

 12.2.1 What is the advantage of using exception handling?

 12.2.2 Which of the following statements will throw an exception?

System.out.println(1 / 0);
System.out.println(1.0 / 0);

Point
Check

Enter an integer: 3.5
Try again. (Incorrect input: an integer is required)
Enter an integer: 4
The number entered is 4

M12_LIAN9966_12_SE_C12.indd 458 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

12.3 Exception Types 459

 12.2.3 Point out the problem in the following code. Does the code throw any exceptions?

long value = Long.MAX_VALUE + 1;
System.out.println(value);

 12.2.4 What does the JVM do when an exception occurs? How do you catch an
exception?

 12.2.5 What is the output of the following code?

public class Test {
 public static void main(String[] args) {
 try {
 int value = 30;
 if (value < 40)
 throw new Exception("value is too small");
 }
 catch (Exception ex) {
 System.out.println(ex.getMessage());
 }
 System.out.println("Continue after the catch block");
 }
}

What would be the output if the line

int value = 30;

were changed to

int value = 50;

 12.2.6 Show the output of the following code:

public class Test {
 public static void main(String[] args) {
 for (int i = 0; i < 2; i++) {
 System.out.print(i + " ");
 try {
 System.out.println(1 / 0);
 }
 catch (Exception ex) {
 }
 }
 }
}

public class Test {
 public static void main(String[] args) {
 try {
 for (int i = 0; i < 2; i++) {
 System.out.print(i + " ");
 System.out.println(1 / 0);
 }
 }
 catch (Exception ex) {
 }
 }
}

(b)(a)

12.3 Exception Types
Exceptions are objects, and objects are defined using classes. The root class for
exceptions is java.lang.Throwable.

The preceding section used the classes ArithmeticException and InputMismatch-
Exception. Are there any other types of exceptions you can use? Can you define your
own exception classes? Yes. There are many predefined exception classes in the Java API.
 Figure 12.1 shows some of them, and in Section 12.9, you will learn how to define your own
 exception classes.

Point
Key

M12_LIAN9966_12_SE_C12.indd 459 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

BelalHamdeh
Sticky Note
NO

BelalHamdeh
Sticky Note
print the error and stop the system

BelalHamdeh
Sticky Note
value is too small
Continue after the catch block

BelalHamdeh
Sticky Note
Continue after the catch block

BelalHamdeh
Sticky Note
0 1

BelalHamdeh
Sticky Note
0

https://students-hub.com

460 Chapter 12 Exception Handling and Text I/O

FIGURE 12.1 Exceptions thrown are instances of the classes shown in this diagram, or of subclasses of one of these classes.

Error

ClassNotFoundException

Many more classes

Many more classes

IOException

RuntimeException

LinkageError

VirtualMachineError

Object Throwable

Exception

Many more classes

ArithmeticException

NullPointerException

IndexOutOfBoundsException

IllegalArgumentException

Note
The class names Error, Exception, and RuntimeException are somewhat
 confusing. All three of these classes are exceptions and all of the errors occur at runtime.

The Throwable class is the root of exception classes. All Java exception classes inherit
directly or indirectly from Throwable. You can create your own exception classes by
 extending Exception or a subclass of Exception.

The exception classes can be classified into three major types: system errors, exceptions,
and runtime exceptions.

 ■ System errors are thrown by the JVM and are represented in the Error class. The
Error class describes internal system errors, though such errors rarely occur. If
one does, there is little you can do beyond notifying the user and trying to terminate
the program gracefully. Examples of subclasses of Error are listed in Table 12.1.

system error

exception

Class Reasons for Exception

LinkageError A class has some dependency on another class, but the latter class has
changed incompatibly after the compilation of the former class.

VirtualMachineError The JVM is broken or has run out of the resources it needs in order to
 continue operating.

TABLE 12.1 Examples of Subclasses of Error

 ■ Exceptions are represented in the Exception class, which describes errors caused by
your program and by external circumstances. These errors can be caught and handled
by your program. Examples of subclasses of Exception are listed in Table 12.2.

Class Reasons for Exception

ClassNotFoundException Attempt to use a class that does not exist. This exception would occur, for example, if you tried to
run a nonexistent class using the java command or if your program were composed of, say, three
class files, only two of which could be found.

IOException Related to input/output operations, such as invalid input, reading past the end of a file, and opening
a nonexistent file. Examples of subclasses of IOException are InterruptedIOException,
EOFException (EOF is short for End of File), and FileNotFoundException.

TABLE 12.2 Examples of Subclasses of Exception

M12_LIAN9966_12_SE_C12.indd 460 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

BelalHamdeh
Underline
حاول استخدام فئة غير موجودة. قد يحدث هذا الاستثناء ، على سبيل المثال ، إذا حاولت ذلك
قم بتشغيل فئة غير موجودة باستخدام الأمر java أو إذا كان برنامجك يتكون من ثلاثة ، على سبيل المثال
class ، اثنان منها فقط يمكن العثور عليهما.

https://students-hub.com

12.3 Exception Types 461

 ■ Runtime exceptions are represented in the RuntimeException class, which describes
programming errors, such as bad casting, accessing an out-of-bounds array, and
numeric errors. Runtime exceptions normally indicate programming errors. Examples
of subclasses are listed in Table 12.3.

runtime exception

Class Reasons for Exception

ArithmeticException Dividing an integer by zero. Note floating-point arithmetic does
not throw exceptions (see Appendix E, Special Floating-Point
Values).

NullPointerException Attempt to access an object through a null reference variable.

IndexOutOfBoundsException Index to an array is out of range.

IllegalArgumentException A method has passed an argument that is illegal or inappropriate.

TABLE 12.3 Examples of Subclasses of RuntimeException

RuntimeException, Error, and their subclasses are known as unchecked exceptions. All
other exceptions are known as checked exceptions, meaning the compiler forces the program-
mer to check and deal with them in a try-catch block or declare it in the method header.
Declaring an exception in the method header will be covered in Section 12.4.

In most cases, unchecked exceptions reflect programming logic errors that are unrecover-
able. For example, a NullPointerException is thrown if you access an object through a
reference variable before an object is assigned to it; an IndexOutOfBoundsException is
thrown if you access an element in an array outside the bounds of the array. These are logic
errors that should be corrected in the program. Unchecked exceptions can occur anywhere in
a program. To avoid cumbersome overuse of try-catch blocks, Java does not mandate that
you write code to catch or declare unchecked exceptions.

 12.3.1 Describe the Java Throwable class, its subclasses, and the types of exceptions.

 12.3.2 What RuntimeException will the following programs throw, if any?

unchecked exception
checked exception

Point
Check

public class Test {
 public static void main(String[] args) {
 System.out.println(1 / 0);
 }
}

(a)

public class Test {
 public static void main(String[] args) {
 int[] list = new int[5];
 System.out.println(list[5]);
 }
}

(b)

public class Test {
 public static void main(String[] args) {
 String s = "abc";
 System.out.println(s.charAt(3));
 }
}

(c)

public class Test {
 public static void main(String[] args) {
 Object o = new Object();
 String d = (String)o;
 }
}

(d)

public class Test {
 public static void main(String[] args) {
 Object o = null;
 System.out.println(o.toString());
 }
}

(e)

public class Test {
 public static void main(String[] args) {
 System.out.println(1.0 / 0);
 }
}

(f)

 12.3.3 What is a checked exception and what is an unchecked exception?

M12_LIAN9966_12_SE_C12.indd 461 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

462 Chapter 12 Exception Handling and Text I/O

12.4 Declaring, Throwing, and Catching Exceptions
A handler for an exception is found by propagating the exception backward through a
chain of method calls, starting from the current method.

The preceding sections gave you an overview of exception handling and introduced several
predefined exception types. This section provides an in-depth discussion of exception handling.

Java’s exception-handling model is based on three operations: declaring an exception,
throwing an exception, and catching an exception, as shown in Figure 12.2.

Point
Key

FIGURE 12.2 Exception handling in Java consists of declaring exceptions, throwing exceptions, and catching and
 processing exceptions.

Catch exception

Declare exception

Throw exception

method1() {

 try {
 invoke method2;
 }
 catch (Exception ex) {
 Process exception;
 }
}

method2() throws Exception {

 if (an error occurs) {

 throw new Exception();
 }
}

12.4.1 Declaring Exceptions
In Java, the statement currently being executed belongs to a method. The Java interpreter
invokes the main method to start executing a program. Every method must state the types of
checked exceptions it might throw. This is known as declaring exceptions. Because system
errors and runtime errors can happen to any code, Java does not require that you declare Error
and RuntimeException (unchecked exceptions) explicitly in the method. However, all other
exceptions thrown by the method must be explicitly declared in the method header so the caller
of the method is informed of the exception.

To declare an exception in a method, use the throws keyword in the method header, as in
this example:

public void myMethod() throws IOException

The throws keyword indicates myMethod might throw an IOException. If the method
might throw multiple exceptions, add a list of the exceptions, separated by commas, after
throws:

public void myMethod()
 throws Exception1, Exception2, ..., ExceptionN

Note
If a method does not declare exceptions in the superclass, you cannot override it to
declare exceptions in the subclass.

12.4.2 Throwing Exceptions
A program that detects an error can create an instance of an appropriate exception type and
throw it. This is known as throwing an exception. Here is an example: Suppose the program
detects that an argument passed to the method violates the method contract (e.g., the argument

declare exception

throw exception

M12_LIAN9966_12_SE_C12.indd 462 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

12.4 Declaring, Throwing, and Catching Exceptions 463

must be nonnegative, but a negative argument is passed); the program can create an instance
of IllegalArgumentException and throw it, as follows:

IllegalArgumentException ex =
 new IllegalArgumentException("Wrong Argument");
throw ex;

Or, if you prefer, you can use the following:

throw new IllegalArgumentException("Wrong Argument");

Note
IllegalArgumentException is an exception class in the Java API. In general,
each exception class in the Java API has at least two constructors: a no-arg construc-
tor and a constructor with a String argument that describes the exception.
This argument is called the exception message, which can be obtained by invoking
getMessage() from an exception object.

Tip
The keyword to declare an exception is throws, and the keyword to throw an exception
is throw.

