

Bacterial Cell Structure

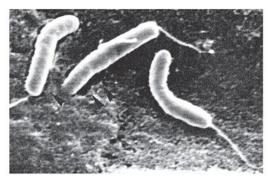
Size, Shape, and Arrangement

- Shape
 - cocci and rods most common
 - various others
- Arrangement
 - determined by plane of division
 - determined by separation or not
- Size varies

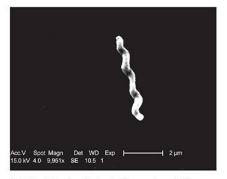
Shape and Arrangement-1

(a) S. agalactiae—cocci in chains

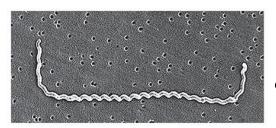
(b) S. aureus—cocci in clusters


a: O Photo Researchers, Inc.; b: CDC/Janice Haney Carr

- Cocci (s., coccus) spheres
 - diplococci (s., diplococcus) pairs
 - streptococci chains
 - staphylococci grape-like clusters
 - tetrads 4 cocci in a square
- sarcinae cubic configuration of 8 cocci


Shape and Arrangement-2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) V. cholerae - comma-shaped vibrios

(b) C. jejuni-Spiral-shaped spirillum

(c) Leptospira interrogans—a spirochete

(c) B. megaterium—rods in chains

- bacilli (s., bacillus) rods
 - coccobacilli very short rods
 - vibrios resemble rods, comma shaped
- spirilla (s., spirillum) rigid helices
- spirochetes flexible helices

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Specimen Approximate diameter or width × length in nm Oscillatoria 7,000 Red blood cell E. coli 1.300×4.000 Streptococcus 800-1,000 230×320 **Poxvirus** Influenza virus 85 T2 E.coli bacteriophage 65×95 Tobacco mosaic virus 15×300 27 Poliomyelitis virus

Size

- smallest 0.3 μm (Mycoplasma)
- average rod 1.1
 1.5 x 2 6 μm
 (E. coli)
- very large 600 x 80 µm
 Epulopiscium
 fishelsoni

Bacterial Cell Organization Common Features

- Cell envelope 3 layers
- Cytoplasm
- External structures

 $\textbf{Copyright} \\ \textcircled{\textbf{\mathbb{G} The McGraw-Hill Companies, Inc. Permission required for reproduction or display.}}$

quired for reproduction or display. Nucleoid

Flagellum

Table 3.1 Common Bacterial Structures and Their Functions					
Plasma membrane	Selectively permeable barrier, mechanical boundary of cell, nutrient and waste transport, location of many metabolic processes (respiration, photosynthesis), detection of environmental cues for chemotaxis				
Gas vacuole	An inclusion that provides buoyancy for floating in aquatic environments				
Ribosomes	Protein synthesis				
Inclusions	Storage of carbon, phosphate, and other substances				
Nucleoid	Localization of genetic material (DNA)				
Periplasmic space	In typical Gram-negative bacteria, contains hydrolytic enzymes and binding proteins for nutrient proc and uptake; in typical Gram-positive bacteria, may be smaller or absent				
Cell wall	Protection from osmotic stress, helps maintain cell shape				
Capsules and slime layers	Resistance to phagocytosis, adherence to surfaces				
Fimbriae and pili	Attachment to surfaces, bacterial conjugation and transformation, twitching and gliding motility				
Flagella	Swimming and swarming motility				
Endospore	Survival under harsh environmental conditions				

Inclusion

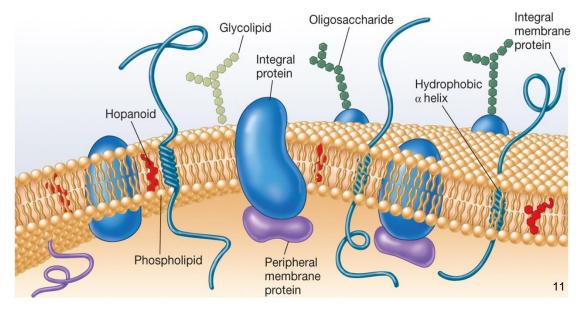
Bacterial Cell Envelope

- Plasma membrane
- Cell wall
- Layers outside the cell wall

Bacterial Plasma Membrane

Absolute requirement for all living organisms

 Some bacteria also have internal membrane systems


Plasma Membrane Functions

- Encompasses the cytoplasm
- Selectively permeable barrier
- Interacts with external environment
 - receptors for detection of and response to chemicals in surroundings
 - transport systems
 - metabolic processes

