Introduction

In this chapter, we will investigate the multiplicative structure of the set of integers
modulo 1, where 7 is a positive integer. First, we will introduce the concept of the order
of an integer modulo n, which is the least power of the integer that leaves a remainder
of 1 when it is divided by n. We wiil study the basic properties of the order of integers
modulo . A positive integer x, such that the powers of x run through all the integers
modulo , where n is a positive integer, is called a primitive root modulo 1. We will
determine for which integers » there is a primitive root modulo 2.

Primitive roots have many uses. For example, when an integer » has primitive
root, discrete logarithms (also called indices) of integers can be defined. These discrete
logarithms enjoy many properties analogous to those of logarithms of positive real
numbers. Discrete logarithms can be used to simplify computations modulo n.

We will show how the results of this chapter can be used to develop primality tests
that are partial converses of Fermat’s little theorem. These tests, such as Proth’s test, are
used extensively to show that numbers of special forms are prime, We will also establish
procedures that can be used to certify that an integer is prime.

Finally, we will introduce the concept of the minimal universal exponent modulo 2.
This js the least exponent U for which x¥ = 1 (mod n) for all integers x. We will develop
a formula for the minimal universal exponent of n, and use this formula to prove some
useful results about Carmichael numbers.

333
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334 Primitive Roots

9.1 The Order of an Integer and Primitive Roots

Tn this section, we begin our study of the least positive residues modulo n of powers of an
integer a relatively prime to n, where n is a positive integer greater than 1. We will start
by studying the order of a modulo n, the exponent of the least power of a congruent to
1 modulo 7. Then we will study integers a such that the least positive residues of these
powers run through all positive integers less than » that are relatively prime to n. Such
integers, when they exist, are called primitive roots of n. One of our major goals in this
chapter will be to determine which positive integers have primitivs roots,

The Order of an Integer

By Euler’s theorem, if n is a positive integer and if @ is an integer relatively prime to n,
then a®? = 1 (mod n). Therefore, at least one positive integer x satisfies the congruence
a* =1 (mod n). Consequently, by the well-ordering property, there is a least positive
i integer x satisfying this congruence.

Definition. Let a and n be relatively prime positive integers. Then, the least positive
; integer x such that a* = 1 (mod ) is called the order of a madulo n.
*t ‘ We denote the order of @ modulo » by ord,a. This notation was introduced by Gauss
L in his Disquisitiones Arithmeticae in 1801.
Example 9.1.  To find the order of 2 modulo 7, we compuie the least positive residues
modulo 7 of powers of 2. We find that
21 =72 (mod 7), 2% =4 (mod 7), 2° = 1 (mod 7).
Therefore, ord;2 = 3.
Similarly, to find the order of 3 modulo 7 we compute
3! = 3 (mod 7), 3% =2 (mod 7), 3* = 6 (mod 7),
3* =4 (mod 7), 3° =5 (mod 7), 3% = L {mod 7).
We see that ord;3 =0, «

To find all solutions of the congruence a* =1 (mod n), we need the following
theorem. . i

Theorem 9.1. If 2 and » are relatively prime integers with 7 > 0, then the positive
integer x is a solution of the congruence a* = 1 (mod n} if and onty it ord,a | x.
Progf, 1ford,a | x, then x = k - ord,a, where k is a positive integer. Hence,

a* = ak-crdna — (aord,,a)k = 1 (mod n). \

Conversely, if a* = 1 (mnod n), we first use the division algorithm to write

x=gqg-orda+r, 0<r<ordya.
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9.1 The Order of an Integer and Primitive Roots 335

From this equation, we see that
a¥ = g?ordaatr _ (@Y = g7 (inod n).

Because a* = 1 (mod n), we know that a’ =1 (mod n). From the inequality 0 < r < .
ord,a, we conclude that r = 0 because, by definition, y = ord,q is the least positive
integer such that a” = 1 (mod #). Because » = 0, we have v — g - ord,a. Therefore,
ord,a | x, [

Example 9.2, We can use Theorem 9.1 and Example 9.1 to determine whether x — 10
and x = 15 are solutions of 2¥ = 1 (mod 7). By Example 9.1, we know that ord;2 =3,
Because 3 does not divide 10, but 3 divides 15, by Theorem 9.1 we see that x — 10 is
not a solution of 2¥ = 1 (mod 7), but x = 15 is a solution of this congruence. «

Theorem 9.1 leads to the following corollary.

Corollary 9.1.1. Ifaandn are relatively prime integers with 5 > 0, then ord,a | e (n).
Proof. Because (a, n) = 1, Buler's theorem tells us that
a®™ = [ (mod n).

Using Theorem 9.1, we conclude that ord,a | ¢ (n). ]

We can use Corollary 9.1.1 as a shortcut when we compute orders. The following
example illustrates the procedure.

Example 9.3. To find the order of 7 modulo 9, we first note that ¢(9) = 6. Because
the only positive divisors of 6 are 1, 2,3, and 6, by Corollary 9.1.1 these are the only
possible values of ordg7. Because

7' =7 (nod 9), 72 = 4 (mod 9,7 = 1(mod 9),
it follows that ordy7 = 3, <
Example94. To find the order of 5 modulo 17, we first note that ¢ (17) = 16. Because

the only positive divisors of 16 are 1,2, 4,8, and 186, by Corollary 9.1.1 these are the
only possible values of ord, ;5. Because

-
5'=5(mod 17), 5* = § (mod 17), 5% = 13 {mod 17),
5% =16 (mod 17), 5 = 1 (mod 17,
we conclude that ord;;5 = 16. -«

The following theorem will be useful in our subsequent discussions,

Theorem 9.2, If a and n are relatively prime integers with # > 0, then & =
a’ (mod n), where i and J are nonnegative integers, if and only if { = j (mod ord,,a).
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336 Primitive Reots

Proof. Suppose that i = j (mod ord,a) and 0 < j <i.Thenwehavei=j+ k-ord,a,
where k is a positive integer. Hence

ai — aj+k.ord,,a — a}'(aordna)k Eaj (mod n),
because g% = 1 (mod n).

Conversely, assume that al = al (mod ) with i > j. Because (a,n) = 1, we know
that (@’, n) = 1. Hence, using Corollary 4.4.1 the congruence

a =alad= =a’ (mod n)
implies, by cancellation of a’, that

a7 = 1 (mod n).

. By Theorem 9.1, it follows that ord,a divides { — j, or equivalently, i =
j (mod ord,a). n

The next example illustrates the use of Theorem 9.2,

i Example 9.5. Leta = 3and n = 14, By Theorem 9.2, we see that 3% = 3! (mod 14),
but 3% 5 32 (mod 14), because ¢(14) = 6 and 5 = 11 (mod 6) but 9£20(mod 6). <«

Primitive Roots

Given an integer n, we are interested in integers a with order modulo n equal to ¢{n),
the largest possible order modulo n. As we will show, when such an integer exists, the
least positive residues of its powers Tun through all positive integers relatively prime to
n and less than #.

Definition. If  and » are relatively prime integers with n > 0 and if ord,r = @ (1),
then r is called a primitive root modulo n.

! Example 9.6. We have previously shown that ord;3 = 6 = ¢ (7). Consequently, 3 s a
i primitive root modulo 7. Likewise, because ord,5 = 6, as can casily be verified, 5 is also
a primitive root modulo 7. ) -«

Fuler coined the term primitive root in 1773. His purported proof that every prime
has & primitive root was incorrect, however. In Section 9.2, we will prove that every prime
has a primitive root using the first correct proof of this result by Lagrange in 1769. Gauss
also studied primitive roots extensively and provided several additional proofs that every
prime has a primitive root.

Not all integers have primitive roots. For instance, there are no primitive roots
moduto 8. To see this, note that the only integers less than 8 and relatively prime to
gare1,3,5,and 7, and ordgl = 1, while ord g3 = ordg5 = ordg7 = 2. Because P (8) =4,
there are no primitive roots modulo 8. ’ g
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9.1 The Order of an Integer and Primitive Roofs 337

Among the first 30 positive integers, 2,3,4,5,6,7,9, 10, 11, 13, 14, 17,18, 19,22,
23,25, 26,27, and 29 have primitive roots whereas 8,12, 15, 16,20, 21, 24, 28, and 30
do not. (The reader can verify this information; see Exercises 3-6 at the end of this
section, for example.) What can we conjecture based on this evidence? In this range,
every prime has a primitive root (as Lagrange showed), as does every power of an odd
prime (since 9 = 3%, 25 = 52, and 27 = 3? have primitive roots), but the only power of
2 that has a primitive root is 4. The other integers in this range with a primitive root are
6,10, 14, 18,22, and 26. What do these integers have in common? Each is 2 times an
odd prime or power of an odd prime. Using this evidence, we conjecture that a positive
integer has a primitive root if it Lequals 2,4, pf, or 2p', where pisanodd prifie and 7 is
a positive integer. Sections 9.2 and 9.3 are devoted to verifying this conjectyre.

; To indicate one way in which primitive roots are useful, we give the following
theorem.

Theorem 9.3. If r and » are relatively prime positive integers with # > O and if r is a
primitive root modulo n, then the integers

o ,rom

form a reduced residue set modulo 7.

Proof. 'To demonstrate that the first ¢ (1) powers of the primitive root r form a reduced
residue set modulo », we need only show that they are all relatively prime to n and that
no two are congruent modulo 7.

Because (r,n) = 1, it follows from Exercise 14 of Section 3.3 that (7%, n) = 1 for
any posttive integer k. Hence, these powers are all relatively prime to n. To show that no
two of these powers are congruent modulo », assume that

T {mod n).

By Theorem 9.2, we see that / = j (mod $(n)). However, for 1 <i <¢{n) and 1 <
J = ¢(n), the congruence i = j (mod ¢ (n)) implies that / = j. Hence, no two of these
powers are congruent modulo ». This shows that we do have a reduced residue system
modulo n. -

Example 9.7, We see that 2 is a primitive root modulo 9, because 22 = 4, 23 = 8, and
2% = [ (mod 9). By Theorem 9.3, the first $(9) = 6 powers of 2 form a reduced residue
system modulo 9. These are 2' =2 (mod 9), 22 =4 (mod 9), 23 = 8 (mod 9),2¢=7
(mod 9), 2° = 5 (mod 9), and 25 = 1 (mod 9). ro <

When an integer possesses a primitive root, it usually has many primitive roots. 'To
demonstrate this, we first prove the following theorem.

Theorem 94. Iford,a=tandifuisa positive integer, then

ord, {a") =t /{t, u).
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338 Primitive Roots

Proof. Lets=ord,(@"),v="{(t,u),t =1, and u = u}v. By Theorem 3.6, we know
that (fy,10y) = L.

Because £, = t/{t, u), we want to show that ord, (a*) = ;. To do this, we will show
that (@")! = | (mod ) and that if (¢*)" =1 (mod n), then 1y | 5. First, note that

(@)t = (@) = ()1 = 1 (mod n),
because ord,a = t. Hence, Theorem 9.1 tells us that 5 | f1.
On the other hand, because
{(a*Y = a™ = 1{mod 1),

we know that 7 | us. Hence, ¢ | uyvs and, consequently, #; | 5. Because (#g, 1) = L,
using Lemma 3.4, we see that #; | 5. '

Now, because 5 | #; and t; | 5, we conclude that s =) = 1/v =1 /(t, ). This proves
the result. n

Example 9.8. By Theorem 9.4, we see that ord;3* = 6/(6,4) = 6/2 = 3, because we
showed in Example 9.1 that ord;3 = 6. <

. The following coroliary of Theorem 9.4 tells us which powers of a primitive oot
: are also primitive roots, .

_) K

Corollary 9.4.1. Letr be a primitive root modulo 7, where n is an integer, n > 1. Then
r¥ is a primitive root modulo n if and only if (u, ¢{n)) = L.

Proof. By Theorem 9.4, we know that

ord,#* = ord,r/ (1, ord,r)
= n)/(u, o).

Consequently, ord,r* = ¢(n), and r" is a primitive root modulo n, if and only if

(r,p(n)) =1L n

This leads immediately to the following theorem.

Theorem 9.5. If the positive integer n has a primitive root, thenithasa total of ¢ (b (1))
incongruent primitive roots.

Proof. Letr be a primitive root modulo n. Then Theorem 9.3 tells us that the integers
r 22, ..., r?@ form a reduced residue system modulo n. By Corollary 9.4.1, we know
that #" is a primitive root modulo # if and only if (i, ¢ (n)) = L. Because there are exactly

¢ (¢ () such integers u, there are exactly ¢ (¢ (n)) primitive roots modulo 1. ]

Example 9.9. Letn = 11. Note that 2 is a primitive root modulo 11 (see Exercise 3 at
the end of this section). Becanse 11 has a primitive root, by Theorem 9.5 we know that
11 has ¢ (¢ (11)) = 4 incongruent primitive roots. Because ¢ (11) = 10, by the proof of
Theorem 9.5 we see that we can find these primitive roots by taking the least nonnegative
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9.1 The Order of an Integer and Primitive Roots 339

residues of 21,23 27, and 2°, which are 2, 8,7, and 6, respectively. In other words, the
integers 2, 6, 7, 8 form a complete set of incongruent primitive roots modulo 11. -«

. 9.1 Exercises
1. Determine the following orders.

a) 0rd52 C) Ol'dmlo
b) ord 43 d) ord 7

2. Determine the following orders.

a) 0[d113 C) DrdZiIO
b) ord;;2 d) ord,s9

3. a) Show that 5 is a primitive root of 6,
b) Show that 2 is a primitive root of 11.

4. Find a primitive root modulo each of the following integers.

ayd d) I3
b} S e) 14
¢) 10 £}y 18

5. Show that the integer 12 has no primitive roots.

6. Show that the integer 20 has no primitive roots,

7. How many incongruent primitive roots does 14 have? Find a set of this many incongruent
primitive roots module 14.

8. How many incongruent primitive roots does 13 have? Find a set of this many incongruent
primitive roots modulo 13.

9. Show that if @ is an inverse of @ modulo n, then ord, a = ord,a.

10. Show that if 1 is a positive integer, and @ and b are integers relatively prime to 1 such
that {ord,,a, ord, b} = |, then ord,(ab) = ord,a - ord, .

11. What can be said about ord, (ab) if a and b are integers relatively prime to n such that
ord,a and ord, b are not necessarily relatively prime?

12. Decide whether it is true that if 2 is a positive integer and 4 is a divisor of @(n), then
there is an integer a with ord,a = d. Give reasons for your answer.

13, Show that if a is an integer relatively prime to the positive integer m and ord,,a = st,

then ord,,a’ = 3.

14. Show if m is a positive integer and a is an integer relatively prime to m such that
ord, @ == m — 1, then m is prime, '
15. Show that r is a primitive root modulo the odd prime p if and only if r is an integer with
{r, p} = 1 such that
r® /4 £ 1 (mod p)

for all prime divisors g of p - 1.
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16. Show that if r is a primitive root modulo the positive integer #t, then 7 is also a primitive
root modulo m, if ¥ is an inverse of r modulo m.

17. Show that ordp 2 < 2", where F, = 2" + 1, is the nth Fermat number.

# 18. Let p be a prime divisor of the Fermat number F, = 27 1 1.

2) Show that ord,2 = 2°t1,
b) From part (a), conclude that 27+1 | (p — 1), so that p must be of the form ) SR

19. Letm = a" — 1, where a and 7 are posilive integers. Show that ord,,@ =, and conclude
that n | ¢{m). -

# 20, a) Show that if p and ¢ are distinct odd primes, then pg is a pseudoprime to the base 2

9.1
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if and only if ord,2 | (p — 1) and ord,2 | {g — 1)

b) Use part (a) to decide which of the following integers are pseudoprimes to the base
2:13-67,19.73,23-89,29.97.

; % 21. Show that if p and ¢ are distinct odd primes, then pg is a psendoprime to the base 2 if

and only if M M, = (2P — 129 — 1) is a pseudoprime o the base 2.

There is an iterative method known as the cycling attack for decrypting messages that were
encrypted by an RSA cipher, without knowledge of the decrypting key. Suppose that the
public key (e, n) used for encrypting is known, but the decrypting key (d, n) is not. Todecrypta
ciphertext block C, we form a sequernce CC2,Cs.. .., setting C1= Cé(modn),0<C)<n,
and Cf+IE C; (modn), 0 < Ciy<n for j=1,2,3,....

22. Show thatC; = ce’ (mod n), &< C; <n.

23. Show that there is an index j such that C; =C and C;_ = P, where P is the original
plaintext message. Show that this index j is a divisor of ordg ge.

24, Let n =47 - 59 and e = 17. Using iteration, find the plaintext corresponding to the
ciphertext 1504.

(Note: This iterative method for attacking RSA ciphers is setdom successful in a reasonable
amount of time. Moreover, the primes p and g may be chosen so that this attack is almost
always futile. See Exercise 19 of Section 9.2.)

Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find 0Id52,5792, 01’652‘5793, and 0rd52,5791001.
2. Find as many integers as you can for which 2 is a primitive root. Do you think that there
are infinitely many such integers?
Programming Projects
Write projects using Maple, Mathematica, or a language of your choice to do the following.

1. Find the order of a modulo m, when a and m are relatively prime positive integers.
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9.2 Primitive Roots for Primes 341

2, Find primitive roots when they exist.

3. Attempt to decrypt RSA ciphers by iteration (sce the preamble to Exercise 22).

9.2 Primitive Roots for Primes

In this and the following section, our objective is to determine which integers have
primitive roots. In this section, we show that every prime has a primitive root. To do
this, we first need to study polynomiat congruences.

Let f(x) be a polynomial with integer coefficients. We say that an integer c is a roor
of f{x) modulo mif f(c) =0 (mod m).Itis easy fo sce that if ¢ is a root of £(x) modulo
m, then every integer congruent to ¢ modulo m is also a root.

Example 9.10. The polynomial f'(x) = 22 + x + 1 has exactly two incongruent roots
modulo 7, namely x = 2 (mod 7) and x =4 (mod 7). «

Example 9.11. The polynomial g(x) = x2 -+ 2 has no roots modulo 5. -«

Example 9.12. Fermat’s little theorem tells us that if p is prime, then the polyno-
mial i(x) = xP~! — { has exactly p — 1 incongruent roots modulo p, namely x =
1,2,3,..., p— 1(mod p). -«

We will need the following important theorem conceming roots of polynomials
modulo p where p is a prime,

Theorem 9.6. Lagrange’s Theorem, Let f(x) = apx" a7 fapx g
be a polynomial of degree n1, n > 1, with integer coefficients and with leading coefficient
a, not divisible by p. Then f(x) has at most n incongruent roots modulo p.

Proof. We use mathematical induction to prove the theoremn. When n = 1, we have
F(x)=apx +ay with p f a,. A root of f(x) modulo p is a solution of the lnear
congruence a;x = —ay (mod p). By Theorem 4.10, because (a1, p) =1, this linear
congruence has exactly one solution, so that there is exactly one root modulo p of f(x).
Clearly, the theorem is true forn = 1.

Now, suppose that the theorem is true for polynomials of degree # — 1, and let f(x)
be a polynomial of degree n with leading coefficient not divisible by p. Assume that
the polynomial f(x) has » + 1 incongruent roots modulo P, 88y Cp, €1, . .., ¢y, 50 that
Flep)=0(mod p)fork=0,1, ..., n We have

F&) = fle) =a,6" —eg) +a, "= T 4y x — o)
=a,(x — )" 2" g 4 4 .rcg"2 + cg‘l)
a1 (x = )" 2 e 42 xc{')‘_3 + cgfz)
T tax - cp)
= (x — cp)g(x),
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where g(x) is a polynomial of degree n — 1 with leading coefticient a,,. We now show
that ¢y, c3. . . . , € are all roots of g(x) modulo p. Letk be an integer, 1 < k < n. Because
fer) = f(cp) =0 (mod p), we have

Fle) — Fleo) = (cx — c)g(c) =0 (mod p).

It follows that g(cy) = 0 (mod p), because ¢, — ¢ # O (mod p). Hence, ¢, is a root
of g(x) modulo p. This shows that the polynomial g(x}, which is of degree n — 1 and
has a leading coefficient not divisible by p, has n incongruent roots moduio p. This
contradicts the induction hypothesis. Hence, f(x) must have no more than incongruent
roots modulo p. The induction argument is complete. =

We use Lagrange’s theorem to prove the following result.
Theorem 9.7. Let p be prime and let d be a divisor of p — 1. Then the polynomial
x9 — 1 has exactly 4 incongruent roots modulo p.

Proof. Let p—1=de. Then

‘.m
N

e _ xp*l _ 1: (xd . 1)(Id(e_l) +xa‘(_€"2) +... +xﬂr + 1)
e ' = (¢~ Dglx).

From Fermat’s little theorem, we see that 1P~ — 1has p — lincongruent roots modulo
p. Furthermore, any root of xP~! — I modulo p is either a root of x4 — Imodulo pora
root of g{x) modulo p.

Lagrange’s theorem tells us that g(x) has atmostd(e — 1) = p — d — 1roots modulo
p. Because every root of xP~! — 1 modulo p that is not a root of g{x) modulo p
must be a root of x¢ — 1 modulo p, we know that the polynomial x% — 1 has at least -
(p — 1) = (p —d — 1) = d incongruent roots modulo p. On the other hand, Lagrange’s
theorem tells us that it has at most & incongruent roots modulo p. Consequently, a—1
i has precisely 4 incongruent roots modulo p. o

Theorem 9.7 can be used to prove a useful result that tells us how many incongruent
integers have a given order modulo p. Before proving this result, we present a femma
needed for its proof.

Lemma9.1, Let p beaprime and let d be a positive divisor of p — 1. Then the number
of positive integers less than p of order ¢ modulo p does not exceed ¢ (d).

Proof. Foreach positive integer d dividing p — 1,let F(d) denote the number of positive
integers of order d modulo p that are less than p.

If F(d) =0, it is clear that F(d) < ¢(d). Otherwise, there is an integer a of order
d modulo p. Because ordpa = d, the integers

2
a,a,....a%

are incongruent modulo p. Furthermore, each of these powers of « is a root of x -1
modulo p, because (a*} = (a®)* = 1 (mod p) for all positive integers k. By Theorem
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9.7, we know that x4 — [ has exactly d incongruent roots modulo P, so every root
modulo p is congruent to one of these powers of a. However, by Theorem 9.4, we know
that the powers of a with order 4 are those of the form a* with (k, d) = 1. There arc
exactly ¢(d) such integers k with 1 < k < 4, and consequently, if there is one element of
order d modulo p, there must be exactly ¢ (d) such positive integers less than d. Hence,
Fd) < $(d). =

We now can determine how many incongruent integers can have a given order
module p,

Theorem9.8. Let pbeaprimeandletd be a positive divisor of p — 1. Then the number
of incongruent integers of order ¢ modulo P is equal to ¢ (d).

Proof.  Foreach positive integer d dividing p — 1, let F(d) denote the number of positive
integers of order 4 modulo p that are less than p. Because the order moduio p of an
integer not divisible by p divides p — L, it follows that

p—1= " F(.
dlp—1
By Theorem 7.7, we know that
p—1= Z & (d).
dip—1
ByLemma9.1, F(d) < ¢(d) whend | {p —1). This inequality, together with the equality
> =Y ¢,
dlp-1 dlp—1
implies that F(d) = ¢(d) for each positive divisor d of p — 1.

Therefore, we can conclude that F (d) = ¢ (d), which tells us that there are precisely
¢(d) incongruent integers of order d modulo D- n

The following corollary is derived immediately from Theorem 9.8.

Corollary 9.8.1. Every prime has a primitive root,

Proof.  Let p be a prime. By Theorem 9.7, we know that there are @ (p — 1) incongruent
integers of order p — 1 modulo p. Because each of these is, by definition, a primitive
raot, p has ¢ (p — 1) primitive roots. _ u

‘The smallest positive primitive root of each prime less than 1000 is given in Table
3 of Appendix E; looking at the table, we sce that 2 is the least primitive root of many
@ primes p. Is 2 a primitive root for infinitely many primes? The answer to this question
is not known, and it is also unknown when we replace 2 by an integer other than +1 or
a perfect square. Evidence suggests the truth of the following conjecture made by Emif
Artin,
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Artin‘s—conjecture. The integer a is a primitive root of infinitely many primes if
a # -1and a is not a perfect square.

Although Artin’s conjecture has not been settled, there are somne inleresting partial
resnlts. For example, one consequence of work by Roger Heath-Brown is that there are
at most two primes and three positive square-free integers a such that a is a primitive
root of only finitely many primes. One implication of this work is that at least one of the
integers 2, 3, and 5 is a primitive root for infinitely many primes.

Many mathematicians have studied the problem of determining bounds on g, the
smallest primitive root for a prime p. Among the results that have been proved are that

gp>Clogp

for some constant € and infinitely many primes p. This result, proved by Fridlender (in
1949), and independently by Salié (in 1950), shows that there are infinitely many primes
where the least primitive root is larger than any particular positive integer. However,
g does not grow very quickly. Grosswald showed (in 1981} that if p is a prime with
p>e theng » < p**. Another interesting result, proved in the problems section of

, the American Mathematical Monthly in 1984, is that for every positive integer M, there
I are infinitely many primes p such that M < g, < p — M.

9.2 Exercises
1. Find the number of incongruent roots modulo 11 of each of the following polynomials.

a)x2 42 AT+ 2+2
by x% 4+ 10 dyxt 241

EMIL ARTIN (1898-1962) was bom in Vienna, Austria. He served in the
Austrian army during World War 1. Tn 1921, he received a Ph.D. from the
University of Leipzig, which he aitended both as an undergraduate and as a
graduate student, He attended the University of Géttingen from 1922 until 1923,
In 1923, he was appointed to a position at the University of Hamburg. Artin was
foreed to leave Germany in 1937 as a result of Nazi regulations because his wife
was Jewish, although he was not. He emigrated to the United States, where he
taught at Notre Dame University (1937-1938), Indiana University (1938-1946),
and Princeton University (1946-1958). He retumed to Germany, taking a position at the University
of Hamburg, in 1958.

Artin made major contributions to several areas of abstract algebra, including ring theory and
group theory. He also invented the concept of braids structures, defined using the concept of strings
woven to form braids, now studied by topologists and algebraists. Artin made major contributions to
both analytic and algebraic number theory, beginning with his research involving quadratic fields.

Artin excelled as a teacher and advisor of stedents. He was also a talented musician who played
the harpsichord, clavichord, and flute and was a devotee of old music.
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| 9.2 Primitive Roots for Primes 345

2. Find the number of incongruent roots modulo 13 of each of the following polynomials.

x4l Coxte12
byx243x 42 Dt x4+ x+1

3. Find the number of primitive roots of each of the following primes.

a)7 dy 19
b) 13 €) 29
) 17 £) 47

- Find a complete set of incongruent primitive roots of 7,
. Find a complete set of incongruent primitive roots of 13,
. Find a complete set of incongruent primitive roots of 17,

. ¥ind a complete set of incongruent primitive roots of 19,

S0 -1 N th

» Let r be a primitive root of the prime p with p = I (mod 4). Show that —r is also a
primitive root,

9. Show that if p is a prime and p = 1 (mod 4), there is an integer x such that x2 = —
(mod p). (Hint: Use Theorem 9.8 to show that there is an integer x of order 4 mod-
ulo p.)

10. &) Find the number of incongruent roots modulo 6 of the polynomial x2 — x.
b) Explain why the answer to part (a) does not contradict Lagrange’s theorem,

11. a) Use Lagrange’s theorem to show that if p is a prime and f{x) is a polynomial of
degree n with integer coefficients and more than r roots modulo p, then p divides
every coefficient of f(x).
b) Let p be prime. Using part (a), show that every coefficient of the polynomial f{x) =
=D —2) - (x — p+ 1) — x?7 £ 1is divisible by p.
¢) Using part (b), give a proof of Wilson’s theorem (Theorem 6.1). (Hint: Consider the
constant term of f(x).)

12. Find the least positive residue of the product of a set of ¢(p — 1) incongruent primitive
roots modulo a prime p,

* 13, A systematic method for constructing a primitive root modulo a piime p is outlined
in this problem. Let the prime factorization of ¢(p) = p — 1 be p—l= qi‘qiz e gl

r?

where gy, g3, . . . , g, are prime.
a} Use Theorem 9.8 to show that there are integers ay, a,, - . ., a, such that ordpa] = q{‘,
f:
ord,a; = g;,. .., ord,a, =g,
b) Use Exercise 10 of Section 9.1 to show that a = a;a, - - - a, is a primitive root mod-
ulo p.

¢) Follow the procedure outlined in parts (2) and (b) to find a primitive root modulo 29.

* 14. Suppose that the composite positive jnteger # has prime-power factorization n =
Pyt per. Show that the number of incongruent bases modulo » for which » is
a pseudoprime to that base is ]_[;___l{n -Lp;—1.
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15. Use Exercise 14 to show that every odd composite integer that isnotapowerof 3isa
pseudoprime to at least two bases other than £1.

16. Show that if p is prime and p = 2q + 1, where g is an odd prime and a is a positive
integer with 1 <a < p — 1, then p — a? is a primitive root modulo p.

x 17, a) Suppose that f(x) is a polynomial with integer coefficients of degree n — 1. Let
X, Xg, . .« » X, be n incongruent integers modulo p. Show that for all integers x, the
COongruence

1 bi]
Fe =3 7ep [ [ =20 — x) (mod p)
R
holds, where x; — x; is an inverse of xj — x; modulo p. This technique for finding
F{x) modulo p is called Lagrange interpolation.
b) Find the least positive residue of f(5) modulo 11 if f(x)is a polynomial of degree
3 with f(1) =8, fF(2)=2,and f(3) =4 (mod 11).

18. In this exercise, we develop a threshold scheme for protection of master keys in a
computer system, different from the scheme discussed in Section 8.6. Let f(x) be a
randomly chosen polynomial of degree r — 1, with the condition that K, the master
key, is the constant term of the polynomial. Let p be a prime, such that p > K and
p > 5. The s shadows ki, ky, . . ., k; are computed by finding the least positive residue of
fxp modulo p for j=1,2,...,5, where x, Xg,. . ., X ar€ randomly chosen integers

Ho incongruent module p; that is,

k;= f(x;) (mod p), 0<k;<p,

forj=12,...,5.

a) Use Lagrange interpolation, described in Exercise 17, to show that the master key K
can be determined from any r shadows.

b) Show that the master key K cannot be determined from fewer than r shadows.

¢) Let K =33, p=47,r=4,and s =7. Let f{x) = 4x? 4 x% + 31y + 33. Find the
seven shadows corresponding to the values of f{x)at1.2,3, 4,5,6,7.

d) Show how to find the master key from the four shadows f(1), £(2), f(3), and f{4).

19, Show that an RSA cipher with encrypting medulus n = pg is resistant to the cycling
attack (see the preamble to Exercise 22 of Section 9.1} if p — 1 and g — 1 have large
prime factors p’ and g, respectively, and p’ — L and q' — 1 have large prime factors p"
and ¢, respectively.

9.2 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, Or programs you have written,
carry out the following computations and explorations.

1. Find the least primitive root for each of the primes 10,007, 10,009, and 10,037,

2. Erdds has asked whether for each sufficiently large prime p there is a prime g for which
g is a primitive root of p. What evidence can you find for this conjecture? For which
small primes p is the statement in the conjecture false?

STUDENTS-HUB.com Uploaded By: anonymous



9.3 The Existence of Primitive Roots 347

Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the following.
L. Given a prime p, use Exercise 13 to find a primitive root of p.

2. Implement the threshold scheme given in Exercise 18.

i 9.3 The Existence of Primitive Roots

In the previous section, we showed that every prime has a primitive root. In this section,
we will find all positive integers having primitive roots. First, we will show that every
power of an odd prime possesses a primitive root.

| ' Primitive Roots Modulo p2, p Prime The first step in showing that every power of
’ an odd prime has a primitive root is to show that every square of an odd prime has a
primitive root.

Theorem 9.9. If p is an odd prime with primitive root r, then either r or r +pisa
primitive root modulo p?,

Froof. Because r is a primitive root modulo p, we know that
ord,r =¢(py=p—1.
Letn = ord p2 750 that
r" = [ (mod p?).
Because a congruence modulo p? obviously holds modulo P, we have
' r" =1(med p).
By Theorem 9.1, because p — 1 = ord ,r, it follows that
p—1ln.
On the other hand, Corollary 9.1.1 tells us that
n{¢(p?).

Because ¢ (p?) = p(p — 1), this implies that n [ p(p — 1). Because » | p{p — 1) and
p—llneithern=p—lorn=p(p— ). n=p(p—1), thenrisa primitive root
modulo p?, because ord 2 r = ¢(p?). Otherwise, we have n = p — 1, so that

©.n Pl = 1 (mod p?).

Lets =r + p. Then, because s = r (mod p), s is also a primitive root modulo p.
Hence, ord > 5 equals either p — 1 or p(p — 1). We will show that ord,z 5= p(p — 1)
by eliminating the possibility that ord,2 s =p — 1.
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To show that ord 2 s # p — 1, first note that by the binomial theorem we have
— 1 _
Pl +p)P = e (p— P 2p + (p ) )ﬂ’_Bp2 R
=P 4 (p— Bp-rP7% (mod pP).
Hence, using (9.1), we see that
Fl=14+(p—Dp-rP2=1— prP=2 (mod p?).
From this last congruence, we can show that
sP71 £ 1 (mod p?).

! To see this, note that if sP~! = 1 (mod p?), then pr?~2 =0 (mod p?). This last congruence
implies that rP=2 =0 (mod p), which is impossible because p f r (remember that r is
a primitive root of p).

Because ord 2 s # p — 1, we can conclude that ord 2 s = p(p — 1) = ¢(p?). Con-

Example9.13. The prime p = 7has r == 3 as a primitive root. Using observations made

|
|
I sequently, s = r + p is a primitive root of p?. "
-
|
; in the proof of Theorem 9.9, either ord g3 = 6 or ord;3 = 42. However,
rP4 =30 £ 1 (mod 49).

Tt follows that ordyg3 = 42. Hence 3 is also a primitive root of p?=49. <

We note that it is extremely rare for the congruence
##7 =1 (mod p?)

to hold when r is a primitive root modulo the prime p. Consequently, it is very seldom
that a primitive root r modulo the prime p is not also a primitive root modulo p?. When
this occurs, Theorem 9.9 tell us that r -+ p is a primitive root modulo p2. The following
example illustrates this.

Example 9.14, Let p = 487. For the primitive root 10 modulo 4'87, we have
10436 = 1 (mod 487%).
Hence, 10 is not a primitive root modulo 4877 but, by Theorem 9.9, we know that

497 = 10 -+ 487 is a primitive root modulo 4872. -

Primitive Roots Modulo pk, p Prime and k a Positive Integer Next, we show that
artibrary powers of odd primes have primitive roots.

Theorem 9.10. Let p be an odd prime. Then p* has a primitive root for all positive
integers k. Moreover, if r is a primitive root modulo p?, then r is a primitive root modulo
p¥, for all positive integers k.
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9.3 The Existence of Primitive Roots 349

Proof. By Theorem 9.9, we know that P has a primitive root r that is also a primitive
root modulo p2, so that

(5.2) Pl 1 (mod p?),

Using mathematical induction, we will prove that for this primitive root ¥,
(9.3) PP 7D £ 1 (mod p)

for all positive integers k, k > 2,

Once we have established congruence, we can show that » is also a primitive root
modulo p by the following reasoning. Let

n :()I'dpk .

By Theorem 8.1, we know that n [ #(p*). By Theorem 7.3, we have d(p*y =
P p — 1). Hence, r | p*(p — 1). On the other hand, because

" = I (mod pk),
we also know that
r" =1 (mod p).

By Theorem 9.1, since ®(p)=p — | we see that P —1{n. Because p — 1| #, and
n| pFl(p— 1), we know that n = p’(p — 1), where ¢ is an integer such that 0 < ¢ <
k—Lifn=p"(p— D witht <k — 2, then

e
#P Y (,.p’(pgl))pk‘z"’ = 1 (mod p*),

whicl_] would contradict (9.3). Hence, ord T = Pl p—1= S {(pF). Consequently, r
is also a primitive root modulo Pt

All that remains is to prove (9.3) using mathematical induction. The case of & — 2
follows from (9.2). Let us assume that the assertion is true for the positive integer k > 2.
Then

PP 70D 2 ) (rmod phy,

Because (r, p) = 1, we know that F P h =1 Consequently, from Fuler's theorem,
we know that

rPk“Z(Pﬁl) = pP5h = 1(mod p*—h,
Therefore, there is an integer d such that

TR L+ dptt

H

where p f d, because by hypothesis 7 *(r—1) # 1 (mod p*). We take the pth power
of both sides of the above equation to obtain, via the binomial theorem and using the
hypothesis that p is odd,
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rPk_l(P"l)' =(1+ dpkfl)p
=1+ p(dp* H + (‘2’) @p "+ P
= 1+ dp* (mod p**+h).
Because p [} d, we can conclude that
WS £ 1 (mod p*).
‘This completes the proof by induction. [ |

Example 9.15. By Example 9.13, we know thatr =3 is a primitive root modulo 7 and
72. Hence, Theorem 9.10 tells us that r = 3 is also a primitive root modulo 7* for all
positive integers k. <

Primitive Roots and Powers of 2 1t is now time to discuss whether there are primitive
roots modulo powers of 2, We first note that both 2 and 2% = 4 have primitive roots,
namely 1 and 3, respectively. For higher powers of 2, the situation is different, as the
following theorem shows; there are no primitive roots modulo these powers of 2.