12.4.3 Catching Exceptions
You now know how to declare an exception and how to throw an exception. When an exception
is thrown, it can be caught and handled in a try-catch block, as follows:

try {
 statements; // Statements that may throw exceptions
}
catch (Exception1 exVar1) {
 handler for exception1;
}
catch (Exception2 exVar2) {
 handler for exception2;
}
...
catch (ExceptionN exVarN) {
 handler for exceptionN;
}

If no exceptions arise during the execution of the try block, the catch blocks are skipped.
If one of the statements inside the try block throws an exception, Java skips the remaining

statements in the try block and starts the process of finding the code to handle the exception.
The code that handles the exception is called the exception handler; it is found by propagating
the exception backward through a chain of method calls, starting from the current method.
Each catch block is examined in turn, from first to last, to see whether the type of the excep-
tion object is an instance of the exception class in the catch block. If so, the exception object
is assigned to the variable declared and the code in the catch block is executed. If no handler
is found, Java exits this method, passes the exception to the method’s caller, and continues the
same process to find a handler. If no handler is found in the chain of methods being invoked,
the program terminates and prints an error message on the console. The process of finding a
handler is called catching an exception.

exception message

throws vs. throw

catch exception

exception handler
exception propagation

M12_LIAN9966_12_SE_C12.indd 463 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

464 Chapter 12 Exception Handling and Text I/O

Suppose the main method invokes method1, method1 invokes method2, method2
invokes method3, and method3 throws an exception, as shown in Figure 12.3. Consider the
following scenario:

 ■ If the exception type is Exception3, it is caught by the catch block for
handling exception ex3 in method2. statement5 is skipped and statement6 is
executed.

 ■ If the exception type is Exception2, method2 is aborted, the control is returned to
method1, and the exception is caught by the catch block for handling exception ex2
in method1. statement3 is skipped and statement4 is executed.

 ■ If the exception type is Exception1, method1 is aborted, the control is returned
to the main method, and the exception is caught by the catch block for handling
 exception ex1 in the main method. statement1 is skipped and statement2 is
executed.

 ■ If the exception type is not caught in method2, method1, or main, the program
terminates and statement1 and statement2 are not executed.

FIGURE 12.3 If an exception is not caught in the current method, it is passed to its caller. The process is repeated until
the exception is caught or passed to the main method.

main method {
 ...
 try {
 ...
 invoke method1;
 statement1;

 catch (Exception1 ex1) {
 process ex1;

 statement2;

method1 {
 ...
 try {
 ...
 invoke method2;
 statement3;

 catch (Exception2 ex2) {
 process ex2;

 statement4;

method2 {
 ...
 try {
 ...
 invoke method3;
 statement5;

 catch (Exception3 ex3) {
 process ex3;

 statement6;

An exception
is thrown in
method3

Call stack

main method main method

method1

main method

method1

main method

method1

method2 method2

method3

}

} } }

}

}

}

}

}

Note
Various exception classes can be derived from a common superclass. If a catch block
catches exception objects of a superclass, it can catch all the exception objects of the
subclasses of that superclass.

Note
The order in which exceptions are specified in catch blocks is important. A compile
error will result if a catch block for a superclass type appears before a catch block for a
subclass type. For example, the ordering in (a) below is erroneous, because
 RuntimeException is a subclass of Exception. The correct ordering should be as
shown in (b).

catch block

order of exception handlers

M12_LIAN9966_12_SE_C12.indd 464 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

Note
Java forces you to deal with checked exceptions. If a method declares a checked excep-
tion (i.e., an exception other than Error or RuntimeException), you must invoke
it in a try-catch block or declare to throw the exception in the calling method. For
example, suppose method p1 invokes method p2 and p2 may throw a checked excep-
tion (e.g., IOException); you have to write the code as shown in (a) or (b) below.

catch or declare checked
exceptions

try {
 ...
}
catch (Exception ex) {
 ...
}
catch (RuntimeException ex) {
 ...
}

(a) Wrong order

try {
 ...
}
catch (RuntimeException ex) {
 ...
}
catch (Exception ex) {
 ...
}

(b) Correct order

void p1() {
 try {
 p2();
 }
 catch (IOException ex) {
 ...
 }
}

(a) Catch exception

void p1() throws IOException {

 p2();

}

(b) Throw exception

Note
You can use the new JDK 7 multicatch feature to simplify coding for the exceptions with
the same handling code. The syntax is:

catch (Exception1 | Exception2 | ... | Exceptionk ex) {
 // Same code for handling these exceptions
}

Each exception type is separated from the next with a vertical bar (|). If one of the
 exceptions is caught, the handling code is executed.

12.4.4 Getting Information from Exceptions
An exception object contains valuable information about the exception. You may use the fol-
lowing instance methods in the java.lang.Throwable class to get information regarding
the exception, as shown in Figure 12.4. The printStackTrace() method prints stack trace
information on the console. The stack trace lists all the methods in the call stack, which provides

JDK 7 multicatch

methods in Throwable

FIGURE 12.4 Throwable is the root class for all exception objects.

java.lang.Throwable

+getMessage(): String

+toString(): String

+printStackTrace(): void

+getStackTrace():
 StackTraceElement[]

Returns the message that describes this exception object.

Returns the concatenation of three strings: (1) the full name of the exception
 class; (2) ":" (a colon and a space); and (3) the getMessage() method.

Prints the Throwable object and its call stack trace information on the
 console.

Returns an array of stack trace elements representing the stack trace
 pertaining to this exception object.

12.4 Declaring, Throwing, and Catching Exceptions 465

M12_LIAN9966_12_SE_C12.indd 465 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

466 Chapter 12 Exception Handling and Text I/O

LISTING 12.6 TestException.java
 1 public class TestException {
 2 public static void main(String[] args) {
 3 try {
 4 System.out.println(sum(new int[] {1, 2, 3, 4, 5}));
 5 }
 6 catch (Exception ex) {
 7 ex.printStackTrace();
 8 System.out.println("\n" + ex.getMessage());
 9 System.out.println("\n" + ex.toString());
10
11 System.out.println("\nTrace Info Obtained from getStackTrace");
12 StackTraceElement[] traceElements = ex.getStackTrace();
13 for (int i = 0; i < traceElements.length; i++) {
14 System.out.print("method " + traceElements[i].getMethodName());
15 System.out.print("(" + traceElements[i].getClassName() + ":");
16 System.out.println(traceElements[i].getLineNumber() + ")");
17 }
18 }
19 }
20
21 private static int sum(int[] list) {
22 int result = 0;
23 for (int i = 0; i <= list.length; i++)

invoke sum

printStackTrace()
getMessage()
toString()

getStackTrace()

cause an exception

valuable information for debugging runtime errors. The getStackTrace() method provides
programmatic access to the stack trace information printed by printStackTrace().

Listing 12.6 gives an example that uses the methods in Throwable to display exception
information. Line 4 invokes the sum method to return the sum of all the elements in the array.
There is an error in line 23 that causes the ArrayIndexOutOfBoundsException, a subclass
of IndexOutOfBoundsException. This exception is caught in the try-catch block. Lines
7, 8, and 9 display the stack trace, exception message, and exception object and m essage
using the printStackTrace(), getMessage(), and toString() methods, as shown in
 F igure 12.5. Line 12 brings stack trace elements into an array. Each element represents a
method call. You can obtain the method (line 14), class name (line 15), and exception line
number (line 16) for each element.

FIGURE 12.5 You can use the printStackTrace(), getMessage(), toString(), and
getStackTrace() methods to obtain information from exception objects.

printStackTrace()

getMessage()

toString()

getStackTrace()

M12_LIAN9966_12_SE_C12.indd 466 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

12.4 Declaring, Throwing, and Catching Exceptions 467

24 result += list[i];
25 return result;
26 }
27 }

12.4.5 Example: Declaring, Throwing, and Catching Exceptions
This example demonstrates declaring, throwing, and catching exceptions by modifying
the setRadius method in the Circle class in Listing 9.8, Circle.java (CircleWithPrivate
DataField). The new setRadius method throws an exception if the radius is negative.

Listing 12.7 defines a new circle class named CircleWithException, which is the same
as Circle in Listing 9.8 except that the setRadius(double newRadius) method throws
an IllegalArgumentException if the argument newRadius is negative.

LISTING 12.7 CircleWithException.java
 1 public class CircleWithException {
 2 /** The radius of the circle */
 3 private double radius;
 4
 5 /** The number of the objects created */
 6 private static int numberOfObjects = 0;
 7
 8 /** Construct a circle with radius 1 */
 9 public CircleWithException() {
10 this(1.0);
11 }
12
13 /** Construct a circle with a specified radius */
14 public CircleWithException(double newRadius) {
15 setRadius(newRadius);
16 numberOfObjects++;
17 }
18
19 /** Return radius */
20 public double getRadius() {
21 return radius;
22 }
23
24 /** Set a new radius */
25 public void setRadius(double newRadius)
26 throws IllegalArgumentException {
27 if (newRadius >= 0)
28 radius = newRadius;
29 else
30 throw new IllegalArgumentException(
31 "Radius cannot be negative");
32 }
33
34 /** Return numberOfObjects */
35 public static int getNumberOfObjects() {
36 return numberOfObjects;
37 }
38
39 /** Return the area of this circle */
40 public double findArea() {
41 return radius * radius * 3.14159;
42 }
43 }

declare exception

throw exception

M12_LIAN9966_12_SE_C12.indd 467 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

468 Chapter 12 Exception Handling and Text I/O

A test program that uses the new Circle class is given in Listing 12.8.

LISTING 12.8 TestCircleWithException.java
 1 public class TestCircleWithException {
 2 public static void main(String[] args) {
 3 try {
 4 CircleWithException c1 = new CircleWithException(5);
 5 CircleWithException c2 = new CircleWithException(−5);
 6 CircleWithException c3 = new CircleWithException(0);
 7 }
 8 catch (IllegalArgumentException ex) {
 9 System.out.println(ex);
10 }
11
12 System.out.println("Number of objects created: " +
13 CircleWithException.getNumberOfObjects());
14 }
15 }

try

catch

java.lang.IllegalArgumentException: Radius cannot be negative
Number of objects created: 1

The original Circle class remains intact except that the class name is changed to
 CircleWithException, a new constructor CircleWithException(newRadius) is added,
and the setRadius method now declares an exception and throws it if the radius is negative.

The setRadius method declares to throw IllegalArgumentException in the method
header (lines 25–32 in Listing 12.7 CircleWithException.java). The CircleWithException
class would still compile if the throws IllegalArgumentException clause (line 26) were
removed from the method declaration, since it is a subclass of RuntimeException and every
method can throw RuntimeException (an unchecked exception) regardless of whether it is
declared in the method header.

The test program creates three CircleWithException objects—c1, c2, and
c3—to test how to handle exceptions. Invoking new CircleWithException(−5)
(line 5 in Listing 12.8) causes the setRadius method to be invoked, which throws an
 IllegalArgumentException, because the radius is negative. In the catch block, the
type of the object ex is IllegalArgumentException, which matches the exception object
thrown by the setRadius method, so this exception is caught by the catch block.

The exception handler prints a short message, ex.toString() (line 9 in Listing 12.8),
about the exception, using System.out.println(ex).

Note that the execution continues in the event of the exception. If the handlers had not
caught the exception, the program would have abruptly terminated.

The test program would still compile if the try statement were not used, because the method
throws an instance of IllegalArgumentException, a subclass of Runtime Exception (an
unchecked exception).

 12.4.1 What is the purpose of declaring exceptions? How do you declare an exception
and where? Can you declare multiple exceptions in a method header?