Fluid Mosaic Model of Membrane Structure

- lipid bilayers with floating proteins
 - amphipathic lipids
 - polar ends (hydrophilic interact with water)
 - non-polar tails (hydrophobic insoluble in water)
 - membrane proteins

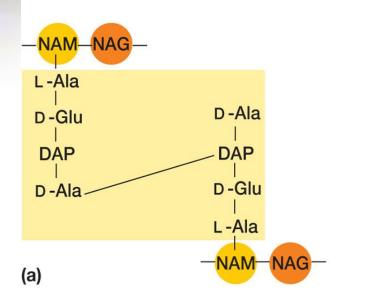
 $\label{lem:copyright} \ \textcircled{\ } \ \ \text{The McGraw-Hill Companies, Inc. Permission required for reproduction or display.}$

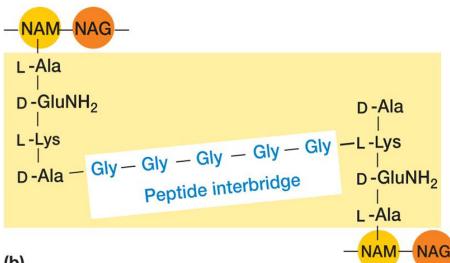
Bacterial Cell Wall

- Peptidoglycan (murein)
 - rigid structure that lies just outside the cell plasma membrane
 - two types based on Gram stain
 - Gram-positive: stain purple; thick peptidoglycan
 - Gram-negative: stain pink or red; thin peptidoglycan and outer membrane

Cell Wall Functions

- Maintains shape of the bacterium
 - almost all bacteria have one
- Helps protect cell from osmotic lysis
- Helps protect from toxic materials
- May contribute to pathogenicity


Peptidoglycan Structure


- Meshlike polymer of identical subunits forming long strands
 - two alternating sugars
 - N-acetylglucosamine (NAG)
 - N- acetylmuramic acid
 - alternating D- and Lamino acids

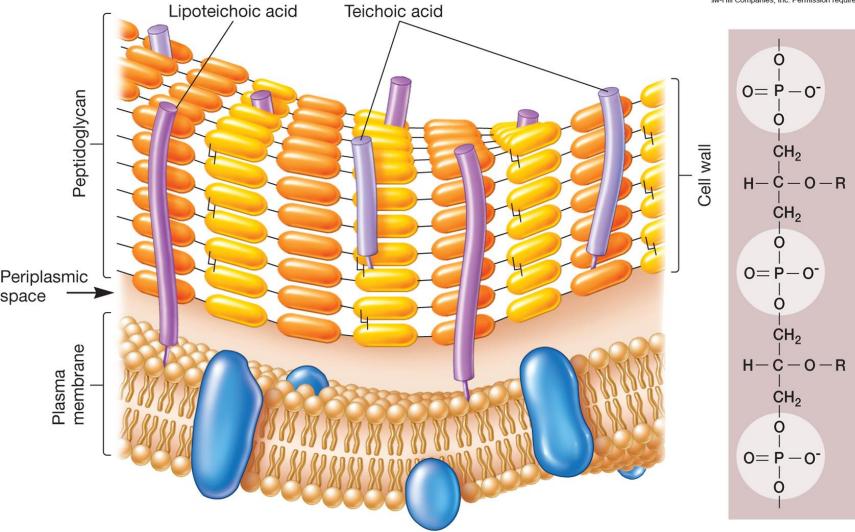
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. NAM NAG CH₃ CH₂OH CH₂OH D-Lactic acid L-Alanine NH D-Glutamic acid COOH Diaminopimelic acid H-C-CH₂ D-Alanine At this site, a bond may be formed to link this peptide to one on another chain. When this occurs, the terminal D-alanine is 14