Theorem 9,11, If @ is an odd integer, and if k is an integer, k > 3, then

a#@)/2 = g7 = | (mod 2%).

Proof. 'We prove this result using mathematical induction. If g is an odd integer, then
a =2k + 1, where b is an integer. Hence,

@t =(@2b+ D =4db* +4b+ 1=4b(b+ 1)+ L.

Because either b or b + 1 is even, we see that 8| 4b(b + 1). By Exercise 5 of Section
4.1, it follows that

‘ - a® =1 (mod 8).
This is the congruence of interest when k = 3.

Now, to complete the induction argument, let us assume that

a2 = 1 (mod 2%).
Then there is an integer « such that
a® " =1+d 25,
Squaring both sides of the above equality, we obtain
a7 = 14 d2F g0
This yields
azk_1 =1 (mod 2kl

which completes the induction argument. ]
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Theorem 9.11 telis us that no power of 2, other than 2 and 4, has a primitive root,
because when a is an odd integer, ordyia # ¢ (24), because g#@4/2 =1 (mod 2%).

Even though there are no primitive roots modulo 2* for k = 3, there always is an
element of largest possible order, namely ¢{2%) /2, as the following theorem shows.

Theorem 9.12. Letk > 3bean integer. Then
ordy: 5 = ¢ (25) /2 = 2k2,
FProof, Theorem 9.11 tells us that
527 = 1 (mod 24,

for k > 3. By Theorem 9.1, we see that ordy 5| 282, Therefore, if we show that
ordy 5 ¥ 2873, we can conclude that

ordy § =282,

To show that ordy: S5 f 2%-3 we will prove by mathematical indiction that, for k > 3,
577 = 14251 £ 1 (mod 2%,
For k =3, we have
5=1+ 4 (mod 8).
Now, we assume that
577 = 14 251 (mod 25).
This means that there is a positive integer d such that
" 7 = 1+ 2 4ok,
Squaring both sides, we find that

7 = (1 2512 4201+ 25Nk 4 by,
50 that
ST S (I 22 g2k g2 oy ok (mod 241y,
This completes the induction argument and shows that

ordys 5= ¢ (25) /2. .
Primitive Roots Modulo Integers Not Prime Powers We have now demonstrated that
all powers of odd primes possess primitive roots, while the only powers of 2 having
primitive roots are 2 and 4. Next, we determine which integers not powers of primes—
that is, those integers divisible by two or more primes—have primitive roots. We will
demonstrate that the only positive integers not powers of primes that possess primitive
roots are twice powers of odd primes.
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We first narrow the set of positive integers that we must consider with the following
result.

Theorem 9.13. If n is a positive integer that is not a prime power or twice a prime
power, then » does not have a primitive toot.

Proof. Letn be a positive integer with prime-power factorization
ot s
n=pipy V-

Let us assume that the integer » has a primitive root r. This means that (r,n) =1
and ord,» = ¢(n). Because (r, n) = 1, we know that (r, p') = 1, whenever p is one of
the prime powers occurring in the factorization of r. By Enler’s theorem, we know that

P9 = 1 (mod p?).
Now, let U be the Jeast common multiple of qﬁ(p;‘), P p?), ..., ¢{pm), that is,
L U =191, oD, ... ¢ (]
Because ¢ ( p? } | U, we know that

r¥ =1 (mod p:f)

| o fori =1,2,...,m. Using the Chinese remainder theorem, it now follows that
+¥ =1 (mod n),

which implies that

ord,r=¢n) <U.
By Theorem 7.4, because ¢ is multiplicative, we have

$) =Py - P = (PGP - (Pl
This formula for ¢ (n) and the inequality ¢(n) < U imply that
s PD - o <[D(P, 6 (1), - S PIDL

Because the product of a set of integers is less than or equal to their least commor
multiple only if the integers are pairwise relatively prime (and then the “less than or equal
to” relation is really just an equality), the integers ¢ ( p’f), b pfj), st pf,’?) must be
pairwise relatively prime.

We note that ¢ (p') = p'~1(p — 1), so that ¢ (p*) is even if p is odd, orif p =2 anc
t = 2. Hence, the numbers qﬁ(p;[), ¢ ( pgz), cees ¢(p,',’;’) are not pairwise relatively prime
unless m = | and  is a prime power, or m = 2 and n = 2p‘, where p is an odd primg
and 1 is a positive integer. 1

We have now limited our consideration to integers of the form n = 2p’, where p i
an odd prime and ¢ is a positive integer. We now show that all such integers have primitive
roots.
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Theorem 9.14. If p is an odd priine and ¢ is a positive integer, then 2 P possesses a
primitive root. In fact, if r is a primitive root modulo P, then if » is odd, it is also a
primitive root modulo 2p?; whereas if r is even, r + p’ is a primitive root medulo 2p°.

Froof. If r is a primitive root modulo 7', then
Pt = (mod p'),

and no positive exponent smaller than ¢ (p) has this property. By Theorem 7.4, we note
that $2p) = $(2)b(p") = $(p"), s0 that r*@2) = | (mod p),

if r is odd, then
@) = 1 (mod 2,

Thus, by Corollary 4.8.1, we see that r¢2#" = | (mod 2p’). No smaller power of »
is congruent to 1 modulo 2p°. Such power would also be congruent to 1 modulo ',
contradicting the assumption that r is a primitive root of p’. It follows that 7 is a primitive
root modulo 2 p,

On the other hand, if r is even, then » + p* is odd. Hence,
o+ p")*%) = 1 (mod 2).
Because r + p' =r (mod p"), we see that
r + p)P%P) = | (mod pt).
Therefore, ( + p")*®P) = 1 (mod 2p%), and as no smaller power of r + p' is congruent

to 1 modulo 2p*, we see that r + p' is a primitive root modulo 2 p?, n
P P

Example 9.16. Earlier in this section we showed that 3 is a primitive root modulo 7
for all positive integers ¢. Hence, because 3 is odd, Theorem 9.14 tels us that 3isalsoa
primitive root modulo 2 - 7 for all positive integers ¢. For instance, 3 is a primitive root
modulo 14,

Similarly, we know that 2 is a primitive root modulo 5 for all positive integers ¢.
Because 2 + 5 is odd, Theorem 9,14 tells us that 2 + 5" is a primitive root modulo 2 . 5¢
for all positive integers 7. For example, 27 is a primitive root modulo 50. «

Putting Everything Together Combining Corollary 9.8.1 and Theorems 9.10, 9.13,
and 9.14, we can now describe which positive integers have a primitive root.

Theorem 9.15.  The positive integer n, n > 1, possesses a primitive root if and only if
n=2,4,p', or2p',

where p is an odd prime and ¢ is a positive integer.
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9.3 Exercises

1. Which of the integers 4, 10, 16, 22, and 28 have a primitive root?

. Which of the integers 8, 9, 12, 26, 27, 31, and 33 have a primitive root?

3. Find a primitive root modulo each of the following moduli.

> 13,

* 14,
* 15,

16.
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ay ¥ ¢) 232
b) 5° dy 297
. Find a primitive root modulo each of the following moduli.
ay 112 ¢) 172
b) 13 dy 19
. Find a primitive root for all positive integers & modulo each of the following moduli.
a) 3 ) 13
b) 11 dy 174
. Find a primitive root for all positive integers k modulo each of the following moduli.
a) 23 c) 31
b) 2% d) 37
. Find a primitive root modulo each of the folowing moduli.
a) 10 c)38
b) 34 d) 50

. Find a primitive root modulo each of the following modauli.

a)6 c) 26
by 18 d) 338

. Find all the primitive roots modulo 22.
10.
11.
12,

Find all the primitive roots module 25.
Find all the primitive roots modulo 38.

Show that there are the same number of primitive roots modulo 2p’ as there are modulo
p’, where p is an odd prime and ¢ is a positive integer.

Show that the integer m has a primitive root if and only if the onli solutions of the
copgruence x> = 1 (mod m) are x = 1 (mod m).

Let n be a positive integer possessing a primitive root. Using this primitive root, prove
that the product of all positive integers Iess than # and relatively prime to # is congruent
to ~-1 moduto 2. (When n is prime, this result is Wilson's theorem (Theorem 6.1).)

Show that although there are no primitive roots modulo 2% where k is an integer, k = 3,
every odd integer is congruent modulo 2" to exactly one of the integers (— D58, where
o =0or 1 and # is an integer satisfying 0 < 8 <282 — L.

Find the smallest odd prime p that has a primitive root r that is not also a primitive root
modulo p2.
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9.3 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find as many examples as you can where r is a primitive root of the prime p, but r is
not a primitive root of p2. Can you make any conjectures about how often this occurs?

Programming Projects

Write computer programs using Maple, Mathematica, or a language of your choice to do the
following.

1. Find primitive roots modulo powers of odd primes.

2. Find primitive roots modulo twice powers of odd primes.

9.4 Index Arithmetic

In this section, we demonstrate how primitive roots may be used to do modular arithmetic.
Let r be a primitive root modulo the positive integer m (so that m is of the form described
in Theorem 9.15). By Theorem 9.3, we know that the integers

r, }.2’ 1,3, e rq&(m)

form a reduced system of residues modulo m. From this fact, we see that if @ is an integer
relatively prime to m, then there is a unique integer x with 1 < x < ¢ (m) such that

r¥ = a (mod m).

This ieads to the following definition.

Definition. Let m be a positive integer with primitive root r. If @ is a positive integer
with (@, m) == 1, then the unique integer x with 1 < x < d(m) and r* = a {mod m) is
called the index (or discrete logarithm) of a to the base r modulo m. With this definition,
we have "% = 4 (mod m).

If x is the index of a to the base r modulo m, then we write 1 = ind,a, where
we do not indicate the modulus m in the notation, as it is assumed to be fixed. From
the definition, we know that if @ and b are integers relatively prime to m and @ = b
(mod ), then ind,a = ind,b. Indices share many properties of logarithms, but with
equalities replaced with congruences modulo ¢ {m) (that is why they are called discrete
logarithms),

Example 9.17. Let m = 7. We have scen that 3 is a primitive root modulo 7 and that
3'=3(mod 7), 3 =2 (mod 7), ¥ =6 (mod 7), 3* =4 (mod 7), 3° = 5 (mod 5), and
3% = 1 (mod 7).
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Hence, modulo 7, we have
ind;1 = 6,ind;2 = 2,ind33 = 1,
]Ild34 == 4, iﬂd35 = 5, 1nd36 =3.

With a different primitive root modulo 7, we obtain a different set of indices. Forinstance,
calculations show that with respect to the primitive root 5,

inds1=6,inds2 =4, inds3 =35,
inds4 == 2, inds5 = 1, inds6 = 3. <

Properties of Indices  'We now develop properties of indices, modulo m similar to those
of Togarithms, but instead of equalities, we have congruences modulo ¢ (m).

Theorem 9.16. Let m be a positive integer with primitive root r, and let g and b be
integers relatively prime to »1. Then

i) ind1=0 (mod ${m)),
(i) ind,(ab) =ind,a + ind,b (mod ¢p(m)),
(i) ind,a‘rc =k - ind,q (mod ¢ (m)) ifkisa positive integer.

Proof of (i). From Euler's theorem, we know that r&) = 1 (mod m). Because r is a
primitive root modulo m, no smaller positive power of » is congruent to 1 modulo m.
Hence, ind,1 = ¢ (m) = 0 (mod P {m)).

Proof of (ii). To prove this congruence, note that from the definition of indices,
rindr(ed) = gp (mod m)
and
rind,a+ind,.b = I.ind,a . ri.ﬂd,b =ab (mod ).
Hence,
Jind,(ab) — pindra+ind,b (oo ),
Using Theorem 9.2, we conclude that
ind, (ab) =ind,a + ind,b (mod ¢ (m})).
Proof of (iii). To prove the congruence of interest, first note that by definition, we have
ri“df“k =a* (mod m)
and
phindia — qind,ayk (e0d ).
Hence,

. k *
pindrat = pkinded (564 ).
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Using Theorem 9.2, this leads us immediately to the congruence we want, namely
ind,a* =k - ind,a (mod ¢ (m)). .
Example 9.18. From the previous examples, we see that, modulo 7, inds2 =4 and
inds3 = 5. Because ¢ (7) = 6, part (i) of Theorem 9.16 tells us that
inds6 = inds(2 - 3) = inds2 + inds3 =4 -+ 5 =9 = 3 (mod 6).
Note that this agrees with the value previously found for inds6.
From part (iii) of Theorem 9.16, we see that
inds3* =4 -inds3 =4 5 =20 = 2 (mod 6).
Note that direct computation gives the same result, because

inds3* = inds81 = inded = 2. «

| Indices are helpful in the solution of certain types of congruences. Consider the
| following examples.

Example 9.19.  We will use indices to solve the congruence 6x'2 = 11 (mod 17). We
find that 3 is a primitive root of 17 (because 3% = —1 (mod 17)). The indices of integers
to the base 3 modulo 17 are given in Table 9.1.

a || 1| 21314 (35361718 o|l10|n|12/13]14|15]16
indge {16 [ 1471 VB2 )5 151110 ]2] 3 7113, 419618

Table 9.1 Indices to the base 3 modulo 17.

Taking the index of each side of the congruence to the base 3 modulo 17, we obtain
a congruence modulo ¢(17) = 16, namely

inds(6x'?) = ind;11 = 7 (mod 16).
Using patts (it) and (iii) of Theorem 9.16, we obtain
indy(6x'2) = ind;6 + inda(x'?) = 15+ 12 - indsx (mod 16).
Hence,
15412 ind3x =7 {(mod 16)
or
12 «ind3x = 8 (mod 16).
From this congruence it follows (as the reader should show) that

ind3x =2 (mod 4).
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Hence,
ind;x =2, 6, 10, or 14 (mod 16).
Consequently, from the definition of indices, we find that
x=3238 310 or 314 fmod 17).

(Note that this congruence holds modulo 17}. Because 32=9, 36 = 15,30 =8, and
314 =2 (mod 17), we conclude that

x=9,15,8, or 2 (mod 17).
Because each step in the computations is reversible, there are four incongruent solutions
of the original congruence modulo 17, «
Example 9.20. 'We wish to find all solutions of the congruence 7% = 6 (mod 17). When
we take indices to the base 3 modulo 17 of both sides of this congruence, we find that
indz(7%) = ind46 = 15 (mod 16).
By part (iii) of Theorem 9.16, we obtain
e ind3(7%) = x - ind37 = 11x {mod 16).
Hence,
11x = 15 (mod 16).

Because 3 is an inverse of 11 modulo 16, we multiply both sides of the linear congruence
above by 3, to find that

x=3-15=45= 13 (mod 16).
All steps in this computation are reversible. Therefore, the solutions of
7* =6 {mod 17)
i are given by

x = 13 (mod 16). «

The Difficulty of Finding Discrete Logarithms

Given a prime p and a primitive root 7, the problem of finding the index (discrete
logarithm) of an integer a to the base  modulo m is called the discrete logarithm problem,
This problem is believed to be as computationally difficult as that of factoring integers.
For this reason, it has been used as the basis for several public key cryptosystems, such as
the ElGamal cryptosystem discussed in Section 10.2, and protocols, such as the Diffie-
Hellman key agreement scheme discussed in Section 8.3, With the growing importance
of the discrete logarithm problem in cryptography, a great deal of research has been
devoted to constructing efficient algorithms for computing discrete logarithms. The most
efficient algorithm known for computing discrete logarithms is the number-field sieve
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method, which requires approximately the same number of bit operations to find discrete
logarithms modulo a prime p as it would to factor a composite number of about the same
size as p. To determine how long it takes to solve the discrete logarithm problem modulo
a prime p, consult Table 3.2, which shows how long it takes to factor an integer n of the
same number of decimal digits as p. For more information about the discrete logarithm
problem, and algorithms for solving it, consult {MevaVa97] and the many references
cited there.

, Power Residues

Indices are also helpful for studying congruences of the form x* = g (mod m), where m is
apositive integer with a primitive root and {a, m) = 1. Before we study such congruences,
we present a definition,

Definition. If s and k are positive integers and a is an integer relatively prime to m,
then we say that a is a kth power residue of m if the congruence x* = a (mod m) has a
solution.

When m is an integer possessing a primitive root, the following theorem gives a
useful criterion for an integer a relatively prime to 71 to be a kth power residue of m1.

Theorem 9.17.  Let m be a positive integer with a primitive root. If k is a positive
integer and « is an integer relatively prime to m, then the congruence x* = a (mod m)
has a solution if and only if

a®on/d _ 4 {mod mt),

where d = (k, ¢ (m)}). Furthermore, if there are solutions of 1% = g (mod m), then there
are exactly 4 incongruent solutions modulo .

FProof. Let r be a primitive root modulo the positive integer m. We note that the

congruence
F=a (mod m}

holds if and only if

9.4 k- ind,x = ind,a (mod ¢ (m)).

Now let d = (k, ¢ (in)) and y = ind, x, so that x = r¥ (mod m}. By Theorem 4.10, we
note that if d f ind,a, then the linear congruence

(9.5) ky =ind,a (mod ¢{m))

has no solutions and, hence, there are no integers x satisfying (9.4). I d | ind,a, then
there are exactly d integers y incongruent modulo ¢ (#1) such that (9.5} holds and, hence,
exactly  integers x incongruent modulo m such that (9.4) holds. Because d [ ind,a if
and only if

(¢ on}/d)ind,a = 0 (mod ¢ (m)),
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and this congruence holds if and only if
a®®9/4 = | (mod m),
the theorem is true. [

We note that Theorem 9.17 tells us that if p is a prime, k is a positive integer, and a
is an integer relatively prime to p, then a is a kth power residue of p if and only if

a'?~0/4 = 1 (mod p),

where d = (k, p — 1), We illustrate this observation with an example.

Example 9.21. To determine whether 5 is a sixth power residue of 17, that is, whether
the congruence

% ‘ x0=5(mod 17)
has a solution, we determine that
516/(6,16) . 58 = 1 (mod 17).

Hernce, 5 is not a sixth power residue of 17. <

A table of indices with respect to the least primitive root modulo each prime less
than 100 is given in Table 4 of Appendix E.

Proving Theorem 6.10  This proof of Theorem 6.10 is quite long and complicated, but
is based only on results already established. We present this proof to give the reader an
indication that even elementary proofs can be difficult to create and hard to follow. As
you read this proof, follow each part carcfully and check each separate case. We restate
Theorem 6.10 for convenience. :

Theorem 6.10. 1f  is an odd composite positive integer, then n passes Miller’s test for
at most (n — 1)}/4 basesb with1 <b <n -1

We need the following lemma in the proof.

Lemma9.2. Let pbeanodd primeand lete and ¢ be positive integers. Then the number
of incongruent solutions of the congruence 1?2 =1 (med p%) is (g, pe—l( r— 1))

Proof. Let r be a primitive root of p®. By taking indices with respect to r, we
see that ¥ = 1 (mod p®) if and only if gy = 0 (mod ¢ (p°)), where y = ind,x. Us-
ing Theorem 4.10, we see that there are exactly (g, #(p%)) incongruent solutions of

gy =0 (mod ¢ (p?). Consequently, there are (g, ¢{(p%Y) = (q, pe~Y(p — 1)) incongru-
ent solutions of x7 = 1 (mod p°®). ]

We now proceed with a proof of Theorem 6.10.
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]

3 Proof. Letn — 1 =2, where s is a positive integer and ¢ is an odd positive integer.
‘ For n of Theorem: 6.10to be a strong pseudoprime to the base b, either

b' = 1(mod n)
or
B = (mod n)
for some integer j with 0 < j <5 — 1, In either case, we have

B =1 (mod n).

! Let the prime-power factorization of 1 be n = 2% [OSRRE . By Lemma 9.2, we
know that there fre {n—1, pj.j pi—M=mn-1,p ; — 1) incongruent solutions of
i xi-le I{mod p j" Lhi=12,...,r. Consequently, the Chinese remainder theorem tells

us that there are exactly H;:I(n — 1, p; — 1) incongruent solutions of x*~1 = 1 (modn).
]

We consider two cases.

Case (i), We first consider the case where the prime-power factorization of » contains
a prime power p;"“ with exponent e;, > 2. Because

-1
(Pe = D/ = (P ™) - () < 2/9
(the largest possible value occurs when pj=3and e; = 2}, we see that

[To-1p;~v<[]e; -1
j=1

j=1

<(11n) (3)

Ak

=

O b

H.

Because %n =< 31(71 — D forn > 9, it follows that

[T —1.p; -1 < - pya.
j=1

Consequently, there are at most (z — 1)/4 integers b, 1 < b < n, for whichn is a strong
pseudoprime to the base b.

Case (ii). Now, we consider the case where 51 = PPy - Py, where p, py, .. ., p, ate
distinet odd primes. Let

pi—1=2%, i=1,2.. . r
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where s; is a positive integer and f; is an odd positive integer. We reorder the primes
P Pase s Py GF necessary) so that sy < 55 < - - < 5,. We note that

(n - Ia Pi— ].) = zmjn(s’s(‘)(t, fi').

The number of incongruent solutions of x* = I (mod p;) is T; = (¢, ;). From Exercise
22 at the end of this section, there are 2/, incongruent solutions of x¥ = —1(mod p))
when 0 < 5; — 1, and no solutions otherwise. Hence, using the Chinese remainder theo-
rem, there are 775 - - - T, incongruent solutions of xf =1 (mod ), and 2T T,

incongruent solutions of ¥t = —1(modn) when0 < j <8 — 1. Therefore, there are a
total of
sl . a8 1
Tsz---Tr 14 2 leT'Z"'Tr (1-{-“‘2’_—_1—)
j=0

integers b, with 1 < b < n — 1, for which n is a strong pseudoprime to the base b.
Now, we note that
G =(py— Dipy— V- (p,— D=0t g2

We will show that

25— 1
T T (14 55 ) < p(n)/4,
which proves the desired result. Because 1T, - - - Tp = fify - - - £y, We Cant achieve our
goal by showing that
275 —1 1
9.6 1+ gsrbrtts < -
0 (1022 pr <

Because 51 < - - - < 5, We g€ that

(1 + 97TSj 1) Jasrbrbts; < (1 N 2r8i — 1) e

7 _1 2 1
1 ora_ 1
=2 T m@ -1
11 1
= o T 1 o — 1)
1 )
=7t 2rs1(2 — 1)
' = g1

From this inequality, we conclude that (9.6) is valid when r = 3.

When r =2, we have n = pyp,, with py — 1=2%1tyand pp — 1= 2528, with 51 < 7.
If 5, < 53, then (9.6) is again valid, because
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2
(1+ 245 1) /251_*_32
N

251 1 2

] ML |
(1+ . )/212 )
(1 1 sy
= 3+3_2§1_1)/z

1
< -
4

When sy = sy, wehave (n — 1, p; — ) = 2*Tiand (n — 1, pp — 1) = 2°7T,. Let us assume
that p; > p,. Note that 7} # 1, for if T} = f, then (py — 1) [ (n — 1), so that

n=pipy = py=1{mod p; — 1},

which implies that p, > p,, a contradiction. Because Ty # 11, we know that 7; < 1,/3.
Similarly, if p; < p,, then T, # #y, so that 75 < 1h/3. Hence, T|T, < h1,/3, and because

(1+ 2—27;;1) /2%1 < 1, we have

25— 1

T, (1 + ) < 182216 = p(n) /6,

proving the theorem for this final case, since P/6 = (n—~1)/6 < (n—1)/4.

By analyzing the inequalities in the proof of Theorem 6.10, we can see that the
probability that » is a strong pseudoprime to the randomly chosenbase b, 1 <b <pn — 1,
is close to 1/4 only for integers r with prime factorizations of the form »n = PiPa2, with
p1=1+2q, and p, = 1+ 4g,, where g, and g are odd primes, or i = q,g,q3, with
=1+2q,py=142¢y,and py =1+ 23, where gy, g3, and g3 are distinct odd primes
(see Exercise 23).

9.4 Exercises

1. Write out a table of indices modulo 23 with respect to the primitive root 3.

2. Find all the sofutions of the following congruences.

a) 3x° = I (mod 23) b) 33 =2 (mod 23)

3. Find all the solutions of the following congruences.

&) 3% =2 (mod 23) b) 13* =5 (mod 23)
4. For which positive integers « is the congruence ax* = 2 (mod 13) solvable?
5. For which positive integers b is the congruence 8x7 = b {mod 29) solvable?
6. Find the solutions of 2% = x (mod 13), using indices to the base 2 modulo 13.
7. Find ail the solutions of x* = x (mod 23).
8. Show thatif p is an odd prime and r is a primitive root of p,thenind, (p — ) = (p - )/2.
9. Let p be an odd prime. Show that the congruence ¥* = —1 {mod 7) has a solution if and

only if p is of the form 8k + 1.
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10. Prove that there are infinitely many primes of the form 8k + 1. (Hint: Assume that
D1 Pas -+ -+ Py 2re the only primes of this form. Let 0 = (2py, pz -+ pa)* +- 1. Show
that © must have an odd prime factor different than py, py, . . ., p, and, by Exercise 9,
necessarily of the form 8k + 1.)

By Exercise 15 of Section 9.3, we know that if a is an odd positive integer, then there
are unique integers o and g with ¢ =0 or l and 0 < 8 < 2F-2 _ 1 such that @ = (—1)*5#
{(mod 2%), Define the index system of a modulo 2% 1o be equal to the pair («, ).

11. Find the index system of 7 and 9 modulo 16.

12. Develop rules for the index systems modulo 2% of products and powers, analogous to the
rules for indices.

13. Use the index system module 32 to find all solutions of 7x% =11 (mod 32} and 3* = 17
(mod 32).

Letp =20 p;‘ ptf ++ - p'n be the prime-power factorization of n. Let a be an integer relatively
prime to n. Let #}, 7y, . . ., Fy, be primitive roots of p;‘, pfj, .., Pi», respectively, and let
y1 = ind, @ (mod (p})), yp = ind,,a (mod ¢ (P)), . . -, Yo = ind, @ (mod ¢ (pfm). 1o < 2,
let rg be a primitive root of 2/, and let yy = ind, a (mod $(279)). If t5 = 3, let (w, B) be the
index system of a modulo 2%, so that a = (—~1)*5° (mod 2%y, Define the index system of a
modido 11O be (Yo, Vis Var + -+ » V) if fg < 2 a0d {0, B, ¥1 V2o - - - Y} H fp 2 3.

14. Show that if r is a positive integer, then every integer has a unique index system mod-
ulo n.

15. Find the index systems of 17 and 41 (mod 120) (in your computations, use 2 as aprimitive
root of the prime factor 5 of 120).

16. Develop rules for the index systems modulo # of products and powers, analogous to
those for indices.

17. Use an index system modulo 60 to find the solutions of 11x7 = 43 (mod 60).

18. Let p be a prime, p > 3. Show that if p = 2 (mod 3), then every integer not divisible
by 3 is a third-power, or cubic, residue of p, whereas if p=1(mod 3}, an integera is a
cubic residue of p if and only if a?~1/3 = | (mod p).

f 19, Let e be a positive integer with e > 2. Show that if k is an odd positive integer, then every
P odd integer a is & kth power residue of 2°.

% 20, Let e be a positive integer with e > 2. Show that if & is even, then an integer a is a kth
P power residue of 2 if and only if a = 1 (mod (4k, 2)).

# 21, Let ¢ be apositive integer with e > 2. Show that if k is a positive integer, then the number
of incongruent kth power residues of 2° is

22—1
(k, 2)(k, 272}

E7 22. Let N = 2/u be a positive integer, with j a nonnegative integer and 1 an odd positive
integer, and let p — 1 =25¢, where 5 and 7 are positive integers with # 0dd. Show that
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9.5 Primality Tests Using Orders of Integers and Primitive Roots 365

there are 27(r, 1) incongruent solutions of ¥V = —1 {mod p)if0 < j<s—1, and no
solufions otherwise,

* 23, a) Show that the probability that » is a strong pseudoprime for a base b randomly
chosen with 1 <b <n — 1is near 1/4 only when n has a prime factorization of
the form n = p|p;, where p, =1+ 2q; and py = 1+ 4g,, with g, and g, prime,
Of 71 = PPy p3, Where py = 1+ 2gy, p, = 1 + 2g,, and P3=142q;, with g, ¢2, 3
distinct odd primes.

b} Find the probability that n = 49,939 . 99,877 is a strong pseudoprime to the base &
randomly chosen with | <b < p — 1.

9.4 Computational and Programming Exercises
Computations and Explorations

Using a computation progratn such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find integers n for which the probability that  is a strong pseudoprime to the randomly
chosenbase b, 1 < & < n — 1, is close to 1/4.

Programming Projects

Write programs using Maple, Mathematica, or a langnage of your choice to do the following,

1. Construct a table of indices modulo a particular primitive root of an integer.

2. Using indices solve congruences of the form ax? = ¢ (mod m), where a, b, ¢, and m are
integers with ¢ > 0, m > 0, and where m has a primitive root,

3. Find kth power residues of a positive integer m having a primitive root, where k& is a
positive integer,

4. Find index systems modulo powers of 2 (see the preamble to Exercise 11).

5. Find index systems modulo arbitrary positive integers (see the preamble to Exercise 14).

9.5 Primality Tests Using Orders of Integers
and Primitive Roots

In Chapter 6, we saw that the converse of Fermat’s little theorem is not true. Fermat’s
little theorem tells us that if p is prime and 4 is an integer with (a, py=1thenag? l=
1 (mod p). Even if "~ '= 1 (mod n), where a is a positive infeger, n may still be
composite. Although the converse of Fermat's little theorem is not true, can we establish
partial converses? That is, can we add hypotheses to the converse to make it true?

In this section, we will use the concepts developed in this chapter to prove some
partial converses of Fermat's little theorem. We begin with a result known as Lucas’s
converse of Fermat's little theorem. This result was proved by French mathematician
Edouard Lucas in 1876.
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Theorern 9.18. Lucas’s Converse of Fermat’s Little Theorem. Ifnisa positive integer
and if an integer x exists such that

¥ = 1({mod n)
and
x @~/ £ 1 (mod n)
for all prime divisors g of n — 1, then » is prime.

Proof. Because "1 =1 (mod n), Theorem 9.1 tells us that ord,x | (n — 1. We will
show that ord,x = n — 1. Suppose that ord,x # n — 1. Because ord,x | (n — 1), there is
an integer k withn — 1=k - ord,x, and because ord,.x 7 n — 1, we know that k= 1l1let
g be a prime divisor of k. Then

x(n—l)/q — xk/{ordnxq) - (xord,,x)(k/q) =1 (mod n).
However, this contradicts the hypotheses of the theorem, so we must have ord,x =71 — 1

Now because ord,x < ¢(n) and ¢{n) =n — 1, it follows that ¢ (n) =n — 1. By Theorem
7.2, we know that 72 must be prime. n

Note that Theorem 9.18 is equivalent to the fact that if there is an integer with order
modulo n equal to n — 1, then n must be prime. We illustrate the use of Theorem 9.18
poe with an example.

Example 9.22. Letn = 1009. Then 11198 = 1(mod 1009). The prime divisors of 1008
are 2, 3, and 7. We see that 111908/2 = 11°%* = —1 (mod 1009), 111008/3 — 11336 =374
(mod 1009), and 1 10%/7 = 111 =935 (mod 1009). Hence, by Theorem 9.18, we know
that 1009 is prime. <

The following corollary of Theorem 9.18 gives a slightly more efficient primality
! test.

Corollary 9.18.1, If n is an odd positive integer and if x is a positive integer such that

»@ D2 = 1 (mod n)
and
x4 2 | (mod n)
for all odd prime divisors g of n — 1, then n is prime.
Proof Because x0~%/2 = —1 (mod n), we see that
L= (x(D/2)2 = (—1)% = 1 (mod n).

Because the hypotheses of Theorem 9.18 are met, we know that n is prime. n

Example 923, Let n = 2003. The odd prime divisors of n — 1=2002 are 7, 11,
and 13. Because 52002/2 = 51001 = 1 (mod 2003), 52002/7 — 5286 = 874 (mod 2003},
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52002/1 = 5183 — 886 (mod 2003), and 52002/13 . 5154 _ 633 (mod 2003), we see from
Corollary 9.18.1 that 2003 is prime, -

To determine whether an integer » is prime using either Theorem 9.18 or Corollary
9.18.1, it is necessary to know the prime factorization of 51 — L. As we have remarked
before, finding the prime factorization of an integer is a time-consuming process. Only
when we have some a priori information about the fac torization of i — 1are the primality
tests given by these results practical. Indeed, with such information these tests can
be useful. Such a situation occurs with the Fermat numbers; in Chapter 11 we give a
primality test for these numbers based on the ideas of this section,

In Chapter 3, we discussed the recent discovery of an algorithm that can prove that
an integer n is prime in polynomial time (in the number of digits in the prime). We can
prove a weaker result using Corollary 9.18.1, which shows that we can prove that an
integer is prime in polynomial time once particular information is known.

Theorem 9,19,  Ifn is prime, this can be proved when sufficient information is available
using O((log, m)%) bit operations.

Proof, We use the second principle of mathematical induction. The induction hypothe-
i sisis an estimate for f{n), where f{n)is the total nuinber of multiplications and modular
: exponentiations needed to verify that the integer » is prime.

We demonstrate that
fn) <3(ogn/log2) — 2.
First, we note that f(2) = 1. We assume that for all primes g, with ¢ < n, the
inequality
f(g) <3(ogn/log2) —2
holds.

To prove that n is prime, we use Corollary 9.18.1. Once we have the numbers
2% 41, .. ., q;, and x that supposedly safisfy

i) n—-1=24,- -q,
(i) ¢;isprimefori=1,2,... ¢,
(i) x-02 = {mod n),

and
(iv) x¥ "V =1 (mod n), fori =1,2,... .1,

we need to do ¢ multiplications to check (i), 7 + 1 modular exponentiations to check (iii)
and (iv), and f{g,;) multiplications and modular exponentiations to check (ii), that ¢; is
prime fori =1,2,...,t. Hence,
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t
Sy =1+ +D+Y flg)

=1

4
<2t 14 }:((3 log g;/log 2) — 2).

i=1

Now, each multiplication requires O ((log, m?%) bit operations and each modular expo-
nentiation requires O({log, 1)%) bit operations, Because the total number of multiplica-
tions and modular exponentiations needed is f(n) = O(log, n}, the total number of bit
operations needed is O ((Jog, 1) (log, )%y = O((log, Y. n

Another limited converse of Fermat’s little theorem was established by Henry
Pocklington in 1914, He showed that the primality of # can be established using a partial
factorization of 7 — 1. We use the usual notation n — 1= FR, where I represents the
part of n — 1 factored into primes and R the remaining part not factored into primes.

Theorem 9.20, Pocklington’s Primality Test. Suppose that 1 is a positive integer with
n — 1= FR, where (F, R) =1 and F > R. The integer n is prime if there exists an
integer @ such that (a'"~1/4 — 1,n) = 1 whenever ¢ is a prime with ¢ | F and a~l=
(mod n).

Proof. Suppose that p is a prime divisor of n with p < /1. Because a't=
(mod n) (where a is the integer assumed to have the properties spectfied in the hypothe-
ses), if p | n, we see that @" 1= | (mod p). 1t follows that ord,a|n— 1. Consequently,
there exists an integer ¢ such thatn — 1=+ -ord, a.

Now, suppose that g is a prime with ¢ | F and that g° is the power of ¢ appearing
in the prime-power factorization of F. We will show that ¢ f 7. To see this, note that if
g i#, then

gD/ — o /D = | (mod p).

This implies that p | (a®~9/4 — 1,n) because p | a® /4 - 1and p | 1. This contradicts
the hypothesis that (a®*~/9 — 1, n) = 1. Consequently, ¢ } ¢. It follows that ¢ | ord , a.
Because for every prime dividing F the power of this prime in the prime-power factor-
ization of F divides ord,, a, it follows that ¥ [ ord,, a. Because ord,, a | p — 1, it follows
that F | p — 1, implying that F < p.

Because F = R and n — 1 = FR, it follows that n — 1 < F2. Because both n — 1
and F? are integers, we have n < F 2 so p> F = /n. We can conclude that n is prime.
=

The following example illustrates the use of Pocklington’s primality test, where only

a partial factorization of n — 1is used to show that » is prime.

Example 9.24. We will use Pocklington’s primality test to show that 23801 is prime.
With » = 23801, we can use the partial factorization of n — 1=23800 = FR, where
F =200 = 235% and R = 119, so that F > R. Taking a == 3, we find (with the help of
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computation software) that

37890 < | (mod 23801)
35380072 = 1 (mod 23801)
380075 — 19672 (mod 23801 ).