 12.4.2 How do you throw an exception? Can you throw multiple exceptions in one
throw statement?

 12.4.3 What is the keyword throw used for? What is the keyword throws used for?

 12.4.4 Suppose statement2 causes an exception in the following try-catch block:

try {
 statement1;

Point
Check

M12_LIAN9966_12_SE_C12.indd 468 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

 statement2;
 statement3;
}
catch (Exception1 ex1) {
}
catch (Exception2 ex2) {
}

statement4;

Answer the following questions:

 ■ Will statement3 be executed?

 ■ If the exception is not caught, will statement4 be executed?

 ■ If the exception is caught in the catch block, will statement4 be executed?

 12.4.5 What is displayed when running the following program?

public class Test {
 public static void main(String[] args) {
 try {
 int[] list = new int[10];
 System.out.println("list[10] is " + list[10]);
 }
 catch (ArithmeticException ex) {
 System.out.println("ArithmeticException");
 }
 catch (RuntimeException ex) {
 System.out.println("RuntimeException");
 }
 catch (Exception ex) {
 System.out.println("Exception");
 }
 }
}

 12.4.6 What is displayed when running the following program?

public class Test {
 public static void main(String[] args) {
 try {
 method();
 System.out.println("After the method call");
 }
 catch (ArithmeticException ex) {
 System.out.println("ArithmeticException");
 }
 catch (RuntimeException ex) {
 System.out.println("RuntimeException");
 }
 catch (Exception e) {
 System.out.println("Exception");
 }
 }

 static void method() throws Exception {
 System.out.println(1 / 0);
 }
 }

12.4 Declaring, Throwing, and Catching Exceptions 469

M12_LIAN9966_12_SE_C12.indd 469 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

470 Chapter 12 Exception Handling and Text I/O

 12.4.7 What is displayed when running the following program?

public class Test {
 public static void main(String[] args) {
 try {
 method();
 System.out.println("After the method call");
 }
 catch (RuntimeException ex) {
 System.out.println("RuntimeException in main");
 }
 catch (Exception ex) {
 System.out.println("Exception in main");
 }
 }

 static void method() throws Exception {
 try {
 String s ="abc";
 System.out.println(s.charAt(3));
 }
 catch (RuntimeException ex) {
 System.out.println("RuntimeException in method()");
 }
 catch (Exception ex) {
 System.out.println("Exception in method()");
 }
 }
}

 12.4.8 What does the method getMessage() do?

 12.4.9 What does the method printStackTrace() do?

 12.4.10 Does the presence of a try-catch block impose overhead when no exception
occurs?

 12.4.11 Correct a compile error in the following code:

public void m(int value) {
 if (value < 40)
 throw new Exception("value is too small");

 }

12.5 The finally Clause
The finally clause is always executed regardless of whether an exception occurred or not.

Occasionally, you may want some code to be executed regardless of whether an exception
occurs or is caught. Java has a finally clause that can be used to accomplish this objective.
The syntax for the finally clause might look like this:

try {
 statements;
}
catch (TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Point
Key

M12_LIAN9966_12_SE_C12.indd 470 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

12.5 The finally Clause 471

The code in the finally block is executed under all circumstances, regardless of whether an
exception occurs in the try block or is caught. Consider three possible cases:

1. If no exception arises in the try block, finalStatements is executed and the next
statement after the try statement is executed.

2. If a statement causes an exception in the try block that is caught in a catch block, the
rest of the statements in the try block are skipped, the catch block is executed, and
the finally clause is executed. The next statement after the try statement is executed.

3. If one of the statements causes an exception that is not caught in any catch block,
the other statements in the try block are skipped, the finally clause is executed,
and the exception is passed to the caller of this method.

The code in the finally clause is often for closing files and for cleaning up resources. The
finally block executes even if there is a return statement prior to reaching the finally block.

Note
The catch block may be omitted when the finally clause is used, as shown in the
following code:

try {
 code may throw a non-checked exception; regardless of whether an
exception occurs, finalStatements are executed.

}
finally {
 finalStatements;
}

 12.5.1 Suppose you run the following code:

public static void main(String[] args) throws Exception2 {
 m();
 statement7;
}

public static void m() {
 try {
 statement1;
 statement2;
 statement3;
 }
 catch (Exception1 ex1) {
 statement4;
 }
 finally {
 statement5;
 }
 statement6;
}

Answer the following questions:

a. If no exception occurs, which statements are executed?

b. If statement2 throws an exception of type Exception1, which statements are
executed?

c. If statement2 throws an exception of type Exception2, which statements are
executed?

d. If statement2 throws an exception that is neither Exception1 nor Exception2, which
statements are executed?

omit catch block

Point
Check

M12_LIAN9966_12_SE_C12.indd 471 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

472 Chapter 12 Exception Handling and Text I/O

12.6 When to Use Exceptions
A method should throw an exception if the error needs to be handled by its caller.

The try block contains the code that is executed in normal circumstances. The catch block
contains the code that is executed in exceptional circumstances. Exception handling separates
error-handling code from normal programming tasks, thus making programs easier to read
and to modify. Be aware, however, that exception handling usually requires more time and
resources, because it requires instantiating a new exception object, rolling back the call stack,
and propagating the exception through the chain of method calls to search for the handler.

An exception occurs in a method. If you want the exception to be processed by its caller, you
should create an exception object and throw it. If you can handle the exception in the method
where it occurs, there is no need to throw or use exceptions.

In general, common exceptions that may occur in multiple classes in a project are candidates
for exception classes. Simple errors that may occur in individual methods are best handled
without throwing exceptions. This can be done by using if statements to check for errors.

When should you use a try-catch block in the code? Use it when you have to deal with
unexpected error conditions. Do not use a try-catch block to deal with simple, expected
situations. For example, the following code:

try {
 System.out.println(refVar.toString());
}
catch (NullPointerException ex) {
 System.out.println("refVar is null");
}

is better replaced by

if (refVar != null)
 System.out.println(refVar.toString());
else
 System.out.println("refVar is null");

Which situations are exceptional and which are expected is sometimes difficult to decide. The
point is not to abuse exception handling as a way to deal with a simple logic test.

 12.6.1 The following method checks whether a string is a numeric string:

public static boolean isNumeric(String token) {
 try {
 Double.parseDouble(token);
 return true;
 }
 catch (java.lang.NumberFormatException ex) {
 return false;
 }
}

Is it correct? Rewrite it without using exceptions.

12.7 Rethrowing Exceptions
Java allows an exception handler to rethrow the exception if the handler cannot
 process the exception, or simply wants to let its caller be notified of the exception.

The syntax for rethrowing an exception may look like this:

try {
 statements;

Point
Key

Point
Check

Point
Key

M12_LIAN9966_12_SE_C12.indd 472 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

12.8 Chained Exceptions 473

}
catch (TheException ex) {
 perform operations before exits;
 throw ex;
}

The statement throw ex rethrows the exception to the caller so other handlers in the caller
get a chance to process the exception ex.

 12.7.1 Suppose that statement2 may cause an exception in the following code:

try {
 statement1;
 statement2;
 statement3;
}
catch (Exception1 ex1) {
}
catch (Exception2 ex2) {
 throw ex2;
}
finally {
 statement4;
}
statement5;

Answer the following questions:

a. If no exception occurs, will statement4 or statement5 be executed?

b. If the exception is of type Exception1, will statement4 or statement5 be
executed?

c. If the exception is of type Exception2, will statement4 or statement5 be
executed?

d. If the exception is not Exception1 nor Exception2, will statement4 or
statement5 be executed?

12.8 Chained Exceptions
Throwing an exception along with another exception forms a chained exception.

In the preceding section, the catch block rethrows the original exception. Sometimes, you may
need to throw a new exception (with additional information) along with the original exception. This
is called chained exceptions. Listing 12.9 illustrates how to create and throw chained exceptions.

LISTING 12.9 ChainedExceptionDemo.java
 1 public class ChainedExceptionDemo {
 2 public static void main(String[] args) {
 3 try {
 4 method1();
 5 }
 6 catch (Exception ex) {
 7 ex.printStackTrace();
 8 }
 9 }
10
11 public static void method1() throws Exception {
12 try {
13 method2();

Point
Check

Point
Key

chained exception

stack trace

M12_LIAN9966_12_SE_C12.indd 473 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

474 Chapter 12 Exception Handling and Text I/O

14 }
15 catch (Exception ex) {
16 throw new Exception("New info from method1", ex);
17 }
18 }
19
20 public static void method2() throws Exception {
21 throw new Exception("New info from method2");
22 }
23 }

chained exception

throw exception

java.lang.Exception: New info from method1
 at ChainedExceptionDemo.method1(ChainedExceptionDemo.java:16)
 at ChainedExceptionDemo.main(ChainedExceptionDemo.java:4)
Caused by: java.lang.Exception: New info from method2
 at ChainedExceptionDemo.method2(ChainedExceptionDemo.java:21)
 at ChainedExceptionDemo.method1(ChainedExceptionDemo.java:13)
 ... 1 more

The main method invokes method1 (line 4), method1 invokes method2 (line 13), and
method2 throws an exception (line 21). This exception is caught in the catch block in
method1 and is wrapped in a new exception in line 16. The new exception is thrown and
caught in the catch block in the main method in line 6. The sample output shows the output
from the printStackTrace() method in line 7. The new exception thrown from method1
is displayed first, followed by the original exception thrown from method2.

 12.8.1 What would be the output if line 16 of Listing 12.9 is replaced by the following line?

throw new Exception("New info from method1");

12.9 Defining Custom Exception Classes
You can define a custom exception class by extending the java.lang.Exception class.

Java provides quite a few exception classes. Use them whenever possible instead of defining
your own exception classes. However, if you run into a problem that cannot be adequately
described by the predefined exception classes, you can create your own exception class,
derived from Exception or from a subclass of Exception, such as IOException.

In Listing 12.7, CircleWithException.java, the setRadius method throws an exception if
the radius is negative. Suppose you wish to pass the radius to the handler. In that case, you can
define a custom exception class, as shown in Listing 12.10.

LISTING 12.10 InvalidRadiusException.java
 1 public class InvalidRadiusException extends Exception {
 2 private double radius;
 3
 4 /** Construct an exception */
 5 public InvalidRadiusException(double radius) {
 6 super("Invalid radius " + radius);
 7 this.radius = radius;
 8 }
 9
10 /** Return the radius */
11 public double getRadius() {
12 return radius;
13 }
14 }

Point
Check

Point
Key

VideoNote

Create custom exception
classes

extends Exception

M12_LIAN9966_12_SE_C12.indd 474 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

12.9 Defining Custom Exception Classes 475

This custom exception class extends java.lang.Exception (line 1). The Exception class
extends java.lang.Throwable. All the methods (e.g., getMessage(), toString(), and
printStackTrace()) in Exception are inherited from Throwable. The Exception class
contains four constructors. Among them, the following constructors are often used:

java.lang.Exception

+Exception()

+Exception(message: String)

Constructs an exception with no message.