متشابكة Strands Are Crosslinked

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

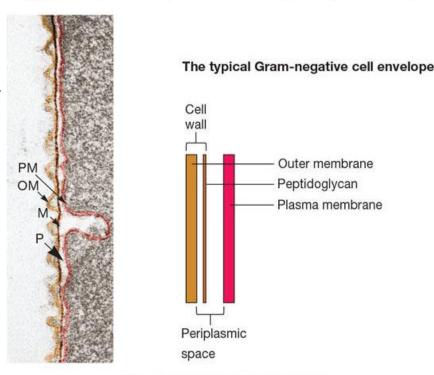
- Peptidoglycan strands have a helical shape
- Peptidoglycan chains are crosslinked by peptides for strength
 - interbridges may form
 - peptidoglycan sacs interconnected networks
 - various structures occur

Gram-Positive Cell Walls


- Composed primarily of peptidoglycan
 - May also contain teichoic acids (negatively charged)
 - help maintain cell envelope
 - protect from environmental substances
 - may bind to host cells
- some gram-positive bacteria have layer of proteins on surface of peptidoglycan

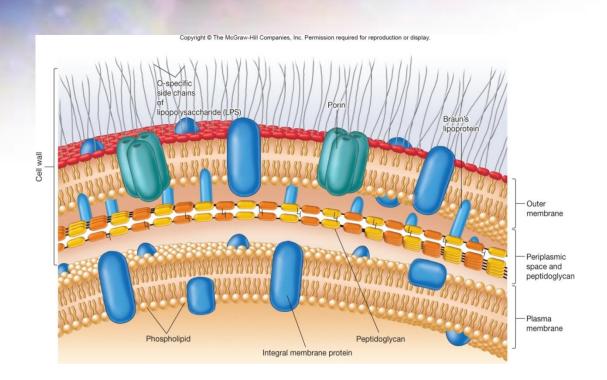
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© T.J. Beveridge/Biological Photo Service


aw-Hill Companies, Inc. Permission required for reproduction or display.

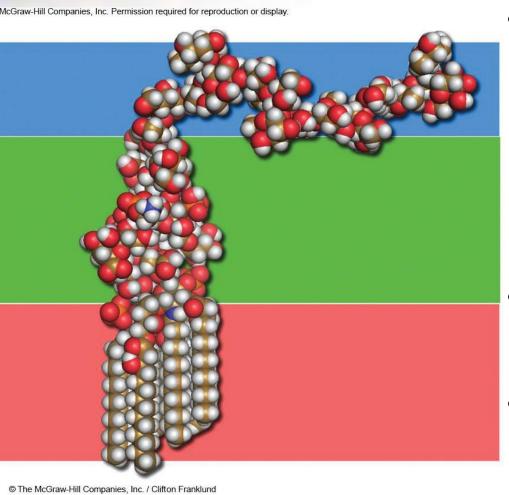
Gram-Negative Cell Walls

- More complex than Grampositive
- Consist of a thin layer of peptidoglycan surrounded by an outer membrane
- Outer membrane composed of lipids, lipoproteins, and lipopolysaccharide (LPS)
- No teichoic acids


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© T.J. Beveridge/Biological Photo Service

Gram-Negative Cell Walls

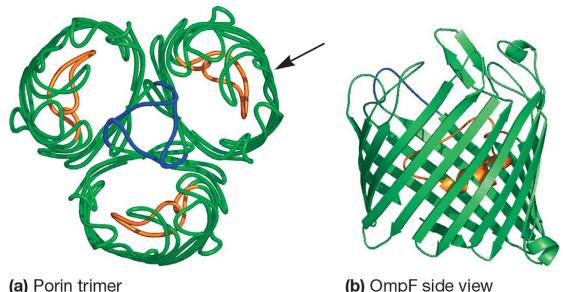

- Peptidoglycan is ~5-10% of cell wall weight
- Periplasmic space differs from that in Grampositive cells
 - may constitute 20–40% of cell volume
 - many enzymes present in periplasm
 - hydrolytic enzymes, transport proteins and other proteins

Gram-Negative Cell Walls

- outer membrane lies outside the thin peptidoglycan layer
- Braun's lipoproteins connect outer membrane to peptidoglycan
- other adhesion sites reported

Lipopolysaccharide (LPS)