From this we find (using the Euclidean algorithm) that (323800/2 _ | 23801) =
(=2,23801) = 1 and (323800/5 _ | 23801) = (19671, 23801) = 1. This shows that 5 =
23801 is prime, even though we did not use the complete factorization of ;7 — 1 = 23800
(namely, 23800 = 2%. 52.7. 17), «

We can use Pocklington’s primality test to develop another test, which is useful
for testing the primality of numbers of special form. This test {which actually predates
Pocklington’s) was proved by E. Proth in 1878,

Theorem 9.21. Prosh’s Primality Test. Letn be a positive integer with n = k2" 1,

where £ is an odd integer and m is an integer with k < 2" If there is an integer o such
that

a2 = 1 (mod n},
then » is prime,

Proof. Lets =2" and ¢ - k,sothats > ¢ by the hypotheses. If

0.7 a2 = _{mod n),

we can easily show that (a®0/2 _ | 4y = | To see this, note that if d | (a®—1/2 _ y
| and d | n, then by (9.7), d | (@®=D/2 1 1y, 1t follows that 4 divides (a®-1D/2 _ qy 4
| (@"=Y72 L 1) = 2, Because n is odd, it follows that d = 1, Consequently, all the hy-
| potheses of Pocklington’s primality test are satisfied, so # is prime, ]

Example 9.25.  We will use Proth’s primality test to show that nn = (3. 28 +1=3329is
prime. First, note that 13 < 28 — 256, Take a = 3. We find (with the help of computation
software) that

K LIS UL 3329),

It foliows by Proth’s primality test that 3329 is prime, «

: @ Proth’s primality test has been used extensively to prove the primality of many large
i numbers of the form k2™ -+ 1. Three of the ten largest primes currently known have
n been found using Proth's primality test; the rest are Mersenne primes. For a few years,
the largest known prime was not a Mersenne prime, but one of the form k2" + 1. You
can download PC-based software from the Web for running Proth’s primality test, and
look for new primes of the form 427 + L yourself! If you find one you will receive some
small amount of fame, but it will not make you as famous as if you found a new Mersenne
prime,
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370 Primitive Roots

9.5 Exercises

. Show that 101 is prime using Lucas’s converse of Fermat’s little theorem with x = 2.
. Show that 211 is prime using Lucas’s converse of Fermat’s little theorem with x = 2.
. Show that 233 is prime using Corollary 9.18.1 with x = 3

. Show that 257 is prime using Corollary 9.18.1 with x = 3.

o W R

. Show that if an integer x exists such that
' =1(mod F,)
and
277" £ 1 (mod Fy),
then the Fermat number F, = 2%" + 1is prime.
% 6. Let n be a positive integer. Show that if the prime-power factorization of n — 1is

1= p‘f‘pgz <. pit, and for j = 1,2,...,1, there exists an integer x; such that

20 7MP £1 (mod )
and

| x:}_l = 1 (mod n),
then n is prime.

# 7. Letn be a positive integer such that

,
| n—l:ml—[q?",
. ‘=‘l

i th:[:e mis a posiliive integer, a;, as, . . . , 4, are positive integers, and gy, 43, - - -+ 4y ArC
relatively prime integers greater than one. Furthermore, let by, by, . . . , b, be positive
integers such that there exist integers xy, X3, . . ., %y with

x;.’"L = 1 (mod n}
and
(x;ﬂi[)'{qj —1L,n)=1

for j=1,2,...,r, where every prime factor of g; is greater than or equal to b; for
j=12,...,r,and

r 2
n< (i+1_[b;j) .
j=t

Show that # is prime.

8. Use Pocklington’s primality test to show that 7057 is prime. (Hint: Take F = 24,32 =
144 and R =49in 7057 — 1 =7056 = FR.}

9. Use Pocklington’s primality test to show that 9929 is prime, (Hint: Take F =136 =
23.17and R =73in 9929 — 1=9928 = FR))
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10. Use Proth’s primality test to show that 449 is prime,
11. Use Proth’s primality test to show that 3329 is prime.

* 12, Show that the integer n is prime if # — 1 = FR,where (F,R)=1, Bisan integer with
FB > /n, and R has no prime factors less than B; for each prime g dividing F, there
exists an integer o such that "1 = 1 (mod n) and (g D/4 _ 1, 1) = 1; and there exists
an integer b greater than 1 such that 5" ! = 1 (mod ) and (¥ — Lm=1

* 13. Suppose that n = hig* + 1, where ¢ is prime and ¢* > /. Show that » is prime if there
exists an integer a such that 2"~ = 1 (mod n) and (a®~D/7 _ 1,m=1

@f * 14. A Sierpinski number is a positive odd integer k for which the integers k2" + 1, where n
is an integer with n > 1, are all composite. Show 78557 is a Sierpinski number.

9.5 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Use Pocklington’s primality test to show that 10,998,989 is prime, with n — [ = FR,
where s = 4004, 1 = 2747, and ¢ = 3.

2. Use Pocklington’s primality test to show that 11 1,649,121 is prime.

3. Use Proth’s primality test to find as many primes of the form 3. 2" + 1 as you can.
4. Use Proth’s primality test to find as many primes of the form 5- 2" + 1 as possible.
5,

1t has been conjectured that 78557 is the smallest Sierpinski number (see Exercise 14).
(Sierpinski showed in 1960 that there are infinitely many Sierpinski numbers.) Can
you help verify this conjecture (if it is true) by eliminating any of the integers 4847,
5359, 10223, 19249, 21811, 22699, 24737, 27653, 28433, 33661, 55459, and 67607

@ from contention? To do so, you will have to find an integer i such that £2" + 1 is
prime, where k is an integer on this list. (You can monitor progress on this conjecture at
www.seventeenorbust.com.)

6. Give a succinct certification of primality of F; = 2% + 1= 65537,

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to show that a
positive integer » is prime using the following.

1. Lucas’s converse of Fermat’s little theorem
2. Corollary 9,18.1

3. Pocklington’s primality test

4. Proth’s primality test
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9.6 Universal Exponents

Let 1 be a positive integer with prime-power factorization

: _ o h. b t
Iy ”—-nplpz"‘p,;'.

If g is an integer relatively prime to n, then Buler’s theorem tells us that
a?P =1 {mod p"),

whenever p' is one of the prime powers occurring in the factorization of 7. As in the
proof of Theorein 9.13, let

- U =001y, 0P}

} . the least common multiple of the integers ¢( p?),i =1,2,...,m.Because
S0 ,
. $(PHIU,
L ; fori=1,2,...,m,using Theorem 9.1 we see that
a¥ =1 (mod p;),
fori=1,2,...,m. Hence, by Corollary 4.8.1, it follows that

a¥ =1 (mod n).
E This leads to the following definition.

| Definition. A universal exponent of the positive integer #11s a positive integer U suc
that

a¥ =1 (mod n),

for all integers a relatively prime to n.

Example 9.26. Because the prime-power factorization of 600 is 2° - 3+ 5, it follow
that U = [ (2%, 0 (3), $(5%)]=1[4,2,20]=20isa universal exponent of 600.

ﬂ : From Euler's theorem, we know that ¢(n) is a universal exponent. As we hay
already demonstrated, the integer U = [qb(pi‘), & p;Z), ..., d(pim]is also a univers
exponentofn = p;‘ pgz e pf;f‘.We are interested in finding the smallest positive univers

exponent of .

Definition. The least universal exponent of the positive integer # is called the minim
b universal exponent of n, and is denoted by A(n}.

We now find a formula for the minimal universal exponent A(#), based on the prim
power factorization of #.
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First, note that if » has a primitive root, then A(n) = ¢(n). Because powers of odd
primes possess primitive roofs, we know that

AP =9(ph,

whenever p is an odd prime and £ is a positive integer, Similarly, we have A2y =¢@2)=1
and L{(4) = ¢ (4) = 2, because both 2 and 4 have primitive roots, On the other hand, if
t = 3, then we know by Theorem 9.11 that

a? = 1 (mod 2")

and ordy 5 = 22, 50 that we can conclude that A(2/y = 2/-2 i ¢ >3

We have found A(n) when  is a power of a prime, Next, we turn our attention to
arbitrary positive integers 1,

Theorem 9.22. ILetnbeg positive integer with prime-power factorization
n=20plp2. plm.
Then A(n), the minimal universal exponent of n, is given by
AR =2, ¢ (o)), p(plm]

Moreover, there exists an integer a such that ord, a = A(n), the largest possible order of
an integer modulo 5.

Proof. Letabean integer with (a, n) = 1. For convenience, let
M =120, (2 SO, p (],

Because M is divisible by all of the i,ntegers A(2%), c;&(p;‘) = A(pi'), @ (p?) = A(péz), .
oy = Al P, and because g (7") — I (mod pf) for all prime powers in the factoriza-
tion of 1, we see that

a¥ = 1 {mod p"),

whenever p’ is a prime power occuiring in the factorization of .

Consequently, by Corollary 4.8.1 we can conclude that
a¥ =1 (mod »).
The last congruence established the fact that M is a universal exponent. We must

now show that M is the feqst universat exponent. To do this, we find an integer a such
that no positive power smaller than the Mth power of a is congruent to 1 modulo n. With

. . e I
this in mind, let r; be a primitive root of p.
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374 Primitive Roots

We consider the system of simultaneous congruences
x =5 (mod 20)
x =r; (mod py)

x =ry (mod przz)

x =1, (mod P:,’f)-

By the Chinese remainder theorem, there is a simultaneous solution a of this system
that is unique modulo n = 2/ p‘l prz . pim: we will show that ord,a = M. To prove this

claim, assume that N is a positive integer such that

N=1 (mod n).

Then, if p' is a prime-power divisor of #, we have
S a¥ =1 (mod p*),
so that
e E ordyalN.
. But, because a satisfies each of the m + 1 congruences of the system, we have
ordya = rph,
for each prime power in the factorization. Hence, by Theorem 9.1, we have
MpO N,

for all prime powers p in the factorization of n. Therefore, by Corollary 4.8.1, we know
that M = [L(2), AP}, AP, - . MPIDTI N,

Because a™ = 1 (mod n) and M | N whenever a” =1 (mod n), we can conclude
that

ord,,a = M.

This shows that M = A () and simultaneously produces a positive integer a with ord,a =
A(n). u

Example9.27. Because the prime-power factorization of 180 is 22.3%. 5, from Theo-
rem 9.22 it follows that

A(180) = [¢(2D), ¢ (37), $(5)1 = 12.

To find an integer @ with ord gqa = 12, first we find primitive roots modulo 3% and 5. For
instance, we take 2 and 3 as primitive roots modulo 32 and 3, respectively. Then, using

STUDENTS-HUB.com Uploaded By: anonymous
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the Chinese remainder theorem, we find a solution of the System of congruences

a =3 (mod 4)
a =2 (mod9)
@ =3 (mod 5),
obtaining a = 83 (mod 180). From the proof of Theorem 9.22, we see that ord 5,83 = 12.
-«
Example 9.28. Letn =20.32.5.7.13.17. 19.37.73. Then, we have
() = [1(2%), (3%, 6 (5), 6 (17), $(13), ¢(17), ¢(19), ¢ (37), $(73)]
=02,2.3,22,2.3,22.3,2% 2. 32 923 233
—ot. 32
= 144,
Hence, whenever a is a positive integer relatively prime to 26.32.5.7.13.17.17.
19-37-73, we know thata'* =1 (mod 26.32.5.17.19.37.37.73). «

Results About Carmichael Numbers We now return to the Carmichael numbers,
; which we discussed in Section 6.2. Recall that a Carmichael number is a compos-
; ite integer that satisfies #”" ! = 1 (mod n) for all positive integers b with {b,n) =1
We proved that if n = g9, - - - g, where 9192, - - - » gx are distinct primes satisfying
(gi-Dlm—Dforj=1,2,...,k thennisa Carmichael number. Here, we prove
the converse of this result,

Theorem 9.23. If n > 2 is a Carmichael number, then n = g,g, - - - g;, where the g;
are distinct primes such that g —DIn—Dforj=12,... k.
Proof. If n is a Carmichae] number, then

b= 1 (mod n),

for all positive integers b with (b, ) = 1. Theorem 9.22 tells us that there is an integer a
with ord,a = A(n), where A(n) is the minimal universal exponent; and because "1 = |
(mod n), Theorem 9.1 tells us that

Aon) [ {n — D).

Now n must be odd, forif n were even, thenn — 1 would be add, but A{#) is even (because
n = 2), contradicting the fact that A (n) | {n — 1.

We now show that # must be the product of distinct primes. Suppose that n has a
prime-power factor p! with ¢ > 2. Then .

Mpy=¢(P)=p" N p—Dirm)=n—1.

This implies that p | (n — 1), which is impossible because p | . Consequently, 2 must
be the product of distinct odd primes, say

R=qq;---q.
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‘We conclude the proof by noting that
A(‘If)=¢'(€15)=(qj—1)|l(ii)=n— 1. n

We can easily prove more about the prime factorizations of Carmichael numbers,
Theorem 9.24. A Carmichael number must have at least three different odd prime
factors.

Proof. LetnbeaCarmichael number, Then » cannot have just one prime factor, because
it is composite, and is the product of distinct primes. So assume that 1z == pg, where p
and ¢ are odd primes with p > g. Then

nel=pg—1=(p—Dg+(@—1D=g~1#0mod p—1),

which shows that (p — 1) f (# — 1). Hence, n cannot be a Carmichael number if it has
just two different prime factors. n

b 9.6 Exercises

1. Find A(n), the minimal universal exponent of n, for the following values of n.

a)y 100 e)24.33.5%.7

by 144 £)25.32.52.73.112.13. 17-19
¢) 222 g 10!

d) 884 h) 20t

2. Find all positive integers r such that A(n) is equal to each of the following integers.

)1 dy4
b) 2 e)5
)3 £)6

3. Find the largest integer n with A(n) = 12.

4, Find an integer with the largest possible order for the following moduli.

. a) 12 d) 36
1 by 15 e) 40
' ) 20 £) 63

5. Show that if m is a positive integer, then A(m) divides ¢ (m).
6. Show that if m and n are relatively prime positive integers, then A{mn) = [AGm), AM{m)].

7. Let n be the largest positive integer satisfying the equation A(n) = a, where ais a fixed
positive integer. Show that if m is another solution of A(m) = a, then m divides n.

8. Suppose that n is a positive integer. How many incongruent integers are there with
maximal order modulo n?

9, Show that if @ and m are relatively prime integers, then the solutions of the congruence
ax = b (mod m) are the integers x such that x = aMm=1p (mod m).
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10. Show thatifcisa positive integer greater than 1, then the integers 1¢,2¢,. .., (m — 1)
form a complete system of residues modulo m if and only if m is square-free and
{c, \{m)) =1

a) Show that if ¢ and m are positive integers and 1 is odd, then the congruence x°© =
x {mod m) has exactly

*11

[Ta+e— 180

j=t
incongruent solutions, where m has prime-power factorization m = iy e
b) Show that x* = x (mod m) has exactly " solutions if (¢ — 1, ¢ (m)) = 2.

12. Use Exercise 1 to show that there are always at least nine plaintext messages that are
not changed when encrypted using an RSA cipher.

* 13. Show that 561 is the only Carmichael number of the form 3pg, where p and g are primes.
* 14, Find all Carmichael numbers of the form 3pq, where pqg are primes.

* 15. Show that there are only a finite number of Carmichael numbers of the form n = pgr,
where p is a fixed prime, and ¢ and » are also primes.

16. Show that the decrypting exponent 4 for an RSA cipher with encrypting key (e, #) can
be taken to be an inverse of ¢ modulo An).

Letn be a positive integer. When (a, n) = 1, we define the generalized Fermat guotient q,(a)
by g,(a) = (@ - H/n (mod 1) and 0 < g, (@) <n,

17. Show that if (a, ) = (b, n) = L, then q, (ab) = g, (a) + g, (b) (mod ).

18, Show that if (a, n) = 1, then g,(a +ne) =g, (a) 1 (myca (mod n), where @ is the inverse
of a modulo .

9.6 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1, Find the universal exponent of all integers less than 1000.

2. Find Carmichael numbers with at least four different prime factors.

Programming Projects

Write programs using Maple, Mathematica, ora language of your choice to do the foliowing,
1. Find the minimal universal exponent of a positive integer.

{ 2. Find an integer with the minimal universal exponent of n as its order modulo #.

3. Given a positive integer M, find all positive integers » with minimal universal exponent
equal to M.

4. Solve linear congruences using the method of Exercise 9,

STUDENTS-HUB.com Uploaded By: anonymous



STUDENTS-HUB.com Uploaded By: anonymous



y S e J— —— e

\

. Applications of Primitive
Roots and the Order

of an Integer

Introduction

In this chapter, we will introduce applications that rely on the concepts of orders and
primitive roots. First, we consider the problem of generating randor numbers. Comput-
ers can produce random numbers using data generated by hardware or software, but they
cannot create long sequences of random numbers this way. To meet the need for long
sequences of random numbers in computer programs, procedures have been developed
to generate nurnbers that pass many statistical tests that numbers selected truly at random
pass. The numbers that such procedures generate are called pseudarandom numbers, We
will introduce several techniques to generate pseudorandom numbers based on modular
arithmetic and the concepts of the order of integers and primitive roots,

We will also introduce a public key cryptosystem, known as the EiGamal cryp-
tosystem, defined using the concept of a primitive root of a prime. The security of this
cryptosystem is based on the difficulty of the problem of finding discrete logarithms
modulo a prime. We will explain how to encrypt and decrypt messages using E}Gamal
encryption, and how to sign messages in this cryptosystem,

Finally, we will discuss an application of the concepts of the order of an integer and
of primitive roots to the splicing of telephone cables.

10.1 Pseudorandom Numbers

Numbers chosen at random are useful in Inany applications, Random numbers are needed
@ for computer simulations used to study phenomena in areas such as nuclear physics, op-
erations research, and data networking. They can be used to construct random samples
so that the behavior of a system can be studied whea it is impossible to test all possible
cases. Random numbers are used to test the performance of computer algorithms, and to
run randomized algorithms that make random choices during their execution. Random

379
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380 Applications of Primitive Roofs and the Order of an Integer

numbers are also extensively used in numerical analysis. For instance, random numbers
can be used to estimate integrals using Riemann sums, a topic studied in calculus. In
number theory, random numbers are used in probabilistic primality tests. In cryptogra-
phy, random number have many applications, such as in generation of cryptokeys and in
the execution of cryptographic protocols.

When we talk about random numbers, we mean the terms of a sequence of numbers
in which each term is selected by chance withoutany dependence on the other terms ofthe
sequence, and with a specified probability of lying in a particutar interval. (It really makes
no sense to say that a particular nurmber, such as 47, is random, although it can be a term
of a sequence of random numbers.) Before 1940, scientists requiring random numbers
produced them by rolling dice, spinning roulette wheels, picking balls out of an urn,
dealing cards, or taking random digits from tabulated data, such as census reports. In the
1940s, machines were invented to produce random numbers, and in the 1950s, computers
were used to generate random numbers using random noise generators. However, random
numbers produced by a mechanical process often became skewed from malfunctions in
computer hardware. Another important problem was that random numbers generated
; using physical phenomena could not be reproduced to check the results of a computer
; program,

The idea of generating random numbers using computer programs instead of via

@ mechanical method was first proposed in 1946 by John von Newmanm. The method he

suggested, catled the middle-square method, works as follows. To generate four-digit

random numbers, we start with an arbitrary four-digit number, say 6139. We square this

number to obtain 37687321, and we take the middle four digits, 6873, as the second

; random number. We iterate this procedure to obtain a sequence of random numbers,
always squaring and removing the middle four digits to obtain a new random number
from the preceding one. (The square of a four-digit number has eight or fewer digits.
Those with fewer than eight digits are considered eight-digit numbers by adding initial
digits of 0.) :

Sequences produced by the middle-square method are, in reality, not randomty
chosen. When the initial four-digit number is known, the entire sequence is determined.
However, the sequence of numbers produced appears to be random, and the numbers

JOHN VON NEUMANN {1903-1957) was bomn in Budapest, Hungary. Iﬂ
1930, after holding several positions at universities in Germany, he came to the
United States. In 1933, von Neumann became, along with Albert Einstein, one
of the first members of the famous Institute for Advanced Study in Princeton,
New Jersey. Von Neumann was one of the most versatile mathematical talents of
the twentieth century. He invented the mathematical discipline known as game
theory; using game theory, he made many important discoveries in mathematical
economics. Von Neumann made fundamenta! contributions to the development
of the first computess, and participated in the early development of atomic weapons.

e
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10.1 Psendorandom Numbers 381

produced are useful for computer simulations. The integers in sequences that have been
@f chosen in some methodical manner, but appear to be random, are called pseudorandom
numbers,

It turns out that the middle-square method has some unfortunate weaknesses. The
most undesirable feature of this method is that, for many choices of the initial integer,
the method produces the same small set of numbers over and over, For instance, starting
with the four-digit integer 4100 and using the middle-square method, we obtain the
sequence 8100, 6100, 2100, 4100, 8100, 6100, 2100, . .., which only gives four
different numbers before repeating.

The Linear Congruential Generation

The most commonly used method for generating pseudorandom numbers, called the
linear congruential method, was introduced by D. H. Lehmer in 1949, It works as
Tollows: Integers m, a, c, and ¥parechosensothat2 <a <m,0 =c<m,and0 < xp <m,
The sequence of pseudorandom numbers is defined recursively by

Xpp1=ax, +o(modm), 0<x,,.;<m,

forn=10,1,2,3,.... We call m the modulus, a the multiplier, ¢ the increment, and Xg
the seed of the pseudorandom numbers generator. The following examples illustrate the
linear congruential method.

Example 10.1. When we takem =12, a=3,c = 4, and xo = 5 in the linear congruen-
tial generator, we have x; =35+ 4 =7 (mod 12), so that Xy ="7. Similarly, we find that
Xy =1,because x5 =3. 7+ = 1{mod 12), x3="7,becavse x3=3 - 14+ r =7 (mod 12),
and so on. Hence, the generator produces just three different integers before repeating,
The sequence of pseudorandom numbers vbtained is 5.1L,,14,7,1,. ... -«

Example18.2. Whenwetakem =9,a=7,¢ =4, and xy = 3 inthe linear congruential
generator, we obtain the sequence 3,7.8,6,1,2,04,5,3, . . . (as should be verified by the
reader). This sequence contains nine different numbers before repeating, <

Remark. For computer simulations it is often necessary to generate pseudorandom
numbers between 0 and 1. We can obtain such numbers by using a linear congruential
generator to produce pseudorandom numbers x,i=1,2,3,... between 0 and m, and
then dividing each number by m, obtaining the sequence x;/m,i =1,2,3,....

The following theorem tells us how to find the terms of a sequence of pseudorandom
numbers generated by the linear congruential method directly from the multiplier, the
increment, and the seed,

Theorem 10.1.  The terms of the sequence generated by the linear congruential method
previously described are given by '

X = a"xo +c(a* — Bf(e—1) (modm), 0= Xp << HL,
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Proof. We prove this result using mathematical induction. For k = 1, the formula is
obviously true, because x1 = axp + ¢ (mod m), 0 < xy < m. Assume that the formula is
valid for the kth term, so that

Xxp = akxg + c(ak — D/(a — 1) (mod m), 0=<x, <m.
Because
Xyl =axgtec (mod m), 0=xpqg<,
we have
gy =al@xg +e@ —D/la—D) +e
= ak“xo + c(a(ak —Dfa—-D+D
= ak+1x0 + c(ak+1 — 1)/(a — 1) (mod m),

which is the correct formula for the (k + 1)st term. This demonstrates that the formula
is correct for all positive integers k. ]

‘The period length of a linear congruential pseudorandom number generator is the
maximum length of the sequence obtained without repetition. We note that the longest
i possible period length for a linear congruential generator is the modulus m. The foltowing
: theorem tells us when this maximum length is obtained.

Theorem 10.2, The lincar congruential generator produces a sequence of period length
mifand only if (¢, m) = 1L, a= 1 (mod p) for all primes p dividing m,anda =1 {mod 4)
if4 | m.

Because the proof of Theorem 10.2 is complicated and quite lengthy, we omit it.
The reader is referred to [Kn97] for a proof.

The Pure Multiplicative Congruential Method

The case of the linear congruential generator with ¢ = 0 s of special interest because ofits
simplicity. In this case, the method is called the pitre multiplicative congruential method.
We specify the modulus 1, multiplier @, and seed xp. The sequence of pseudorandom
aumbers is defined recursively by

Xppq = ax, (mod m), 0 < Xy <M.

In general, we can express the pseudorandom numbers generated in terms of the multi-
plier and seed:

x, =a"xg(modm), 0<xppy<m.

1£1 is the period length of the sequence obtained using this pure multiplic ative generator,
then { is the smallest positive integer such that

{ Xy = a'xy (mod m).
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If (g, m) = 1, using Corollary 4.4.1 we have
ad=1 {(mod m),

From this congruence, we know that the largest possible period length is A(m), where
A(m) is the minimal umiversal exponent modulo m.

For many applications, the pure multiplicative generator is used with the modulus
m equal to the Mersenne prime M5, = 23" - 1. When the modulus m is a prime, the
maximum period length is m — 1, and this is obtained when « is a primitive root of m.
To find a primitive root of My, that can be used with good results, we first demonstrate
that 7 is a primitive root of M.
Theorem 10.3. The integer 7 is a primitive root of My; =23 — L.
Proof. To show that 7 is a primitive root of M3; = 23! — 1, it is sufficient to show that

73=1/4 £ 1 (mod Ma),

for all prime divisors ¢ of M3, — 1. With this information, we can conclude that ord hy 1=
M3y — 1. To find the factorization of M3, — 1, we note that

My —1=21-2=202¥_p=20% - nEP+1
=22 - DR+ pERI+ DRI =254 1)
=2.3*.7.11-31-151.331,
If we show that
2da—D/q # 1 (mod Mj1),

forg=2,3,7,11,31, 151, and 331, then we know that 7 is a primitive root of M, =
2,147483,647. Because

TMD/2 = 2,147,483,646 # 1 (mod My))
7Ma=D/3 = 1,513477,735 # 1 (mod M)
7HDT = 120,536,285 £ 1 (mod My))
7D = 1.969,212,174 # 1 (mod Mj))
TMn—D3t 512 3 1 (mod My;)
7-D/15L 535044134 % 1 (mod Ms))
7D = 1761,885,083 £ 1 (mod M),
we see that 7 is a primitive root of Mj). |

In practice, we do not want to use the primitive root 7 as the generator, be-
cause the first few integers generated are small. Instead, we find a larger primitive
root using Corollary 9.4.1. We use 7%, where (%, Mz, — 1) = 1. For instance, be-
cause (5, M3y — 1) =1, we know that 7° = 16,807 is a primitive root. Because
{13, M3; — 1) = 1, another possibility is to use 7'3 = 252,246,292 (mod Ms)) as the
multiplier.
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384 Applications of Primitive Roots and the Order of an Infeger

The Square Pseudorandom Number Generator

Another example of a pseudorandom number generator is the square pseudorandom
number generator. Given a positive integer n (the modulus) and an initial term xp
(the seed), this generator produces a sequence of pseudorandom numbers using the
congruence

Xip1 = x? (modrn), 0=<x<n
From this definition, we can easily see that

x= xéi (modn), O0=x<n
Example 10.3. Letn =209 be the modulus and xo = 6 the seed of the square pseudo-
random number generator. The sequence produced by this generator is
6,36,42,92, 104, 157, 196,169, 137, 168, 9, 81, 82, 36,42,. ...
We sce that this sequence has a a period of length 12. The first term is not part of the

' period. <

We can determine the length of the period of a square pseudorandom number
generator using the concept of order modulo 7, as the following theorem shows.

Theorem 10.4. The length of the period of the square psendorandom number with
seed xp and modulus 7 is ord,2, where the integer s is the odd positive integer such that
ord, xg = 2's, where { is a nonnegative integer.

Proof We will show that ord,2 divides £, the length of the period of this generator.
Suppose that x; = x;,, for some integer j. Then

xgj = xéHt (mod 1),

which implies that

"‘ xgHsz = 1 (mod n).

Using the definition of the order of an integer modulo #, we see that
ord, x| (27 — 27,

or, equivalently, that

(10.1) 2/ =27 (mod 2's).

Because 2 | (2/+¢ — 20y and 2/% — 27 = 2/(2f — 1), we see that j > 1. By congruence
(10.1) and Theorem 4.4, it follows that

2J+t =2/ (mod 5).

Using Theorem 9.2, we see that j+{f—1=]—1 (mod ordys). Hence, £=0
(mod ord,s), which means that ord,s divides £, the period length,
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16.1 Pseudorandom Numbers 335

We will now show that the period £ divides ord,2. To show that ord,2 is a mul-
tiple of £, we need only show that there are two terms x; and x; = x; such that
J =k {mod ord;2). To accomplish this, we suppose that j =k (mod ord,2) and
that k > j > . By Theorem 9.2, we see that

2/ =2k {mod s).
Furthermore, we have
2¥ =2/ (mod 2,

because 2¢ — 2/ =27 (2%-J — Dand j > t.By Corollary 4.8.1 and the fact that (2,5) =1,
we can conclude that

2/ = 2% (mod 2%s).
Because ord, xg = 2's, we know that
ord,xg | (28 — 27y,

which means that

k_qj

x? = ! {mod n),

which in turn tells us that

xzk =¥ (mod »).
This implies that x; = x 7+ We conclude that ord,2 must be a multiple of ¢, completing
the proof. =

Example 10.4. In Example 10.3, we used the modulus 7 = 209 and the seed xp=>56
in the square pseadorandom generator. We note that ordypg6 = 90 (as the reader should
verify). Because 90 = 2 . 45, Theorem 10.4 tells us that the period length of this generator
is ordys2 = 12 (as the reader should verify). This is the length we observed when we listed
the terms generated. <

How can we tell whether the terms of a sequence of pseudorandom numbers are
useful for computer simulations and other applications? One method is to see whether
these numbers pass statistical tests designed to determine whether a sequence has par-
ticular characteristics that a truly random sequence would most Likely have. A battery of
such tests can be used to evaluate psendorandom number generators, For example, the
frequencies of numbers can be tested, as can the frequencies of pairs of numbers. The
frequencies of the appearance of subsequences can be checked, as can the frequency of
runs of the same number of various lengths, An autocorrelation test that checks whether
there are correlations of the sequence and shifted versions of it may also be helpful.
These and other tests are discussed in [Kn97]} and [MevaVa97].

For cryptographic applications, pseudorandom number generators must not be pre-
dictable. For example, a linear congruential pseudorandom number generator cannot be
used for cryptographic applications because, in sequences generated this way, knowledge
of several consecutive terms can be used to find other terms. Instead, cryptographically
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386 Applications of Primitive Roots and the Order of an Integer

secure pseudorandom number generators must be used. These produce sequences such
that the terms of the sequence are unpredictable to an adversary with limited computa-
tional resources. These notions are made more precise in [MevaVa97], and in [La90).

We have only briefty touched upon the subject of pseudorandom numbers, For
a thorough discussion of pseudorandom numbers, see [Kn97], and for a survey of
the relationships between pseudorandom number generators and cryptography, see the
chapter by Lagarias in [Po90].

10.1 Exercises

1. Find the sequence of two-digit pseudorandom numbers generated using the middle-
square method, taking 69 as the seed.

9. Find the first ten terms of the sequence of pseudorandom numbers generated by the linear
congruential method with xo = 6and x, 1= 5x,+2 (mod 19). What is the period length
of this generator?

3. Find the period length of the scquence of pseudorandom numbers generated by the linear
congruential method with xg = 2 and x4 = 4x, +7 (mod 23).

4. Show that if either @ = 0 or a = [ is used for the multiplier in the linear congruential
method, the resuli would notbe a good choice for a sequence of pseudorandom numbers.

§, Using Theorem 10.2, find those integers a that give period tength m, where (c,m) =1,
for the linear congruential generator X, = 6%, + ¢ (mod m), for each of the following
moduli.

a) m = 1000 ym=105—-1
bym=30030 dym= 2% _ g

% 6 Show that every linear congruential pseudorandom number generator can be simply

expressed in terms of a linear congruential generator with increment ¢ = 1 and seed

‘ 0, by showing that the terms generated by the linear congruential generator X,y =

! ax, + ¢ (mod m), with seed xg, can be expressed as &, = b -y, + Xg (mod m), where
b= (a— Lxg+cmodm), yp=0, and y, . =ay, +1 {mod m).

7. Find the period length of the pure multiplicative pseudorandom number generator X, =
5 cx, -1 (mod 23! — 1) for each of the following multipliers c.
| ' ay2 cy 4 e) 13
b) 3 d)5 £y 17
i 8. Show that the maximal possible period length for a pure multiplicative generator of

the form x,, | = ax, (mod 2, ¢ = 3, is 2¢~2, Show that this is obtained when a = £3
(mod 8).

9, Find the sequence of numbers generated by the square pseudorandom number generator
with modulus 77 and seed 8.

10. Find the sequence of numbers generated by the square pseudorandom number generator
with modulus 1001 and seed 5.

11, Use Theorem 10.4 to find the period length of the pseudorandom sequence in Exercise 9.
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10.1 Pseudorandom Numbers 387

12. Use Theorem 10.4 to find the period length of the pseudorandom sequence in Exercise 10,

13. Show that longest possible period of any sequence of pseudorandom numbers generated
by the square pseudorandom number generator with modulus 77, regardless of the seed
chosen, is 4.

14. What is the longest possible period of any sequence of pseudorandom numbers generated
by the square pseudorandom number generator with modulus 989, regardiess of the seed
chosen?

Another way to generate pseudorandom numbers is to use the Fibonacei generator. Let m
be a positive integer. Two initial integers xg and x;, both less than m, are specified, and the
rest of the sequence is generated recursively by the congruence x,, 11 =X, + 1, (mod m),
0= x4 <m.

~ 15, Find the first eight pseudorandom numbers generated by the Fibonacci generator with
modulus 1 = 31 and initial values x5 = 1 and x; = 24

16. Find a good choice for the multiplier a in the pure multiplicative pseudorandom number
generator x,, ) = ax,, (mod 101). (Hins: Find a primitive root of 101 that is not too small.)

17

Find a good cheice for the multiplier g in the pure multiplicative pseudorandom number
generator x,, = ax,_; (mod 2% — 1). (Hint: Find a primitive root of 22° — 1 and then take
an appropriate power of this root.)

18. Find the multiplier a and increment ¢ of the linear congruential pseudorandom number
generator x, 4y = ax, -+ ¢ (mod 1003), 0 < x, ;< 1003, if xy = 1, x5 = 402, and x3 =
361

19. Find the muitiplier @ of the pure multiplicative pseudorandom number generator Xpp =
ax, {mod 1000), 0 < x, | < 1000, if 313 and 145 are consecutive terms generated.

20. The discrete exponential generator takes a positive integer xq as its seed and generates
pseudorandom numbers xy, xo, X3, . . . using the recursive definition Xy = g™ (mod p),
O<xyp<p forn=0,1,2,..., where p is an odd prime and g is a primitive root
modulo p.
a) Find the sequence of pseudorandom numbers generated by the discrete exponential
generator with p =17, g = 3, and x5 = 2.
b) Find the sequence of pseudorandom numbers generated by the discrete exponential
generator with p =47, g =5, and x5 = 3.
: ¢) Given a term of a sequence of pseudorandom numbers generated by using a discrete
. exponential generator, can the previous term be found easily when the prime p and
primitive root g are known?

21, Another method of generating pseudorandom numbers is to use the power generator

with parameters m, d. Here, m is a positive integer and d is a positive integer relatively

prime to ¢ (m). The generator starts with a positive integer xp as its seed and generates

pseudorandom numbers xp, x4, X3, . . . using the recursive definition Xy = xjf {mod m),

0<x, ) <m.

a) Find the sequence of pseudorandom numbers generated by a power generator with
m=15,d =3, and seed x5 = 2.

b) Find the sequence of pseudorandom numbers generated by a power generator with
m=723,d =3, and seed xy =3.
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388 Applications of Primitive Roots and the Order of an Integer

10.1 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Examine the behavior of the sequence of five-digit pseudorandom numbers produced by
the middle-square method, starting with different choices of the initial term.

2. Find the period length of different linear congruential pseudorandom generators of your
choice.

_ 3. How long is the period of the linear congruential pseudorandom number generator with
; a =65,539,¢=0,and m =2°17

4. How long is the period of the linear congruential psendorandom number generator with
a=169,069,c=1,andm = 2329

. 5. Find a seed that produces the longest possible period length for the square pseudorandom
number generator with modulus 2867.

o

Show that the square pseudorandom number generator with modulus 9,992,503 and seed
564 has a period length of 924.

7. Find the period length of different quadratic congruential pseudorandom number gen-
erators; that is, generators of the form x,, 1 = (axf + bx,, + ¢) (mod m}, 0 < x4 <m,
where a, b, and ¢ are integers, Can you find condttions that guarantce that the period of

. this generator is m?