Constructs an exception with the specified message.

Constructs an exception with the specified message+Exception(message: String,
 cause: Exception) and a cause. This forms a chained exception.

Line 6 invokes the superclass’s constructor with a message. This message will be set in the
exception object and can be obtained by invoking getMessage() on the object.

Tip
Most exception classes in the Java API contain two constructors: a no-arg constructor
and a constructor with a message parameter.

To create an InvalidRadiusException, you have to pass a radius. Therefore, the
 setRadius method in Listing 12.7 can be modified as shown in Listing 12.11.

LISTING 12.11 TestCircleWithCustomException.java
 1 public class TestCircleWithCustomException {
 2 public static void main(String[] args) {
 3 try {
 4 new CircleWithCustomException(5);
 5 new CircleWithCustomException(−5);
 6 new CircleWithCustomException(0);
 7 }
 8 catch (InvalidRadiusException ex) {
 9 System.out.println(ex);
10 }
11
12 System.out.println("Number of objects created: " +
13 CircleWithCustomException.getNumberOfObjects());
14 }
15 }
16
17 class CircleWithCustomException {
18 /** The radius of the circle */
19 private double radius;
20
21 /** The number of objects created */
22 private static int numberOfObjects = 0;
23
24 /** Construct a circle with radius 1 */
25 public CircleWithCustomException() throws InvalidRadiusException {
26 this(1.0);
27 }
28
29 /** Construct a circle with a specified radius */
30 public CircleWithCustomException(double newRadius)
31 throws InvalidRadiusException {
32 setRadius(newRadius);
33 numberOfObjects++;
34 }
35

declare exception

M12_LIAN9966_12_SE_C12.indd 475 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

476 Chapter 12 Exception Handling and Text I/O

36 /** Return radius */
37 public double getRadius() {
38 return radius;
39 }
40
41 /** Set a new radius */
42 public void setRadius(double newRadius)
43 throws InvalidRadiusException {
44 if (newRadius >= 0)
45 radius = newRadius;
46 else
47 throw new InvalidRadiusException(newRadius);
48 }
49
50 /** Return numberOfObjects */
51 public static int getNumberOfObjects() {
52 return numberOfObjects;
53 }
54
55 /** Return the area of this circle */
56 public double findArea() {
57 return radius * radius * 3.14159;
58 }
59 }

throw exception

InvalidRadiusException: Invalid radius −5.0

Number of objects created: 1

The setRadius method in CircleWithCustomException throws an InvalidRadius-
Exception when radius is negative (line 47). Since InvalidRadiusException is a checked
exception, the setRadius method must declare it in the method header (line 43). Since the
constructors for CircleWithCustomException invoke the setRadius method to set a
new radius, and it may throw an InvalidRadiusException, the constructors are declared
to throw InvalidRadiusException (lines 25 and 31).

Invoking new CircleWithCustomException(−5) (line 5) throws an InvalidRadius-
Exception, which is caught by the handler. The handler displays the radius in the exception
object ex.

Tip
Can you define a custom exception class by extending RuntimeException? Yes, but
it is not a good way to go because it makes your custom exception unchecked. It is better
to make a custom exception checked, so the compiler can force these exceptions to be
caught in your program.

 12.9.1 How do you define a custom exception class?

 12.9.2 Suppose that the setRadius method throws the InvalidRadiusException
defined in Listing 12.10. What is displayed when running the following program?

public class Test {
 public static void main(String[] args) {
 try {
 method();
 System.out.println("After the method call");
 }
 catch (RuntimeException ex) {
 System.out.println("RuntimeException in main");
 }

checked custom exception

Point
Check

M12_LIAN9966_12_SE_C12.indd 476 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

12.10 The File Class 477

 catch (Exception ex) {
 System.out.println("Exception in main");
 }
 }

 static void method() throws Exception {
 try {
 Circle c1 = new Circle(1);
 c1.setRadius(−1);
 System.out.println(c1.getRadius());
 }
 catch (RuntimeException ex) {
 System.out.println("RuntimeException in method()");
 }
 catch (Exception ex) {
 System.out.println("Exception in method()");
 throw ex;
 }
 }
}

12.10 The File Class
The File class contains the methods for obtaining the properties of a file/directory,
and for renaming and deleting a file/directory.

Having learned exception handling, you are ready to step into file processing. Data stored in
the program are temporary; they are lost when the program terminates. To permanently store
the data created in a program, you need to save them in a file on a disk or other permanent
storage device. The file can then be transported and read later by other programs. Since data
are stored in files, this section introduces how to use the File class to obtain file/directory
properties, to delete and rename files/directories, and to create directories. The next section
introduces how to read/write data from/to text files.

Every file is placed in a directory in the file system. An absolute file name (or full
name) contains a file name with its complete path and drive letter. For example, c:\book\
Welcome.java is the absolute file name for the file Welcome.java on the Windows
operating system. Here, c:\book is referred to as the directory path for the file. Absolute
file names are machine dependent. On the UNIX platform, the absolute file name may be
/home/liang/book/ Welcome.java, where /home/liang/book is the directory path for the
file Welcome.java.

A relative file name is in relation to the current working directory. The complete
 directory path for a relative file name is omitted. For example, Welcome.java is a relative
file name. If the current working directory is c:\book, the absolute file name would be
c:\book\Welcome.java.

The File class is intended to provide an abstraction that deals with most of the machine-
dependent complexities of files and path names in a machine-independent fashion. The File
class contains the methods for obtaining file and directory properties, and for renaming and
deleting files and directories, as shown in Figure 12.6. However, the File class does not
contain the methods for reading and writing file contents.

The file name is a string. The File class is a wrapper class for the file name and its direc-
tory path. For example, new File("c:\\book") creates a File object for the directory
c:\book and new File("c:\\book\\test.dat") creates a File object for the file
c:\book\test.dat, both on Windows. You can use the File class’s isDirectory() method to
check whether the object represents a directory, and the isFile() method to check whether
the object represents a file.

Point
Key

why file?

absolute file name

directory path

relative file name

M12_LIAN9966_12_SE_C12.indd 477 17/09/19 11:21 AM

STUDENTS-HUB.com

BelalHamdeh
Highlight

https://students-hub.com

478 Chapter 12 Exception Handling and Text I/O

Caution
The directory separator for Windows is a backslash (\). The backslash is a special
 character in Java and should be written as \\ in a string literal (see Table 4.5).

Note
Constructing a File instance does not create a file on the machine. You can create a
File instance for any file name regardless of whether it exists or not. You can invoke
the exists() method on a File instance to check whether the file exists.

Do not use absolute file names in your program. If you use a file name such as c:\\book\\
Welcome.java, it will work on Windows but not on other platforms. You should use a file
name relative to the current directory. For example, you may create a File object using new
File("Welcome.java") for the file Welcome.java in the current directory. You may create
a File object using new File("image/us.gif") for the file us.gif under the image
 directory in the current directory. The forward slash (/) is the Java directory separator, which

\ in file names

Java directory separator (/)

relative file name

FIGURE 12.6 The File class can be used to obtain file and directory properties, to delete and rename files and directo-
ries, and to create directories.

java.io.File

+File(pathname: String)

+File(parent: String, child: String)

+File(parent: File, child: String)

+exists(): boolean

+canRead(): boolean

+canWrite(): boolean

+isDirectory(): boolean

+isFile(): boolean

+isAbsolute(): boolean

+isHidden(): boolean

+getAbsolutePath(): String

+getCanonicalPath(): String

+getName(): String

+getPath(): String

+getParent(): String

+lastModified(): long

+length(): long

+listFile(): File[]

+delete(): boolean

+renameTo(dest: File): boolean

+mkdir(): boolean

+mkdirs(): boolean

Creates a File object for the specified path name. The path name may be a
 directory or a file.

Creates a File object for the child under the directory parent. The child may be
 a file name or a subdirectory.

Creates a File object for the child under the directory parent. The parent is a
 File object. In the preceding constructor, the parent is a string.

Returns true if the file or the directory represented by the File object exists.

Returns true if the file represented by the File object exists and can be read.

Returns true if the file represented by the File object exists and can be written.

Returns true if the File object represents a directory.

Returns true if the File object represents a file.

Returns true if the File object is created using an absolute path name.

Returns true if the file represented in the File object is hidden. The exact
 definition of hidden is system dependent. On Windows, you can mark a file
 hidden in the File Properties dialog box. On Unix systems, a file is hidden if
 its name begins with a period (.) character.

Returns the complete absolute file or directory name represented by the File
 object.

Returns the same as getAbsolutePath() except that it removes redundant
 names, such as "." and ". .", from the path name, resolves symbolic links (on
 Unix), and converts drive letters to standard uppercase (on Windows).

Returns the last name of the complete directory and file name represented by
 the File object. For example, new File("c:\\book\\test.dat").getName() returns
 test.dat.
Returns the complete directory and file name represented by the File object.
 For example, new File("c:\\book\\test.dat").getPath() returns c:\book\test.dat.

Returns the complete parent directory of the current directory or the file
 represented by the File object. For example, new
 File("c:\\book\\test.dat").getParent() returns c:\book.

Returns the time that the file was last modified.
Returns the size of the file, or 0 if it does not exist or if it is a directory.

Returns the files under the directory for a directory File object.

Deletes the file or directory represented by this File object. The method returns
 true if the deletion succeeds.

Renames the file or directory represented by this File object to the specified name
 represented in dest. The method returns true if the operation succeeds.

Creates a directory represented in this File object. Returns true if the the directory is
 created successfully.

Same as mkdir() except that it creates directory along with its parent directories if
 the parent directories do not exist.

M12_LIAN9966_12_SE_C12.indd 478 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

is the same as on UNIX. The statement new File("image/us.gif") works on Windows,
UNIX, and any other platform.

Listing 12.12 demonstrates how to create a File object and use the methods in the File
class to obtain its properties. The program creates a File object for the file us.gif. This file is
stored under the image directory in the current directory.

LISTING 12.12 TestFileClass.java
 1 public class TestFileClass {
 2 public static void main(String[] args) {
 3 java.io.File file = new java.io.File("image/us.gif");
 4 System.out.println("Does it exist? " + file.exists());
 5 System.out.println("The file has " + file.length() + " bytes");
 6 System.out.println("Can it be read? " + file.canRead());
 7 System.out.println("Can it be written? " + file.canWrite());
 8 System.out.println("Is it a directory? " + file.isDirectory());
 9 System.out.println("Is it a file? " + file.isFile());
10 System.out.println("Is it absolute? " + file.isAbsolute());
11 System.out.println("Is it hidden? " + file.isHidden());
12 System.out.println("Absolute path is " +
13 file.getAbsolutePath());
14 System.out.println("Last modified on " +
15 new java.util.Date(file.lastModified()));
16 }
17 }

The lastModified() method returns the date and time when the file was last modified,
measured in milliseconds since the beginning of UNIX time (00:00:00 GMT, January 1, 1970).
The Date class is used to display it in a readable format in lines 14 and 15.