- Consists of three parts
 - lipid A
 - core polysaccharide
 - O side chain (O antigen)
- Lipid A embedded in outer membrane
- Core polysaccharide, O side chain extend out from the cell


Importance of LPS

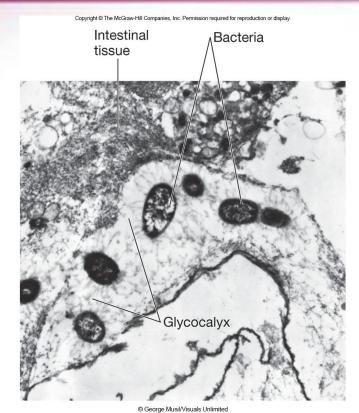
- contributes to negative charge on cell surface
- 2. helps stabilize outer membrane structure
- 3. may contribute to attachment to surfaces and biofilm formation
- 4. creates a permeability barrier
- 5. protection from host defenses (O antigen)
- 6. can act as an endotoxin (lipid A)

Gram-Negative Outer Membrane Permeability

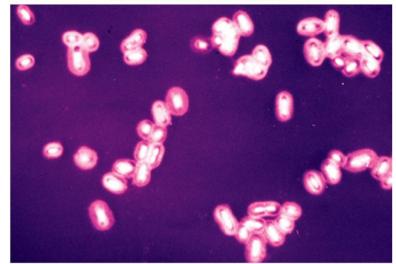
- More permeable than plasma membrane due to presence of porin proteins and transporter proteins
 - porin proteins form channels to let small molecules (600-700 daltons) pass

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Osmotic Protection


- Hypotonic environments
 - solute concentration outside the cell is less than inside the cell
 - water moves into cell and cell swells
 - cell wall protects from lysis
- Hypertonic environments
 - solute concentration outside the cell is greater than inside
 - water leaves the cell
 - plasmolysis occurs

Components Outside of the Cell Wall


- Outermost layer in the cell envelope
- Glycocalyx
 - capsules and slime layers
 - S layers
- Aid in attachment to solid surfaces
 - e.g., biofilms in plants and animals

Capsules

- Usually composed of polysaccharides.
- Well organized and not easily removed from cell
- Visible in light microscope
- Protective advantages
 - resistant to phagocytosis
 - protect from desiccation
 - exclude viruses and detergents

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

K. pneumoniae

Bacterial Cytoplasmic Structures

- 1. Cytoskeleton
- 2. Intracytoplasmic membranes
- 3. Inclusions
- 4. Ribosomes
- 5. Nucleoid and plasmids

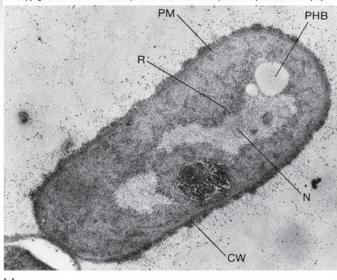
The Cytoskeleton

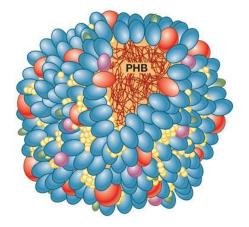
- Homologs of all 3 eukaryotic cytoskeletal elements have been identified in bacteria
- Functions are similar as in eukaryotes

impanies, Inc. Permission required for reproduction or display.

	Comments				
	Widely observed in bacteria and archaea				
	Observed only in <i>Prosthecobacter</i> spp.; thought to be encoded by eukaryotic tubulin genes obtained by horizontal gene transfer				
	Encoded by large plasmids observed in members of the genus <i>Bacillus</i>				
	Observed in magnetotactic species				
involved in proteins	Most rod-shaped bacteria				
	Plasmid encoded				
STUDENTS-HUB.com	Caulobacter crescentus				

Inclusions

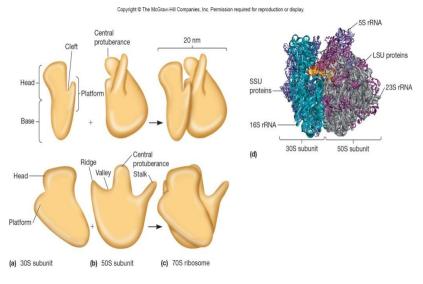

- Granules of organic or inorganic material that are stockpiled by the cell for future use
- Some are enclosed by a single-layered membrane
 - membranes vary in composition
 - some made of proteins; others contain lipids
 - may be referred to as microcompartments