8. Determine the length of the period of the Fibonacci generator described in the preamble
to Exercise 15 for various choices of the modulus m. Do you think this is a good generator
of pseudorandom numbers?

9, There are a variety of empirical tests to measure the randomness of pseudorandom
number generators. Ten such tests are described in Knuth (Kn97]. Look up these tests
and apply some of them to different pseudorandom number generators.

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice (o generate pseu-
dorandorn numbers using the following generators.

. The middle-square generator

. The linear congruential generator

. The pure multiplicative generator

. The square generator

. The Fibonacci generator {see the preamble to Exercise 15)

. The discrete exponential generator (see Exercise 20)

WEn ot e W e

. The power generator (see Exercise 21)
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10.2 The ElGamal Cryptosystem

In Chapter 8, we introduced the RSA public key cryptosystent. The security of the RSA
cryptosystem is based on the difficuity of factoring integers. In this section, we introduce
another public key cryptosystem known as the ElGamal cryptosystem, invented by
T. ElGamal in 1985. Its security is based on the difficulty of finding discrete logarithms
modulo a large prime. (Recall that if p is a prime and r is a primitive root of p, the
discrete logarithm of an integer a is the exponent x for which 7% = a (mod p))

In the ElGamal cryptosystem, each person selects a prime p, a primitive root » of
p,and aninteger a with 0 <g < P — L. This exponent is the private key, that is, it is the
information kept secret by that person. The corresponding public key is ( p.r, b), where
b is the integer with

bsr"(modp),OSas_p—l.

In the following example, we illustrate how keys for the ElGamal cryptosystem are
selected.

Example 10.5. To generate a public and private key for the ElGamal cryptosystem, we
first select a prime p. Here we will take P = 2539, (This four-digit prime is selected to
illastrate how the Cryptosystem works; in practice, a prime with several hundred digits
should be used.) Next, we need a primitive root of this prime p. We select the primitive
root r =2 of 2539 (as the reader should verify). Next, we choose an infeger a with
0 <@ <2538, We choose @ == 14, This exponent a is the private key. The corresponding
public key is the triple (p, r, b) = (2539, 2, 1150), because & = 214 — 1150 (mod 2539).

-

Before we encrypt a message using the ElGamal cryptosystem, we will translate
letters into their numerical equivalents and then form blocks of the largest possible size
{with an even number of digits), as we did when we encrypted messages in Section 8.4
using the RSA cryptosystem. (This is just one of many ways to translate messages made
up of characters into integers.) To encrypt a message to be sent to the person with public
key (p.r,b), we first select 4 random mumber k with 1 <k < p — 2. For each plaintext
block P, we compute the integers y and § with

y=rf(modp), O0<y<p-1
and
§=P.b"(modp), 0<s<p—1.

The ciphertext corresponding to the plaintext block P is the ordered pair E (Py=1(y,8).
The plaintext message P has been hidden by muitiplying it by b* to produce §, This
hidden message is transmitted together with y. Only the person with the secret key a
can compute #* and y, and use this to recover the original message.

When messages are encrypted using the ElGamal cryptosystem, the ciphertext
corresponding to a plaintext block is twice as long as the original plaintext block. We say
that this encryption method has a message expansion factor of 2. The random number &
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390 Applications of Primitive Roots and the Order of an Integer

is included in the encryption procedure to increase security in several ways that we will
describe later in this section.

Decrypting a message encrypted using ElGamal encryption depends on knowledge
of a, the private key. The first step of the decryption of a ciphertext pair {y, 8) is to
compute y2. This is done by computing ¥ #7179 modulo p. Then, the pair C = (y,8) is
decrypted by computing

D(C) =y78.
To sce that this recovers the plaintext message note that
D(C) =¥ (mod p)
=rka . Pp¥ (mod p)
= G_“_)kak (mod p)
= p* Pb* (mod p)

= b*b* P (mnod p)
= P (mod p).

Example 10.6 illustrates encryption and decryption using the ElGamal cryptosystem.

Example 10.6. We will encrypt the message
PUBLIC KEY CRYPTOGRAPHY

using the ElGamal cryptosystem with the public key we constructed in Example 10.
In Example 8.16, we encrypted this same message using the RSA cryptosystem. We
translated the letters into their numerical equivalents and then grouped numbers into
blocks of four decimal digits. We can use this same grouping here because the largest
possible block is 2525. The blocks we obtained were

1520 0111 0802 1004
2402 1724 1519 1406
1700 1507 2423,

where the dummy letter X is translated into 23 at the end of the passage to fill out the
final block. «

To encrypt these blocks, we first select a random number k with 1 < k < 2537 (we
will use the same k for each block here; in practice, a different number k is chosen
for each block to ensure a higher level of security). Picking k = 1443, we encrypt each
plaintext block P in a ciphertext block, using the relationship E(C) = (¥» 8), with

y =214 = 2141 (mod 2539)
and

5= P - 1150 (mod 2539), 0 <48 <2538
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10.2 The ElGamal Cryptosystem 39

For example, the first block is encrypted to (2141, 216), because
y =23 = 2141 (mod 2539)
and
8 = 1520 - 1150 = 216 (mod 2539),

When we encrypt each block, we obtain the following ciphertext message:

(2141,0216) (2141, 1312) (2141,177D) (2141, 1185)
(2141,2132) (2141, 1177y (2141, 1938) (2141, 2231)
(2141, 1177) (2141,1938) (2141, 1694).

To decrypt a ciphertext block, we compute
D(C) =145 (mod 2539),
For example, to decrypt the second ciphertext block (2141, 1312), we compute

D((2141, 1312)) = 214114 . 1312

=1430- 1312
= 2452 . 1312
= 111 (mod 2539).

We have used the fact that 2452 is an inverse of 1430 modulo 2539, This inverse can
be found using the extended Euclidean algorithm, as the reader should verify. (We have
also used the fact that 21411 = 1430 (mod 2539).)

As mentioned, the security of the ElGamal cryptosystem is based on the difficulty
of determining the private key a from the public key (p.r,b), an instance of the
discrete logarithm problem, a computationally difficult problem described in Section 9.4,
Breaking the ElGamal encryption method requires the recovery of a message P given
the public key (p, r, b} together with the encrypted message (y, 8) without knowledge
of the private key a. Although there may be another way to do this other than solving a
discrete logarithm problem, it is widely thought that this is a computationally difficult
problem.

Signing Messages in the ElGamal Cryptosystem

We will describe a procedure invented by T. EiGamal in 1985 for signing messages using
the ElGamal cryptosystem. Suppose that a person’s public key is (p, 7, b) and his private
key is a, so that b = r® (mod p). To sign a message P, the person with private key a
does the following: First, he selects an integer k with (k, p — 1) = 1. Next, he computes
¥, where

y=rfmodp), 0<y<p-1
and

SE(P—ay)I::(modp—l), O<s=p-2.
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The signature on the message P is the pair (¥, s). Note that this signature depends on the
value of the random integer k and can only be computed with knowledge of the private
key a.

To see that this is a valid signature scheme, note that we know the publickey (p,r, b,
hence we can verify that the message came from the person who supposedly sent it. To
do this, we compute

Vi=y*b (modp), 0=Vi=p-—1
and
Vy=rP(mod p), 0=V, 2p—1L
For this signature to be valid, we must have ¥ = V,. If the signature is valid, then
V= y*bY (mod p)

=y (P=akpY (mod p)

= (y)F 7Y (mod p)

= r(P=)pY (mod p)

=rF7ra7pY (mod p)

= rFB¥pY (mod p)

=rf (mod p)
H = Vz.
; A different integer k should be chosen to sign each message in the ElGamal signature
| scheme. If the same integer k is chosen for two signatures, it can be found from these
| signatures, making it possible to find the private key a (see Exercise 8). Another concern
is whether someone could forge a signature on a message P by selecting an integer k
and computing y = #* (mod p) using the public key (p, . b). To complete the signature,
this person also would have to compute 5 = (P - ay)k (mod p — 1). She cannot easily
! find a, because computing a from b requires that a discrete logarithm be found, namely

the discrete logarithm of b with respect to r modulo p. Not knowing a, a person could

select a value of s at random. The probability that this would work is only 1/ p, which is
close to zero when p is large.

Example 10.7 illustrates how a message is signed using the ElGamal signature
scheme.

Example 10.7. Suppose that a person has a public ElGamal key of (p,7, by =
(2539, 2, 1150) with corresponding private ElGamal key a = 14, To sign the plain-
text message P = 111, they first choose the integer k = 457, selected at random with
1<k < 2538 and (k, 2538) = 1. Note that 457 = 2227 (mod 2538). «
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The signature of this plaintext message 111 is found by computing
¥ =2%7 = 1079 (mod 2539)
and
s = (111—14 - 1079) - 2227 = 1139 (mod 2538).

Anyone who has this signature (1079, 1139) and the message 111 can verify that the
signature is valid by computing

1150197210793 = 1158 (mod 2539)

and

21 = 1158 (mod 2539),

The ElGamal signature scheme has been modified to create another signature
scheme that is widely used, known as the Digital Signature Algorithm (DSA). The DSA
was incorporated in 1994 as a U.S. government standard, Federal Information Process-
ing Standard (FIPS) 186, commonly known as the Digital Signature Standard. To learn
how the ElGamal signature scheme was modified to produce the DSA, consult [St95]
and [MevaVa97].

10.2 Exercises

1, Encrypt the message HAPPY BIRTHDAY using the ElGamal cryptosystem with the
public key (p, r, b) = (2551, 6, 33). Show how the resulting ciphertext can be decrypted
using the private key g = 13.

2. Encryptthe message DO NOTPASS GO using the EiGamal cryptosystem with the public
key (2591, 7, 591). Show how the resulting ciphertext can be decrypted using the private
key a =99,

3. Decrypt the message (2161, 6603, (2161, 1284), (2161, 1467) encrypted using the

ElGamal cryptosystemn with public key (2713, 5, 193) corresponding to the private
key 17.

4. Decrypt the message (1061, 2185), (1061, 733), (1061, 1096) encrypted using the El-
Gamal cryptosystem with public key (2677, 2, 1410) corresponding to the private key
133.

3. Find the signature produced by the EtGarmal signature scheme for the plaintext message
P = 823 with public key ( 2,7, ) =(2657,3, 801), private key @ = 211, and where the
integer k = 101 is selected to construct the signature. Show how this signature is verified.

&

Find the signature produced by the E!lGamal signature scheme for the plaintext message
£ = 12525 with public key ( p.r,b) = (2543, 5, 1615), private key a = 99, and where the
integer k = 257 is selected to construct the signature, Show how this signature is verified.
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7. Show that if the same random number & is used to encrypt two plaintext messages Py
and P, using ElGamal encryption, then P, can be found once the plaintext message Py

is known.

. 8. Show that if the same integer k is used to sign two different messages using the BlGamal
signature scheme, producing signatures (y, sp) and (ys, 5,), the integer k can be found
from these signatures as long as s, % s, (mod p — 1). Show that once k has been found,

the private key a is easily found.

10.2 Computational and Programming Exercises

Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

[ 1. Construct a private key, public key pair for the ElGamal cryptosystem for each member
| of your class. Put together a directory of the public keys.

2. For each member of your class, encrypt a message using the ElGamal cryptosystem using
the public keys published in the directory.

! ‘ 3. Decrypt the messages sent to you by your classmates that were encrypted using your
B ElGamal public key.
1

Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the following
things.
1. Encrypt messages using an ElGamal cryptosystem.
2. Decrypt messages that were encrypted using an ElGamal cryptosystem.
H 3. Sign messages using the ElGamal eryptosystem.

§ 10.3 An Application to the Splicing of Telephone Cables

An interesting application of the preceding material involves the splicing of telephone
cables. We base our discussion on the explosion in [Or88], relating the contents of an
original article by Lawther [L.a35], reporting on work done for the Southwestern Bell

Telephone Company.

To develop the application, we first make the following definition.
' Definition. Let m be a positive integer and let @ be an integer relatively prime to m.
The +1-exponent of @ modulo m is the smallest positive integer x such that
a’ = £1 (mod m).
We are interested in determining the largest possible +1-exponent of an integer

modulo m: we denote this by Ag(n). The following two theorems relate the value of the
maximal =+ 1-exponent Ag(r) to A(m), the minimal universal exponent modulo 7.
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10.3 An Application to the Splicing of Telephone Cables 395

First, we consider positive integers that possess primitive roots,
Theorem 10.5. Ifmisa positive integer, i > 2, witha primitive root, then the maximal
k1-exponent Ay(m) equals $(m)/2 = A(m)/2.

Proof.  We first note that if m has a primitive root, (hen Am) = (). By Theorem 7.6,
we know that ¢ () is even, so that @(m)/2 is an integer, if m > 2. Euler’s theorem tells
us that

a®M = (@2 _ g (mod m),

for all integers a with (a, m) = 1. By Exercise 13 of Section 9.3, we know that when m
has a primitive root, the only solutions of x2 = 1 (mod ) are x = +1 (mod m). Hence,

a®®iZ = 4 (mod m),
This implies that
Ao(m) < @ (m)/2.

Now, let r be a primitive root of modulo with 4-1-exponent e. Then
r® = %1 (mod m),
so that
rhe e ] {mod m).

Because ord,,r = ¢ (m), Theorem 9.1 tells us that ¢(m) | 2e, or equivalently, that
(¢ (m)/2) | e. Hence, the maximum 1-1-exponent Aglm) is at least ¢ (m) /2. However,
we know that A(m) < ¢ (m) /2. Consequently, Aglm) = p(m)/2 = A(m) /2. [ |

We now will find the maximal +1-exponent of integers without primitive roots.
Theorem 10.6. Ifmisa positive integer without a primitive root, then the maximal
+1l-exponent Ag(m) equals A(m), the rainimal universal exponent of n.

Proof. We first show that if ¢ is an integer of order A(m) modulo m with +1-exponent
e such that

a*™/? £ 1 (mod m),

then e = A(m). Consequent] ¥ once we have found such an integer a, we will have shown
that Ag(m) = A(m).

Assume that g is an integer of order A(m) modulo m with +1-exponent e such that
a2 £ _ | (mod m).

Because a® = :£1 (mod m), it follows that a% =1 (mod m). By Theorem 9.1, we know
that A(m) | 2. Because A(m)|2e and e < A(m), either e = Am)/2 or e = A(m). To
see that e # A(m)/2, note that a® = £1 (mod m), but @*/2 £ 1 (mod mr), because
ord,,a = A(m), and a*™)/2 o£ 1 (mod m), by hypothesis. Therefore, we can conclude
tht if ord,,a = A(m), a has *1-exponent ¢, and g° = —1 (mod m), then e = A(m).
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396 Applications of Primitive Roots and the Order of an Integer

We now find an integer a with the desired properties. Let the prime-power factor-
jzation of m be m = 20p{lp . .. p. We consider several cascs.

We first con51der those m with at least two different odd prime factors. Among the
prime powers p ! dividing m, let p; “/ be one with the smallest power of 2 dividing ¢ (p ]’ )3

Let r; be a primitive root of pr. fori=1,2,...,s. Let  be an integer satisfying the
simultaneous congruences

a =3 (mod 2'),
a=r; (mod p’*‘) for all i with i # j,
a=rj (mod pj 7.

Such an integer a is guaranteed to exist by the Chinese remainder theorem. Note that
— o Iz Ui [
ordy,a = [L(20), ¢(p;) - - - s‘f’(Pj M2 (pH)

and, by our choice of pr.“, we know that this least common multiple equals A(m).

iy TS
Because @ =77; 2 (mod p; i ), it follows that a? < r; =1

qb(pj")/z [ A(m)/Z, we know that

mod p;.j ). Because

/2% =1 (mod p?),
so that
a2 & —1 {mod m).

Consequently, the =:1-exponent of a is A(m).

The next case that we consider deals with integers of the form m = 2% p", where p
is an odd prime, #; > 1 and #, > 2, because m has no primitive roots. When o =2 or 3,
we have

Aom) =12, 6(p N1 = ().

L et a be a solution of the simultaneous congruences

a = 1(mod 4)

a =r {mod pfl),
where r is a primitive root of (p?). We see that ord,,a = A{m). Because

™% = 1 (mod 4),
we know that
a2 £ 1 (mod m).

Consequently, the & 1-exponent of a is A(m).
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When 1) < 4, let a be a solution of the simultaneous congruences
' a =3 (mod 2)
a=r (mod p");

the Chinese remainder theorem tells us that such an integer exists. We see that ord, g =
A(m}. Because 4 | A(2%0), we know that 4 | A(m). Hence,

a it = 32— (A - { (1104 8),
Thus,
a2 2 (mod nr),
so that the +1-exponent of a is A (m).

Finally, when m = 2% with tp = 3, we know from Theorem 9.12 that ord,,5 = Atm),
but

SH/2 = (24 = | (mod 8),
Therefore, we see that
5Mm)/2 # —1 (mod m);
we conclude that the F1l-exponent of 5 is Alm).

This finishes the argument, because we have dealt with all cases where m does not
have a primitive root, [

We now develop a system for splicing telephone cables. Telephone cables are made
up of concentric layers of insulated copper wire, as illustrated in Figure 10.1, and are
produced in sections of specified length.

Figure 10.1 A cross-section of one layer of a telephone cable.

Telephone lines are constructed by splicing together sections of cable. When two
wires are adjacent in the same layer in multiple sections of the cable, there are often
problems with interference and crosstalk. Consequently, two wires adjacent in the same
layer in one section should not be adjacent in the same layer in any nearby sections. For
practical purposes, the splicing system should be simple. We use the following rules to
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398 Applications of Primitive Roots and the Order of an Integer

describe the system: Wires in concentric layers are spliced to wires in the corresponding
layers of the next section, following the identical splicing direction at each connection. In
alayer with m wires, we connect the wire in position f in one section, wherel < j =m,
fo the wire in position S{j} in the next section, where S(J) is the least positive residue
of 1+ (j — 1)s modulo m. Here, s is called the spread of the splicing system. We see
that when a wire in one section is spliced to a wire in the next section, the adjacent wire
in the first section is spliced to the wire in the next section in the position obtained by
counting forward s modulo #t from the position of the last wire spliced in this section. To
have a one-to-one correspondence between wires of adjacent sections, we require that
the spread s be relatively prime to the number of wires m. This shows that if wires in
positions j and k are se1t o the same wire in the next section, then S{j) = S(k) and

I+ —Ds=1+k—Ds (mod m},

so that js = ks (mod m). Because (m, 5) = 1, from Corollary 4.4.1 we see that j =k
(mod m), which is impossible.

Example 10.8. Let us connect nine wires with a spread of 2. We have the correspon-

dence
1—=1 23 35
47 5—+9 672
74 86 9. 8§,
as illustraied in Figure 10.2. «<
’ \:)(" ) R

P

Figure 10.2 Splicing of nine wires with a spread of 2.

The following result tells us the correspondence of wires in the first section of cable
to the wires in the nth section.

Theorem 10.7. Let 5, (j) denote the position of the wire in the nth section spliced to
the jth wire of the first section. Then

S,(j) =14 ( — Ds""" (mod m).
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10.3 An Application to the Splicing of Telephone Cables 399

Proof. Forn =2, by the rules for the splicing system, we have
() =14 — Ds (mod m),
so the proposition is true for n = 2. Now assume that
8D =14 — Ds" L (mod m).

Then, in the next section, we have the wire in position S, {7} spliced to the wire in

position.
Sur1(7Y =14 (5,(j) — s
=1+ —1s" s
=1+ (j — Ds" (mod m).
This shows that the proposition is true. |

In the splicing system, we want to have wires adjacent in one section separated as
long as possible in the following sections. Theorem 10.7 tells us that after n splices,
the adjacent wires in the jth and (j + 1)th positions are connected to wires in positions
Su(7) =1+ (j — 1)s" (mod m) and S, + D=1+ js" (mod m), respectively. These
wires are adjacent in the nth section if, and only if,

S} — 8, + ) =£1 (mod m),
or, equivalently,
I+ = Ds™) — A+ js") = +1 (mod m),
which holds if and only if
s" = 41 (mod m).
We can now apply the material at the beginning of this section. To keep wires that

are adjacent in the first section separated as long as possible thereafter, we should pick
for the spread s an integer with maximal =+1-exponent Ay(m).

Example 10.9. With 100 wires, we should choose a spread s so that the +1-exponent
of 5 is 15(100) = A(100) = 20. The appropriate computations show that s = 3 is such a
spread. «

10.3 Exercises

1. Find the maximal +I-exponent of each of the following positive integers.

ay 17 c) 24 )99
b) 22 d) 36 ) 100
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402 Quadratic Residues

be used in computations and to prove useful resuits, such as Pepin’s test, which can be
used to determine whether Fermat numbers are prime.

The Legendre symbol, which tells us whether an integer is a quadratic residue mod-
ulo p, can be generalized to the Jacobi symbol, We will establish the basic properties of
Jacobi symbols and show that they satisfy a reciprocity law thatis a consequence of the
law of quadratic reciprocity. We show how Jacobi symbols can be used to simplify com-
patations of Legendre symbols. We also use Jacobi symbols to introduce a particular type
of pseadoprime, known as an Buler psendoprime, which is an integer that masquerades
as a prime by satisfying Euler’s criteria for quadratic residues. We will use this concept
to develop a probabilistic primality test.

a 11.1 Quadratic Residues and Nonresidues

Let p be an odd prime and @ an integer relatively prime to p. In this chapter, we devote
our attention to the question: Is a a perfect square modulo p? We begin with a definition.

Definition. If i is a positive integer, we say that the integer a is a quadratic residue
of m if (@, m) = 1 and the congruence x* = g (mod m) has a solution. If the congruence
x2 = q (mod m) has no solution, we say that a is a quadratic nonresidue of m.

Example 11.1.  To determine which integers are quadratic residues of 11, we compute
the squares of the Integers 1,2,3,..., 10. We find that 12=102=1 (mod 11), 22
=02=4 (mod 11), 3 =8 =9 (mod 11), 42=72=5 (mod 11), and ¥ =6*=3
(mod 11). Hence, the quadratic residues of 11 are 1,3,4,5,9; the integers 2, 6,7, 8,10
are quadratic nonresidues of 11. -«

|

l Note that the quadratic residues of the positive integer m are just the kth power

; residues of m with k = 2, as defined in Section 9.4. We will show that if p is an odd
prime, then there are exactly as many quadratic residues as quadratic nonresidues of
p among the integers 1,2, ..., p — 1. To demonstrate this fact, we use the following
jemma.

Lemma 11.1. Let p be an odd prime and a an integer not divisible by p. Then, the
congruence

x% =2 q (mod p)
has either no solutions or exactly two incongruent solutions modulo p. .

Proof. 1f x% = a (mod p) has a solution, say x = xg, then we can casily demonstrate
that x = —xg is a second incongruent solution, Because (—x(})2 = xg =g {mod p), we
see that —x; is a solution. We nofe that x, 3% —xp (mod p), for if xy = —x; (mod p),
then we have 2xy = 0 (mod p). This is impossible because p is odd and p } x because
x;=a(mod p)and p | a.
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11.1 Quadratic Residues and Nonresidues 403

To show that there are no more than two incongruent solutions, assume that X=X
and x = x; are both solutions of x? = ¢ (mod p). Then we have x? = x?=a (mod p),
50 that xg — xi? =g+ x) g —x) =0 {(mod p). Hence, p | (xg+ xp) or 2| (g — xp),
80 that x; = —x4 (mod P) or X = x; (nod P). Therefore, if there is a solution of x2 =g
(mod p), there are exactly two incongruent solutions, ]

This leads us to the following theorem,

Theorem11.1. 1If P isanodd prime, then there are exactly (p — 1)/2 quadratic residues
of p and (p — 1)/2 quadratic nonresidues of p among the integers 1,2, . . ., p—1

Proof. To find all the quadratic residues of p among the integers 1,2, . . ., P—1,we
compute the least positive residues modulo p of the squares of the integers 1, 2,...,
P -~ L. Because there are p - Isquares to consider, and because each congruence x2 =4
{mod p) has either zero or two solutions, there must be exactly (p — 1)/2 quadratic
residues of p among the integers 1,2, .. ., p — L. The remaining p — | — (p—1)/2=
{p — 1)/2 positive integers less than P — lare quadratic nonresidues of . E

Primitive roots and indices, studied in Chapter 9, provide an alternative method for
proving results about quadratic residues.

“.. Theorem11.2. Ietpbea prime and let 7 be a primitive root of p-If a is an integer
not divisible by p, thena is a quadratic residue of p if ind,aiseven, and g isa quadratic
nonresidue of p if ind,a is odd. T

Proof.  Suppose that ind, 4 is even. Then (r"42/2)? = 4 (mod p), which shows that a
is a gnadratic residue of p- Now suppose that g is a quadratic residue of p. Then there
exists an integer x such that x2 = ¢ (mod p). It follows that ind,x? = ind,a. By Part (jii)
of Theorem 9.16, it follows that 2 . ind, x = ind,a (mod ¢( ), soind, a is everr, We have
shown that a is a quadratic residue of p if and only if ind,« is even. It follows that @ is
a quadratic nonresidue of p if and only if ind, a is odd. n

Note that by Theorem 11.2, every primitive root of an odd prime p is a quadratic
nonresidue of p.

We illustrate how the relationship between primitive roots and indices and quadratic
residues can be used to prove results about quadratic residues by giving an alternative
proof of Theorem 11.1.

Proof. Let p be an odd prime with primitive root r. By Theorem 11.2, the quadratic
residues of p among the integers 1,2,..., p — 1 are those with even index to the base
r. It follows that the quadratic residues of a in this set are the least positive residues of
r*, where k is an even integer with 1 < = p — 1. The result follows because there are
exactly (p -- 1)/2 such integers. n

The special notation associated with Quadratic residues is described in the following
definition.
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404 Quadratic Residues

Definition. Let p be an odd prime and a be an integer not divisible by p. The Legendre
symbol (%) is defined by

(a) _ l 1 if a is a quadratic residue of p;

; —1 if a is a guadratic nonresidue of p.

@ This symbol is named after the French mathematician Adrien-Marie Legendre, who
introduced the use of this notation.

g Example 11.2. The previous example shows that the Legendre symbols (%), i =
1,2,..., 10, have the following values:

() -()-()-()- ()=
B)-(-0-)-- -

P We now present a criterion for deciding whether an integer is a quadratic residue of
: a prime. This criterion is useful in demonstrating properties of the Legendre symbol.

Theorem 11.3. Euler’s Criterion. et pbeanoddprime andletabea positive integer
not divisible by p. Then

E (E) =a? Y% (mod p).
- p/

Proof.  First, assume that % = 1. Then, the congruence x% = g {mod p) has a solution,
say x = Xg. Using Fermat’s little theorem, we see that

a2 = (x2)YD — (271 = 1 (mod p).

Hence, if (g) — 1, we know that (g) = a?~D/2 (mod p).

I ADRIEN-MARIE LEGENDRE (1752-1833) was bom into 2 well-to-do fam-
: B ily. He was a professor at the Fcole Militaire in Paris from 1775 to 1780. In
1795, he was appointed professor at the Ecole Normale, His memoir Recherches
d'Analyse Indetermineé, published in 1785, contains a discussion of the taw of
guadratic reciprocity, a statement of Dirichlet's theorem on primes in arithmetic
progressions, and a discussion of the representation of positive integers as the
sum of three squares. He established the n = 5 case of Fermat's last theorem.
Legendre wrote a textbook on geometry, Eléments de géométrie, that was used
for more than 100 years, and served as a model for other textbooks. Legendre made fundamental
discoveries in mathematical astronomy and geodesy, and gave the first treatment of the law of least
squares.
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11.1 Quadratic Residues and Nonresidues 405

Now consider the case where %) = —1. Then, the congruence x2 =a (mod p)

has no solutions. By Theorem 4.10, for each integer i with (i, p) = L there is an integer
J such that ij = a (mod p). Furthermore, because the congruence x2 = g (mod ) has
no solutions, we know that # j. Thus, we can group the integers 1,2, ., p — linto
(p — 1)/2 pairs, each with product a. Multiplying these pairs together, we find that

(p = D=a?D/2 (mod p),
Because Wilson’s theorem tells us that (p — Dl= —1(mod p), we see that

~1=4aP"V/2 (n0d p),

In this case, we also have (%) =qP-0/2 (mod p), =
Example 11.3, Let p =23 and a = 5. Because 5! = -1 (mod 23), Euler’s criterion
tells us that (-2%) = —1. Hence, S5isa quadratic nonresidue of 23, <

We now prove some properties of the Legendre symbol.

Theorem 11.4. Let p be an odd prime and a and b be integers not divisible by p. Then
() ifa=b(mod p), then (g) - (f;)
o (5)()-(2)
i) (%) =1

Proof of (i). Ifa=b (mod Phthenx?=g4 {mod p) has a solution if and onlyifx2=p

{med p) has a solution. Hence (%) = (%).

Proof of (ii). By Euler’s criterion, we know that

(E) =qaP-0/2 (mod p), (é) = plP-B/2 (mod p),
r P

and
ab\ _ ., -1
- = {ab) (mod p).

Hence,

| ( a ) ( b ) = P2 ED/2 _ (/2 (Ef_’) (mod p).
| p/\p P

Because the only possible values of a Legendre symbol are +1, we conclude that

GG)-()
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406 Quadratic Residues

Proof of (iii). Because (%) = <1, from part (it} it follows that

(5)-())- -

Part (ii) of Theorem 11.4 has the following interesting consequence. The product of
two quadratic residues, or of two quadratic nonresidues, of a prime is a quadratic residue
of that prime, whereas the product of a quadratic residue and a guadratic nonresidue of

a prime is a quadratic nonresidue.

Relatively simple proofs of Theorems 11.3 and 11.4 can be constructed using the
concepts of primitive roots and indices, together with Theorem 11.2. (See Exercises 30

and 31 at the end of this section.)

When is ~1 a Quadratic Residue of the Prime p?

For which odd primes not exceeding 20 is —1 a quadratic residue? Since 22 = -1
{mod 5), 52 = —1(mod 13) and 42 = —1(mod 17), we see that —1is a quadratic residue
of 5,13, and 17. However itis easy to see (as the reader should verify) that the congruence
x2 = —~1 (mod p) has no solution when p =3,7,11,and 19. This evidence leads to the
conjecture that —1 is a quadratic residue of the prime p ifandonly if p=1 (mod 4).

Using Euler’s criterion, we can prove this conjecture.

Theorem 11.5. If p is an odd prime, then

=1y _ 1 if p=1(mod4);

! Proof. By Euler’s criterion, we know that
(:1) = (=)~ /2 (mod p).
b

E
' If p = 1 (mod 4), then p == 4k + 1for some integer k. Thus,
(—neI2 = -1 =1,

50 that (:pl) 1.1 p = 3 (mod 4), then p = 4k +3 for some integer k. Thus,

(_1)(p—1)/2 — (_1)2k+1 — _1’

so that (—?1) =-—1 [

Gauss’s Lemma

The following elegant result of Gauss provides another criterion to determine whether
an integer a relatively prime to the prime p is a quadratic residue of p.

!f: o
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11.1 Quadratic Residues and Nonresidues 407

Lemma11.2. Gauss’s Lemma, Let pheanodd prime and ¢ an integer with (a, p) = 1.
If 5 is the number of least positive residues of the integers a,2a,3a,..., ((p — 1) /2)a

that are greater than p/2, then (%) = {=1)".

Froof.  Consider the integers a, 2a, ..., ({p — 1)/2)a. Let Hy, Hy, ..., u, be the least
positive residues of those that are greater than p/2, and let V1, ¥, ..., U, be the least
positive residues of those integers that are less than P/2. Because (ja, p) = 1 for all J
withl<j=<(p— 1)/2, these least positive residues are in theset 1,2,.., P — L

We will show that p — P —Hye ooy P, V1,09, .., 0, comprise the set of
integers 1,2, ..., (P — 1)/2, in some order. To see this, we need only show that no two
of these integers are congruent modulo P, because there are exactly {p — 1}/2 numbers
in the set, and all are positive integers not exceeding ( p— /2.

Clearly, no two of the 1; are congruent modulo p and no two of the v ; are congruent
modulo p; if a congruence of either of these two sorts held, we wonild have ma = na
(mod p), where m and n are both positive integers not exceeding (p — 1)/2. Because
p [ a, this would imply that m = n (mod p), which is impossible,

In addition, one of the integers p — u; cannot be congruent to a v;, for if such a
congruence held, we would have ma = P2 — nra (mod p), so that ma = —na {mod p).
Because p f a, this would imply that m = -1 (mod p), which is impossible because
both s and n are in the set L2,...,(p—1/2.

Now that we know that p — Hp P U, p— g, U, 0, . .., v, are the integers
L2,...,(p—1)/2, in some order, we conclude that

Il

—1
(P—uplp~u)-- - (p—uv, - U= (BZ—)I{mod D)

which implies that

—1
(11.1) (=Duguy gy -y = (p—z—)!(mod ).
But, because Hpty, ... g, U, Vg, ..., 4, are the least positive residues of a,la,...,

((p — 13/2)a we also know that

Mg UV -y =a-2a - ((p— 1)/2)a
(11.2) : -1 .
=a " ((p— /2! (mod p).

Hence, from (11.1) and (1 1.2}, we see that

£l

(=D'a * ((p — D/2)!= ((p — 1)/2)! (mod p)

Because (p, ((p — 1)/2)1) = 1, this congruence implies that

(—1%a"T =1 (mod p).
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By multiplying both sides by (—1)*, we obtain
p—1
a7 = (-1 (mod p).
Because Buler’s criterion tells us that a‘pz;l = (%) (mod p), it follows that

t

(—) = (—1)’ (mod p),
P

establishing Gauss’s lemma. u

Example 114. Leta=35and p= 11. To find (%) by Gauss’s lemma, we compute
the least positive residues of 1- 5, 2.5,3.5,4.5, and 5. 5. These are 5, 10,4, 9, and 3,
respectively. Because exactly two of these are greater than 11/2, Gauss's lemma tells us
that () = (=D =1. . <

When is 2 a Quadratic Residue of a Prime p!

For which odd primes not exceeding 50 is 2 a quadratic residue? Since 32=2
(mod 7), 62 =2 (mod 17), 5 = 2 (mod 23), 8% =2 (mod 31), 17% = 2 (mod 41), and 7> =
‘ 2 (mod 47), we sce that 2is a quadratic residue of 7, 17, 23,31, 41, and 47. However (as
! the reader should verify) 12 =2(mod p)has no solution when p = 3,5,11,13,19,29,37,
| and 43. Ts there a pattern to the primes p for which 2 is a quadratic residue modulo p?
. Examining these primes and noting that whether 2 is a quadratic residue of p seems to
depend on the congruence of p modulo 8, we conjecture that 2 is a quadratic residue of
the odd prime p if and only if p = 1 (mod 8). Using Gauss’s lemma, we can prove this
conjecture.

Theorem 11.6. If p is an odd prime, then

(Z) (v,
p

Hence, 2 is a quadratic residue of all primes p = +1 (mod 8) and a quadratic nonresidue
of all primes p = %3 (mod 8).

Proof. By Gauss’s lemma, we know that if s is the number of least positive residues of
the integers

1-2,2-2,3-2, ..., (p—D/D-2

that are greater than p/2, then (%) = (—1)". Because all of these integers are less than p,
we need only count those greater than p/2 to find how many have least positive residues
greater than p/2.

The integer 2j, where 1 < j <(p — D/2, is less than p/2 when j < p/4.
Hence, there are [p/4] integers in the set less than p/2. Consequently, there are
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11,1 Quadratic Residues and Nonresidues 409

s =(p — 1)/2 — [p/4] greater than p/2. Therefore, by Gauss’s lemma, we see that
(E) = (_1)%_—1—[17/4}_
P

To prove the theorem, it is enough to show that for every odd integer p,

-1 21
(11.3) pT —[p/a}=£ o (mod2)
Note that (11.3) holds for a positive integer p if and only if it holds for p + 8. This
follows because
(p+8) -1

P~ L+ /4= (5515 +4) ((p/41+2) = pT‘l ~ [p/4] (mod 2)

and
(P+8>—1_p°~
b 8

Thus we can conclude that (11.3) holds for every odd integer n if it holds for p==l
and 3. We leave it to the reader to verify that (11.3) holds for these four values of p.

2_
I+2p+85£—~§—1(m0d2).

It follows that for every prime p we have (%) = (——I)(PZ_D/ 8,

From the computations of the congruence class of (p? — 1)/8 (mod 2), we see that

(%) = 1if p =1 (mod 8), while (%) = —1if p = 3 (mod 8). »

Example 11.5. By Theorem 11.6, we see that

B-6)-()-)-
0-0-(-6)-0)-@— -

We now present an example to show how to evaluate some Legendre symbols.

whereas

Example 11,6, To evaluate { 3L ), we use part (i} of Theorem 11.4 to obtain
11

()=(3)-(2) -
1/ \1) \u/ "
because 317 =9 (mod 11).