Figure 12.7a shows a sample run of the program on Windows and Figure 12.7b, a sample
run on UNIX. As shown in the figures, the path-naming conventions on Windows are different
from those on UNIX.

create a File
exists()
length()
canRead()
canWrite()
isDirectory()
isFile()
isAbsolute()
isHidden()

getAbsolutePath()

lastModified()

FIGURE 12.7 The program creates a File object and displays file properties.

(a) On Windows (b) On UNIX

12.10 The File Class 479

 12.10.1 What is wrong about creating a File object using the following statement?
new File("c:\book\test.dat");

 12.10.2 How do you check whether a file already exists? How do you delete a file? How
do you rename a file? Can you find the file size (the number of bytes) using the
File class? How do you create a directory?

 12.10.3 Can you use the File class for I/O? Does creating a File object create a file on
the disk?

Point
Check

M12_LIAN9966_12_SE_C12.indd 479 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

480 Chapter 12 Exception Handling and Text I/O

12.11 File Input and Output
Use the Scanner class for reading text data from a file, and the PrintWriter class
for writing text data to a file.

A File object encapsulates the properties of a file or a path, but it does not contain the methods
for writing/reading data to/from a file (referred to as data input and output, or I/O for short).
In order to perform I/O, you need to create objects using appropriate Java I/O classes. The
objects contain the methods for reading/writing data from/to a file. There are two types of files:
text and binary. Text files are essentially characters on disk. This section introduces how to
read/write strings and numeric values from/to a text file using the Scanner and PrintWriter
classes. Binary files will be introduced in Chapter 17.

12.11.1 Writing Data Using PrintWriter
The java.io.PrintWriter class can be used to create a file and write data to a text file.
First, you have to create a PrintWriter object for a text file as follows:

PrintWriter output = new PrintWriter(filename);

Then, you can invoke the print, println, and printf methods on the PrintWriter object
to write data to a file. Figure 12.8 summarizes frequently used methods in PrintWriter.

Point
Key

VideoNote

Write and read data

FIGURE 12.8 The PrintWriter class contains the methods for writing data to a text file.

java.io.PrintWriter

Creates a PrintWriter object for the specified file name string.
Creates a PrintWriter object for the specified file object.

Writes a string to the file.

prints a line separator. The line-separator string is defined

Writes a character to the file.
Writes an array of characters to the file.
Writes an int value to the file.
Writes a long value to the file.
Writes a float value to the file.
Writes a double value to the file.
Writes a boolean value to the file.

A println method acts like a print method; additionally, it

 by the system. It is \r\n on Windows and \n on Unix.

The printf method was introduced in §4.6, “Formatting
 Console Output.”

+print(s: String): void
+print(c: char): void
+print(cArray: char[]): void
+print(i: int): void
+print(l: long): void
+print(f: f loat): void
+print(d: double): void
+print(b: boolean): void

Also contains the overloaded
 println methods.

Also contains the overloaded
 printf methods.

+PrintWriter(filename: String)
+PrintWriter(file: File)

Listing 12.13 gives an example that creates an instance of PrintWriter and writes two
lines to the file scores.txt. Each line consists of a first name (a string), a middle-name initial
(a character), a last name (a string), and a score (an integer).

LISTING 12.13 WriteData.java

throws an exception
create File object
file exist?

 1 public class WriteData {
 2 public static void main(String[] args) throws java.io.IOException {
 3 java.io.File file = new java.io.File("scores.txt");
 4 if (file.exists()) {
 5 System.out.println("File already exists");
 6 System.exit(1);
 7 }
 8

M12_LIAN9966_12_SE_C12.indd 480 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

Lines 4–7 check whether the file scores.txt exists. If so, exit the program (line 6).
Invoking the constructor of PrintWriter will create a new file if the file does not exist. If the

file already exists, the current content in the file will be discarded without verifying with the user.
Invoking the constructor of PrintWriter may throw an I/O exception. Java forces you to

write the code to deal with this type of exception. For simplicity, we declare throws
 IOException in the main method header (line 2).

You have used the System.out.print, System.out.println, and System.out
.printf methods to write text to the console output. System.out is a standard Java object
for the console. You can create PrintWriter objects for writing text to any file using print,
println, and printf (lines 13–16).

The close() method must be used to close the file (line 19). If this method is not invoked,
the data may not be saved properly in the file.

Note
You can append data to an existing file using new PrintWriter(new FileOutputStream(file,
true)) to create a PrintWriter object. FileOutputStream will be introduced in Chapter 17.

Tip
When the program writes data to a file, it first stores the data temporarily in a buffer in
the memory. When the buffer is full, the data are automatically saved to the file on the
disk. Once you close the file, all the data left in the buffer are saved to the file on the disk.
Therefore, you must close the file to ensure that all data are saved to the file.

12.11.2 Closing Resources Automatically Using try-with-resources
Programmers often forget to close the file. JDK 7 provides the following try-with-resources
syntax that automatically closes the files.

try (declare and create resources) {
 Use the resource to process the file;
}

Using the try-with-resources syntax, we rewrite the code in Listing 12.13 as shown in
 Listing 12.14.

LISTING 12.14 WriteDataWithAutoClose.java
 1 public class WriteDataWithAutoClose {
 2 public static void main(String[] args) throws Exception {
 3 java.io.File file = new java.io.File("scores.txt");
 4 if (file.exists()) {
 5 System.out.println("File already exists");
 6 System.exit(0);

create PrintWriter

print data

close file

create a file

throws IOException

print method

close file

John T Smith 90

Eric K Jones 85

scores.txt

 9 // Create a file
10 java.io.PrintWriter output = new java.io.PrintWriter(file);
11
12 // Write formatted output to the file
13 output.print("John T Smith ");
14 output.println(90);
15 output.print("Eric K Jones ");
16 output.println(85);
17
18 // Close the file
19 output.close();
20 }
21 }

12.11 File Input and Output 481

M12_LIAN9966_12_SE_C12.indd 481 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

482 Chapter 12 Exception Handling and Text I/O

 7 }
 8
 9 try (
10 // Create a file
11 java.io.PrintWriter output = new java.io.PrintWriter(file);
12) {
13 // Write formatted output to the file
14 output.print("John T Smith ");
15 output.println(90);
16 output.print("Eric K Jones ");
17 output.println(85);
18 }
19 }
20 }

A resource is declared and created in the parentheses following the keyword try. The resources
must be a subtype of AutoCloseable such as a PrinterWriter that has the close()
method. A resource must be declared and created in the same statement, and multiple resources
can be declared and created inside the parentheses. The statements in the block (lines 12–18)
immediately following the resource declaration use the resource. After the block is finished,
the resource’s close() method is automatically invoked to close the resource. Using try-with-
resources can not only avoid errors, but also make the code simpler. Note the catch clause may
be omitted in a try-with-resources statement.

Note that (1) you have to declare the resource reference variable and create the resource alto-
gether in the try(...) clause; (2) the semicolon (;) in last statement in the try(...) clause
may be omitted; (3) You may create multiple AutoCloseable resources in the the try(...)
clause; (4) The try(...) clause can contain only the statements for creating resources. Here
is an example.

declare/create resource

use the resource

12.11.3 Reading Data Using Scanner
The java.util.Scanner class was used to read strings and primitive values from the
 console in Section 2.3, Reading Input from the Console. A Scanner breaks its input into
tokens delimited by whitespace characters. To read from the keyboard, you create a Scanner
for System.in, as follows:

Scanner input = new Scanner(System.in);

To read from a file, create a Scanner for a file, as follows:

Scanner input = new Scanner(new File(filename));

Figure 12.9 summarizes frequently used methods in Scanner.

try (
 Scanner input = new Scanner(System.in);
 PrintWriter output =
 new PrintWriter("c:\\temp\\temp.txt");
) {
 System.out.println(input.nextLine());
}

Declare reference
to resource

Create resource
objects

The ; for the
last statement
may be omitted

M12_LIAN9966_12_SE_C12.indd 482 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

FIGURE 12.9 The Scanner class contains the methods for scanning data.

java.util.Scanner

+Scanner(source: File)

+Scanner(source: String)

+close()

+hasNext(): boolean

+next(): String

+nextLine(): String

+nextByte(): byte

+nextShort(): short

+nextInt(): int

+nextLong(): long

+nextFloat(): float

+nextDouble(): double

+useDelimiter(pattern: String):
 Scanner

Creates a Scanner that produces values scanned from the specified file.

Creates a Scanner that produces values scanned from the specified string.

Closes this scanner.

Returns true if this scanner has more data to be read.

Returns next token as a string from this scanner.

Returns a line ending with the line separator from this scanner.

Returns next token as a byte from this scanner.

Returns next token as a short from this scanner.

Returns next token as an int from this scanner.

Returns next token as a long from this scanner.

Returns next token as a float from this scanner.

Returns next token as a double from this scanner.

Sets this scanner’s delimiting pattern and returns this scanner.

Note new Scanner(String) creates a Scanner for a given string. To create a Scanner to
read data from a file, you have to use the java.io.File class to create an instance of the
File using the constructor new File(filename) (line 6) and use new Scanner(File) to
create a Scanner for the file (line 9).

Invoking the constructor new Scanner(File) may throw an I/O exception, so the main
method declares throws Exception in line 4.

Each iteration in the while loop reads the first name, middle initial, last name, and score
from the text file (lines 12–19). The file is closed in line 22.

File class

throws Exception

Listing 12.15 gives an example that creates an instance of Scanner and reads data from
the file scores.txt.

LISTING 12.15 ReadData.java

create a File

create a Scanner

has next?
read items

 1 import java.util.Scanner;
 2
 3 public class ReadData {
 4 public static void main(String[] args) throws Exception {
 5 // Create a File instance
 6 java.io.File file = new java.io.File("scores.txt");
 7
 8 // Create a Scanner for the file
 9 Scanner input = new Scanner(file);
10
11 // Read data from a file
12 while (input.hasNext()) {
13 String firstName = input.next();
14 String mi = input.next();
15 String lastName = input.next();
16 int score = input.nextInt();
17 System.out.println(
18 firstName + " " + mi + " " + lastName + " " + score);
19 }
20
21 // Close the file
22 input.close();
23 }
24 }

John T Smith 90

Eric K Jones 85

scores.txt

12.11 File Input and Output 483

close file

M12_LIAN9966_12_SE_C12.indd 483 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

484 Chapter 12 Exception Handling and Text I/O

It is not necessary to close the input file (line 22), but it is a good practice to do so to release
the resources occupied by the file. You can rewrite this program using the try-with-resources
syntax. See liveexample.pearsoncmg.com/html/ReadDataWithAutoClose.html.

12.11.4 How Does Scanner Work?
Section 4.5.5 introduced token-based and line-based input. The token-based input methods
nextByte(), nextShort(), nextInt(), nextLong(), nextFloat(), nextDouble(), and
next() read input separated by delimiters. By default, the delimiters are whitespace characters.
You can use the useDelimiter(String regex) method to set a new pattern for delimiters.