Storage Inclusions

- Storage of nutrients, metabolic end products, energy, building blocks
- Glycogen storage
- Carbon storage
 - poly-β-hydroxybutyrate (PHB)
- Phosphate Polyphosphate (Volutin)
- Amino acids cyanophycin granules

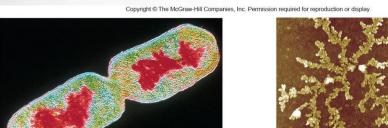
Storage Inclusions

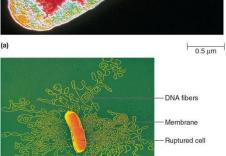
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


© Ralph A. Slepecky/Visuals Unlimited

Reprinted from *The Shorter Bergey's Manual of Determinative Bacteriology, 8*e, John G. Holt, Editor, 1977 © Bergey's Manual Trust. Published by Williams & Wilkins Baltimore, MD

(b)


Ribosomes



- Complex protein/RNA structures
 - sites of protein synthesis
 - bacterial and archaea ribosome = 70S
 - eukaryotic (80S) S = Svedburg unit
- Bacterial ribosomal RNA
 - 16S small subunit
 - 23S and 5S in large subunit

The Nucleoid

- Usually not membrane bound (few exceptions)
- Location of chromosome and associated proteins
- Usually 1 closed circular, double-stranded DNA molecule
- Supercoiling and nucleoid proteins (different from histones) aid in folding

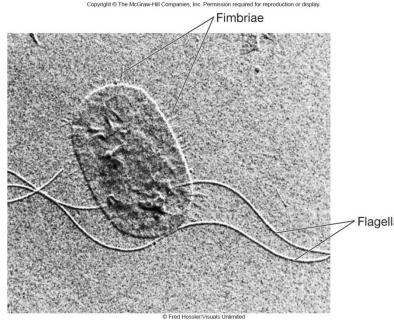
Plasmids

- Extrachromosomal DNA
 - found in bacteria, archaea, some fungi
 - usually small, closed circular DNA molecules
- Exist and replicate independently of chromosome
 - episomes may integrate into chromosome
 - inherited during cell division
- Contain few genes that are non-essential
 - confer selective advantage to host (e.g., drug resistance)
- Classification based on mode of existence, spread, and function

 Table 3.3
 Major Types of Bacterial Plasmids

Туре	Function	Example	Size (kbp)	Hosts	Phenotypic Features ¹		
Conjugative Plasmids ²	Transfer of DNA from one cell to another	F factor	95–100	E. coli, Salmonella, Citrobacter	Sex pilus, conjugation		
R Plasmids	Carry antibiotic-resistance genes	RP4	54	Pseudomonas and many other Gramnegative bacteria	Sex pilus, conjugation, resistance to Amp, Km, Nm, Tet		
Col Plasmids	Produce bacteriocins, substances that destroy closely related species	ColE1	9	E. coli	Colicin E1 production		
Virulence Plasmids	Carry virulence genes	Ti	200	Agrobacterium tumefaciens	Tumor induction in plants		
Metabolic Plasmids	Carry genes for enzymes	CAM	230	Pseudomonas	Camphor degradation		

¹ Abbreviations used for resistance to antibiotics: Amp, ampicillin; Gm, gentamycin; Km, kanamycin; Nm, neomycin; Tet, tetracycline.


² Many R plasmids, metabolic plasmids, and others are also conjugative.