To evaluate (%) because 89 = —2 (mod 13), we have

(®)=(5)-E)E)
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Because 13 =1 (mod 4), Theorem 11.5 tells us that (-}3%) = 1. Because 13 = -3
(mod 8), we see from Theorem 11.6 that (—1%) = —1. Consequently, (?—g) =-1. «

In the next section we will state and prove one of the most intriguing and challeng-
ing results of elementary number theory, the law of quadratic reciprocity. This theorem
relates the values of (g) and (%), where p and ¢ are odd primes. The law of quadratic
reciprocity has many implications, both theoretical and practical, as we will see through-

out this chapter. From a computational standpoint, we will see that it can help us evaluate
Legendre symbols.

4

Modular\S_qu_are Roots

Suppose that n = pg, where p and g are distinct odd primes, and suppose that the
congruence x? = a (mod n), where 0 <a < n and (a,n) = L, hasa solution x = xg. We
will show that there are exactly four incongruent solutions modulo 7. In other words,
_ we will show that @ has four incongruent square roots modulo n. To see this, let xp =1
! (mod p), 0 < x; < p, and let xo = x5 (mod 9), 0 < x; <g. Then the congruence x> =g
(mod p) has exactly two incongruent solutions modulo p, namely x = x; (mod p)
and x = p — x; (mod p). Similarly, the congruence x; =4 (mod g} has exactly two

incongruent solutions modulo g, namely x = x; (mod g) and x = ¢ — x; (mod ¢).

From the Chinese remainder theorem, there are exactly four incongruent solutions of

the congruence 12 = a (mod n); these four incongruent solutions are the nnique solutions

modulo pg of the four sets of simultaneous congruences:

(i) x=ux;(mod p) (i) x=p—x (modp)
X = x, (mod g), X = x5 (mod g),

(iiy x=x(mod p) {iv) x=p—x (modp)
X =q — x, (mod g), Xx=gq — X (modg)

We denote solutions of () and (ii) by x and y, respectively. Solutions of (iii) and (iv) are
easily seen to be n — y and n — x, respectively.

We also note that when p = ¢ = 3 (mod 4), the solutions of x? =a (mod p) and of
x2 =g (mod ¢) are x = £a®+D/% (mod p) and x = +a@tD/4 (mod q), respectively.

By Euler’s criterion, we know that a?~D/2 = (%) =1 (mod p)and a9 V/% = (%) =1

(mod g) (recall that we are assuming that x2 = a (mod pgq) has a solution, so thata is a
quadratic residue of both p and g). Hence,

(@PFOIY2 = P12 _ g(P=DI2 g = g (mod p)

and

(@@TVINE = @2 — ,@-DIL . g = g (mod g).
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11.1 Quadratic Residues and Nonresidues 411

Using the Chinese remainder theorem, together with the explicit solutions just
constructed, we can easily find the four incongruent solutions of x2 = a (mod n), The
following example illustrates this procedure.

Example 11.7.  Suppose that we know & priori that the congruence
x? = 860 (mod 11,021)

has a solution, Because 11,021 = 103 - 107, to find the four incongruent solutions we
solve the congruences

x* = 860 = 36 (mod 103)
and
x* =860 = 4 (mod 107).
The solutionss of these congruences are
x = 236103+ D/A = 43620 = 16 (mod 103)
and
x = 400D/ = 3427 = 49 (mod 107),

respectively, Using the Chinese remainder theorem, we obtain x = +212, 4-109
(mod 11,021) as the solutions of the four systems of congruences described by the
four possible choices of signs in the system of congruences x = +6 (mod 103), x = 42
(mod 107). «<

"+ . Flipping Coins Electron'icall;}

An interesting and useful application of the properties of quadratic residues is 2 method to
“ilip coins” electronically, invented by Blum [BI82]. This method takes advantage of the
difference in the length of time needed to find primes and needed to factor integers that
are the products of two primes, also the basis of the RSA cipher discussed in Chapter 8.

We now describe a method for electronically flipping coins. Suppose that Bob
and Alice are communicating electronically. Alice picks two distinct large primes p
and ¢, with p =g =3 (mod 4). Alice sends Bob the integer n = pg. Bob picks, at
random, a positive integer x less than r and sends to Alice the integer g with »2 =
a(modn), 0 < a < n. Alice finds the four solutions of x? = a (mod n), namelyx, y,n — x,
and n — y. Alice picks one of these four solutions and sends it to Bob. Note that
since x + y =2x;# 0 (mod p) and x + y =0 (mod q), we have (x + y,n) = g, and
similarly (x 4+ (n — y), #) = p. Thus, if Bob receives either y or n — y, he can rapidly
factor 1 by using the Fuclidean algorithm to find one of the two prime factors of #. On
the other hand, if Bob receives either x orn — x, he has no way to factor » in a reasonable
fength of time.

Consequently, Bob wins the coin flip if he can factor n, whereas Alice wins if Bob
cannot factor n. From previous comments, we know that there is an equal chance for
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| Bob to receive a solution of x2 = a (mod ) that helps him rapidly factor r, ora solution
| of x2 = ¢ {mod n) that does not help him factor n. Hence, the coin flip is fair.

11.1 Exercises
1. Find all of the quadratic residues of each of the following integers.
a)3 b5 c) 13 d) 19
2. Find all of the quadratic residues of each of the following integers.

a)7 b8 c) 15 d) 18
3. Tind the value of the Legendre symbols (é—) for j=1,2,3,4.
4. Find the value of the Legendre symbols (%) for j=1,2,3,4,5,6.

5, Evaluate the Legendre symbol (%)
a) using Euler’s criterion.
b) using Gauss’s lemma.

6. Leta and b be integers not divisible by the prime p. Show that either one or all three of
the integers a, b, and ab are quadratic residues of p.

7. Show that if p is an odd prime, then

=2\ _ 1 if p=1lor3 (mod8);
»/] -1 if p=—1or —3 (mod 8).

8. Show that if the prime-power factorization of n is

_ gt 25+l 2+l 2tpyy 21
n=p; P e D Pryr P

and g is a prime not dividing r, then

()=~ G)

q q q q

9, Show that if p is prime and p =3 (mod 4), then [{p — D) [2]1= (- D' (mod p), where ¢
is the number of positive integers less than p/2 that are noenquadratic residues of p.

10. Show that if b is a positive integer not divisible by the prime p, then

b 2b 3 — L
() (2 (2)n(55%)
P p 4 p
11. Let p be prime and a be a quadratic residue of p. Show that if p = 1 (mod 4), then

_a is also a quadratic residue of p, whereas if p =3 (mod 4), then —a is a quadratic
nonresidue of p.

12. Consider the quadratic congruence ax? 4 bx 4 ¢ = 0 {mod p), where p is prime and
a, b, and ¢ are integers with p [ a.

a} Let p = 2. Determine which quadratic congruences {mod 2) have solutions.
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11,1 Quadratic Residues and Nonresidues 413

b) Let p be an odd prime and let d = 5% — 4qc. Show that the congruence ax? + bx +
¢ =1{ (mod p) js equivalent 1o the congruence y? =4 {mod p), where y = 2ax + b.
Conclude that if d = 0 (mod ), then there is exactly one solation x modulo p; if
d is a quadratic residue of p, then there are two incongruent solutions; and if 4 is a
quadratic nonresidue of p, then there are no solutions.

13, Find all solutions of the following quadratic congruences,
a) 22+ x+1=0(mod 7)
by ¥2 4+ 5x 4+ 1=0(mod 7)
¢) x2+3x 4 1220 (mnod 7)

14. Show that if p is prime and P =7, then there are always two consecutive quadratic
residues of p. (Hint: First show that at least one of 2, 5, and 10 is a quadratic residue
of p.)

* 15. Show thatif p is prime and p > 7, then there are always two quadratic residues of p that

differ by 2.

Show that if p is prime and p > 7, then there are always two quadratic residues of p that
differ by 3.

17. Show that if a is a quadratic residue of the prime p, then the solutions of x? = g (mod )
are
a) x = da"t (mod p), if p = 4n 1 3,
b) x = ta" or 221"+ (mod p), ifp=28u+5.

16

-

* 18, Show thatif pisa primeand p=8n+ Landrisa primitive root modulo D, then the
solutions of x* = +2 (mod p) arc given by

x=2(r" £ ") (mod p),

where the - sign in the first congruence corresponds to the :k: sign inside the parentheses
in the second congruence,

19. Find all solutions of the congruence x2 = 1 (mod 13).

20. Find all solutions of the congruence x2 = 58 (mod 77).
21
22

Find all solutions of the congruence x2 = 207 (mod 1001),

-

Let p be an odd prime, e a positive integer, and ¢ an integer relatively prime to p. Show
that the congruence x? = a (mod p®) has either no solutions or exactly two incongruent
solutions,

*23. Let p be an odd prime, ¢ a positive integer, and a an integer relatively prime to p.
Show that there is a solution to the congruence x2 = q (mod p*1) if and only if there
is a solution to the congruence 12 =g {mod p*). Use Exercise 22 to conclude that the
congruence x> = g (mod p°) has no solutions if g is a quadratic nonresidue of p, and
exactly two incongruent solutions modulo p if a is a quadratic residue of p.

24. Let n be an odd integer. Find the number of incongruent solutions modulo # of the

- . N f F
congruence x2 = a (mod »), where » has prime- ower factorization n = pilp2 . . . pim,
g P PPy P

in terms of the Legendre symbols (1%1) sy (178") {Hint: Use Exercise 23.)

25. Find the number of incongruent solutions of each of the following congruences.
a) x?:=31(mod 75)
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b) x% =16 (mod 105)
¢) x? =46 {mod 231)
d) x% = 1156 (mod 325%7°115)
% 26. Show that the congruence x? = a (mod 2°), where e is an integer, e = 3, has either

no solutions or exactly four incongruent solutions. (Hint: Use the fact that (£x)* =
(2¢~1 & x)? (mod 2%).)

27. Show that there are infinitely many primes of the form 4k - 1. (Hint: Assume that
P1s P2s - - - » Py are the only such primes. Form N = 4(pypy -+ o) + 1, and show,
using Theorem 11.5, that N has a prime factor of the form 4k + 1 that is not one of

PLP2-s Pus)
%28, Show that there are infinitely many primes of each of the following forms.

a)8k +3 b) 8k 45 ¢) Bk +7

(Hint: For each part, assume that there are only finitely many primes pp, P2, - -» Pa
of the particular form. For part (a), look at (pypa - -- p.)? + 2; for part (b), look at
(p1pz -+ - Py)? +4; and for part (c), look at (4pp; - - - p,)? — 2. Tn each part, show
that there is a prime factor of this integer of the required form not among the primes
P P2 - - - Py Use Theorems 11.5 and 11.6.)

29, Let p and ¢ be odd primes with p =g =3 (mod 4) and let a be a quadratic residue of
n = pq. Show that exactly one of the four incongruent square roots of @ modulo pyg is
a quadratic residue of .

30. Prove Theorem 11.3 using the concept of primitive roots and indices.
31. Prove Theorem 11.4 using the concept of primitive roots and indices.

; 32, Let p be an odd prime. Show that there are (p — 1)/2 — ¢ (p — 1) quadratic nonresidues
| of p that are not primitive roots of p.

*33. Let p and ¢ =2p + 1 both be odd primes. Show that the p — 1 primitive roots of ¢ are
the quadratic nonresidues of ¢, other than the nonresidue 2p of g.

‘ % 34. Show that if p and ¢ = 4p + I are both primes and if a is a guadratic nonresidue of g
with ord,a # 4, then a is a primitive root of g.

* 35, Show that a prime p is a Fermat prime if and only if every quadratic nonresidue of p is
also a primitive root of p.

* 36. Show that a prime divisor p of the Fermat number F, = 22" 1+ 1 must be of the form
2042k |, (Hint: Show that ord,2 = 97+1 Then show that 2P~"/2 = 1 (mod p) using
Theorem 11.6. Conclude that 2*tH | (p — 1)/2.)

# 37. a) Show thatif p is a prime of the form 4k +3and g =2p + 1 is prime, then ¢ divides

the Mersenne number M, =27 — 1. (Hint: Consider the Legendre symbol (%) 2
b) From part (a), show that 23 | My, 47 | M3, and 503 | Masy.

* 38. Show that if n is a positive integer and 2n -+ 1 is prime, and if n =0 or 3 {mod 4), then
21 <+ 1 divides the Mersenne number M, =27 - 1, whereas if n = 1or 2 (mod 4), then
21 + 1divides M, + 2 = 2" + 1. (Hint: Consider the Legendre symbol (Eﬁgﬁ) and use
Theorem 11.5.)
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11.1 Quadratic Residues and Nonresidues 415

39. Show that if p is an odd prime, then every prime divisor ¢ of the Mersenne number M
must be of the form g = 8% = 1, where k is a positive integer. (Hint: Use Exercise 38.)

40. Show how Exercise 39, together with Theorem 7.12, can be used to help show that M 17
is prime. :
* 41, Show that if p is an odd prime, then

2,
) (J(J + l)) —

=t 4
{Hint: First show that (’—UT'F-Q) = (i:—l), where J is an inverse J of modulo p.)

* 42, Let p be an odd prime. Among pairs of consccutive positive integers less than p, fet
(RR}, (RN), (NR), and (NN) denote the number of pairs of two quadratic residues, of a
quadratic residue followed by a quadratic nonresidue, of a quadratic nonresidue followed
by a quadratic residue, and of two quadratic nonresidues, respectively.

a) Show that

(RR) + (RN) = 2.(p — 2 — (—{e=D7%
NR) 4 (NN) = (p ~ 2 + (1))
(RR) 4 (NR) = 2 (p ~ )~ 1

(RN) 4 (NN) = 2.9~ ),

b) Using Exercise 41, show that
=2 .
+1
3 (L(J—)) = (RR) + (NN) — (RN) — (NR) = —1.
j=I
¢) From parts (a} and (b), find (RR), {RN), (NR), and (NN).
43. Use Theorem 9.16 to prove Theorem 11.1.
*d44. Let p and ¢ be odd primes. Show that 2 is a primitiveroot of ¢, if g = 4p + 1,

* 45. Let p and g be odd primes. Show that 2 is a primitive root of ¢, if p is of the form 4k -+ 1
andg=2p+ 1.
* 46, Let p and g be odd primes. Show that —2 is a primitive root of g, if p is of the form
dk—landg=2p+ L
* 47, Let p and g be odd primes. Show that —4 is a primitive root of g, if g = 2p -+ L.
48. Find the solutions of x? = 482 (mod 2773) (note that 2773 =47 . 59).

* 49, In this exercise, we develop a method for decrypting messages encrypted using a Rabin
cipher. Recall that the relationship between a ciphertext block C and the corresponding
plaintext block P in a Rabin cipheris C = P(P +2b) (mod n), where n = pg,pandg
are distinct odd primes, and b is a positive integer less than .
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a) ShowthatC +a=(F+ 2b)? (mod n), where @ = (2b)? (mod ), and 7 is aninverse
of 2 modulo n.

b) Using the algorithm in the text for solving congruences of the type x% = a (mod n),
together with part (a), show how to find a plaintext block P from the corresponding
ciphertext block C. Explain why there are four possible plaintext messages. (This
ambiguity is a disadvantage of Rabin ciphers.)

¢) Decrypt the ciphertext message 1819 0459 0803 that was encrypted using the Rabin
cryptosytem with & = 3 and n =47 - 59 = 2773.

50. Let p be an odd prime, and let C be the ciphertext obtained in modular exponentia-
tion, with exponent ¢ and modulus p, from the plaintext P, that is, C = Pe (mod p),
0 < C < n, where (e,p — 1) = 1. Show that C is a quadratic residue of p if and only if
P is a quadratic residue of p.

% 51, a) Show that the second player in a game of electronic poker (see Section 8.6) can obtain
an advantage by noting which cards have numerical equivalents that are quadratic
residues modulo p. (Hint: Use Exercise 30.)

b) Show that the advantage of the second player noted in part (2) can be eliminated if
the numerical equivalents of cards that are quadratic nonresidues are all multiplied
by a fixed quadratic nonresidue.

% 52, Show that if the probing sequence for resolving collisions in a hashing scheme is
hi(K)=h(K)+ aj + bj* (mod m), where h(K) isa hashing function, m is a positive
integer, and a and b are integers with (b,m) =1, then only haif the possible file locations
are probed. This is called the quadratic search.

We say that x and y form a chain of quadratic residues modulo p if x, y, and x 4+ y are all
guadeatic residues modulo p.

53, Find a chain x, y,x + y of quadratic residues modulo .

54. Is there a chain of quadratic residues modulo 77

11.1 Computational and Programming Exercises
Computations and Explorations
Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find the value of each of the following Legendre symbols: (4—51{%—%,9), (m%%)% '

( 6,818,811 )

15,454,356,666,611 }*

2, Show that the prime p = 30,059,924,764,123 has (%) = —1 for all primes g with
2<qg =181

3. A setof integers xy, Xp, - - . , X, Where n is a positive integer, is called chain of quadratic
residues it all sums of consecutive subsets of these numbers are quadratic residues. Show
that the integers 1, 4, 45, 94, 261, 310, 344, 387, 393, 394, and 456 form a chain of
quadratic residues modulo 631. (Note: There are 66 values to check.)

4, Find the smallest quadratic nonresidue of each prime Iess than 1000.
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112 The Law of Quadratic Reciprocity 417

5. Find the smallest quadratic nonresidue of 100 randomly selected primes between
100,000 and 1,000,000, and 100 randomly selected primes between 100,000,000 and
1,000,000,000. Can you make any conjectures based on your evidence?

6. Use numerical evidence to determine for which odd primes p there are more quadratic
residues a of p with 1 <a < (p — 1)/2 than there are with (p + B/l<a<p-—1

7. Let p be a prime with p = 3 (mod 4). It has been proved that if R is the largest number of
consecutive quadratic residues of p and N is the largest number of consecutive quadratic
nonresidues of p, then R=N <« +/P. Verify this result for all primes of this type less
than 1000,

Let p be a prime with p = 1 (mod 4). It has been conjectured that if N is the largest
number of consecutive quadratic nonresidues of p, then N < /p when p is sufficiently
large. Find evidence for this conjecture. For which small primes does this inequality fail?

9. Find the four modular square roots of 4,609,126 modulo 14,438,821 = 4003 - 3607,

10. Find the square roots of 11,535 modulo 142,661. Which one is a quadratic residue of
142,6617

oo

Programming Projects

Write computer programs using Maple, Mathematica, or a language of your choice to do the
following.

1. Evaluate Legendre symbols using Euler’s criterion.
2, Evaluate Legendre symbols using Gauss’s lemma,

3. Given a positive integer n that is the product of two distinct primes both congruent to
3 modulo 4, find the four square roots of the least positive residue of x2, where x is an
integer relatively prime to 4.

* 4. Flip coins electronically using the procedure described in this section.

** 5. Decrypt messages that were encrypted using a Rabin cryptosystem (see Exercise 49),

11.2 The Law of Quadratic Reciprocity

Suppose that p and g are distinct odd primes. Suppose further that we know whether ¢
is a quadratic residue of p. Do we also know whether p s a quadratic residue of g7 The
answer to this question was found by Euler in the mid-1700s. He found the answer by
examining numerical evidence, but he did not prove that his answer was correct. Later, in
1785, Legendre reformulated Euler’s answer, in its modern, elegant form, in a theorem
‘@f known as the law of quadratic reciprocity, This theorem tells us whether the congruence
¥2=¢ (mod p) has solutions, once we know whether there are solufions of 1=

p (mod g).

Theorem11.7. The Law of Quadratic Reciprocity. Let p and ¢ be distinct odd primes.

Then
(E) (5_) = (-5,
q P
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Legendre published several proposed proofs of this theorem, but each of his proofs
contained a serious gap. The first correct proof was provided by Gauss, who claimed
to have rediscovered this result when he was 18 years old. Gauss devoted considerable
attention to his search for a proof. In fact, he wrote that “for an entire year this theorem
tormented me and absorbed my greatest efforts until at Jast I obtained a proof.”

Once Gauss found his first proof in 1796, he continued searching for different proofs.
He found at least six different proofs of the law of quadratic reciprocity. His goal in
Jooking for more proofs was to find an approach that could be generalized to higher
powers. In particular, he was interested in cubic and biquadratic residues of primes; that
is, he was interested in determining when, given a prime p and an integer a not divisible
by p, the congruences x3 = a (mod p) and x* = a (mod p) are solvable. With his.sixth
proof, Gauss finally succeeded in his goal, as this proof could be generalized to higher
powers, (See {IrRo91], [Go98], and [L.e00] for more information about Gauss's proofs
and the generalization to higher power residues.)

Finding new and different approaches did not stop with Gauss, Some of the well-
known mathematicians who have published original proofs of the law of quadratic
reciprocity are Cauchy, Dedekind, Dirichlet, Kronecker, and Eisenstein, One count in
1921 stated that there were 56 different proofs of the law of quadratic reciprocity, and in

@ 1963 an article published by M. Gerstenhaber [Ge63] offered the 152nd proof of the law
of quadratic reciprocity. In 2000, Franz Lemmermeyer [Le00] compiled a comprehensive
list of 192 proofs of quadratic reciprocity, noting for each proof the year, the prover, and
the method of proof. Lemmermeyer maintains a current version of this on the Web; as of
early 2004, 207 different proofs were listed. According to his count, Gerstenhaber’s proof
is number 153 and eight of the proofs were completed since 2000. Tt will be interesting
to see if new proofs continue to be found at the rate of one per year. (See Exercise 17 for
an outline of the 207th proof.)

Although many of the different proofs of the law of quadratic reciprocity are similar,
they encompass an amazing variety of approaches. The ideas in different approaches can
have useful consequences, For example, the ideas behind Gauss’s first proof, which is
a complicated argument using mathematical induction, were of little interest to mathe-
maticians for more than 175 years, until they were used in the 1970s in computations in
an advanced area of algebra known as K-theory.

The version of the law of quadratic reciprocity that we have stated and proved is
different from the version originally conjectured by Euler. This version, which we now
state, turns out to be equivalent to the version we have stated as Theorem 11.7. Euler
formulated this version based on the evidence of many computations of special cases.

Theorem 11.8. Suppose that p is an odd prime and a is an integer not divisible by p.
If ¢ is a prime with p = ¢ (mod 4a), then (%) = (g-)
This version of the law of quadf'atic reciprocity shows that the value of the Legendre
symbol (%) depends only on the residue class of p modulo 4a, and that the value of (%
takes the same value for all primes p with remainder 7 or 4a — r when divided by 4a.
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11.2 The Law of Quadratic Reciprocity 419

We leave it to the reader as Exercises 10 and 11 to show that this form of the law of
quadratic reciprocity is equivalent to the form given in Theorem 11.7, We also ask the
reader to prove, in Exercise 12, this form of quadratic reciprocity directly, using Gauss's
lemma,

Before we prove the law of quadratic reciprocity, we will discuss its consequences
and how it is used to evaluate Legendre symbols. We first note that the quantity
{p — 1)/2 is even when p =1 (mod 4) and odd when p =3 (mod 4). Consequently,
we see that 32“—1 - 92;1 isevenif p=1(mod 4 or g = 1 (mod 4), whereas £_2:_1 - %5 is
odd if p = g =3 (mod 4). Hence, we have

(2)(4') :_{ 1 if p=1(mod 4) or ¢ = 1 (mod 4) (or both);

a/\p —1 if p=g=3(mod4).

Because the only possible values of (g) and (%) are +1, we see that

(3) = (%) if p=1(mod 4) or g = 1 (mod 4) (or both);
4 *(%) if p=¢ =3 (mod 4).

This means that if p and g are odd primes, then (5) = (%), unless both p and g are

congruent to 3 modulo 4, and in that case, (g) a= ——(%).

Example11.8. Letp=13andq = 17. Because P =g =1(mod4), the law of quadratic
reciprocity tells us that (%) = (}—;) By part (i} of Theorem 11.4, we know that

($) = (45), and from part (i) of Theorem 114, it follows that (#)=(%)=1

Combining these equalities, we conclude that (%) =1 -«

Example 11.9. Let p =7 and ¢ = 19. Because p =g =3 (mod 4), by the law of
quadratic reciprocity, we know that (%) = —(%). From part (i) of Theorem 11.4,

we see that (17.—9) = (%) Again, using the law of quadratic reciprocity, becanse 5= 1
(mod 4) and 7 =3 (mod 4), we have (%) = (%) By part (i) of Theorem 11.4 and
Theorem 11.6, we know that (%) = (%) = ~1. Hence, (%) =1 «

We can use the law of quadratic reciprocity and Theorems 11.4 and 1.6 to evaluate

Legendre symbols. Unfortunately, prime factorizations must be computed to evaluate
Legendre symbols in this way.

Example 11.10. We will calculate (%) (note that 1009 is prime). We factor 713 =

23 - 31, so that by part (ii) of Theorem 1 1.4, we have

(713)_(23-31)_ 23 (31)
1009/ \ 1000 / ~ \1009/\ 1009 /)"
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To evaluate the two Legendre symbols on the right side of this equality, we use the law
of quadratic reciprocity. Because 1009 = 1 (mod 4), we see that

( 23 )_ (1009 310 _ (1009)
w09/ \ 23 ) \1o09/  \ 31/
Using Theorem 11.4, part (i), we have
(1009) - @) (1009) _ (E)
23/ \23/" \ 31/ \31)
By parts (ii) and (iii) of Theorem 11.4, it follows that
3)-GE)-G)E)-6)
23} U2/ \23/\23/) \23/
The law of quadratic reciprocity, part (i) of Theorem 11.4, and Theorem 11.6 tell us that
(3)-(%)-()-6)-6)--
) \5) \s) \3/ \3)  ~
23\
Thus, (W) =1

Likewise, using the law of quadratic reciprocity, Theorem 11.4, and Theorem 11.6,
we find that

(5)-3)-()-GE-G--6
()=

Consequently, (T%%) =-1

Therefore, (*176%) =(-D(=h=1 «

A Proof of the Law of Quadratic Reciprocity

We now present a proof of the law of quadratic reciprocity originally given by Max Eisen-

@f stein. This proof is a simplification of the third proof given by Gauss. This simplification
was made possible by the following lemma of Eisenstein, which will help us reduce the
proof of the law of quadratic reciprocity to counting lattice points in triangles.

Lemma 11.3. If p is an odd prime and a is an odd integer not divisible by p, then

(E) — (—yT@D,
p

(p—-1/2
T(a,p)= Y lja/p}
f=t

where
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Proof.  Consider the least positive residues of the integers a,2aq, . . ., (( p—1/2a;let
), g, . . ., Utg be those greater than p/2 and let Y ¥z, ..., v, be those less than p/2,
The division algorithm tells us that

ja=plja/pl+ remainder,

where the remainder is one of the u j or v;. By adding the (p — 1)/2 equations of this
sort, we obtain

(p-1)/2 (p—D/2 s t
(11.4) Zﬁm:ZMﬁm+Z%+Z%
j=1 j=1 j=1 i=i
As we showed in the proof of Gauss’s lemma, the integers p — u Leeea P—Hg U0, Y
are precisely the integers 1,2, . . ., (p — /2, in some order. Hence, summing all these

integers, we obtain

(p—-D/2 )

f s '
(1.5 Zj'xz(P—llj)+2vj:ps~2uj+zuj,
j=1 i=1 j=t j=1 =1

Subtracting (11.5) from (1 1.4), we find that

(p—1)/2 (p—1)/2 {(p—1)/2 5
doda— Y =3 plia/pl—ps+2 u;
j=1 j=1 j=1 j=1

FERDINAND GOTTHOLD MAX EISENSTEIN {1823-1852) suffered
from poor health his entire tife. He moved with his family to England, Ire-
tand, and Wales before returning to Germany. In Ireland, Eisenstein met Sir
William Rowan Hamilton, who stimulated his interest in mathematics by giv-
ing him a paper that discussed the impossibility of solving quintic equations in
{ radicals. On his return to Germany in 1843, at the age of 20, Hisenstein entered
o2 the University of Berlin.

Eisenstein amazed the mathematical community when he quickly began producing new results
soon after entering the university. In 1844, Eisenstein met Gauss in Gittingen where they discussed
reciprocity for cubic residues. Gauss was extremely impressed by Eisenstein, and tried to obtain
financial support for hint. Gauss wrote to the explorer and scientist Alexander von Humboldt that
the talent Eisenstein had was “that nature bestows upon only a few in each century.” Eisenstein was
amazingly prolific. In 1844, he published 16 papers in Yolume 27 of Crelle's Journal alone. I the third
semester of his studies, he received an honorary doctorate from the University of Breslau, Eistenstein
was appointed to an unsalaried position as a Privatdozent at the University of Berlin; however, after
1847, Eisenstein's health worsened so much that he was mostly confined to bed. Nevertheless, his
mathematical output continired unabated. After spending a year in Sicily in a futile attempt to improve
his health, he returned to Germany where he died from tuberculesis at the age of 29. His early death
was considered a tremendous loss by mathematicians.
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422 Quadratic Residues -

or, equivalently, because T'(a, p) = fo‘t:;l)/z[ja /0,
(p-1/2 5
{a-1 Z Jj=pT{a.p) —ps+22:¢j.
j=t j=1

Reducing this last equation modulo 2, because a and p are odd, yields
0=T{a, p) — s (mod 2).
Hence,
T(a, p) = s (mod 2).

To finish the proof, we note that from Gauss’s lemma,

()-cv
P

Consequently, because (—1)* = (—1)T@P), it follows that

(_‘i) = (—)T@P), -
p

Although Lemma 11.3 is used primarily as a tool in the proof of the law of quadratic
reciprocity, it can also be used to evaluate Legendre symbols.

Example 11.11. To find (%) using Lemma 11.3, we evaluate the sum

5
> 177/101=17/1114 [14/11] + [21/11] + [28/ 11} + [35/11]
j=1 '
=0+414+1+2+3=7.

Hence, (%) = (17T =~

Likewise, to find (171), we note that

3
SO/ T = 11/7)+ [22/7) 4+ [33/7] =1+ 3 + 4 =8,
j=1

s that (%) = (=D¥=1. <
Before we present a proof of the law of quadratic reciprocity, we use an example to

illustrate the method of proof.

Let p =7 and g = 11. We consider pairs of integers (x, y) with1 =x = (7—-1/2=3
and 1 <y < (11— 1)/2 = 5. There are 15 such pairs. We note that none of these pairs
satisfies 11x = 7y, because the equality 1 1x = 7y implies that 11| 7y, so that either 1117,
which is absurd, or 11| y, which is impossible because 1 <y < 5.
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11.2 The Law of Quadratic Reciprocity 423

‘We divide these 15 pairs into two groups, depending on the relative sizes of 11x and
7y, as shown in Figure 11.1.

5 o hd y=11x/1
41 ] . ]
34 * 4
2 . . L ]
15 . . [ ]
1 2 3

Figure 11.1 Counting lattice points to determine (%) ( %)

The pairs of integers (v, y) with 1 <=x <3,1<y <35, and 11x > 7y are precisely
those pairs satisfying 1 < x <3and 1 < y < 11x/7. For a fixed integer x with | < x <3,
there are [11x/7] allowable values of y. Hence, the total number of pairs satisfying
l<x <3, 1=y=<35andllx > Tyis

3
D L/N=1YT+(22/71+ [33/T1=1+3+4 =38,
J=1
these eight pairs are (1, 1}, (2, 1), (2,2), (2,3), (3, 1), (3,2), (3, 3), and (3,4).

The pairs of integers (x, y) with 1<x <3, 1 <y <5, and Ilx < 7y are precisely
those pairs satisfying 1 <y < 5and 1 < x < 7y/11. Fora fixed integer y with 1 < y < 5,
there are [7y/11}] allowable values of x. Hence, the total number of pairs satisfying
l=x =3 1=<y=<5andllx <7yis

5
Z[’/‘j/ll}: 77100+ [14/10] 4 [21/111 4 [28/1 1]+ [35/11]
j=1
=0+14+1=2=3=17,
These seven pairs are (1,2), (1,3), (1,4), (1,5), 2,4), (2. 5), and (3, 5).

Consequently, we see that

11-1 7-1

3 5
_.—=5-3=15: 11'7 7l11=8 7.
> 5 ,-2[ ;/]+§u/ =8+

Hence, R s
(_I)u—_l.zz_l (_I)Zj=l[l1j/7]+zj:1[7j/ﬂ]

— I)Zj;tmm(“ D):Lmnn_

STUDENTS-HUB.com Uploaded By

: anonymous



424 Quadratic Residues

3 s 5
Because Lemma 11.3 tells us that l,}) = (—I)EH[HJ M and (»17'—1) = (_1)Zf=1m/ 11]’

we se¢ that (%) (L.}) = (—1)75_1‘%_‘1_

This establishes the special case of the law of quadratic reciprocity when p = 7 and
g =11

We now prove the law of quadratic reciprocity, using the idea illustrated in the
example.

Proof. We consider pairs of integers (x, y) with 1 <x < (p—1/2 and 1<y =
(g — 1)/2. There are f—;—l . 5’;—1 such pairs. We divide these pairs into two groups, de-
pending on the relative sizes of gx and py, as shown in Figure 11.2

(. (g~ 1)2) ((p—Di2,{g-1V2)
(g-1)2
2 [pjfq] lattice points
J=t
(p-1)72
Z fgjfp] lattice points
=l

0.0 ((p-1¥/2,0)

Figure 11.2 Counting lattice points to determine (-3) (%)

First, we note that gx # py for all these pairs. For if gx = py, then ¢ | py, which
implies that g | p or g | y. However, because ¢ and p are distinct primes, we know that
g f p,andbecause I <y = (g — 1)/2, we know thatq [ y.

To enumerate the pairs of integers (x,y) with I<x = (p—1/2, 1=y =
(g — 1)/2, and gx > py, we note that these pairs are precisely those where 1<x =
(p—1)/2 and 1 =y =gx/p. For ecach fixed value of the integer x, with 1 <x =
(p — 1)/2, there are [gx/p] integers satisfying 1 < y < gx/p. Consequently, the to-

tal iumber of pairs of integers (x, y) withl<x<(p-D1/2,1=y=(g— 13/2, and
. —D/2(,

gx > py is 1.0 " lgj/ bl

We now consider the pairs of integers (x,y) with l<x<s(p—-D/f2 1=y =
(g — /2, and gx < py. These pairs are precisely the pairs of integers {x, y) with
l<y=<f{g-—D/2and l=x = py/q. Hence, for each fixed value of the integer ¥,
where 1< y < (g — 1)/2, there are exactly [py/q) integers x satisfying 1 =x = py /q.
This shows that the total number of pairs of integers (x,y) with 1 <x < (p — D/2,

L=y <(g—D/2adqx < pyis L5, (pi/al

Adding the numbers of pairs in these classes, and recalling that the total number of
such pairs is 1'%1 . ‘7—}[, we see that
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11.2 The Law of Quadratic Reciprocity 425

(p—1)/2 {g-1/2 p—1 g1
> i+ Y [pj/q}m—zw-iz—,
j=1 j=

or, using the ntotation of Lemma 11.3,

p—1 g—1
T(q, Tpg)=5— .12,
@ pP)+T(p.q) > 2

Hence,

(=T ePrTra) (=D T(‘LP)(_ nTea - (- 1)‘”—_1-9—}1‘

Lemma 11.2 tells us that (—1)7@?) — (%) and (172D = (g). Hence

(E) (.‘f_) = (DT,
a/\p

This concludes the proof of the law of quadratic reciprocity. u

'The law of quadratic reciprocity has many applications. One use is to prove the validity
of the following primality test for Fermat numbers.

Theorem 11.9. Pepin’s Test. The Fermat number F,, = 2%" + 1is prime if and only if
3Fn=b/2 = _1 (mod F,).

Proof. We will first show that F,, is prime if the congruence in the statement of the
theorem holds. Assume that

30/ = .1 (mod F,).

Then, by squaring both sides, we obtain

3%l = _1(mod F,).
From this congruence, we see that if p is a prime dividing F,,, then

3l = _1 (mod p),

and hence,

ord,3 | (F, — 1) =2",
Consequently, ord »3 must be a power of 2. However,

ord,3 y22" "1 = (F,, — 12,

because 3F»—D/2 = —1 (mod F,,). Hence, the only possibility is that ord,3 = 2" =
F, — 1. Because ord,3=F,, ~ 1< p —land p | F,,, we see that p = F,, and, conse-
quently, F,, must be prime.
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426 Quadratic Residues

Conversely, if F,, = 22" 4 1is prime for m > 1, then the law of quadratic reciprocity
tells us that

w5

because F,, = 1 (mod 4) and F,, = 2 (mod 3).

Now, using Euler’s criterion, we know that

(11.7) (—;’—) = 3= D/2 (mod F,).
m

By the two equations involving (%) (11.6) and (11.7), we conclude that

3(Fm—1)/2 = —1 (mod Fﬁ‘l)'

This finishes the proof. u

Example 11.12. Letm =2.Then F, = 27 4 1=17and
3(F2-D/2 = 38 = _1 (nod 17).
By Pepin’s test, we see that F, = 17 is prime.
Letm = 5. Then Fy =22 + 1=2% 4 1=4,294,967,297. We note that
3(Fs=D/2 _ 32°! _ 32146483618 . 10304303 3 —1 (mod 4,294,967,297).