How does an input method work? A token-based input first skips any delimiters (whitespace
characters by default) then reads a token ending at a delimiter. The token is then automatically
converted into a value of the byte, short, int, long, float, or double type for nextByte(),
nextShort(), nextInt(), nextLong(), nextFloat(), and nextDouble(), respectively.
For the next() method, no conversion is performed. If the token does not match the expected
type, a runtime exception java.util.InputMismatchException will be thrown.

Both methods next() and nextLine() read a string. The next() method reads a string
separated by delimiters and nextLine() reads a line ending with a line separator.

Note
The line-separator string is defined by the system. It is \r\n on Windows and \n on
UNIX. To get the line separator on a particular platform, use

String lineSeparator = System.getProperty("line.separator");

If you enter input from a keyboard, a line ends with the Enter key, which corresponds
to the \n character.

The token-based input method does not read the delimiter after the token. If the nextLine() method
is invoked after a token-based input method, this method reads characters that start from this delimiter
and end with the line separator. The line separator is read, but it is not part of the string returned by
nextLine().

Suppose a text file named test.txt contains a line

34 567

After the following code is executed,

Scanner input = new Scanner(new File("test.txt"));
int intValue = input.nextInt();
String line = input.nextLine();

intValue contains 34 and line contains the characters ' ', 5, 6, and 7.
What happens if the input is entered from the keyboard? Suppose you enter 34, press the

Enter key, then enter 567 and press the Enter key for the following code:

Scanner input = new Scanner(System.in);
int intValue = input.nextInt();
String line = input.nextLine();

You will get 34 in intValue and an empty string in line. Why? Here is the reason. The token-
based input method nextInt() reads in 34 and stops at the delimiter, which in this case is a line
separator (the Enter key). The nextLine() method ends after reading the line separator and returns
the string read before the line separator. Since there are no characters before the line separator, line
is empty. For this reason, you should not use a line-based input after a token-based input.

You can read data from a file or from the keyboard using the Scanner class. You can also
scan data from a string using the Scanner class. For example, the following code:

close file

change delimiter

InputMismatchException

next() vs. nextLine()

line separator

behavior of nextLine()

input from file

scan a string

M12_LIAN9966_12_SE_C12.indd 484 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

Scanner input = new Scanner("13 14");
int sum = input.nextInt() + input.nextInt();
System.out.println("Sum is " + sum);

displays

Sum is 27

12.11.5 Case Study: Replacing Text
Suppose you are to write a program named ReplaceText that replaces all occurrences of a
string in a text file with a new string. The file name and strings are passed as command-line
arguments as follows:

java ReplaceText sourceFile targetFile oldString newString

For example, invoking

java ReplaceText FormatString.java t.txt StringBuilder StringBuffer

replaces all the occurrences of StringBuilder by StringBuffer in the file
FormatString.java and saves the new file in t.txt.

Listing 12.16 gives the program. The program checks the number of arguments passed to
the main method (lines 7–11), checks whether the source and target files exist (lines 14–25),
creates a Scanner for the source file (line 29), creates a PrintWriter for the target file
(line 30), and repeatedly reads a line from the source file (line 33), replaces the text (line 34),
and writes a new line to the target file (line 35).

LISTING 12.16 ReplaceText.java
 1 import java.io.*;
 2 import java.util.*;
 3
 4 public class ReplaceText {
 5 public static void main(String[] args) throws Exception {
 6 // Check command line parameter usage
 7 if (args.length != 4) {
 8 System.out.println(
 9 "Usage: java ReplaceText sourceFile targetFile oldStr newStr");
10 System.exit(1);
11 }
12
13 // Check if source file exists
14 File sourceFile = new File(args[0]);
15 if (!sourceFile.exists()) {
16 System.out.println("Source file " + args[0] + " does not exist");
17 System.exit(2);
18 }
19
20 // Check if target file exists
21 File targetFile = new File(args[1]);
22 if (targetFile.exists()) {
23 System.out.println("Target file " + args[1] + " already exists");
24 System.exit(3);
25 }
26
27 try (
28 // Create input and output files
29 Scanner input = new Scanner(sourceFile);
30 PrintWriter output = new PrintWriter(targetFile); create a PrintWriter

create a Scanner

try-with-resources

target file exists?

source file exists?

check command usage

12.11 File Input and Output 485

M12_LIAN9966_12_SE_C12.indd 485 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

https://students-hub.com

486 Chapter 12 Exception Handling and Text I/O

31) {
32 while (input.hasNext()) {
33 String s1 = input.nextLine();
34 String s2 = s1.replaceAll(args[2], args[3]);
35 output.println(s2);
36 }
37 }
38 }
39 }

In a normal situation, the program is terminated after a file is copied. The program is terminated
abnormally if the command-line arguments are not used properly (lines 7–11), if the source
file does not exist (lines 14–18), or if the target file already exists (lines 22–25). The exit status
codes 1, 2, and 3 are used to indicate these abnormal terminations (lines 10, 17, and 24).

 12.11.1 How do you create a PrintWriter to write data to a file? What is the
 reason to declare throws Exception in the main method in Listing 12.13,
 WriteData.java? What would happen if the close() method were not invoked
in Listing 12.13?

 12.11.2 Show the contents of the file temp.txt after the following program is executed:

public class Test {
 public static void main(String[] args) throws Exception {
 java.io.PrintWriter output = new
 java.io.PrintWriter("temp.txt");
 output.printf("amount is %f %e\r\n", 32.32, 32.32);
 output.printf("amount is %5.4f %5.4e\r\n", 32.32, 32.32);
 output.printf("%6b\r\n", (1 > 2));
 output.printf("%6s\r\n", "Java");
 output.close();
 }
}

 12.11.3 Rewrite the code in the preceding question using a try-with-resources syntax.

 12.11.4 How do you create a Scanner to read data from a file? What is the reason to define
throws Exception in the main method in Listing 12.15, ReadData.java? What
would happen if the close() method were not invoked in Listing 12.15?

 12.11.5 What will happen if you attempt to create a Scanner for a nonexistent file?
What will happen if you attempt to create a PrintWriter for an existing file?

 12.11.6 Is the line separator the same on all platforms? What is the line separator on
Windows?

 12.11.7 Suppose you enter 45 57.8 789, then press the Enter key. Show the contents of
the variables after the following code is executed:

Scanner input = new Scanner(System.in);
int intValue = input.nextInt();
double doubleValue = input.nextDouble();
String line = input.nextLine();

 12.11.8 Suppose you enter 45, press the Enter key, enter 57.8, press the Enter key,
and enter 789, press the Enter key. Show the contents of the variables after the
 following code is executed:

Scanner input = new Scanner(System.in);
int intValue = input.nextInt();
double doubleValue = input.nextDouble();
String line = input.nextLine();

read a line
has next?

Point
Check

M12_LIAN9966_12_SE_C12.indd 486 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

12.12 Reading Data from the Web 487

12.12 Reading Data from the Web
Just like you can read data from a file on your computer, you can read data from a file
on the Web.

In addition to reading data from a local file on a computer or file server, you can also access
data from a file that is on the Web if you know the file’s URL (Uniform Resource Locator—the
unique address for a file on the Web). For example, www.google.com/index.html is the URL
for the file index.html located on the Google web server. When you enter the URL in a Web
browser, the Web server sends the data to your browser, which renders the data graphically.
Figure 12.10 illustrates how this process works.

Point
Key

FIGURE 12.10 The client retrieves files from a Web server.

Internet

Client Server

Web
Server

Local files

Web
Browser

Application
Program

For an application program to read data from a URL, you first need to create a URL object using
the java.net.URL class with this constructor:

public URL(String spec) throws MalformedURLException

For example, the following statement creates a URL object for http://www.google.com/index.html.

1 try {
2 URL url = new URL("http://www.google.com/index.html");
3 }
4 catch (MalformedURLException ex) {
5 ex.printStackTrace();
6 }

A MalformedURLException is thrown if the URL string has a syntax error. For example,
the URL string http:www.google.com/index.html would cause a MalformedURLException
runtime error because two slashes (//) are required after the colon (:). Note the http://
prefix is required for the URL class to recognize a valid URL. It would be wrong if you replace
line 2 with the following code:

URL url = new URL("www.google.com/index.html");

After a URL object is created, you can use the openStream() method defined in the URL class
to open an input stream and use this stream to create a Scanner object as follows:

Scanner input = new Scanner(url.openStream());

Now you can read the data from the input stream just like from a local file. The example in
Listing 12.17 prompts the user to enter a URL and displays the size of the file.

LISTING 12.17 ReadFileFromURL.java
 1 import java.util.Scanner;
 2
 3 public class ReadFileFromURL {
 4 public static void main(String[] args) {

M12_LIAN9966_12_SE_C12.indd 487 17/09/19 11:21 AM

STUDENTS-HUB.com

mnawahdah
Highlight

mnawahdah
Highlight

mnawahdah
Highlight

https://students-hub.com

488 Chapter 12 Exception Handling and Text I/O

 5 System.out.print("Enter a URL: ");
 6 String URLString = new Scanner(System.in).next();
 7
 8 try {
 9 java.net.URL url = new java.net.URL(URLString);
10 int count = 0;
11 Scanner input = new Scanner(url.openStream());
12 while (input.hasNext()) {
13 String line = input.nextLine();
14 count += line.length();
15 }
16
17 System.out.println("The file size is " + count + " characters");
18 }
19 catch (java.net.MalformedURLException ex) {
20 System.out.println("Invalid URL");
21 }
22 catch (java.io.IOException ex) {
23 System.out.println("I/O Errors: no such file");
24 }
25 }
26 }

enter a URL

create a URL object

create a Scanner object
more to read?
read a line

MalformedURLException

IOException

Enter a URL: http://liveexample.pearsoncmg.com/data/Lincoln.txt

The file size is 1469 characters

Enter a URL: http://www.yahoo.com

The file size is 190006 characters

The program prompts the user to enter a URL string (line 6) and creates a URL object
(line 9). The constructor will throw a java.net.MalformedURLException (line 19) if
the URL isn’t formed correctly.

The program creates a Scanner object from the input stream for the URL (line 11). If the
URL is formed correctly but does not exist, an IOException will be thrown (line 22). For
example, http://google.com/index1.html uses the appropriate form, but the URL itself does not
exist. An IOException would be thrown if this URL was used for this program.