External Structures

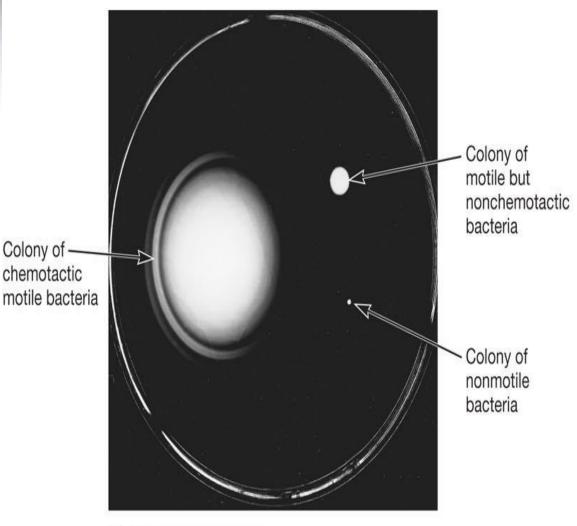
- -Extend beyond the cell envelope in bacteria
- 1. Function in protection
- 2. attachment to surfaces
- 3. horizontal gene transfer
- 4. cell movement
- e.g.
 - pili and fimbriae
 - flagella

Pili and Fimbriae

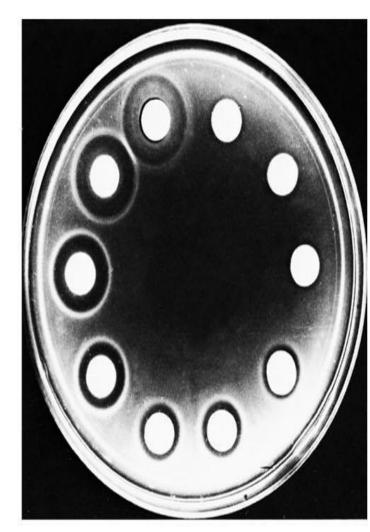
- Fimbriae (s., fimbria); pili (s., pilus)
 - short, thin, hairlike,proteinaceous appendages (up to 1,000/cell)
 - can mediate attachment to surfaces, motility, DNA uptake
- Sex pili (s., pilus)
 - longer, thicker, and less numerous (1-10/cell)
 - genes for formation found on plasmids
 - required for conjugation

Flagella

- Threadlike, locomotor appendages extending outward from plasma membrane and cell wall
- Functions
 - motility and swarming behavior
 - attachment to surfaces
 - may be virulence factors

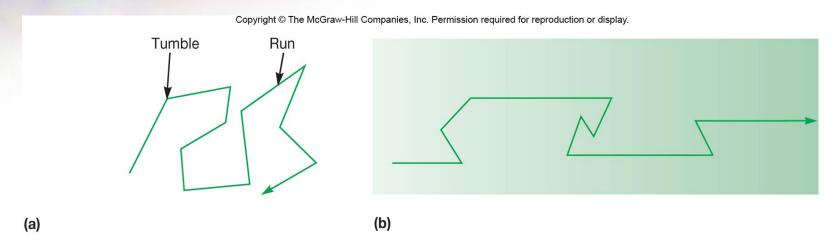

Motility

- Bacteria and Archaea have directed movement
- Chemotaxis
 - move toward chemical attractants such as nutrients, away from harmful substances
- Move in response to temperature, light, oxygen, osmotic pressure, and gravity


Chemotaxis

- Movement toward a chemical attractant or away from a chemical repellent
- Changing concentrations of chemical attractants and chemical repellents bind chemoreceptors of chemosensing system

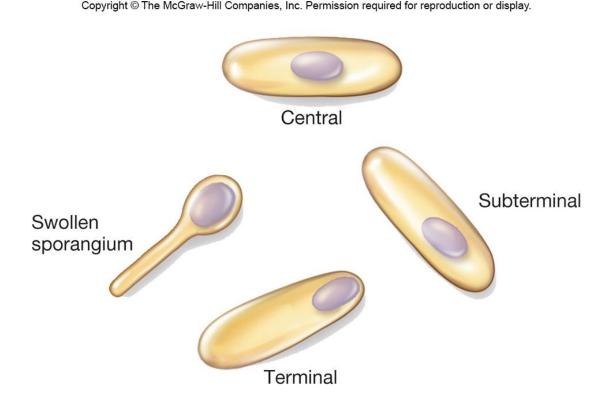
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.