Hence, by Pepin’s test, we see that Fs is composite. «

11.2 Exercises

1. Evaluate each of the following Legendre symbols.

3 15 111
o) o) oG
7 11 105
w(E)  o@)  o®
2. Using the law of quadeatic reciprocity, show that if p is an odd prime, then

3y |1 if p=+1{mod 12);
5) =11 ifp=+5(mod12).

3. Show that if p is an odd prime, then

-3y _{ 1 ifp=1(mod6)
p 1 -1 if p=—1(mod 6).

4. Find a congruence describing all primes for which 5 is a quadratic residue.

5. Find a congruence describing all primes for which 7 is a quadratic residue.
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11.2 The Law of Quadratic Reciprocity 427

6. Show that there are infinitely many primes of the form 5k + 4. (Hint: Letn be a positive
integer and form Q.= 5(n!)? - 1. Show that Q has a prime divisor of the form 5k + 4
greater than #. To do this, use the law of quadratic reciprocity to show that if a prime p
divides Q, then {£} =1

7. Use Pepin’s test to show that the following Fermat numbers are primes.
ay Fy=35 b) F3=257 ¢} Fy=1065537

* 8. Use Pepin’s test to conclude that 3 is a primitive root of every Fermat prime.

* 9, In this exercise, we give another proof of the law of quadratic reciprocity. Let p and ¢
be distinct odd primes. Let R be the interfor of the rectangle with vertices Q = (0, 0),
A=(p/2,0),B=(g/2,0), and C = (p/2, g/2), as shown.

B (g/2,0) Cipi2, g/2)

000 A(pl2, 0y

a) Show that the number of Iattice points (points with integer coordinates) in R is
gl gl
7z
b) Show that there are no lattice points on the diagonal connecting O and C.
¢) Show that the number of lattice points in the triangle with vertices O, A, and C is
Y g p1
d) Show that the number of Iattice points in the triangle with vertices O, B, and C is
—D/2 ;
T p gl
e) Conclude from parts (a), (b}, (c), and (d) that

(p-D/2 (g-1/2 Pl g1
Y. Ua/ol+ Y liplgl=2—-. 4
j=1 j=1 22

Derive the law of quadratic reciprocity using this equation and Lemma 11.2.
Exercises 10 and 11 ask that you show that Euler’s form of the law of quadratic reciprocity
(Theorem 11.8) and the form given in Theorem 11.7 are equivalent.

10. Show that Euler’s form of the law of quadratic reciprocity, Theorem 11.8, implies the
law of quadratic reciprocity as stated in Theorem 11.7. (Hint: Consider separately the
- cases when p =g (mod 4) and p % g (mod 4).)

11. Show that the law of quadratic reciprocity as stated in Theorem 11.7 implies Euler's
form of the law of quadratic reciprocity, Theorem 11.8. (Hint: First consider the cases
when @ =2 and when 4 is an odd prime. Then consider the case when a is composite.)

12, Prove Euler’s form of the law of quadratic reciprocity, Theorem 11.8, using Gauss’s
lemma. (Hint: Show that to find (%) we need only find the parity of the number
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428 Quadratic Residues

of integers k satisfying one of the inequalities (2f — 1) (pf2a) <k <t(pfa) fort =
1,2,...,21 — 1, where u =a/2 if a is even and u = (a — 1)/2 if a is odd. Then,
take p =4am +r with 0 < r < da, and show that finding the parity of the number
of integers k satisfying one of the inequalities fisted is the same as finding the parity
of the number of integers satisfying one of the inequalities (2t — )r/2a <k =tr Ja for
t=1,2,...,2u — 1. Show that this number depends only on r. Then, repeat the last step
of the argument with r replaced by 4a — 7).

Exercise 13 asks that you fill in the details of & proof of the law of guadratic reciprocity
originally developed by Eisenstein. This proof requires familiarity with the complex numbers.

13. A complex number { is an nth root of unity, where 7 is a positive integer, if {" = L Ifn
is the least integer for which ¢™ = 1, then ¢ is called a primitive nth root of unity. Recall
that 2 = 1.

a) Show that ¢@*1/M* s a root of unity if k is an integer with 0<k<n-— 1, whichis
primitive if and only if (k,n) = L

b) Show that if { is an nth root of unity and m = £ (mod n), then ¢ = ¢, Furthermore,
show that if £ is a primitive nth root of unity and ™ = ¢¢, then m = £ (mod n).

¢) Define f(z) = e¥™% — ¢ 7272 = 2i sin(2n 7). Show that f(z+ D = f(z)and f{—2) =
— f(2), and that the only real zeros of f(z)are the numbers n /2, where n is an integer.

d) Show that if r is a positive integer, then x* — y* = ’,:;é(;"x — ¢~*y), where
= e’Zn’i/r!.

¢) Show that if # is an odd positive integer and f(z) is as defined in part (c), then
n—-1f2
fnz) ( k ) ( k )
_= 4= z——].
f@ 1:[1 / n f R

f) Show that if p is an odd prime and a is an integer not divisible by p, then

(p=0/2 (p—-1/2
(%)= ()

g) Prove the law of quadratic reciprocity using parts (e) and (f), starting with

(pﬁ/z ' . (pﬁ/z .
f(9)=(2) T /G)
=1 P P/ et P
(Hint: Use part () to obtain a formula for f (‘%?) /f (%))

14. Suppose that p is an odd prime with (%) == —1, where n = k2™ + 1 with k < 27 for

some integers k and mn. Show that n is prime if and only if p=0/2 = —1(mod n). (Hint:
Use Proth’s theorem from Section 9.5 for the “only if” part and Euler’s criterion and the
law of quadratic reciprocity for the “if” part.}

15, The integer p=1+8-3-5.7-11-13-17- 19 - 23 = 892,371,481 is prime (as the
reader can verify using computational software). Show that for all primes ¢ with ¢ =23,
(%) — 1. Conclude that there is no quadratic nonresidue of p less than 29 and that p has
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1o primitive root less than 29. (This fact fs a particular case of the result established in
the following exercise.)

16

In this exercise, we will show that given any integer M, there exist infinitely many primes
psuchthat M <r, < p — M, where rp is the least primitive root modulo p,

a) Letg;=2,4,=3,q3=>5,...,q, beall the primes not exceeding M. Using Dirichlet’s
theorem on primes in arithmetic progressions, there is a prime p=1+

8419z - - - g,r, where r is a positive integer. Show that (%’) =1, (—2-) =1, and

that(%):1f0ri=2,3,...,n. ’

b) Deduce that all integers ¢ 4 kp with —M <t 4+ kp < M, where 1 is an arbitrarily
chosen integer, are quadratic residues modulo p and hence not primitive roots modulo
. Show that this implies the result of interest.

# 17. New proofs of the law of quadratic reciprocity are found surprisingly often. In this
exercise we fill in the steps of a proof discovered by Kim [Ki04], the 207th proof of
quadratic reciprocity according to the count by Lemmermeyer, To set up the proof, let
R be the set of integers @ such that 1 < g < E’z;l and (a, pg) = 1, let § be the set of

integers a with I <a < *”—‘72""—1 and (a, p) = 1, and let T be the set of integers a with
q-l,q-Z,...,q-P—?.Finally,letz&: Il a.
ack
a) Show that 7 isa subsetof Sandthat R=5—T.
b) Use part (a) and Euler’s criterion to show that A = (—1)13‘I (%) {mod p).
¢) Show that A = (—I)Ei_"l (’3) {mod ¢) by switching the roles of p and ¢ in parts (a)
and (b).
g1 2t . .
d) Use parts (b) and (c) to show that (— 1) (g) — (-1 (;;l) ifand only if A = +1
(mod pg).
e) Show that A =1 or —1 (mod pg) ifand only if p =g = 1 {mod 4).
(Hinz: First show that A =+ [] a (mod pg), where U = {a € R | &> = £1 (mod pq)}

=30 .
by pairing together elements 0‘3[- R that have either 1 or —1 as their product. Then consider
the solutions of each of the congruences a” = 1 (mod pg) and a2 = ~1 (mod pa).)

f) Conclude from parts (d) and (e} that (—1)%F" (g) = (~biT (g) if and only if
p =g = 1(mod 4). Deduce the law of quadratic reciprocity from this congruence.

11.2 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Use Pepin’s test to show that the Fermat numbers Fy, F;, and Fj are all composite. Can
you go further?
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Programming Projects

Write programs using Maple, Mathematica, ot a language of your choice to do the following.

1. Evaluate Legendre symbols, using the law of quadratic reciprocity.

2. Given a positive integer n, determine whether the nth Fermat number F, is prime, using

Pepin’s test.

11.3 The Jacobi Symbol

in this section, we define the Jacobi symbol, named after German mathematician Carl

@ Jacobi who introduced it. The Jacobi symbol is a generalization of the Legendre symbol
studied in the previous two sections. J acobi symbols are useful in the evaluation of
Legendre symbols and in the definition of a type of pseudoprime.

Definition. 1Letn bean odd positive integer with prime

. . 1 FE H
factorization n = Pll p,f co e pi

and let @ be an integer relatively prime to n. Then, the Jacobi symbol (%) is defined by

n
(z)z _a_ =(1)(
n (p"fp?--‘pf:?) i

)G

where the symbols on the right-hand side of the equality are Legendre symbaols,

Example 11.13. From the definition of the Jacobi symbol, we see that

(2)-()-6) @)-reo=-

and

() =(s7) - () ()

)=-()E)

_[2\(2 T, g
) G- :

yet completed although it was begun more than 125 years ago!

CARL GUSTAV JACOB JACOBI (1804-1851) was born into 2 well-to-do
German banking family. Jacobi received an excellent early education at home.
He studied at the University of Berlin, mastered mathemmatics through the texts
of Buler, and obtained his doctorate in 1825. Tn 1826, he became a lecturer at the
University of Knigsberg; he was appointed & professor there in 1831. Besides
his work in number theory, Jacobi made important contributions to analysis,
geometry, and mechanics. e was also interested in the history of mathematics
and was a catalyst in the publication of the collected works of Ealer, a job not

—
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11.3 The Jacobi Symbol 431

When 1 is prime, the Jacobi symbol is the same as the Legendre symbol. However,
when #n is composite, the value of the Jacobi symbol (ﬁ) does not tell us whether the

congruence x> = a {mod n) has solutions. We do know that if the congruence x* = a

(mod n} has solutions, then (%) = 1, To see this, note that if p is a prime divisor of » and

if x2 = a (mod n) has solutions, then the congruence x% = 4 {mod p) also has solutions,
I

Thus, (%) = L. Consequently, (‘%) = ;":1 (f;) ! = 1, where the prime factorization of

nisn= p? pf,f .-« pir.To see that it is possible that (£} = 1 when there are no solutions

to 32 = g (mod 1), let @ = 2 and 1 = 15. Note that (%) = (%) (%) — (=D~ =1.

However, there are no solutions to x% = 2 (mod 15), because the congruences x2 =
(mod 3) and x? = 2 (mod 5) have no solutions.

We now show that the Jacobi symbol enjoys some properties similar to those of the
Legendre symbol.

Theorem 11.10. Let # be an odd positive integer and let a and b be integers relatively
prime to #. Then
(i) ifa=b(modn), then (&) = (%)
@ (%)=
(i) (1) = (~péDr2,
(iv) (%) = (—1)?-D/3,

Proof. In the proof of this theorem, we use the prime factorization n = p;‘ p? e pim,

Proof of (i). 'Weknow that if p is a prime dividing », then a = b (mod p). Hence, from
b
Theorem 11.4 (i), we have (E) = (—) Consequently, we see that
p P

(-GGG -GG (=)

)fori:

8

Proof of {ii). From Theorem 11.4 (i), we know that (%i’) = (pi) (
1,2,3,...,m. Hence,

)2
GGG (26 ;
06

Di

I
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Proof of (iii). Theorem 11.5 tells us that if p is prime, then (%1) = (- plp-b/2,

COHSE(]ucnﬂy,
(ﬂnl) (_ ) (_1)2) (_pm)
=

= (— 1) P D/2H(P D24 A i (P =112

From the prime factorization of n, we have

ne= (14 (o — I+ (2 — Y2+ A+ (P — D™
Because p; — 11is even, it follows that

(1+ (p; = DY =1+ 1(p; — 1) (mod 4)

and
A+ 6(p; — DA+ 45(p; — Dy =1+ 6(p = D+ 1;(p; — 1) (mod 4).
Therefore,
n=1l4n(p — D +6(p— D+t ty(py — 1) (mod 4),
which imples that

n—D2=t(p— D2+ 8o —D/24+ -+ 1P — D2 {mod 2).
Combining this congruence for (n — 1}/2 with the expression for (:’;l) shows that

(_—n_l) — (“,.1)("—1)/2_

Proof of (iv). If p is prime, then (%) = (—1){7*~B/8 Hence,

t t -
(E) = (2.) ' (21_) ’ v (i)r — (__l)fx(P%—1)/3+f2(.0§—i)/3+--°+tm(p§l-—l)/8-
n 1541 P2 P

As in the proof of (jii), we note that
n2 = (14 (p2 = DI+ (p2 — )2+ - (L4 (p], — DY
Because p? —1=0(mod8) fori =1,2,...,m, we sec that
(L+ (p? — DYt = 1+ 4,(p] — D (mod 64)
and
1+ 4(p? — DI+ £5(p% = DYy =1+ 5,(p} — 1) +1;(p} — D (mod 64).
Hence,

W= 1+n(pt~ D+ 0ph— D+ + 1,25, — 1) (mod 64),
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which implies that
(n* = D/8=1(p} — D/8+1(Pf — /8 + - +1,(p2 — 1)/8 (mod 8).

Combining this congruence for (n? — 1)/8 with the expression for (%) tells us that

We now demonstrate that the reciprocity law holds for the Jacobi symbol as well as
the Legendre symbol,

Theorem 11.11. The Reciprocity Law for Jacobi Symbols. et n and m be relatively
prime odd positive integers, Then

(i) (’_7.’.) = (Hl)""‘z—*l'"%l,
m i

Proof. Let the prime factorizations of m and n be m = p'lJl pg‘ oo peand n =

qf‘qfﬁ -« gbr. We see that

(3)-1]

f=] i=1 j=1
and
n AT AN
(m)_g(m) _,-Uu=1 (PJ)
Thus,

ros a
() G-
ANt e LN\ P
By the law of quadratic reciprocity, we know that
) LA YE !
(fi) % =(—1)( =) (% )
q; Py
Hence,
r.s APty (it T L £ i) B; ot
(11.8) (E) (E)mnn(_nﬂj( 7 )r( 2 )=(_1)Z,:121=1“1( ) ) ( 7 )
n mn it j=1
We note that
r 5 5 r
Pi—1\, (a1 pi—1
2ne(U () - e () e

i=1 j=1 j=1
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434 Quadratic Residues

As we demonstrated in the proof of Theorem 11,10 (iiz),

5
pi—1 -1
Zaj( ‘72 )z%(m(}d%

j=1
and

4 -1 -1

Z bi(L—) S —— (mod 2).

5 2 2

i=t
Thus,

r &

pi—1 i —1 m—1 n—1
11.9 ; b (L2 )= = — . —— (mod?2).
o L Ye (25 )n(E) =" g e

i=1 j=1i
Therefore, by equations (11.8) and (11.9}, we can conciude that

(i’i) (ﬁ) - (#_1)'"7_1'"7'1, n
n it

An Algorithm for Computing Jacobi Symbols  We now develop an efficient algorithm
for evatuating Jacobi symbols. Let a and b be relatively prime positive integers with
a > b.Let Ry =a and Ry = b. Using the division algorithm and factoring out the highest
power of two dividing the remainder, we obtain

Ry=Rygy + 2Ry,

where 5, is a nonnegative infeger and R, is an odd positive integer less than Ry. When
we successively use the division algorithm, and factor out the highest power of two that
divides remainders, we obtain

Ry= Ryqz +27Rs
Ry = Rygqs +27Ry

Rya= Ry ogy-2 + 2R,
Ry 2= Ry_1dn-1+ 211,

where §; is a nonnegative integer and R; is an odd positive integer less than R;_, for
j=2,3,...,n— 1L Note that the number of divisions required to reach the final equation
does not exceed the number of divisions required to find the greatest common divisor of
a and b using the Euclidean algorithm.

We iltustrate this sequence of equations with the following example.

Example 11.14. Leta =401 and b =111 Then
401=111-342%.17
111=17-6+2%9
17=9-14+2%. 1. «
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( 11.3 The Jacobi Symbol 435

Using the sequence of equations that we have described, together with the properties
of the Jacobi symbol, we prove the following theorem, which gives an algorithm for
evaluating Jacobi symbols.

Theorem 11.32. Let « and b be posttive integers with a > b. Then

]

BI-1 Rz 1 g1 R t Ry g=1
(Z) (— 1)51—+ MR L e SN .

where the integers R; and s;, j = 1,2, — 1, are as previously deseribed.

Proof. From the first equation with (i), (ii), and (iv) of Theorem 11.10, we have

(5)-()-(59)-(2) ()= ().

Using Theorem 11.11, the reciprocity law for Jacobi symbols, we have

(&) - (_z)ﬁlf_l'# (&)
4} Ry
-1 Ro— K2
(E)z(_l)ﬁ%—l'%ﬂl £ (&),
b R,

Similarly, nsing the subsequent divisions, we find that

2
(R )H(___ )— "-H ]+51£( Rj )
R; Rjs1

for j=2,3,...,n — 1. When we combine all the equalities, we obtain the desired
expression for (§). m

so that

The following example illustrates the use of Theorem 11.12.
Example11.15. Toevaluate (‘1“1}}) we use the sequence of divisions in Example 11.14
and Theorem 11.12. This tells us thag

2 —_1 6
(%)_( 1)2111 +011r1+39 Lp DLl T e «

The following corollary describes the computational complexity of the algorithm
for evaluating Jacobi symbols given in Theorem 11.12.

Corollary 11.12.1. Let a and b be relatively prime positive integers with a = b, Then
the Jacobi symbol (§) can be evaluated using O ((log, b)) bit operations.

Proof. Tofind (%) using Theorem 11.12, we perform a sequence of O(log, b) divisions.
To see this, note that the number of divisions does not exceed the number of divisions
needed to find (a, b) using the Euclidean algorithm. Thus, by Lamé’s theorem, we know
that O (log, b) divisions are needed. Each division can be done using O{(log, b)?) bit
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436 Quadratic Residues

operations. Each pair of integers R; and s; can be found using O (log, b) bit operations
once the appropriate division has been carried out.

Consequently, O((ogy b)) bit operations are required to find the integers R;,
Spd = i,2,...,n—1from a and b. Finally, to evaluate the exponent of —1 in the
expression for (%) in Theorem 11.12, we use the last three bits in the binary expan-
sions of Rj, j = 1,2,...,n — 1 and the last bit in the binary expansions of s;, j =
1,2,...,n — 1. Therefore, we use O(log, b) additional bit operations to find (). Be-
cause O((log, b)°) + O(log, b) = O((log, B)?), the corollary holds. u

We can improve this corollary if we use more care when estimating the number of bit

: operations used by divisions. In particular, we can show that O{(log, b)?)} bit operations

suffice for evaluating (%). We leave this as an exercise.

11.3 Exercises

1. Evaluate each of the following Jacobi symbols.
o) o) o(8)
(&) o(®) o)

2. For which positive integers n that are relatively prime to 15 does the Jacohi symbol (1,—15)
equal 17

3. For which positive integers n that are relatively prime to 30 does the Jacobi symbol (3?19)
equal 1?7

Suppose that 1 = pq, where p and g are primes. We say that the integer a is a pseudo-square

modulo n if a is a quadratic nonresidue of n, but (=1

4. Show that if a is a pseudo-square modulo n, then (%) = (g) =—1L

. Find all the pseudo-squares modulo 21.
. Find all the pseudo-squares modulo 35.

. Find all the pseudo-squares modulo 143.

o =1 & n

. Let a and b be relatively prime integers such that bis odd and positive and a = (- b7 2g,
where ¢ is odd. Show that

(%) S (95) .

9. Let n be an odd square-free positive integer. Show that there is an integer a such that
(a,n)=1land {2)=-1

10. Let n be an odd square-free positive integer.

a)} Show that 3 (ﬁ—) =0, where the sum is taken over all k in a reduced set of residues
maodulo 7. (Hint: Use Bxercise 9.)
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11.3 The Jacobi Symbel 437

b} From part (a), show that the number of integers in a reduced set of residues modulo
n such that (%) = 1is equal to the number with (%) =1

* 11, Let g and b = ry be relatively prime odd positive integers such that
é a=roq, + &1y
fg=riga +ear

i Tt = Fy1Gn—1 + Enlus

where g; is a nonnegative even integer, g; = 1, r; is a positive integer with r; < 1y,
g fori=1,2,...,n; and r, = 1. These equations are obtained by successively using the
modified division algorithm given in Exercise 18 of Section 1.5.

a) Show that Jacobi symbol ($) is given by

o=l &in—1  rp=1l g3ra_ a1 g1
_(1 _( 1}(—2_ 7+ _2_++H_2“A_'J%)
B .

b) Show that the Jacobi symbol () is given by

Y T
(b) (-0,

where T is the number of integers {, 1 <i <n, withr;_, = gir; =3 (mod 4).

* 12. Show that if @ and b are odd integers and (a, b) = 1, then the following reciprocity taw
holds for the Jacobi symbol:

(f_)(i)_ —(«—1)9%125—l ifa<Oand b <0
- a—15b-1
AVANE]! (DT otherwise.

In Exercises 13-19, we deal with the Kronecker symbol (named after Leopold Kronecker),
which is defined as follows. Let a be a positive integer that is not a perfect square such that
a=0or | {mod 4). We define

ay 1 ifa=1(mod8);
2/ T -1 ifa=35(mod8)

(i) = the Legendre symbol (%) if pis an odd prime such that p } a.
P
a d a i
(—) = H (—) if(a,ny=1andn = }—[3.:1 pj.j is the prime factorization of #.
n . Dy

i=1 I

13. Evaluate each of the following Kronecker symbols,

2 (k) w(E) o)

For Exercises 14-19, let a be a positive integer that is not a perfect square such that a = 0 or
I (mod 4).
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438 Quadratic Residues

14. Show that (%) = (1) if 2 Ya, where the symbol on the right is a Jacobi symbol.

la|
15. Show that if n; and n, are positive integers and if (ay, ny, nz) = 1, then (ﬁ) =
a a
(%) (%)

# 16. Show that if » is a positive integer relatively prime to a and if a is odd, then (%) = (Tg_l)’
whereas if a is even and @ = 2°¢, where ¢ is odd, then

(E) = (E)X (-7 (..’L) i
n n ft]
# 17. Show that if 1, and n, are positive integers relatively prime to a and ny = ny (mod |al),

then (:_1) = (%)

LEOPOLD KRONECKER (1823-1891) was born in Liegnitz, Prussia, to
prosperous Jewish parents. His father was a successful businessman and his
mother came from a wealthy family. As a child, Kronecker was taught by
private tutors. He later entered the Liegnitz Gymnasium where he was taught
mathematics by the number theorist Kummer. Kronecker's mathematical talents
were quickly recognized by Kumimer, who encouraged Kronecker to engage in
mathematics research. In 1841, Kronecker entered Berlin University where he
studied mathematics, astronomy, meteorology, chemistry, and philosophy. In
1845, Kronecker wrote his doctoral thesis on algebraic number theory; his superviser was Dirichlet,

Kronecker could have began a promising academic career, but instead he returned to Liegnitz
to help manage the banking business of an uncle. In 1848, Kronecker married a danghter of this
uncle. During his time back in Liegnitz, Kronecker continued his research for his own enjoyment. In
1855, when his family obligations eased, Kronecker returned to Berlin. He was eager to participate
in the mathematical life of the university. Not holding a university post, he did not teach any classes.
However, he was extremely active in research and he published extensively in number theory, elliptic
functions and algebra, and their interconnections. In 1860, Kronecker was clected to the Berlin
Academy, giving him the right to lecture at Berlin University. He took advantage of this opportunity
and lectured on number theory and other mathematical topics. Kronecker's lectures were considered
very demanding but were also considered to be stimulating. Unfortunately, he was not a popular
teacher with average students; most of these dropped out of his courses by the end of the semester.

Kronecker was a strong believer in constructive mathematics, thinking that mathematics should
be concerned only with finite numbers and with a finite namber of operations. He doubted the validity
of nonconstructive existence proofs and was opposed (o objects defined noncenstructively, such
as irrational numbers. He did not believe that transcendental numbers could exist. He is famous
for his statement: “God created the integers, all else is the work of man” Kronrecker's belief in
constructive mathematics was not shared by most of his colleagues, although he was not the only
prominent mathematician to hold such beliefs. Many mathematicians found it difficult to get along
with Kronecker, especially because he was prone to fallings out over mathematical disagreements.
Also, Kronecker was self-conscious about his short height, reacting badly even to good-natured
references to his shert stature.
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11.4 Euler Pseudoprimes 439

#* 18, Show that if ¢ 7 0, then there exists a positive integer » such that (f—t) =1

1 ifa=0;

* 19. Show that if @ 0, then (lﬂl“—_[)z { 1 ifa<o

20, Show that if @ and b are relatively prime Integers with a < b, then Jacobi symbol (%)
can be evaluated using O((log, b)%) bit operations.

11.3 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find the value of each of the Legendre symbol (%ﬁg—}%)

2. Find the value of the following Jacobi symbols: ( 3343 ),( 34371 ),

65,518,791 5,400,207,333
300001
ILIILIILITL 11T /7

Programming Projects

Write computer programs using Maple, Mathematica, or a language of your choice to do the
following,

1. Evaluate Jacobi symbols using the method of Theorem 11.12.
2, Evaluate Jacobi symbols using Exercises 8 and 11.

3. Evaluate Kronecker symbols (as defined in the preamble to Exercise 13).

11.4 Euler Pseudoprimes

Let p be an odd prime number and let b be an integer not divisible by p. By Euler’s
criterion, we know that

piP—0/2 = (%) {mod p).

Hence, if we wish to test the positive integer n for primality, we can take an integer b,
with (b, n) = 1, and determine whether

p—0/2 - (2) (mod n),
n

where the symbol on the right-hand side of the congruence is the Jacobi symbol. If we
find that this congruence fails, then n is composite.
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440 Quadratic Residues

Example11.16. Letn = 341and b =2. We calculate that 2170 = 1 (mod 341). Because
341 = 3 (mod 8), using Theorem 11.10 (iv), we see that (%) = 1. Consequently,

2170 (i%) (mod 341). This demonstrates that 341 is not prime. <

Thus, we can define a type of pseudoprime based on Euler’s criterton.

Definition. An odd, composite, positive integer » that satisfies the congruence

pn—D/2 = (E) {mod n),
m
where b is a positive integer, is called an Exler pseudoprime 1o the base b.

An Euler pseudoprime to the base b is a composite integer that masquerades as a
prime by satisfying the congruence given in the definition.

Example 11.17. Let n = 1105 and b =2. We calculate that 2552 = 1 (mod 1105).

Recause 1105 = 1 (mod 8), we see that { +2z ) = 1. Hence, 2°% = 2} (mod 1105).
1105 1103

Because 1105 is composite, it is an Euler pseudoprime to the base 2.

The following theorem shows that every Euler pseudoprime to the base & is a
pseudoprime to this base.

Theorem 11.13. If  is an Buler pseudoprime to the base b, thennis a pseudoprime
to the base b.

Proof. If n is an Euler psendoprime to the base b, then

P02 = (2) (mod n).
43

Hence, by squaring both sides of this congruence, we find that
B\ 2
(b(rlwi)/Z)z = (_) (mUd ?I).
n

Because (%) = 4] we see that ¥~ = 1 (mod n), which means that n is a pseadoprime
to the base b. =
Not every pseudoprime is an Euler pseudoprime. For example, the integer 341 is

not an Euler pseudoprime to the base 2, as we have shown, but is a pseudoprime to this
base.

We know that every Euler psendoprime is a pseudoprime. Next, we show that every

strong pseudoprime is an Euler pseudoprime.

Theorem 11.14. If n is a strong pseudoprime to the base b, then » is an Euler pseudo-
prime to this base.
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11.4 Euler Psendoprimes 441

Proof.  Let n be a strong pseudoprime to the base b. Then, if n — 1 = 2%, where ¢ IS
odd, either &' = 1 (mod 1) or b** = 1 (mod n), where 0 < r <5 — 1. Let 51 = T2, p;"
be the prime-power factorization of n.

First, consider the case where &' = 1 (mod n). Let pbea prime divisor of n. Because
b =1 (mod p), we know that ord,b | ¢. Because 7 is odd, we see that ord,b is also
odd. Hence, ord,b | (p — 1)/2, because ord,b is an odd divisor of the even integer
¢{p)=p— 1. Therefore

pP=D/2 = 1 (mod p).

Consequently, by Euler’s criterion, we have ( P) =1

: To compute the Jacobi symbol (f:-), Wwe note that (%) = 1for all primes p dividing

n. Hence,
b b LA
O ()1 =
n H; 1 P j=1 NP

Because b' = 1 (mod ), we know that 5%~1/2 = (5)? ™ = 1 (mod n). Therefore, we

have
peD/2 - (é) = ] {mod »).
n

We conclude that # is an Euler pseudoprime to the base b.
Next, we consider the case where e

b =—1(mod n)

for some r with 0 <r <5 — 1. If p is a prime divisor of », then
=1 (mod p).

Squaring both sides of this congruence, we obtain
p = 1 (mod p),

which implies that ord,b | 2 +'r, but that ord,b f27t. Hence,

ord, b =27 +Ho,

where ¢ is an odd integer. Because ord,b | (p— 1) and 27 +1 ord pb. it follows that
271 (p — 1). Therefore, we have p =27 “d + 1, where d is an mteger Because

pOpt)2 = _1 (mod p),
we have

( 2 ) = p(P=D/2 _ p(ord b/2)((p--/ord, b)
p

=(— 1)(p—1)/crdpb =(— 1)(P—I)/2r+1‘5‘ {mod p).
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Because ¢ is odd, we know that {(—1)° = —1. Hence,
(11.10) (E) P L 1y,
r

recalling that d = (p — 1}/2' +1 Because each prime p; dividing n is of the form
p; = 271d; 4 1, it follows that

n=1{|p;
i=1
m

=[J@*'d+p
i=1
m
= I—[(I + 2’+laid;)
i=1
n
=142 ad; (mod 2772,
i=1
Therefore,

m
127 = (- D/2=2" ) ad; (mod 27FY.
i=1
This congruence implies that
22T = 3 aid; (mod 2)
and

ALty b2 P = = (=1 2=t %% (mod n).

On the other hand, from (11.10), we have

m

(é) =11 (}?‘) [Ty = [ = (-n i,
i=1

S aa NP i=1
Therefore, combining the preceding equation with (11.11), we see that
pin—b/2 = (é) (mod #).
n

Consequently, n is an Euler pseudoprime to the base b. | |

Although every strong pseudoprirme to the base b is an Euler pseudoprime to this
base, note that not every Euler pseudoprime to the base b is a strong pseudoprime to the
base b, as the following example shows.

Example 11.18. We have previously shown that the integer 1105 is an Euler pseude-
prime to the base 2. However, 1105 is not a strong pseudoprime to the base 2, because
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11.4 Euler Psendoprimes 443

2(105=072 _ 5552 — | (mod 1105),
whereas

1105-1y/22 _ 4276 __
2(H03=D/2" _ 2276 = 781 % 41 (mod 1105). <

Although an Euler pseudoprime to the base & is not always a strong pseudoprime to
this base, when certain additional conditions are met, an Euler pseudoprime to the base
b is, in fact, a strong pseudoprime to this base, The following two theorems give results
of this kind.

Theorem 11.15. If p = 3 (mod 4) and # is an Fuler pseudoprime to the base b, then n
is a strong pseudoprime to the base b.

Proof.  From the congruence n = 3 (mod 4), we know that n — | =2 - ¢, where ¢ =
(n — 1}/2 is odd. Because 1 is an Euler pseudoprime to the base b, it follows that

b= pth2 = (é) (mod n).
n

Because (%) = =1, we know that either b* = 1 (mod ) or ¥’ = —1 {mod n).

Hence, one of the congruences in the definition of a strong pseudoprime to the base
b must hold. Consequently, # is a strong pseudoprime to the base b. |

Theorem 11.16. If » is an Euler pseudoprime to the base b and (%) =~ thennisa
strong pseudoprime to the base b.

Proof. We write n — 1= 2°r, where ¢ is odd and s is a positive integer. Because n is an
Euler pseudoprime to the base b, we have

BTN pn-by2 (é) (mod r).
n

But because (é) = —1, we see that

n
527" = .1 (mod 7).

This is one of the congruences in the definition of a strong pseudoprime to the base b.
Because n is composite, it is a strong pseudoprime to the base b. (]

Using the concept of Euler pseudoprimality, we will develop a probabilistic primal-
ity test. This test was first suggested by Solovay and Strassen [SoSt 77].

Before presenting the test, we give some helpful lemmas.

Lemma 11.4. If # is an odd positive integer that is not a perfect square, then there is
at least one integer b with 1 < b < n, (b, n) =1, and (f’;) = —|, where (%) is the Jacobi
symbol,
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Proof.  Ifn is prime, the existence of such an integer b is guaranteed by Theorem 11.1.
If nn is composite, because n is not a perfect square, we can write n =rs, where (r,5) =1
and r = p¢, with p an odd prime and e an odd positive integer.

Now, let # be a quadratic nonresidue of the prime p; such a 7 exists by Theorem 11.1.
We use the Chinese remainder theorem to find an integer bsuchthatl < b <mn,(b,n}=1,
and such that b satisfies the two congruences

b=t {modr)
b= 1 (mod s}).

(2)=(2)-(5) ==t
r o p
and (%) =1, Because (f’—r) == (%) (%), it follows that (%) =L n

Lemma 11.5. Let n be an odd composite integer. Then there is at {east one integer b
withl < b <n, (b,n)=1, and

pn—/2 £ (%) (mod n).
F

Proof. Assume, for all positive integers not exceeding » and relatively prime to 7, that

Then

(11.12) pi—0/2 = (’l) (mod n).
"

Squaring both sides of this congruence tells us that

n—1 _ (b)z — 2
==} =" =1(modn),

124

if (b, ny = 1. Hence, n must be a Carmichael number. Therefore, by Theorem 9.24, we
know thatn = qyq; - - - g, Where g, gz, . . .. g, 218 distinct odd primes.

‘We will now show that
p#=D/2 =1 (mod n)
for all integers b with 1 <b <nand (b,n} = 1. Suppose that b is an integer such that
p—D12 = 1 (mod n).

We use the Chinese remainder theorem to find an integer 4 with1<a <n,{a,n)=1,
and

a=b(mod q})

a=1{mod 293 - 4;)-

Then we observe that
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(11.13) a¥ D2 = D2 = i (mod gy,
whereas )
(11.14) a® D% =1(mod g5 - - - g,).

From congruences (11.13) and (1 1.14}, we see that
a®=D/2 £ 4.1 (mod n),
contradicting congruence (11.12). Hence, we must have
p-D/2 4 (mod ),

forallbwith1<b<nand (b,n) = 1. Consequently, from the definition of an Euler
pseudoprime, we know that

b(}l-—f)/z = (é) = 1 (m()d n)’
n

for all b with 1<b <n and (b,n) =L However, Lemma 11.4 tells us that this is
impossible. Hence, the original assumption is false. There must be at least one integer b
with 1 < b < n, (b,n) =1, and

b2 2 (2 (mod n). n
n

We can now state and prove the theorem that is the basis of the probabilistic primality
test.

1 Theorem 11.17. Let n be an odd composite integer. Then the number of positive
integers less than » and relatively prime to n that are bases to which » is an Euler
pseudoprime does not exceed ¢ (n)/2.

Proof. By Lemma 11.5, we know that there is an integer bwith l <b <n, (b,n) =1,

and
m-vs2 . (b
{11.15) b #{ -] (modn)
n
Now, let @y, ay, . . . , a,, denote the positive integers less than » satisfying 1 <a ;=<
n, (aj,n) =1, and
n-n/2_ (4
(11.16} a; =| =] (modn),
n
forj=1,2,...,m.

Letr(,ry,. . ., 1, betheleast positive residues of the integers bay, ba,, . . ., ba,, mod-
ulo n. We note that the integers rj are distinct and that (r;, n) =1 for j=
L,2,...,m. Furthermore,

n— ry
(11.17) SHVEE" (—J) (mod n;
n
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for, if it were true that

— r ]
rﬁ” b2 _ (i) {mod n),

n

then we would have

ba;
(baj)(n—l)/Z = (__

n

which would imply that

b(nw;)/za(_n—l)/l = (E
I 1

and because (11.16) holds, we would have

b(_ﬂ*l}/z = (

contradicting (11.15).