 12.12.1 How do you create a Scanner object for reading text from a URL?

12.13 Case Study: Web Crawler
This case study develops a program that travels the Web by following hyperlinks.

The World Wide web, abbreviated as WWW, W3, or Web, is a system of interlinked hyper-
text documents on the Internet. With a web browser, you can view a document and follow the
hyperlinks to view other documents. In this case study, we will develop a program that auto-
matically traverses the documents on the Web by following the hyperlinks. This type of pro-
gram is commonly known as a web crawler. For simplicity, our program follows the hyperlink
that starts with http://. Figure 12.11 shows an example of traversing the Web. We start from
a Webpage that contains three URLs named URL1, URL2, and URL3. Following URL1 leads to
the page that contains three URLs named URL11, URL12, and URL13. Following URL2 leads
to the page that contains two URLs named URL21 and URL22. Following URL3 leads to the
page that contains four URLs named URL31, URL32, URL33, and URL34. Continue to traverse

MalformedURLException

Point
Check

Point
Key

web crawler

M12_LIAN9966_12_SE_C12.indd 488 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

12.13 Case Study: Web Crawler 489

the Web following the new hyperlinks. As you see, this process may continue forever, but we
will exit the program once we have traversed 100 pages.
The program follows the URLs to traverse the Web. To ensure that each URL is traversed
only once, the program maintains two lists of URLs. One list stores the URLs pending for
traversing, and the other stores the URLs that have already been traversed. The algorithm for
this program can be described as follows:

Add the starting URL to a list named listOfPendingURLs;
while listOfPendingURLs is not empty and size of listOfTraversedURLs
<= 100 {
 Remove a URL from listOfPendingURLs;
 if this URL is not in listOfTraversedURLs {
 Add it to listOfTraversedURLs;
 Display this URL;
 Read the page from this URL and for each URL contained in the page {
 Add it to listOfPendingURLs if it is not in listOfTraversedURLs;
 }
 }
}

Listing 12.18 gives the program that implements this algorithm.

LISTING 12.18 WebCrawler.java
 1 import java.util.Scanner;
 2 import java.util.ArrayList;
 3
 4 public class WebCrawler {
 5 public static void main(String[] args) {
 6 Scanner input = new Scanner(System.in);
 7 System.out.print("Enter a URL: ");
 8 String url = input.nextLine();
 9 crawler(url); // Traverse the Web from the a starting url
10 }
11
12 public static void crawler(String startingURL) {
13 ArrayList<String> listOfPendingURLs = new ArrayList<>();
14 ArrayList<String> listOfTraversedURLs = new ArrayList<>();

enter a URL
crawl from this URL

list of pending URLs
list of traversed URLs

FIGURE 12.11 Web crawler explores the web through hyperlinks.

URL1

URL2

URL3

Starting URL

URL11

URL12

URL13

URL1

URL31

URL32

URL33 URL4

URL3

URL21

URL22

URL2

… … … … … … … … …

M12_LIAN9966_12_SE_C12.indd 489 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

490 Chapter 12 Exception Handling and Text I/O

15
16 listOfPendingURLs.add(startingURL);
17 while (!listOfPendingURLs.isEmpty() &&
18 listOfTraversedURLs.size() <= 100) {
19 String urlString = listOfPendingURLs.remove(0);
20 if (!listOfTraversedURLs.contains(urlString)) {
21 listOfTraversedURLs.add(urlString);
22 System.out.println("Crawl " + urlString);
23
24 for (String s: getSubURLs(urlString)) {
25 if (!listOfTraversedURLs.contains(s))
26 listOfPendingURLs.add(s);
27 }
28 }
29 }
30 }
31
32 public static ArrayList<String> getSubURLs(String urlString) {
33 ArrayList<String> list = new ArrayList<>();
34
35 try {
36 java.net.URL url = new java.net.URL(urlString);
37 Scanner input = new Scanner(url.openStream());
38 int current = 0;
39 while (input.hasNext()) {
40 String line = input.nextLine();
41 current = line.indexOf("http:", current);
42 while (current > 0) {
43 int endIndex = line.indexOf("\"", current);
44 if (endIndex > 0) { // Ensure that a correct URL is found
45 list.add(line.substring(current, endIndex));
46 current = line.indexOf("http:", endIndex);
47 }
48 else
49 current = –1;
50 }
51 }
52 }
53 catch (Exception ex) {
54 System.out.println("Error: " + ex.getMessage());
55 }
56
57 return list;
58 }
59 }

add starting URL

get the first URL

URL traversed

add a new URL

read a line
search for a URL
end of a URL

URL ends with "
extract a URL
search for next URL

return URLs

Enter a URL: http://cs.armstrong.edu/liang
Crawl http://www.cs.armstrong.edu/liang
Crawl http://www.cs.armstrong.edu
Crawl http://www.armstrong.edu
Crawl http://www.pearsonhighered.com/liang
...

The program prompts the user to enter a starting URL (lines 7 and 8) and invokes the
 crawler(url) method to traverse the Web (line 9).

The crawler(url) method adds the starting url to listOfPendingURLs (line 16) and
repeatedly process each URL in listOfPendingURLs in a while loop (lines 17–29). It removes
the first URL in the list (line 19) and processes the URL if it has not been processed (lines 20–28).

M12_LIAN9966_12_SE_C12.indd 490 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

To process each URL, the program first adds the URL to listOfTraversedURLs (line 21). This
list stores all the URLs that have been processed. The getSubURLs(url) method returns a list of
URLs in the webpage for the specified URL (line 24). The program uses a foreach loop to add each
URL in the page into listOfPendingURLs if it is not in listOfTraversedURLs (lines 24–27).

The getSubURLs(url) method reads each line from the webpage (line 40) and searches
for the URLs in the line (line 41). Note a correct URL cannot contain line break characters.
Therefore, it is sufficient to limit the search for a URL in one line of the text in a webpage. For
simplicity, we assume that a URL ends with a quotation mark " (line 43). The method obtains a
URL and adds it to a list (line 45). A line may contain multiple URLs. The method continues to
search for the next URL (line 46). If no URL is found in the line, current is set to –1 (line 49).
The URLs contained in the page are returned in the form of a list (line 57).

The program terminates when the number of traversed URLs reaches 100 (line 18).
This is a simple program to traverse the Web. Later, you will learn the techniques to make

the program more efficient and robust.

 12.13.1 Before a URL is added to listOfPendingURLs, line 25 checks whether it has been
traversed. Is it possible that listOfPendingURLs contains duplicate URLs? If so,
give an example.

 12.13.2 Simplify the code in lines 20-28 as follows: 1. Delete lines 20 and 28; 2. Add an addi-
tional condition !listOfPendingURLs.contains(s) to the if statement in line 25.
Write the complete new code for the while loop in lines 17-29. Does this revision work?

Point
Check

KEY TERMS

absolute file name 477
chained exception 473
checked exception 461
declare exception 467
directory path 477

exception 491
exception propagation 463
relative file name 477
throw exception 457
unchecked exception 489

CHAPTER SUMMARY

1. Exception handling enables a method to throw an exception to its caller.

2. A Java exception is an instance of a class derived from java.lang.Throwable.
Java provides a number of predefined exception classes, such as Error, Exception,
RuntimeException, ClassNotFoundException, NullPointerException, and
ArithmeticException. You can also define your own exception class by extending
Exception.

3. Exceptions occur during the execution of a method. RuntimeException and Error
are unchecked exceptions; all other exceptions are checked.

4. When declaring a method, you have to declare a checked exception if the method might
throw it, thus telling the compiler what can go wrong.

5. The keyword for declaring an exception is throws, and the keyword for throwing an
exception is throw.

6. To invoke the method that declares checked exceptions, enclose it in a try statement.
When an exception occurs during the execution of the method, the catch block catches
and handles the exception.

Chapter Summary 491

M12_LIAN9966_12_SE_C12.indd 491 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

492 Chapter 12 Exception Handling and Text I/O

7. If an exception is not caught in the current method, it is passed to its caller. The process
is repeated until the exception is caught or passed to the main method.

8. Various exception classes can be derived from a common superclass. If a catch block
catches the exception objects of a superclass, it can also catch all the exception objects
of the subclasses of that superclass.

9. The order in which exceptions are specified in a catch block is important. A compile
error will result if you specify an exception object of a class after an exception object of
the superclass of that class.

10. When an exception occurs in a method, the method exits immediately if it does not catch
the exception. If the method is required to perform some task before exiting, you can
catch the exception in the method and then rethrow it to its caller.

11. The code in the finally block is executed under all circumstances, regardless of
whether an exception occurs in the try block, or whether an exception is caught if
it occurs.

12. Exception handling separates error-handling code from normal programming tasks, thus
making programs easier to read and to modify.

13. Exception handling should not be used to replace simple tests. You should perform
simple test using if statements whenever possible and reserve exception handling for
dealing with situations that cannot be handled with if statements.

14. The File class is used to obtain file properties and manipulate files. It does not contain
the methods for creating a file or for reading/writing data from/to a file.

15. You can use Scanner to read string and primitive data values from a text file and use
PrintWriter to create a file and write data to a text file.

16. You can read from a file on the Web using the URL class.

QUIZ

Answer the quiz for this chapter online at the Companion Website.

PROGRAMMING EXERCISES

Sections 12.2–12.9
 *12.1 (NumberFormatException) Listing 7.9, Calculator.java, is a simple

command- line calculator. Note the program terminates if any operand is
nonnumeric. Write a program with an exception handler that deals with non-
numeric operands; then write another program without using an exception
handler to achieve the same objective. Your program should display a mes-
sage that informs the user of the wrong operand type before exiting (see
Figure 12.12).

M12_LIAN9966_12_SE_C12.indd 492 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

 *12.2 (InputMismatchException) Write a program that prompts the user to read
two integers and displays their sum. Your program should prompt the user to
read the number again if the input is incorrect.

 *12.3 (ArrayIndexOutOfBoundsException) Write a program that meets the
 following requirements:

 ■ Creates an array with 100 randomly chosen integers.
 ■ Prompts the user to enter the index of the array, then displays the corre-

sponding element value. If the specified index is out of bounds, display the
message "Out of Bounds".

 *12.4 (IllegalArgumentException) Modify the Loan class in Listing 10.2 to
throw IllegalArgumentException if the loan amount, interest rate, or
number of years is less than or equal to zero.

 *12.5 (IllegalTriangleException) Programming Exercise 11.1 defined the
 Triangle class with three sides. In a triangle, the sum of any two sides is
greater than the other side. The Triangle class must adhere to this rule.
 Create the IllegalTriangleException class, and modify the constructor
of the Triangle class to throw an IllegalTriangleException object if a
triangle is created with sides that violate the rule, as follows:

 /** Construct a triangle with the specified sides */
 public Triangle(double side1, double side2, double side3)
 throws IllegalTriangleException {
 // Implement it
 }

 *12.6 (NumberFormatException) Listing 6.8 implements the hex2Dec(String
hexString) method, which converts a hex string into a decimal number.
Implement the hex2Dec method to throw a NumberFormatException if the
string is not a hex string. Write a test program that prompts the user to enter
a hex number as a string and displays its decimal equivalent. If the method
throws an exception, display “Not a hex number”.

