Chapter 7.1, Problem 52E

Problem

Exercise refers to the Euler phi function, denoted ϕ , which is defined as follows: For each integer $n \ge 1$, $\phi(n)$ is the number of positive integers less than or equal to *n* that have no common factors with *n* except ±1. For example, $\phi(10) = 4$ because there are four positive integers less than or equal to 10 that have no common factors with 10 except ±1; namely, 1, 3, 7, and 9.

Exercise

Prove that if *p* is a prime number and *n* is an integer with n > 1, then $\phi(pn) = pn - pn - 1$.

Step-by-step solution

Step 1 of 1

The objective is to prove that if *p* is a prime number and *n* is an integer with $n \ge 1$, then $\phi(p^n) = p^n - p^{n-1}$

The positive integers less than p^n and co-prime to p^n are different from the divisors of p^n

1, p, 2p, 3p, ...(p-1)p, $p^{2}, 2p^{2}, 3p^{2}, ..., (p-1)p^{2},$ $p^{3}, 2p^{3}, 3p^{3}, ..., (p-1)p^{3},$ $\vdots \quad \vdots \quad ... \quad \vdots$ $p^{n-1}, 2p^{n-1}, 3p^{n-1}, ..., (p-1)p^{n-1}, p^{n}$

Are the divisors of p^n . These are p^{n-1} in number.

That is, there are p^{n-1} integers between 1 and p^n divisible by p,

Namely, $p, 2p, 3p, ..., (p^{n-1})p$

All the remaining positive integers less than p^n are co-prime to p^n

Thus, the set $\{1, 2, ..., p^n\}$ contains exactly $p^n - p^{n-1}$ integers that are relatively prime to p^n , and so $\phi(p^n) = p^n - p^{n-1}$.

Therefore, for $n \ge 1$, the number of positive integers not exceeding *n* that are relative prime to *n*.

STUDENTS-HUB.com