) (mod n),

) (mod n),

Because a;, j=L2Z...,m satisfies the congruence (11.16), whereas 7, j=

1,2,...,m,does not, as (11.17) shows, we know

that these two sets of integers share

1o common elements. Hence, fooking at the two sets together, we have a total of 2m
distinct positive integers less than n and relatively prime to 7. Because there are ¢ (1)
integers less than n that are relatively prime to n, we can conclude that 2m < ¢$(n), so

that m < ¢ (%)/2. This proves the theorem.

By Theorem 11.17, we see that if 7 is an odd ¢
b is selected at random from the integers 1,2,. ..,

omposite integer, when an integer
n -- 1, the probability that 1 is an

Euler pseudoprime to the base b is less than 1/2. This leads to the following probabilistic

primality test.

Theorem 11.18. The Solovay-Strassen Probabilistic

Primality Test. Letnbea posi-

tive integer. Select, at random, k integers by, by, - - - , by from the integers 1,2,...,n—1
For each of these integers b s =42, k, determine whether

b,
b?'—l)ﬂ = (—3'-) (mod n).
n

If any of these congruences fails, then n is composite. If 7 is prime, then ali these
congruences hold. If r is composite, the probability that all k congruences hold is less
than 1/2%. Therefore, if n passes this test when k is large, then n is “almost certainly

prime.”

Because every strong pseudoprime to thebase bis

an Euler pseudoprime to this base,

more composite integers pass the Solovay-Strassen probabilistic primality test than the

Rabin probabilistic primality test, although bot
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11.4 Euler Pseudoprimes 447

11.4 Exercises
1. Show that the integér 561 is an Euler pseudoprime to the base 2.

2. Show that the integer 15,841 is an Euler pseudoprime to the base 2, a strong pseudoprime
to the base 2 and a Carmichael number,

3. Show that if n is an Euler pseudoprime to the bases @ and b, then 2 is an Euler
pseudoprime to the base ab.

4. Show that if » is an Euler pseudoprime to the base b, then » is also an Buler pseudoprime
to the base n — b,

5. Show thatif n = 5 (mod 8) and n is an Euler pseudoprime to the base 2, then n is a strong
pseudoprime to the base 2.

6. Show that if n =5 (mod 12) and n is an Euler pseudoprime to the base 3, then # is a
strong pseudoprime to the base 3,
7. Find a congruence condition for an Euler pseudoprime » to the base 5 that guarantees
that » is a strong pseudoprime to the base 3.
#* 8. Letthe composite positive integer » have prime-power factorization n = p}'pg? - - - pin,
where p; =1+ 2k1qj for j=1,2,...,m, where ky <ky < --- <k, and where n =
1 + 2%q. Show that » is an Euler pseudoprime to exactly

1

8 [ [t~ /2. p; — 1)

j=I

different bases b with I < b < n, where

8,=11/2 ifk; < k and a; is odd for some j;
1 otherwise,

9. For how many integers b, 1 < b < 561, is 561 an Euler pseudoprime to the base b?

19. For how many integers b, 1 < b < 1729, is 1729 an Euler pseudoprime to the base b?

11.4 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find all Euler pseudoprimes to the base 2 less than 1,000,000. Do the same thing for the
bases 3, 5, 7, and 11. Devise a primality test based on your results,

2. Find 10 integers, each with between 50 and 60 decimal digits, that are “probably prime”
because they pass more than 20 iterations of the Solovay-Strassen probabilistic primality
test,
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448 Quadratic Residues

Programming Projects

Write computer programs using Maple, Mathematica, or a language of your choice to do the
following.

1. Given an integer n and a positive integer b greater than 1, determine whether »2 passes
the test for Buler pseudoprimes to the base b.

2. Given an integer n, perform the Solovay-Strassen probabilistic primality test on 7.

11.5 Zero-Knowledge Proofs

Suppose that you want to convince another person that you have some important private
information, without revealing this information. For example, you may want to convince
someone that you know the prime factorization of a 200-digit positive integer without
telling them the prime factors. Or you may have a proof of an important theorem and
you want to convince the mathematical community that you have such a proof without
revealing it. In this section we will discuss methods, commonly known as zero-knowledge

@ or minimum-disclosure proofs, that can be used to convince someone that you have
certain private, verifiable information, without revealing it. Zero-knowledge proofs were
invented in the mid-1980s.

In a zero-knowledge proof, there are two parties, the prover, the person who has the
secret information, and the verifier, who wants to be convinced that the prover has this
secret information. When a zero-knowledge proof is used, the probability is extremely
small that someone who does not have the information can successfully cheat the verifier
by masquerading as the prover. Moreover, the verifier learns nothing, or almost nothing,
about the information other than that the prover possesses it. In particular, the verifier

cannot convince a third party that the verifier knows this information.

Remark: Because zero-knowledge proofs supply the verifier with a small amount
of information, zero-knowledge proofs are more properly called minimum-disclosure
proofs. Nevertheless, we will use the original terminology for such proofs.

We will iftustrate the use of zero-knowledge proofs by describing several examples
of such proofs, each based on the ease of finding square roots modulo products of two
primes compared with the difficulty of finding square roots when the two primes are not
known. (See Section 11.1 for a discussion of this topic.)

Our first example presents a proposed scheme for a zero-knowledge proof that turned
out to have a flaw making it unsuitable for this use. Nevertheless, we introduce this
scheme as our first example because it illustrates the concept of zero-knowledge proofs
and is relatively simple. Moreover, understanding why it fails to be a valid scheme for
zero-knowledge proofs adds valuable insight (see Exercise 11). In this scheme Paula, the
prover, attempts to convince Vince, the verifier, that she knows the prime factors of ,
where 7 is the product of two large primes p and g, without helping him find these two
prime factors.

When this scheme was originally devised, it was thought that someone who does
not know p and g would be unabie to find the square root of y modulo » in a reasonable
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11.5 Zero-Knowledge Proofs 449

amount of time, unlike Paula who knows these primes. This turns out not to be the case,
as Exercise 11 illustrates.

The proposed scheme is based on iterating the following procedure.

(i) Vince, who knows n, but not p and g, chooses an integer x at random. He
computes y, the least nonnegative residue of x* modulo »# and sends this to
Paula.

(ii) When Paulareceives y, she computes its square root medulo n. (We will explain
how she can do this after describing the steps of the procedure.) This square
root is the least positive residue of x? modulo n. She sends this integer to Vince.

(iii) Vince checks Paula’s answer by finding the remainder of x2 when it is divided
by .

To see why Paula can find the least positive residue of x* modulo » in step (ii), note
that because she knows p and ¢, she can easily find the four square roots of x* modulo
n. Next, note that only one of the four square roots of x* modulo n is a quadratic residue
modulo n (see Bxercise 3). So, to find x2, she can select the correct square root of the
four square roots of x* modulo n by computing the value of the Legendre symbols of
each of these square roots modulo p and modulo ¢. Note that someone who does not
know p and g is unable to find the square root of y modulo # in a reasonable amount of
time, uniike Paula, who knows these primes.

We illustrate this procedure in the following example.

Example 11.19. Suppose that Paula’s private information is her factorization of n =
103 - 239 = 24,617, She can use the procedure just described to convince Vince that she
knows the primes p = 103 and g = 239 without revealing them to him. (In practice,
primes p and g with hundreds of digits would be used, rather than the small primes used
in this example,)

To illustrate the procedure, suppose that in step (i) Vince selects the integer 9134 at
random. He computes the least positive residue of 9134* modulo 24,617, which equals
20,682. He sends the integer 20,682 to Paula.

In step (ii), Paula determines the integer x2 using the congruences
P g g2 gru

x? = +20,6820083H0/4 = 190,68226 = 4-59 (mod 103)
L x? = £20,682P%+DM = 190,682%0 = 75 (mod 239).

{Note that we have used the fact that when p = g =3 (mod 4), the solutions of xZ =g
(mod p} and x% = a (mod g) are x? = +aP+D/4 (mod p) and x? = +a@+D/* (mod g),
respectively.} .

Because x? is a quadratic residue modulo 24,627 = 103 - 239, we know that it also
is a quadratic residue modulo 103 and 239. Computing Legendre symbols, we find that

(1—50%) =1, (%’) =—1, (%) =1, and (5—3795) = —1. Therefore, Paula finds x? by
solving the system x? = 59 (mod 103) and x2 = 75 (mod 239). When she solves this
system, she concludes that x% = 2943 (mod 24,617).

[ e e
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450 Quadratic Residues

In step (iii), Vince checks Paula’s answer by noting that %2 = 91347 = 2043
(mod 24,617). -«

We now describe a method to verify the identity of the prover, based on zero-
knowledge techniques, invented by Shamir in 1985. We again suppose that 7 = pq,
where p and g are two large primes both congruent to 3 modulo 4. Let I be a positive
integer that represents some particular information, such as a personal identification
number, The prover selects a smafl positive integer ¢, which has the property that the
integer v obtained by concatenating / with ¢ (the number obtained by writing the digits
of I followed by the digits of ¢) is a quadratic residue modulo #. (The number ¢ can be
found by trial and error, with probability close to 1/2.) The prover can easily find 1, a
square root of v modulo 7.

The prover convinces the verifier that she knows the primes p and ¢ using an
interactive proof. Each cycle of the proof is based on the following steps.

(i) The prover, Paula, chooses a random number r, and sends to the verifier a
message containing two values: x, where x =r? (mod 1), 0 €x <n, and y,
where y = v¥ {mod n), 0 <y <n. iere, as usual, ¥ is an inverse of x modulo .

(i) The verifier, Vince, checks that xy = v (mod n) and chooses, at random, a bit
b, which he sends to the prover.

(iii) If the bit b sent by Vince is 0, Paula sends r to Vince. Otherwise, if the bit b is
1, Paula sends the least positive residue of u 7 modulo #, where F is an inverse
of r modulo n.

(iv) Vince computes the square of what Paula has sent. If Vince sent a 0, he checks
that this square is x, that is, that r2 = x {mod n). If he sent 2 1, he checks that
this square is y, that is, that s* = y (mod n).

This procedure is also based on the fact that the prover can find 1, a square root of
v modulo n, whereas someone who does not know p and g will not be able to compute
a square root modulo nz ina reasonable amount of time.

The four steps of this procedure form one cycle. Cycles can be repeated sufficiently
often to guarantee a high degree of security, as we will subsequently describe.

We illustrate this type of zero-knowledge prool with the following example.

Example 11.20. Suppose Paula wants to verify her identity to Vince by convincing
him that she knows the prime factors of n = 31 - 61 = 1891. Her identification number is
I = 391. Note that 391 is a quadratic residue of 1891 because, as the reader can verify, it
is a quadratic residue of both 31 and 61, so she can take v = 391 (that is, in this case, she
does not have to concatenate an integer ¢ with 7). Paula finds that 1 = 239 is a square
root of 301 modulo 1891. She can easily perform this calculation, because she knows
the primes 31 and 61. (Note that we have selected small primes p and ¢ in this example
to illustrate the procedure. In practice, primes with hundreds of digits should be used.)
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11.5 Zero-Knowledge Proofs 451

We illustrate one cycle of this procedure. In step (1), Paula chooses a random number,
say r =998. She sends Vince two numbers, x = r? = 998 = 1338 (mod 1891) and
y=vXx=391.1296 = 1839 (mod 1891),

In step (if), Vince checks that xy = 1338 . 1839 = 391 (mod 1891} and chooses, at
random, a bit b, say b = 1, which he sends to Paula.

In step (iii), Paula sends s = 1 ¥ = 239 - 1855 = 851 (mod 1891) to Vince. Finally,
in step (iv), Vince checks that 52 = 8512 = 1839 = y (mod 1891). <

Note that if the prover sends the verifier bothr and s, the verifier will know the private
information 1 = rs, which is the secret information held by the prover. By passing the
test with sufficiently many cycles, the prover has shown that she can produce either » or
s on request. It follows that she must know 1 because, in each cycle, she knows both r
and s. The choice of the random bit by the verifier makes it impossible for someone to
fix the procedure by using numbers that have been rigged to pass the test. For example,
someone could compute the square of a known number r and send x = 2, instead of
choosing a random number. Similarly, someone could select a number x such that v is
a known square. However, it is impossible to do precalculations to make both x and ¥
the squares of known numbers without knowing w.

Because the bit chosen by the verifier is chosen at random, the probability that it
will be a 0 is 1/2, as is the probability that it will be a 1. If someone does not know r,
the square root of v, the probability that they will pass one iteration of this test is almost
exactly 1/2. Consequently, the probability that someone masquerading as the prover will
pass the test with 30 cycles is approximately 1/2%0, which is less than one in a billion.

A variation of this procedure, known as the Fiat-Shamir method, is the basis for
verification procedures used by smart cards, such as for verifying personal identification
numbers.

Next, we describe a method that can be used to prove, using a zero-knowledge
proof, that someone has certain information. Suppose that the prover, Paula, has in-
formation represented by a sequence of numbers vy, vy, . . . , v,,, where 1 < v ;< n for
J=12,...,m.Here, asbefore, n is the product of two primes p and g that are both con-
gruent to 3 modulo 4. Paula makes public the sequence of integers s, 5, . . . , 5,,, where
§;= i? {modn),1<5 G <n. Paula wants to convince the verifier, Vince, that she knows
the private information vy, vy, . . ., v, without revealing this information to Vince, What
Vince knows is her public moduli # and her public information sy, 5, . . . , s,

The following procedure can be used to convince Vince she has this information.
Each cycle of the procedure has the following steps.

(i) Paula chooses a random number r and computes x = r2, which she sends to
Vince.

(i) Vince selects a subset § of the set {1,2, ..., m} and sends this subset to Paula.

(iif) Paula computes y, the least positive residue modulo n of the product of » and
the integers v;, with j in §, thatis, y =»r HjeS v;{modn),0 <y <n.
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452 Quadratic Residues

(iv) Vince verifies that x = y2z (mod ), where z is the product of the integers c;,
with j in §, thatis, z= HjeS 5j {modn), 0=z <n.

Note that the congruence in step (iv) holds, because

pem TT#T]5
jes  jes
.2 222
=r?[] 4%
jes
= r? (mod n).

The random number 7 is used so that the verifier cannot determine the value of the integer
v;, part of the secret information, by selecting the set § = {j}. When this procedure is
carried out, the verifier is given no new information that will help him determine the
private information ¢y, . . ., Cue

We illustrate one cycle of this interactive zero-knowledge proof in the following
example.

Example 11,21, Suppose that Paula wants to convince Vince that she has secret
information, which is represented by the integers vy = 1144, v, = 877, v3 = 2001, vs =
1221, vs = 101. Her secret modulus is n = 47 - 53 = 2491. (In practice, primes with
hundreds of digits are used rather than the small primes used in this example.)

Her public information consists of the integers 5 ;. withs; = 'J? (mod2491),0 < 5; <
2491, j = 1,2,3,4,5. Tt follows, after routine calculation, that her public information
consists of the integers s, = 197, 5, = 2453, 53 = 153533, 54 = 941, and 55 = 494.

Paula can convince Vince that she has the secret information using the procedure
described in the text. We describe one cycle of the procedure. In step (i), Paula chooses
a random number, say r = 1253. Next, she sends x = 679, the least positive residue of
»2 modulo 2491, to Vince.

In step (i), Vince selects a subset of {1,2,3,4,5],5ay s = {1,3,4, 5}, and informs
Paula of this choice.
In step (iil), Paula computes the number y, with 0 <y < 2491 and
y= FuglzUgs
=1253.1144 . 2001 - 1221 - 101
= 68 (mod 2491).
Consequently, she sends y = 68 to Vince.

Finally, in step (iv), Vince confirms that x = y25,545455 (mod 2491) by verifying that
x =679 = 682 - 197 - 1553 - 941 - 494 (mod 2491).

Vince can ask Paula to run through more cycles of this procedure to verify that she
does have the secret information. He stops when he feels that the probability that she is
cheating is small enough to satisfy his needs. A
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11.5 Zero-Knowledge Proofs 453

How can the prover cheat in this interactive procedure for zero-knowledge proofs
of information? That is, how can the prover fool the verifier into thinking that she really
knows the private information ¢, .. ., ¢,, when she does not? The only obvious way
is for the prover to guess the set S before the verifier supplies this; in step (1), to take
x =12 [] e v} and in step (iii), to take y = 4. Because there are 2™ possible sets § (as
there are that many subsets of {1,2, ..., m}), the probability that someone not knowing
the private information fools the verifier using this technique is 1/2™, Furthermore, when
this cycle is iterated T times, the probability decreases to I/2"'T. For instance, if m = 10
and T = 3, the probability of the verifier being fooled is less than one in a billion.

In this section, we have only briefly touched upon zero-knowledge proofs. The
reader interested in leaming more about this subject should refer to the chapter by
Goldwasser in {Po90], as well as to the reference supplied in that chapter.

11.5 Exercises

1. Suppose that # = 3149 =47 . 67 and that x* = 2070 (mod 3149). Find the least nonneg-
ative residue of ¥ modulo 3149,

2. Suppose that n = 11,021 = 103 . 107 and that x* = 1686 (mod 11,021). Find the least
nonnegative residue of x2 modulo 11,021.

3. Suppose that n = pg, where p and g are primes both congruent to 3 modulo 4, and that
x is an integer relatively prime to n. Show that of the four square roots of x* modulo n,
only one is the least nonnegative residue of a square of an integer.

4. Suppose that Paula has identification naumber 1760 and modulus 1961 = 37 - 53. Show
how she verifies her identity to Vince in one cycle of the Shamir procedure, if she selects
the random number 1101 and he chooses 1 as his random bit.

5. Suppose that Paula has identification number 7 and modulus 1411 =17 - §3. Show how
she verifies her identify to Vince in one cycle of the Shamir procedure, if she selects the
random number 822 and he chooses I as his random bit.

6. Run through the steps used to verify that the prover has the secret information in Example
11.21, when the random number r = 888 is selected by the prover in step (i) and the
verifier selects the subset {2, 3,5} of {1, 2, 3,4, 5}

7. Runthrough the steps used to verify that the prover has the secret information in Example
11.21, when the random number r = 1403 is selected by the prover in step (i) and the
verifier selects the subset {1, 5} of {1,2,3, 4, 5.

8. Let n = 2491 = 47 - 53. Suppose that Paula’s identification information consists of the
sequence of six numbers vy = 881, v, = 1199, vy = 2144, v, = 110, vs = 557, and vg =
2200.

a) Find Paula’s public identification information, sy, sy, 53, 84, 55, 5.
b) Suppose that Paula selects at random the number r = 1091, and Vince chooses the

subset § =2, 3, 5, 6 and sends this to Paula. Find the number that Paula computes
and sends back to Vince,

¢) What computation does Vince make to verify Paula’s knowledge of her secret infor-
mation?
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9. Let n = 3953 = 59 . 67. Suppose that Paula’s identification information consists of

the sequence of six numbers vy = 1001, vy = 21, v3 = 3097, vy =989, v5 = 157, and

vg = 1039.

a) Find Paula’s public identification information s, 83, 53, 84, 55, 56

b) Suppose that Paula selects at random the number » = 403, and Vince chooses the
subset § = {1, 2, 4, 6} and sends this to Paula. Find the number that Paula computes
and sends back to Vince.

¢) What computation does Vince make to verify Paula’s knowledge of her secret infor-
mation?

10. Suppose that n = pg, where p and ¢ are large odd primes and that you are able to
efficiently extract square roots modulo n without knowing p and g. Show that you can,
with probability close to 1, find the prime factors p and g. (Hint: Base your algorithm on
the following procedure. Select an integer x. Exract a square root of the least nonnegative
residue of x2 modulo 7. You will need to show that there is a 1/2 chance that you found
a square root not congruent to +x modulo n.)

11. In this exercise, we expose a flaw in the proposed scheme of a zero-knowledge proof
presented prior to Example 11.19. Suppose that Vince randomly chooses integers w
until he finds a value of w for which the Jacobi symbol (%) equals —1 and that he sends
Paula z, the least nonnegative residue of w? modulo n. Show that Vince can factor n once
Paula sends back the square root of z that she computes.

11.5 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, ot programs you have written,
carry out the following computations and explorations,

1. Give one of your classmates the integer n, where » = pg and p and g are primes with
more than 50 decimal digits, both congruent to 3 modulo 4. Convince your classmate
that you know both p and g using a zero-knowledge proof.

2. Convince one of your classmates that you know a secret in the form of a sequence of 10
positive integers each less than 10,000, using the zero-knowledge proof described in the
| text.

Programming Projects

Write computer programs using Maple, Mathematica, or a language of your choice to do the
following.

1. Given n, the product of two distinct primes both congruent to 3 modulo 4, and the least
positive residue of x? modulo i, where x is an integer relatively prime to n, find the feast
positive residue of x? modulo 2.
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Decimal Fractions and
Continued Fractions

Introduction

In this chapter, we will discuss the representation of rational and irrational numbers as
decimal fractions and continued fractions. We will show that every rational number can
be expressed as a terminating or periodic decimal fraction, and provide some results that
tell us the length of the period of the decimat fraction of a rational number. We will also
construct irrational numbers using decimal fractions, and show how decimal fractions
can be used to express a transcendental number and to demonstrate that the set of real
] numbers is uncountable.

Continued fractions provide a useful way of expressing numbers, We will show
that every rational number has a finite continued fraction; that every irrational number
has an infinite continued fraction and that continued fractions are the best rational
approximations to numbers, We will establish a key result that will tell us that the set of
quadratic irrationals can be characterized as the set of numbers with periodic continued
fractions. Finally, we will show how continued fractions can be used to help factor
integers.

12.1 Decimal Fractions

In this section, we discuss the representation of rational and irrational numbers as decimal
fractions. We first consider base b expansions of real numbers, where b is a positive
integer, b > 1. Let « be a positive real number, and let ¢ — [o] be the integer part of @, so
that y = & — [o] is the fractional part of & and « = g + y with 0 <y < 1. By Theorem
2.1, the integer @ has a unique base b expansion. We now show that the fractional part
¥ also has a unique base b expansion.

455
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456 Decimal Fractions and Continued Fractions

Theorem 12.1. Let y be a real number with0 =y < 1, and let b be a positive integer,
b > 1. Then y can be uniquely written as

w >
y=2_¢lb
=

where the coefficients ¢; are integers with 0 = ¢; = b—1forj=1,2,..., with the

restriction that for every positive integer N there is an integer 2 with n > N and ¢, #
b—L

In the proof of Theorem 12.1, we deal with infinite series. We will use the following
formula for the sum of the terms of an infinite geometric serics.

Theorem 12.2. Leta and r be real numbers with |r| < 1. Then
oo
Zm‘j =a/(l—r).
j=0

Most books on calculus or mathematical analysis contain a proof of Theorem 12.2 (see
[Ru64), for instance).

We can now prove Theorem 12.1.
Proof. We first let
¢y = [byl,
so that 0 < ¢; < b — 1, because 0 < by < b. In addition, iet
y=by —cy=by —1bvl

sothat 0 <y < land

We recursively define ¢ and ¥ fork=2,3,...,by

cp=[bye -l

and

Ve =b¥i-1— Gk
sothat 0 < ¢, < b — 1, because 0 < by < b and 0 < ¥4 < 1. Then, it follows that

yﬁb+b2+ +bn+bn'

Because 0 < y, < 1, we see that 0 <y, /D" < 1/p". Consequently,

lim y,/b" =0.

=00
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Therefore, we can conclude that

(D42 G
y_n%oo b b2 ’ b

o0
j=1

To show that this expansion is unique, assume that
o0 o0
y =2 el =3 /v,
j=1 i=l1

where 0 < ¢ i %b—1land 0 <d 7 < b — 1 and, for every positive integer N, there are
integers n and m with ¢, #b — land d,, # b — 1. Assume that k is the smallest index
for which ¢ # d}, and assume that ¢, > d (the case ¢; < dy is handled by switching the
roles of the two expansions). Then

0= (c; —dp/b = (e — dp)/b* + > d;—cp/,

j=I j=hAl

so that

(12.1) (cx —d)/b" = ) (d; —cp/bl.
J=k+1

Because ¢ > d, we have

(12.2) (cp — d)/b* = 1/b%,
whereas
oo ] (9] i
(123) D =i < Y -1/
J=kt1 j=k+1
l/karl
=(kb-1
=D /b
= 1/bF,

where we have used Theorem 12.2 to evaluate the sum on the right-hand side of the
inequality. Note that equality holds in (12.3) if and only if 4 ;—¢j=b—lforall j with
J = k+ 1, and this occurs if and only if dj =b—land c;=0for j > k + 1. However,
such an instance is excluded by the hypotheses of the theorem. Hence, the inequality in
(12.3) is strict, and therefore (12.2) and (12.3) contradict (12.1). This shows that the base
b expansion of & is unique. u

The unigue expansion of a real number in the form Z;’i L €;/B is called the base b
expansion of this nurber and is denoted by (.c\c5c3. . ).
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To find the base b expansion (.cicycs3 - . -)p Of a real number p, we can use the
recursive formula for the digits given in the proof of Theorem 12.1, namely

o =bye_1l v = v — [Pyl

where yp =y, for k'=1,2,3,.... (Note that there is also an explicit formula for these
digits—see Exercise 21.)

Example 12.1.  Let (.cjc¢3 - . ), be the base 8 expansion of 1/6. Then

1 1 1
:8-— _—..1, :8.—_.1—_—_,
a=[83) n=tsT T3
i I 2
CIS'—=2, :8~—-—2_—_‘ﬁ’
2=[83] =03 3
2 2 1
:8-—-:5, ..—_8-—-#5:—’
es=[8-3] =ty 3
1 i 2
:8-— :.2, :8‘““—27—""““,
cs=[83] =2y 3
2 2 1
28-—— :5, ;8«——-5:—’
s=[8-3] =R 3
and so on. We see that the expansion repeats; hence,
1/6 = (1252525.. ). <

We will now discuss base b expansions of rational numbers. We will show that a
number is rational if and only if its base & expansion is periodic or terminates.

Definition. A base b expansion {.cicac3 . . )p is said to ferminate if there is a positive
integer nsuchthat ¢, = Cpy = Cpp2 =" = 0.

Example 12.2. The decimal expansion of 1/8, (125000 . . .)19 = (.125) 1, terminates.
Also, the base 6 expansion of 4/9, (24000 .. .)g = (.24)¢, terminates. <

To describe those real numbers with terminating base b expansion, we prove the
following theorem.

Theorem 12.3. The real number o, 0 <« < 1, hasa terminating base b expansion if
and only if o is rational and can be writtenas « = r /s, where 0 < r < s and every prime
factor of s also divides b.

Proof.  First, suppose that  has a ferminating base b expansion,

o ={ci2. .. Cylpe
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12.1 Decimal Fractions 459

Then
9,82, . 4 %
o= + 2 -4 b
H_ clbn—l + Czbn-—Z +.. +e,
- o ’
so that ¢ is rational, and can be written with a denominator divisible only by primes
dividing b.

Conversely, suppose that 0 < ¢ < 1, and
o =r/s,

where each prime dividing s also divides . Hence, there is a power of b, say bV, that
is divisible by s (for instance, take N to be the largest exponent in the prime-power
factorization of 5). Then

o = bNr/s =aqr,

where sa = b", and « is a positive integer because sb¥ . Now let (@t . . a1ap), be
the base b expansion of ar. Then
ambm + am-lbmﬁl +oee alb +a
by -
=a,,,bm_N _i_amwlbm—lfN L. -[-aIbI_N +ﬂ'0bﬁN

={00...a,a, ;...aqa0),.

a=ar/b" =

Hence, o has a terminating base b expansion. [

Note that every terminating base b expansion can be written as a nonterminat-
ing base b expansion with a tail-end consisting entirely of the digit b — 1, because
(cicg.epdp=(cyea...c, —1 b—1 b—1.. Jp. For instance, (12);4 =
(.11999.. .} p. This is why we require in Theorem 12.1 that for every integer N there is
an integer r such that #n > N and ¢, # b — 1: without this restriction, base b expansions
would not be unigue.

A base b expansion that does not terminate may be periodic, for instance,

1/3=(333. . )0,
1/6 = (L1666 . . )0,

and

1/7 = (.142857142857142857 .. J10-

Definition. A base b expansion {.c;cyc3 .. ), is called periodic if there are positive
integers N and k such that ¢, = ¢, forn > ¥.
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460 Decimal Fractions and Continued Fractions

We denote by (.CiCp .- . Cy1Cx - - - CN+k—Dp thE periodic base b expansion
(C1€q .+ o - CN—1EN « + + CN+k—1CN + + - CN4k—1EN - - .)p. For instance, we have

1/3 = (3o
1/6 = (.16)10,

and

1/7 = (142857);0-

Note that the periodic parts of the decimal expansions of 1/3 and 1/7 begin imme-
diately, whereas in the decimal expansion of 1/6 the digit 1 precedes the periodic part
of the expansion. We call the part of a periodic base b expansion preceding the periodic
part the pre-period, and the periodic part the period, where we take the period to have
minimal possible length.

Example 12.3. The base 3 expansion of 2/45 is (.001012)5. The pre-period is (00),
and the period is (1012)3.

The next theorem telis us that the rational numbers are those real numbers with
periodic or terminating base b expansions. Moreover, the theorem gives the lengths of
the pre-period and periods of base b expansions of rational numbers.

Theorem 12.4. Let b be a positive integer. Then a periodic base b expansion represents
a rational number. Conversely, the base b expansion of a rational number either terminates
or is periodic. Further, if 0 < ot < 1,a =r/s, where r and s are relatively prime positive
integers, and s = T U, where every prime factor of T divides b and (U, B) = 1, then the
period length of the base b expansion of « is ordyb, and the pre-period length is N,
where N is the smallest positive integer such that TN,

Proof. First, suppose that the base b expansion of ¢ is periodic, s0 that

o= ('CIC'Z e CNCN YL e CN-I-k)fJ

o
U B LR S O ..
_+2+'+N+2jk N+1+'+N+k
b b b L bik ) \b b
_a oo (B (e
T B B LN pk— 1/ \pN+L pN+k )
where we have used Theorem 12.2 fo see that
i_{_ 1 b
Fo T L pk_1
LR

Because « is the sum of rational numbers, it is rational.
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Conversely, suppose that (0 < o < I, =r/s, where r and s are relatively prime
positive integers, 5 =TT/, where every prime factor of T divides b, WU.b)=1,and Nis
the smallest integer such that TiBY,

Because T{b¥, we have aT = p¥ » where a is a positive integer, Hence,

(12.4) Vg =pN L 9
U u
Furthermore, we can write
ar C
12.5 —=At =,
(12.5) 7, U

where A and C are integers with

0<A<b¥, 0<C<vU,

and (C, Uy =1.{The inequality for A follows because 0 < pN g = ‘b_’ < bY, whichresults

from the inequality 0 < ¢ < 1 when both sides are muitiplied by »Y). The fact that
(C,U) = 1{ollows easily from the condition {r,s) = 1. By Theorem 12.1, A has a base
b expansion A = (a,a, ,. .. {ag)y.

If U =1, then the base b expansion of & terminates as shown, Otherwise let
v = ordyb. Then,

C (U+DC C
126 bl = o 2
{12.6) u U U
where 7 is an integer, because b* = | (mod U/). However, we also have
C c c c Y
12.7 A L S _v),
( ) 17 (b + bz + + hv + hv

where (.cic5¢3. . .), is the base b expansion of -g, so that
a=bYetl  ve=by_| by 1),
where 3 = %, fork=1,2,3,.... From (12.7), we see that
C _ _
(12.8) b (clb” N cv) + 1.

Equating the fractional parts of (12.6) and (12.8), noting that 0 < y,, < 1, we find that

C

VU:E-

Consequently, we see that
C
W=Y= E:

so that from the recursive definition of €1 €2, - . . We can conclude that ¢, = ¢ for
k=1,2,3,.... Hence, & hasa periodic base & expansion
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= = (@ ey
Combining (12.4) and (10.5), and inserting the base b expansions of A and € we have
(12.9) bNa = (a,a,_, ... aay i1 - - - Cu)b-
Dividing both sides of (12.9) by b¥, we obtain
o= (00, .. ayly.q-.  G106C1C - - Cu)

(where we have shifted the decimal point in the base b expansion of bV N spaces to
the left to obtain the base b expansion of ). In this base b expansion of «, the pre-period
(00...aa,_1. .- aiag)y is of length N, beginning with N — (n + 1) zeros, and the
period length is v.

We have shown that there is a base b expansion of & with a pre-period of length N
and a period of length v. To finish the proof, we must show that we cannot regroup the
base b expansion of «, so that either the pre-period has length less than N, or the period
has length less than v. To do this, suppose that

o= (1) - - CpCar41 - - C4D

=ﬂ+fg+".+(?‘i+( v )(CM+1+._.+CM+I:)

b b pM T \Bk— 1) \pMH b+
B (Cibﬂf—l + Czbﬂffz + “ e + Cﬂ,!)(bk - 1) + (Cﬂf+1bk_l + e + Cﬂf.}.k)
B (B — 1) '

Because o = r/s, with {r,s) = 1, we see that sipM (bk — 1). Consequently, T|pM and
U [(bk — D). Hence, M = N, and vlk (by Theorem 9.1, because 5 =1 (mod U) and
v = ordyb). Therefore, the pre-period length cannot be less than ¥ and the period length
cannot be less than v. n

We can use Theorem 12.4 to determine the lengths of the pre-period and period
of decimal expansions. Let ¢ =71/s, 0<aq <1, and s = 2515, where (, 10) = 1.
Then, by Theorem 12.4, the pre-period has length max(s;, s3) and the period has length
ord, 10.

Example 12.4. Let o = 5/28. Because 28 = 22 .7, Theorem 12.4 tells us that the pre-
period has length two and the period has length ord; 10 = 6. As 5/28 = (.17857142), we
see that these lengihs are correct. <

Note that the pre-period and period lengths of a rational mumber # /s, in lowest terims,
depend only on the denominator s, and not on the numerator r.

We observe that by Theorem 12.4 a base b expansion that is not terminating and is
not periodic represents an irrational number.

Example 12.5. The number with decimal expansion

a = .10100100010000 . . .,
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12.1 Decimal Fractions 463

consisting of a one followed by a zero, a one followed by two zeros, a one followed by
three zeroes, and so on, is irrational because this decimal expansion does not terminate
and is not periodic. <

The number « in the preceding example is concocted so that its decimal expansion
is clearly not periodic. To show that naturally occurring numbers such as e and x are
irrational, we cannot use Theorem 12.4, because we do not have explicit formulas for the
decimal digits of these numbers. No matter how many decimal digits of their expansions
we compute, we still cannot conclude that they are irrational from this evidence, because
the period could be longer than the number of digits that we have computed.

Transcendental Numbers

The French mathematician Liouville was the first person to show that a particular nmmber
is transcendental. (Recall from Section 1.1 that a transcendental number is one that is not
the root of a polynomial with integer coefficients.) The number that Liouville showed is
transcendental is the number

Q)
o = Z L, = 0.11000100000000000000000:100 . . ..
101.
i=1

This number has a 1 in the n!th place for each positive integer n and a O elsewhere, To
show that this number is transcendental, Liouville proved the following theorem, which
shows that algebraic numbers cannot be approximated very well by rational numbers.
In particular, this theorem provides a lower bound for how well an algebraic number of
degree n can be approximated by rational numbers. Note that an algebraic number of
degree it is areal number that is aroot of a polynomial of degree n with integer coefficients
which is not a root of any polynomial with integer coefficients of degree less than n.

Theorem 12.5. If « is an algebraic number of degree n, where » is a positive integer
greater than 1, then there exists a positive real number C such that

P

o — —

> C/q"
for every rational number p/q, where g > 0.

Because the proof of Theorem 12.5, although not difficult, relies on calculus, we
will not supply it here. We refer the reader to [HaWr79] for a proof. We will be content
to use this theorem to show that Liouville’s number is transcendental.

Corollary 12.5.1.  The number o = 322, 1/10"'is transcendental.

Proof. First, note that « is not rational, because its decimal expansion does not terminate
and is not periedic. To see that it is not periodic, note that there are increasingly larger
numbers of Os between successive 1s in the expansion.

Let pi/g denote‘ the sum of the first £ terms in the sum defining «. Note that
g = 10!, Because 10! > 10%+D% whenever f >  + 1, we have
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oC [ee]

By Loy o7
Q- E = — < _——,
T D
! S 10 S (10D
Because
i 12
ERDY DL k1)1
Rarw it 10&+D 10D 1~ 100
it follows that
U 1 P T,
T 10k+D!

1t therefore follows that ¢ cannot be algebraic, for if it were algebraic of degree n, then
by Theorem 12.5 there would be a positive real number C such that | — p/arl = C/ qi-
This is not the case, because we have seen that for - PR/l < 2/q,"§+1, and taking k to
be sufficiently larger than n produces a contradiction. |

The notion of the decimal expansion of real numbers can be used to show that the
set of real numbers is not countable. A countable set is one that can be put into a one-
to-one correspondence with the set of positive integers. Equivalently, the elements ofa
countable set can be listed as the terms of a sequence. The element corresponding to the
integer 1 is listed first, the element corresponding to the integer 2 is listed second, and

@i so on. We will give the proof found by German mathematician Georg Cantor.