 *12.7 (NumberFormatException) Write the bin2Dec(String binaryString)
method to convert a binary string into a decimal number. Implement the bin-
2Dec method to throw a NumberFormatException if the string is not a
binary string. Write a test program that prompts the user to enter a binary
number as a string and displays its decimal equivalent. If the method throws
an exception, display “Not a binary number”.

 *12.8 (HexFormatException) Programming Exercise 12.6 implements the
 hex2Dec method to throw a NumberFormatException if the string is
not a hex string. Define a custom exception called HexFormatException.

VideoNote

HexFormatException

FIGURE 12.12 The program performs arithmetic operations and detects input errors.

Programming Exercises 493

M12_LIAN9966_12_SE_C12.indd 493 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

494 Chapter 12 Exception Handling and Text I/O

Implement the hex2Dec method to throw a HexFormatException if the
string is not a hex string.

 *12.9 (BinaryFormatException) Exercise 12.7 implements the bin2Dec method
to throw a BinaryFormatException if the string is not a binary string. Define
a custom exception called BinaryFormatException. Implement the bin2Dec
method to throw a BinaryFormatException if the string is not a binary string.

 *12.10 (OutOfMemoryError) Write a program that causes the JVM to throw an
 OutOfMemoryError and catches and handles this error.

Sections 12.10–12.12
 **12.11 (Remove text) Write a program that removes all the occurrences of a specified

string from a text file. For example, invoking

java Exercise12_11 John filename

removes the string John from the specified file. Your program should get the
arguments from the command line.

 **12.12 (Reformat Java source code) Write a program that converts the Java source
code from the next-line brace style to the end-of-line brace style. For example,
the following Java source in (a) uses the next-line brace style. Your program
converts it to the end-of-line brace style in (b).

public class Test
{
 public static void main(String[] args)
 {
 // Some statements
 }
}

(a) Next-line brace style

public class Test {
 public static void main(String[] args) {
 // Some statements
 }
}

(b) End-of-line brace style

Your program can be invoked from the command line with the Java source-code
file as the argument. It converts the Java source code to a new format. For exam-
ple, the following command converts the Java source-code file Test.java to
the end-of-line brace style.

java Exercise12_12 Test.java

 *12.13 (Count characters, words, and lines in a file) Write a program that will count
the number of characters, words, and lines in a file. Words are separated by
whitespace characters. The file name should be passed as a command-line
argument, as shown in Figure 12.13.

FIGURE 12.13 The program displays the number of characters, words, and lines in the given file.

 *12.14 (Process scores in a text file) Suppose a text file contains an unspecified
 number of scores separated by spaces. Write a program that prompts the user to
enter the file, reads the scores from the file, and displays their total and average.

M12_LIAN9966_12_SE_C12.indd 494 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

 *12.15 (Write/read data) Write a program to create a file named Exercise12_15.txt if
it does not exist. Write 100 integers created randomly into the file using text
I/O. Integers are separated by spaces in the file. Read the data back from the
file and display the data in increasing order.

 **12.16 (Replace text) Listing 12.16, ReplaceText.java, gives a program that replaces
text in a source file and saves the change into a new file. Revise the program to
save the change into the original file. For example, invoking

java Exercise12_16 file oldString newString

replaces oldString in the source file with newString.

 ***12.17 (Game: hangman) Rewrite Programming Exercise 7.35. The program reads the
words stored in a text file named hangman.txt. Words are delimited by spaces.

 **12.18 (Add package statement) Suppose you have Java source files under the direc-
tories chapter1, chapter2, . . . , chapter34. Write a program to insert the
statement package chapteri; as the first line for each Java source file under
the directory chapteri. Suppose chapter1, chapter2, . . . , chapter34
are under the root directory srcRootDirectory. The root directory and
 chapteri directory may contain other folders and files. Use the following
command to run the program:

java Exercise12_18 srcRootDirectory

 *12.19 (Count words) Write a program that counts the number of words in President
Abraham Lincoln’s Gettysburg address from https://liveexample.pearsoncmg
.com/data/Lincoln.txt.

 **12.20 (Remove package statement) Suppose you have Java source files under the direc-
tories chapter1, chapter2, . . . , chapter34. Write a program to remove the
statement package chapteri; in the first line for each Java source file under
the directory chapteri. Suppose chapter1, chapter2, . . . , chapter34
are under the root directory srcRootDi rectory. The root directory and
 chapteri directory may contain other folders and files. Use the following
command to run the program:

java Exercise12_20 srcRootDirectory

 *12.21 (Data sorted?) Write a program that reads the strings from file SortedStrings.txt
and reports whether the strings in the files are stored in increasing order. If the
strings are not sorted in the file, it displays the first two strings that are out of
the order.

 **12.22 (Replace text) Revise Programming Exercise 12.16 to replace a string in a file with
a new string for all files in the specified directory using the following command:

java Exercise12_22 dir oldString newString

 **12.23 (Process scores in a text file on the Web) Suppose the text file on the Web
http://liveexample.pearsoncmg.com/data/Scores.txt contains an unspecified
number of scores separated by spaces. Write a program that reads the scores
from the file and displays their total and average.

 *12.24 (Create large dataset) Create a data file with 1,000 lines. Each line in the file
consists of a faculty member’s first name, last name, rank, and salary. The
faculty member’s first name and last name for the ith line are FirstNamei and
LastNamei. The rank is randomly generated as assistant, associate, and full.
The salary is randomly generated as a number with two digits after the decimal

Programming Exercises 495

M12_LIAN9966_12_SE_C12.indd 495 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

496 Chapter 12 Exception Handling and Text I/O

point. The salary for an assistant professor should be in the range from 50,000
to 80,000, for associate professor from 60,000 to 110,000, and for full professor
from 75,000 to 130,000. Save the file in Salary.txt. Here are some sample data:

FirstName1 LastName1 assistant 60055.95

FirstName2 LastName2 associate 81112.45

. . .

FirstName1000 LastName1000 full 92255.21

 *12.25 (Process large dataset) A university posts its employees’ salaries at http://
liveexample.pearsoncmg.com/data/Salary.txt. Each line in the file consists of
a faculty member’s first name, last name, rank, and salary (see Programming
Exercise 12.24). Write a program to display the total salary for assistant profes-
sors, associate professors, full professors, and faculty, respectively, and display
the average salary for assistant professors, associate professors, full professors,
and faculty, respectively.

 **12.26 (Create a directory) Write a program that prompts the user to enter a directory
name and creates a directory using the File’s mkdirs method. The program
displays the message “Directory created successfully” if a directory is created
or “Directory already exists” if the directory already exists.

 **12.27 (Replace words) Suppose you have a lot of files in a directory that contain
words Exercisei_j, where i and j are digits. Write a program that pads a 0
before i if i is a single digit and 0 before j if j is a single digit. For example, the
word Exercise2_1 in a file will be replaced by Exercise02_01. In Java, when
you pass the symbol * from the command line, it refers to all files in the direc-
tory (see Supplement III.V). Use the following command to run your program:

java Exercise12_27 *

 **12.28 (Rename files) Suppose you have a lot of files in a directory named Exerci-
sei_j, where i and j are digits. Write a program that pads a 0 before i if i is a sin-
gle digit. For example, a file named Exercise2_1 in a directory will be renamed
to Exercise02_1. In Java, when you pass the symbol * from the command line,
it refers to all files in the directory (see Supplement III.V). Use the following
command to run your program:

java Exercise12_28 *

 **12.29 (Rename files) Suppose you have several files in a directory named Exerci-
sei_j, where i and j are digits. Write a program that pads a 0 before j if j is a sin-
gle digit. For example, a file named Exercise2_1 in a directory will be renamed
to Exercise2_01. In Java, when you pass the symbol * from the command line,
it refers to all files in the directory (see Supplement III.V). Use the following
command to run your program:

java Exercise12_29 *

 **12.30 (Occurrences of each letter) Write a program that prompts the user to enter a
file name and displays the occurrences of each letter in the file. Letters are case
insensitive. Here is a sample run:

Enter a filename: Lincoln.txt
Number of As: 56
Number of Bs: 134
...
Number of Zs: 9

M12_LIAN9966_12_SE_C12.indd 496 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

 *12.31 (Baby name popularity ranking) The popularity ranking of baby names from
years 2001 to 2010 is downloaded from www.ssa.gov/oact/babynames and stored
in files named babynameranking2001.txt, babynameranking2002.txt, . . . ,
babynameranking2010.txt. You can download these files using the URL such
as http://liveexample.pearsoncmg.com/data/babynamesranking2001.txt. Each file
contains 1,000 lines. Each line contains a ranking, a boy’s name, number for the
boy’s name, a girl’s name, and number for the girl’s name. For example, the first
two lines in the file babynameranking2010.txt are as follows:

1 Jacob 21,875 Isabella 22,731

2 Ethan 17,866 Sophia 20,477

Therefore, the boy’s name Jacob and girl’s name Isabella are ranked #1 and the
boy’s name Ethan and girl’s name Sophia are ranked #2; 21,875 boys are named
Jacob, and 22,731 girls are named Isabella. Write a program that prompts the
user to enter the year, gender, followed by a name, and displays the ranking
of the name for the year. Your program should read the data directly from the
Web. Here are some sample runs:

Enter the year: 2010

Enter the gender: M
Enter the name: Javier
Javier is ranked #190 in year 2010

Enter the year: 2010
Enter the gender: F

Enter the name: ABC
The name ABC is not ranked in year 2010

 *12.32 (Ranking summary) Write a program that uses the files described in Program-
ming Exercise 12.31 and displays a ranking summary table for the first five
girl’s and boy’s names as follows:

 **12.33 (Search Web) Modify Listing 12.18 WebCrawler.java to search for the word
(e.g., Computer Programming) starting from a URL (e.g., http://cs.armstrong
.edu/liang). Your program prompts the user to enter the word and the starting
URL and terminates once the word is found. Display the URL for the page that
contains the word.

Year Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
2010 Isabella Sophia Emma Olivia Ava Jacob Ethan Michael Jayden William
2009 Isabella Emma Olivia Sophia Ava Jacob Ethan Michael Alexander William
2008 Emma Isabella Emily Olivia Ava Jacob Michael Ethan Joshua Daniel
2007 Emily Isabella Emma Ava Madison Jacob Michael Ethan Joshua Daniel
2006 Emily Emma Madison Isabella Ava Jacob Michael Joshua Ethan Matthew
2005 Emily Emma Madison Abigail Olivia Jacob Michael Joshua Matthew Ethan
2004 Emily Emma Madison Olivia Hannah Jacob Michael Joshua Matthew Ethan
2003 Emily Emma Madison Hannah Olivia Jacob Michael Joshua Matthew Andrew
2002 Emily Madison Hannah Emma Alexis Jacob Michael Joshua Matthew Ethan
2001 Emily Madison Hannah Ashley Alexis Jacob Michael Matthew Joshua Christopher

Programming Exercises 497

M12_LIAN9966_12_SE_C12.indd 497 17/09/19 11:21 AM

STUDENTS-HUB.com

https://students-hub.com