(a) Positive chemotaxis

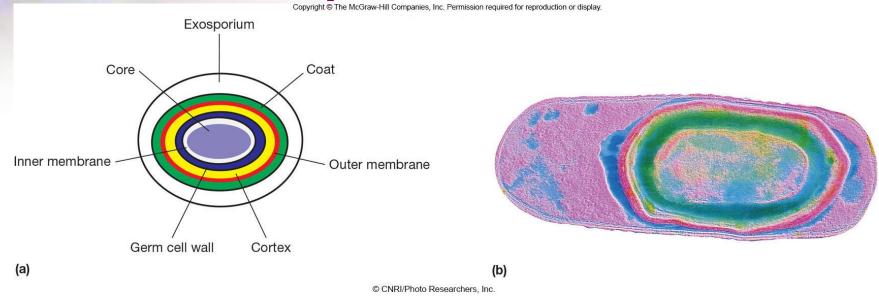
(b) Negative chemotaxis

Courtesy of Dr. Julius Adler

Chemotaxis

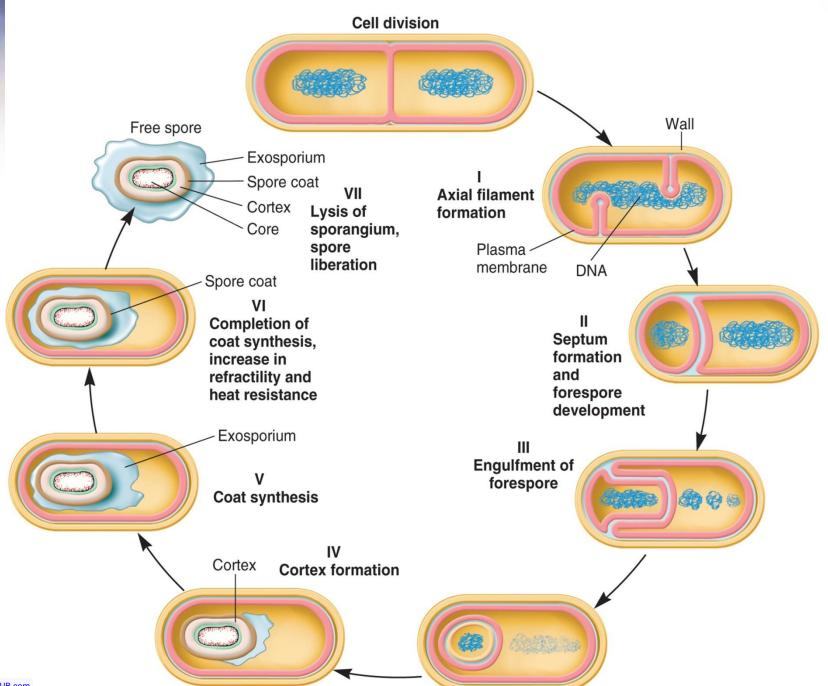

- In presence of attractant (b) tumbling frequency is intermittently reduced and runs in direction of attractant are longer
- Behavior of bacterium is altered by temporal concentration of chemical
- Chemotaxis away from repellent involves similar but opposite responses

The Bacterial Endospore

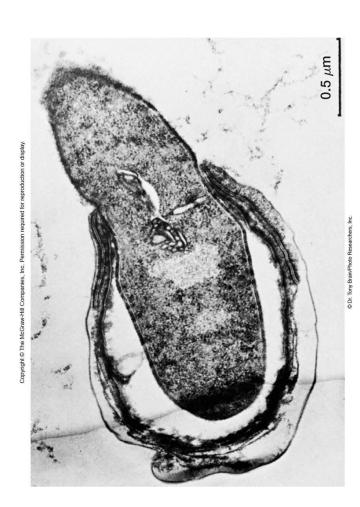

- Complex, dormant structure formed by some bacteria
- Various locations within the cell
- Resistant to numerous environmental conditions

heat

- radiation
- chemicals
- desiccation


Endospore Structure

- Spore surrounded by thin covering called exosporium
- Thick layers of protein form the spore coat
- Cortex, beneath the coat, thick peptidoglycan
- Core has nucleoid and ribosomes


Sporulation

- Process of endospore formation
- Takes hours to be completed (up to 10 hours)
- Normally commences when growth ceases because of lack of nutrients
- Complex multistage process

Formation of Vegetative Cell

- Activation
 - prepares spores for germination
 - often results from treatments like heating
- Germination
 - environmental nutrients are detected
 - spore swelling and rupture of absorption of spore coat
 - increased metabolic activity
- Outgrowth emergence of vegetative cell