Theorem 12.6. The set of real numbers is an uncountable set,

Proof. We assume that the set of real numbers is countable. Then the subset of all real
numbers between 0 and 1 would also be countable, as a subset of & countable set is also

GEORG CANTOR (1845-1918) was bom in St. Petersburg, Russia, where
his father was a successful merchant. When he was 11, his family moved to
Germany to escape the harsh weather of Russia. Cantor developed his interest
in mathematics while in German high schools. He attended university at Zurich
and later at the University of Berlin, studying under the farnous mathematicians
Kummer, Weierstrass, and Kronecker. He received his doctorate in 1867 for
work in number theory. Cantor took a position at the University of Halle in
1869, a position that he held uniil he retired in 1913.

Cantor is considered the founder of set theory; he is also noted for his contributions to mathe-
matical analysis, Many mathematicians had extremely high regard for Cantor’s work, such as Hilbert,
who said that it was “the finest product of mathematical genius and one of the supreme achievernents
of purely intellectual human activity” Besides mathematics, Cantor was interested in philosophy, and
wrote papers connecting his theory of sets and metaphysics.

Cantor was married in 1874 and had five children. He had a melancholy temnperament that was
balanced by his wife’s happy disposition. He received 2 large inheritance from his father, but since
he was poorty paid as a professor at Haile, he applied for a better-paying posttion at the University of
Berlin, His appointment there was blocked by Kronecker, who did not agree with Cantor’s views on
set theory. Unfortunately, Cantor suffered from mental illness throughout the later years of his life;
he died of a heart attack in 1918 in a psychiatric clinic. J
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12.1 Decimal Fractions 465

countable (as the reader should verify), With this assumption, the set of real numbers
between 0 and 1 can be listed as terms of a sequence ry, ry, r3,. ... Suppose that the
decimal expansions of these real numbers are

r1=0.dydipdysdyy . . .
ry =0.dydyydyzdyy . . .
ry = O.dydypdasdlsy . . .
re=0dydydidy . ..

and so on. Now form a new real number r with the decimal expansion O.ddpdad; . . .,
where the decimal digits are determined by d; = 4 if d;; # 4 and d; =5ifdy; =4,

Because every real number has a unique decimal expansion (when the possibility that
the expansion has a tail end that consists entirely of 9s is excluded), the real number r that
we constructed isbetween O and 1 and is not equal to any of the real numbers Fi Tt .-,
because the decimal is a real number r between 0 and 1 not in the list, the assumption
that alf real numbers between 0 and 1 could be listed is false. Tt follows that the set of
real numbers between 0 and 1, and hence the set of all real numbers, is uncountable. m

12.1 Exercises
1. Find the decimal expansion of each of the following numbers.

a) 2/5 c) 12/13 e) /111
b) 5/12 d) 8/15 1) 1/1001

2. Find the base 8 expansions of each of the following numbers.

a) 1/3 c) 1/5 e) 1/12
b} 1/4 d) 1/6 f) 1722

3. Find the fraction, in lowest terms, represented by each of the following expansions.
a) .12 b).12 c) 12

4. Find the fraction, in lowest terms, represented by each of the following expansions.
2) (.123) ) (1D
b) (0134 d) (ABC)y4

$. For which positive integers b does the base b expansion of 11/210 terminate?

6. Find the pre-period and period lengths of the decimal expansion of each of the following
rational numbers.

a)y7/12 c) 175 e} 13/56
b) 11/30 d) 10123 f) 1/61

7. Find the pre-period and period lengths of the base 12 expansions of each of the following
rational numbers,

a) 1/4 c) 7/10 €) 177132
b) 1/8 d) 5/24 £} 7/360
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466 Decimal Fractions and Continued Fractions

8. Let b be a positive integer. Show that the period length of the base b expansion of 1/m
is m — 1if and only if m is prime and b is a primitive root of m.

9, For which primes p does the decimal expansion of 1/p have period length equal to each
of the following integers?

a)l c)3 e) 5
b2 d) 4 Y6
10. Find the base b expansion of each of the following numbers.
aljt—1 M YBE+D
11. Let & be an integer with b > 2. Show that the base b expansion of I/(b — 1?2 is
(0123...6—3b— 1),
12. Show that the real number with base b expansion
(0123...b— 110112, . )
constructed by successively listing the base b expansions of the integers, is irrational,
13. Show that

1 b1 i 1
Tttt
is irrational, whenever b is a positive integer larger than one.
14. Let by, by, bs, . . . be an infinite sequence of positive integers greater than one. Show that
every real number can be represented as
¢ ‘2 €3
co+ — -+ + -,
O bbby bbby
where cg, €[, €3, €3, - . - are integers suchthatQ < ¢, < kfork=1,2,3,....

15. Show that every real number has an expansion

where ¢g, €1, 2, €3, - - - are integers and 0 < ¢ < kfork=1,23,....

16. Show that every rational number has a terminating expansion of the type described in
Exercise 15.

% 17. Suppose that p is a prime and the base b expansion of 1/p is (.cj¢z - - - €p—1p» SO that
the period length of the base b expansion of 1l/pis p— 1. Show thatifm isa positive
integer with 1 < m < p, then

mfp=_(Crq1---Cp-16i2+ - - Cr—1C1) b

where k is the least positive residue of indym modulo p.

# 18. Show that if p is prime and 1/p = (.cicy . . . ¢)p has aneven period length, k = 2¢, then
cj+Cj+r=b— 1for j = 1,2,...,1.
19, For which positive integers n is the length of the period of the binary expansion of 1/n
equaltorn — 17

20. For which positive integers n is the length of the period of the decimal expansion of 1/n
equal ton — 1?
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22.
23,

24.

* 25,
26.
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Suppose that & is a positive integer. Show that the coefficients in the base b expansion
of tE}e real nu.mber ¥y = Z?":l c;/b) with 0 <y < 1 are given by the formula 0=
[yb/1— blybi~'ifor j=1,2,....(Hint:First, show that 0 < [y b/] — blybiN<b-—-1.
Then, show that z;‘;]([ybf] —blyb =D /bl =y — (ybVybVi/bY) and et N — 00)

Use the formula in Exercise 21 to find the base 14 expansion of 1/6.

Show that the number o
i=l

is transcendental for all sequences of positive integers ap g, . ...

Is the set of all real numbers with decimal expansions consisting of only Os and Is
countable?

Show that the number e is irrational.

Pseudorandom numbers can be generated using the base m expansion of 1/ P, where P
is a positive integer relatively prime to m. We set x,, = a2 Where j, the position of the
seed, is a positive integer and 1/ P = (.cjcpey . . .}, Thisis called the 1/ P generator. Find
the first ten terms of the pseudorandom sequence generator with each of the following
parameters.

a) m=7,P=19%and j =6

by m=8, P=2,and j =5

12.1 Computational and Programming Exercises

Compatations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1,

Find the pre-period and period of the decimal expansions of 212/31597, 1053/4437189,
and 81327/16666699,

« Find as many positive integers n as you can such that the length of the period of the

decimal expansion of 1/nisn — 1.

. Find the first 10,000 terms of the decimal expansion of 7. Can you find any patterns?

Make some conjectures about this expansion.

- Find the first 10,000 terms of the decimal expansion of e. Can you find any patterns?

Make some conjectures about this expansion.

Programming Projects

Write computer programs using Maple, Mathematica, or a langnage of your choice to do the
following,

1
2.
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Find the base b expansion of a rational number, where b is a positive integer.

Find the mymerator and denominator of a rational number in lowest terms from its base
b expansion.
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468 Decimal Fractions and Continued Fractions

L}
3, Find the pre-period and period lengths of the base b expansion of a rational number,
where b is a positive integer.

4. Generate pseudorandom numbers using the 1/ P generator (introduced in Exercise 26)
with modulus m and seed in position j, where P and »t are relatively prime positive
integers greater than 1 and j is a positive integer.

12.2 Finite Continued Fractions

Using the Euclidean algorithm, we can express rational numbers as cortinued fractions.
For instance, the Euclidean algorithm produces the following sequence of equations:

62=2-23+16
23=1-164+7
16=2-7+2
7=3.-24+1
When we divide both sides of each equation by the divisor of that equation, we obtain
@ _,, 16 5, 1
23 23 23/16
B_, 7, L
16 6 16/7
16 2 1
—_— =24 == 2 —_—
7 7 * 7/2
7 i
—=3+-.
2 2

By combining these equations, we find that

2 _,,
23 7 23/16
1
=2t
16/7
=2+ 11
1+
1
2+ —
/2
1
1+
1
24—
342
2

The final expression in this string of equations is a continued fraction expansion of 62/23.
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12.2 Finite Continued Fractions 469

We now define continued fractions.

Definition. A finite continued fraction is an expression of the form

i
ag + 1
ap+
ay =+
i
+ i
dy_y+—
al!
where ag, ap, ay, .. ., a, are real numbers with dp, @y, a3, . . ., 4, positive. The real
numbers a,, a,,. . ., a, are called the partial guotients of the continued fraction. The

continued fraction is called simple if the real numbers dg, a1, . .., a, are all integers,

Because it is cumbersome to fully write out continued fractions, we use the nota-
tion [ay; ay, a3, . . ., a,] to represent the continued fraction in the definition of a finite
continued fraction.

We will now show that every finite simple continved fraction represents a rational
number. Later we will demonstrate that every rational number can be expressed as a finite
simple continued fraction,

Theorem 12.7. Every finite simple continued fraction represents a rational number,

Proof. We will prove the theorem using mathematical induction. For n = 1, we have

1 dgddy +1
lagya)l=ap+ — =L T -
a ag
which is rational. Now, we assume that for the positive integer & the simple continued
fraction [ay; ay, ay, . . ., aplisrational whenever ap. 41, . . ., a4 are integers withay, . . ., Ay
positive, Let a, a4, . . . » 8y be integers with ay, . . . » Ar4 positive. Note that
) !
[ao,al,...,ak+1]=a0+ - B
[(11, 3, ..., g, Gk+1]
By the induction hypothesis, [a;; a3, . .., Ay, dryq]is rational; hence, there are integers

r and s, with 5 3 0, such that this continued fraction equals r/s. Then
1 agr + 8
lag;ay... O l=ay + — = 00

r/s r

which is again a rational number. =

We now show, using the Euclidean algorithm, that every rational number can be
written as a finite simple continued fraction.

Theorem 12.8. Every rational number can be expressed by a finite simple continued
fraction.
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Proof. Letx =a/b,whereaand bare integers with b > 0.Letrg=a and ry = b. Then,

the Euclidean algorithm produces the following sequence of equations:

rg=rgy+ O<rp<ry
ry =712z 73 0<ry<ry
Fo =1raf3 +ry 0< P e
Fp—3=Tn-39n-2 + a1 O<rpy <2
Fy_7 =Tp—19n-1 +ry 0<ry<ry_1
Fy—1=Tndn-
Tn these equations, ga, g3, - - - » 4y &€ positive integers. Writing these equations
tional form, we have
o a3 1
—=—=q+==q+t -
T r r/rn
r (]
—=q@t+==0+t -
r 2 r2/73
ra ¥q 1
S=qpt =@t —
r3 r3 r3fry
Ty3 Tn—1
=gp2t - =gp-2t X
Fp2 Fp2 rn—Z/’n—l
rn—'l Fp 1
——:‘111—1+__:QJ:—1+ R
Fn—i Fp—t rn-l/]n
Fp—1 _
- q}l'
rﬂ

in frac-

Substituting the vahue of 1/r from the second equation into the first equation, we obtain

1
i

raf1r3

a
i2.10 =g+
( ) b q)

Similarly, substituting the value of 72/r3 from the third equation into (12.10), we obtain

c o+ 1
g
b 1
g +
gz -+

rafra

Continuing in this manner, we find that
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12.2 Finite Continued Fractions 471

a 1
—=q+ 1
. b
g2+
g3+
' 1
t 1+ —
dn
Hence, § =1[q1: g2, .. ., q,). This shows that every rational number can be written as a
finite simple continued fraction. n
We note that continued fractions for rational numbers are not unique. From the
identity
1
a, = (a, — I+ ‘is
we see that
{ao; a1, 82,00 ., 8y, an] = [ﬂ'ﬂ; A, d, 58,1, a, — 1, 1}
whenever a,, > 1.
Example 12.6. We have
7
ﬁ=[0; LLE3]=[0:1,1,1,2,1] <

In fact, it can be shown that every rational number can be written as a finite simple
continued fraction in exactly two ways, one with an odd number of terms, the other with
an even number (see Exercise 12 at the end of this section).

Next, we will discuss the numbers obtained from a finite continued fraction by
cutting off the expression at various stages.

Definition. The continued fraction lag; a1, ap, . . ., 4], where k is a nonnegative in-
teger less than or equal to n, is called the kth convergent of the continued fraction
lag: ay, ay, . . . ,@,). The kth convergent is denoted by C,.

In our subsequent work, we will need some properties of the convergents of a
continued fraction. We now develop these properties, starting with a formula for the

convergents.
Theorem 12.9. Letag, ap, ay,. - . ,a, be real numbers, with ay, ay,. . .,4q, positive, Let
the sequences pg, py,. .., p, and ¢g. qy, . . . , g, be defined recursively by
Po=dy go=1
=g+l g =aqa
and

P = P17+ Pra Q= Gde 1+ Q2
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fork =2,3,...,n. Then the kth convergent Cy, == [ag; ay, . . ., 4} i8 given by

Cy = pi/

Proof. 'We will prove this thecorem using mathematical induction. For k = 0, we have

Co = lagl = ap/ 1= po/qo-
For k = 1, we see that
1 2551431 +1 . ﬂ

Ci=lapal=a+-—=
a a4 41

Hence, the theorem is valid for k =0 and k = 1.

Now assume that the theorem is true for the positive integer k, where 2 <k <n.
This means that

Pk _ %P1t P2

(1211) Ck={a0;a1,.,.,ak]=
QG Glr—1 T k-2

Because of the way in which the p;’s and g;'s are defined, we see that the real numbers
Pi—ts Pk—2» 9i—2, depend only on the partial quotients ag, @y, . . - » Gg—1- Consequently,
we can replace the real number ai by a; + 1/ag41 in (12.11), to obtain

i . i
Ck+1ﬁ[ao,(li,...,ak,ﬂk+l] = ao,al,...,ak_l,ak+——
ety

(“k + ,ﬁ) Pr—1t Pr—2

(ﬂk + —l“) Ge—1+ Jp—2

E41

_ a1 pe—1 + Pr—2) + Pr—t
A yif@rgr—1 F Gr—2) + Gy
_ 1Pk + Pr-1
Q195 + i1
_ Pin1
dr+1 .

This finishes the proof by induction. ]

We will illustrate how to use Theorem 12.9 with the following example.

Example 12.7. We have 173/55=13;6,1,7]. We compute the sequences p; and ¢;
for j=0,1,2,3,by

pp=3 qo=1
p=3-6+1=19 q1="56

Ppr=T-22419=173 g3=7-7+6=55
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12.2 Finite Continued Fractions 473

Hence, the convergents of the above continued fraction are
Co=pg/go=3/1=3
Ci=p/q1=19/6
Ca=py/q,=22/7
C3 = p3/gy = 173/55. <

‘We now state and prove another important property of the convergents of a continued
fraction.

Theorem 12.10. Let C; = p; /g, be the kth convergent of the continued fraction
lags ay, . . ., a,), where k is a positive integer, 1 <k <n.If Py are as defined in Theorem
12.9, then

Prfr—t — Peoiqe = (—DFL
Proof. 'We use mathematical induction to prove the theorem. For k = 1, we have
Pido — Pod1 = (aga; + 1} - 1 —agay = L.

Assume that the theorem is true for an integer &, where I < k < n, s0 that

Prdro1 ~ Proaqe = (—DF L
Then we have
Prv19k — Prr+t = @1 Pr + Pr- Dk — Prl@q19x + Qi)
= Proit — Prdrr = —(—DF = (-1,
so that the theorem is true for k& -+ 1. This finishes the proof by induction. [

We illustrate this theorem with the example that we used to illustrate Theorem 12.9.

Example 12.8. For the continued fraction [3; 6, I, 7] we have
Podi— P1gp=3-6—19-1=-1
Py — P21 =19-7-22.6=1
P24y — P3qy =222-55—-173.T=—-1.

As a consequence of Theorem 12,10, we see that fork = 1,2, . . ., the convergents p/q;
of a simple continued fraction are in lowest terms. Corollary 12.10.1 demonstrates this.
-«

Corollary 12.10.1. Let C = p,/q; be the kth convergent of the simple continued
fraction [ag; ay, . . ., a,], where the integers p; and g, are as defined in Theorem 12.9.
Then the integers p;. and g, are relatively prime.

Progf. Letd = (p;, q;). By Theorem 12.10, we know that

i Pidr—1 — GxPr-1 = (—1F L,
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474 Decimal Fractions and Continued Fractions

Hence,
aj-nkt
Therefore, d = 1. [
We also have the following useful corollary of Theorem 12.10.

Corollary 12,10.2. Let C; = pi/q; be the kth convergent of the simple continued

fraction [@g: ap. a2, . -+ » Ok} Then
(=D*
Cp = G =
Jredr—1
for all integers & with 1 < &k < n. Also,
a(—1)F
Cp— Cra =~
qrdr—2

for all integers k with2 <k <n.
Proof. By Theorem 12.10, we know that prg, 1 — @ Pr—1= (=D L
We obtain the first identity,

P Pl (=D
Ck—Ck—l“—“"j‘“———i*_—,
x4kt qrgr—1
by dividing both sides by grq;_1-
To obtain the second identity, note that
1Y Pi—z  Pidr—2 — Pi-29k
Cp—~Cpp="% — = i
53 dr—2 qrdk—2

Because py = g Py_i + Py—z and g = apgy -y + gr—z, We see that the numerator of the
fraction on the right is

Pri—s — Pk—2dk = (@Pr1+ Pr—2)Bk—2 — Pr2(@r—1+ dx-2)
= a(Pr1dk—2 — Pr—29k--1)
=a (-2,
using Theorem 12.10 to see that py_1gz_3 — Pr-2dx—1= (—1F2.

Therefore, we find that

a(— ¥
Ck —_— Ckuz = k .
qrdr—2

This is the second identity of the corollary. m

Using Corollary 12.10.2, we can prove the following theorem, which is useful when
developing infinite continued fractions.
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12.2 Finite Continued Fractions 475

Theorem 12.11. Let C, be the kth convergent of the finite simple continued fraction
lag; ay, ay, .. ., a,] Then

C1>C3>C5>"',
Co<Cya<Cy=nnn,

and every odd-numbered convergent C, j+1J =0,1,2,, .., is greater than every even-
mmbered convergent Cy;, j =0,1,2,. ...

Progf. Because Corollary 12.10.2 tells us that, for k = 2, 3,....1,

a{—D*
Ck — C'ki2 — _L_)

Frlr—2
we know that
Cr<Crp
when £ is odd, and
Cr=>Cpr s
when £ is even. Hence,
Ci>Cy>C5> -0

and
C0<C2<C4<"'.

To show that every odd-numbered convergent is greater than every even-numbered
convergent, note that from Corollary 12.10.2, we have

(— 1)2:1:—-1
Copm — Com—1= <0,
Drmd2m—1

so that Cyy,, | > Cy,,. To compare Cy; and C, 1> We see that

Caj1> Cojpar1 > Cojpar > Cop

so that every odd-numbered convergent is greater than every even-numbered convergent.
n

Example 12.9. Consider the finite simple continued fraction [2; 3, 1, 1, 2,4]. Then the
convergents are

Cy= 2/1=2

C= 7/3=2.3333...
Cy = 8/4 =225

C3= 16/7=2.2857...
Cy= 41/18==2.2777...
C5=180/79=22784 ....
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476 Decimal Fractions and Continued Fractions

We see that

Co=2<Cp=225<Cy=22777...
< C5=22784 ... <(C3=22857...<C,=23333.... «

12.2 Exercises

1.

STUDENTS-HUB.com

Find the rational number, expressed in lowest terms, represented by each of the following
simple continued fractions.

a) [2; 7] ey [1; 1]
b) [i;2,3] f)[1;1, 11
¢} [0; 5, 6] g [1; 1, 1]

d)[3;7,15,1] hy[11,1,1,1]

. Find the rational number, expressed in lowest terms, represented by each of the following

simple continued fractions.

a) [10; 3] ey[2:1,2,1,1,4]
b)[3;2,1] 0H[1;2,1,2]

cy [0 1,2,3] 2y [1;2,1,2,1]
dy[2;1,2, 11 minz1,2,1,2]

. Find the simple continued fraction expansion, not terminating with the partial quotient

of 1, of each of the following rational numbers.

a) 18/13 c) 19/9 e) —931/1005
b) 32/17 d) 310/99 f) 831/8110

. Find the simple continued fraction expansion, not terminating with the partial quotient

of 1, of each of the following rational numbers.

a) 6/5 c) 19/29 e) —943/1001
b) 2277 d) 5/999 f) 873/4867

. Find the convergents of each of the continued fractions found in Exercise 3.
. Find the convergents of each of the continued fractions found in Exercise 4.
. Show that the convergents that you found in Exercise 5 satisfy Theorem 12.11.

. Let f; denote the kth Fibonacci number. Find the simple continved fraction, terminating

with the partial quotient of 1, of f,,/fy, where k is a positive integer.

. Show that if the simple continued fraction expression of the rational number v, & > 1, 1s

[ag: ap, . . ., agl, then the simple continued fraction expression of 1/er is [0;ay, ..., il

. Show that if g, > 0, then

PA-/Pk_-I = [ap; Qg1 - . - A1, Al

and

/a1 =l ap_y, - - -, a3, a1),
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12.2 Finite Continued Fractions 477

where Cp_; = pp_y/qp_y and Cy = p/q;. k = 1, are successive convergents of the
continued fraction [ag; ay, . . ., @, (Hint: Use the relation py = appy_; + pr_p to show

that p/ pr_1 = a + 1/ (Di—1/ Pi2))

i 11, Showthatqy > frfork=1,2,...,where C; = pi/q; is the kth convergent of the simple
continued fraction [ay; ay, . .., a,]and f; denotes the kth Fibonacei number,

12. Show that every rational number has exactly two finite simple continued fraction expan-
sions.

* 13, Letlap;ay,a;,. . ., a,]bethe simple continued fraction expansion of r /s, where (r, s) = |
andr > 1. Show that this continved fraction is symmetric, thatis, ag = a,,a; = a@,_1, 4, =
@2, ..., if and only if r|(s* + 1) if n is odd and r|(s* — 1) if » is even. (Hint: Use
Exercise 10 and Theorem 12.10.)

* 14, Explain how finite continued fractions for rational numbers, with both plus and minus
signs allowed, can be generated from the division algorithm given in Exercise 18 of

Section 1.5.

15. Letag, ap, ay, - . ., a; be real numbers with @y, a,, . . . positive, and let x be a positive real
number. Show that [ag; @y, . . ., a ) < [ag;a; . . ., ap + x]if kisodd and [ag; ay, . . ., 4] >
[ag;ay. .. ap + x]if k is even.

16, Determine whether 7 can be expressed as the sum of positive integers a and b, where all
the partial guotients of the finite simple continued fraction of a/# are either 1 or 2, for
each of the following integers n.

a) 13 c) 19 e) 27
b} 17 dy23 )29

12.2 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find the simple continued fractions of 1001/3000, 10,001/30,000, and 100,001/300,000.

2. Find the finite continued fractions of x and 2x for 20 different rational numbers. Can
you find a rule for finding the finite simple continued fraction of 2x from that of x?

3. Determine for eachintegern, r < 1000, whether there are integerse and bwithn =a +
such that the partial quotients of the continued fraction of a/b are all either 1 or 2. Can
you make any conjectures?

Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the following.
1. Find the simple continued fraction expansion of a rational number.

2. Find the convergents of a finite simple continued fraction, and find the rational number
that this continued fraction represents,
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478 Decimal Fractions and Continued Fractions

12.3 Infinite Continued Fractions

Suppose that we have an infinite sequence of positive integers ag; a;, 2, . - - .How can we
define the infinite continued fraction [ag; aj, @, - - -]? To make sense of infinite continued
fractions, we need a result from mathematical analysis. We state the result, and refer the
reader to a mathematical analysis text, such as [Ru64], for a proof.

Theorem 12.12. Let xg, X1, X3, . . . be a sequence of real numbers such that xp < x1 <
xy<---andx, < Ufork=0,12,... for some real number U, orxg > x> x> ...
and x;, > L fork =0,1,2,. .. for some real number L. Then the terms of the sequence

X0, X1, X2, ... tend to a limit x, that is, there exists a real number x such that
Hm xp = x.
ko0

Theorem 12.12 tells us that the terms of an infinite sequence tend fo a limit in two
special situations: when the terms of the sequence are increasing and all are less than an
upper bound, and when the terms of the sequence are decreasing and all are greater than
a lower bound.

We can now define infinite continued fractions as limits of finite continued fractions,
as the following theorem shows.

Theorem 12.13. Let ag, ay, a,, - . . be an infinite sequence of integers with ay, gy, . . .

0: 4 Iy 4 2 1 82;
positive, and let Cy = [ag; ay, 4y, . - - , @;]. Then the convergents C; tend to a limit &,
that is,

lim Cp=a.
k—>00

Before proving Theorem 12.13, we note that the limit « described in the statement of
ihe theorem is called the value of the infinite simple continued fraction lay, a1, az - . -}

To prove Theorem 12.13, we will show that the infinite sequence of even-numbered
convergents is increasing and has an upper bound and that the infinite sequence of odd-
numbered convergents is decreasing and has a lower bound. We then show that the limits
of these two seguences, guaranteed to exist by Theorem 12.12, are in fact equal.

Proof  Let m be an even positive integer. By Theorem 12.11, we see that
C1>C3> C5> "'>an—1’
C0<C2<C4<"-<Cm,

and Cy; < Cpqy Whenever 2j <m and 2k + 1 < m. By considering all possible values
of m, we see that

Ci>C3>Cs>--->Cp 1> Copyr > s
C(}<C2<C4<‘--<C2”_2<C2”<"',

and Cy; > Cypy for all positive integers j and k. We see that the hypotheses of Theorem
12.12 are satisfied for each of the two sequences C), C3, €, ... and Co, €3, Cyy v+ - -
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12.3 Infinite Continued Fractions 479

Hence, the sequence Cy, C3, Cs, . . . tends to a limit | and the sequence Cg, Cg, Cy, . . .
tends to a limit (v,, that is,

lim C2n+1 =t

H— O3
and
Jtl—l>n¢;>lo C2" =% a

Our goal is to show that these two limits &; and «; are equal. Using Corollary 12.10.2,
we have '

Puy1 P (= D@1 1

C2n+1 —Cy= e = .

92n41 qan on+-192n Q192
Because g; > k for all positive integers & (see Exercise 11 of Section 12.2), we know
that

1 !
< 3

Tony19m  (2n+ D(2n)

and hence,
1
C2n+l —Cyy=—
Q192

tends to zero, that is,

nli)n(}o(cilﬂ-%l — o) =0 )
Hence, the sequences Cy, C3, Cs, . ., and Cy, Cy, Cy, . . . have the same limit, because

nlingo(c2n+1 —Cy) = ’}“i%rgo Cong1— "1320 Cyy =0

Therefore, o) = ey, and we conclude that all the convergents tend to the limit o = o=
oy This finishes the proof of the theorem, L

Previously, we showed that rational numbers have finite simple continued fractions.
Next, we will show that the value of any infinite simple continued fraction is irrational.
Theorem 12.14.  Let ag, a), a,, . . . be integers with ay, a,, . . . positive, Then lag; a4,
ay, . . .]is irrational.
Proof. Leta = [ag; ay, a,,...]and let

Co= /o =lag;ayn ay, . .. a]

denote the kth convergent of &, When » is a positive integer, Theorem 12.13 shows that
Cop <o << Cypyqq, 50 that

D<o — Cln < C27t+1 - C2n'

However, by Corollary 12.10.2, we know that
1

C2n+1 — Gy, = ,
2n+192n
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which means that

- 3
p Gon+1492n

and, therefore, we have

0< Wy — Poag <
T20+1

Assume that o is rational, so that @ = a/b, where a and b are integers with b # 0. Then

a
0 < ‘hn__pzn< ,

b Fansl

and by multiplying this inequality by b, we see that

0< gz, — prn =

G+l
Note that ag,,, — bp,, is an integer for all positive integers n, However, because gy, 4.1 >
2n + 1, for each integer » there is an integer ng such that g, > b, so that /gy, 41 < L
This is a contradiction, because the integer agy,,, — bp;,, cannot be between 0 and 1.
We conclude that « is irrational. =

We have demonstrated that every infinite simple continued fraction represents an
irrational number. We will now show that every irrational number can be uniquely
expressed by an infinite simple continued fraction, by first constructing such a continued
fraction, and then by showing that it is unique.

Theorem 12.15. Let @ = ¢y be an imational number, and define the sequence
dip, ay, do, . . . Tecursively by

ap=lo] o= 1/{ey —ap)

for k=0,1,2,.... Then o is the value of the infinite simple continued fraction
lag; as, az, . . ).

Proof From the recursive definition of the integers a;, we see that a; is an integer for
every k. Furthermore, using mathematical induction, we can show that ay is irrational
for every nonnegative integer k and that, as a consequence, g exists. First, note that
gy = « is irrational, so that aq # ag = [} and &y = 1/ (ep — ap) exists.

Next, we assume that o, is irrational. As a consequence, o exists. We can easily
see that ay. | is also irrational, because the relation

oy = Loy —ag)
implies that

1
(12.12) o = ay + ——,
Y1
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12,3 Infinite Continued Fractions 481

and if o4 | were rational, then o, would also be rational. Now, because ¢y, is frrational
and a, is an integer, we know that oy # a;, and

ap < op <ap+ 1,
$0 that
0<op—a, <l
Hence,
Oy = 1oy —ap) > 1
and, consequently,
ey =lagl =1

fork=0,1,2,....This means that all the integers ay, a,, . . . are positive.

Note that by repeatedly using (12.12), we see that

1
Q’“—“‘(lg:(lo-f- ;‘Z[ao;ﬂt'l]
1

I
=ap+ T = lwsana)

a+ —
o
1
:tlo-l— 2[00;{11, ay, ..., a8, &’k+1].
1
(43} +
(12+
+ap +—
Okt
What we must now show is that the value of lag ap, ay, ..., g, 00, ) tends to o as k

tends to infinity, that is, as k grows without bound. By Theorem 12.9, we see that

Qpr P+ Pr

o= [(10; Yy ov vy gy C{;H,_]]: s
Qg1 + 91

where C; = p;/q; is the jth convergent of [ay; aj, a,, . . .. Hence,
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o1 Prt Pr-1 Py
Qpedy -t Gk
= (Pgr—1 — Px-19%)
ek + -0k
!
(oG + G- DG

where we have used Theorem 12.10 to simplify the numerator on the right-hand side of
the second equality. Because

O'.'"Ck=

Spp1dy G > Qe T Q1= et s

we see that

lee = Crl <

Tedk+1 ]
Because g; > k (from Exercise 11 of Section 12.2), we note that 1/(qzg;..) tends to zero

as k tends to infinity. Hence, C;, tends to « as k tends to infinity or, phrased differently,
the value of the infinite simple continued fraction [ag; @y, @, . . .Jis . =

To show that the infinte simple continued fraction that represent an irrational number
is unique, we prove the following theorem.
Theorem 12.16. If the two infinite simple continued fractions [ag; @, @2. - - .} and
[bg; by, ba. . . Jrepresent the same irrational number, then a, = by, for k =10, 1,2,..-.

Proof. Suppose that o = [ag; @y, ag, . . .J. Then, because Cp = ag and C = ag + 1/ay,
Theorem 12,11 tells us that

ag <o <ag+ ap,

so that ag = [«]. Further, we note that

{ﬂo;ﬁ'l, ay, - - -] =dp +
[CI;; ay, Az, . - ]
because
o =lag; ap az,. . )= lim [ag; ap ag, . . - L]
k—o0
. 1
= lim {ap+
ko0 [a;az, a3, ..., a4
+ 1
=dg :
lim [ay;aq, ..., ag)
k—oo
1
=ag+ ——m——.
[a]; g, (13, -« -]
Suppose that

fapg; ap ay, - - J=1[bp; by, by, ...}
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Our remarks show that

ag = by = [e]
and that
1 1
anp+ —————=25 —|—._,,___,
*Tagay..1 " Ibpby. .
s0 that

a8, ... J=[by by, .. L.

Now, assume that a; = by, and that [ag,y; a5, .. .] = By 1 Bpyg. - - ] Using the same
argument, we sce that @) = by, and

1 1
By + o=+ —
LTI N T

which implies that
lart2: a3 - = hegas bys, . . .
Hence, by mathematical induction, we see that a, = b, fork =0, 1,2,. . .. n

To find the simple continued fraction expansion of a real number, we use the
algorithm given in Theorem 12.15. We illustrate this procedure with the following
example.

Example 12.10. Let o = +/6. We find that

agx[«/g]=2, o ! ~\/6+2

1:\/6—2_ 2 ]
V642 1
= :'2, e e 6 2,
a) l: 5 0ty (ng+2)_2 V6 -+
a2=[\/6+2]=4, 3= : =J6+2=a1.
(V6+2)-4 2
Because w3 = oy, we see that a3 = ay, a5 = ay,, . . . , and so on. Hence

V6=1[2;2,4,2,4,2,4,.. ]

The simple continued fraction of /6 is periodic. We will discuss periodic simple con-
tinued fractions in the next section. «

The convergents of the infinite simple continued fraction of an irrational number are
good approximations to «. This leads to the following theorem, which we introduced in
Exercise 34 of Section 1.1.
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Theorem 12.17. Dirichlet’s Theorem on Diophantine Approximation. 1f « is an
irrational number, then there are infinitely many rational numbers p/q such that
loe — p/gl < 1/".

Proof. et py/qy be the kth convergent of the continued fraction of . Then, by the
proof of Theorem 12.15, we know that

o — p/ar | < V/(@egxyD-

Because g; < g1, it follows that

| — pe/ax |< Vag-

Consequently, the convergents of o, pr/qr. k=1, 2, ..., are infinitely many rational
numbers meeting the conditions of the theorem. | |

The next theorem and corollary show that the convergents of the simple continued
fraction of & are the best rational approximations to «, in the sense that pe/qx is closer
to o than any other rational number with a denominator less than gg.

Theorem 12.18. Let « be an irrational number and let p;/q;, i=1,2,...,bethe
convergents of the infinite simple continued fraction of . If r and s are integers with
s > 0 and if k is a positive integer such that

Iso —rl < |gpe — pel,
then § > gz,

Proof. Assume that |so — r| < igge — pyl, but that 1 < s < gy We consider the
simultaneous equations

PpX + pppy =71
G X+ Gryry =S9.

By multiplying the first equation by gy and the second by py, and then subtracting the
second from the first, we find that

(Pry19r — Pediy )Y =Yk — P
By Theorem 12.10, we know that p g, — Prdr+1= (—1D*, so that
y = (=D (rgx — sp2)-

Similarly, multiplying the first equation by g1 and the second by pp,q, and then
subtracting the first from the second, we find that

x = (=D Pyt — rgis0-

We note that s # 0 and y # 0. If x =0, then sppy; = rgp1. Because (Prrv Ty = L
Lemma 3.4 tells us that g;¢|s, which implies that g 4 < §, conlrary to our assumption.
If y =0, then r = ppx and 5 = qx, so that

lse — v} = [x| |grer — pil = lgrer — e,

because |x| > 1, contrary to our assumption.
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12.3 Infinite Continued Fractions 485

We will now show that x and y have opposite signs. First, suppose that y < 0.
Because q;x =5 — gy 1y, we know that x > 0, because gipx >0 and g, > 0. When
y = 0, because g1y > gy1 > 5, we see that gpx = 5 — Gry1y < 0, so that x < 0,

By Theorem 12.11, we know that either py/q, <a < p, +1/Grq1 or that
Pi+1/9r41 < @ < pi/qy. In either case, we easily see that gpo — Prand g 0 — pryy
have opposite signs.

From the simultaneous equations we started with, we see that
Isa —r|=l{gex + g 1) — (prx + Pyl
= |xlgrer — p) + y(grr1e — Pl

Combining the conclusions of the previous two paragraphs, we see that x{gpex — pp) and
Y(Grt1¢ — py41) have the same sign, so that

lsa —rl = Ix[ fgrer — pil + 131 Igrs1@ — prgil
= x| lgger — py
> lgror — pils
because |x| > 1. This contradicts our assumption.
We have shown that our assumption is false and, consequently, the proof is complete.
a

Corollary 12.18.1. Let « be an irrational number and let p i/, J=1,2,... be the
convergents of the infinite simple continued fraction of @. If r/s is a rational number,
where r and s are integers with s > 0, and if k is a positive integer such that

le — #/st < | — pr/aqrl,
then s > g.
Proof. Suppose that 5 < g and that

e —v/s| <o~ pe/ayl.
By multiplying these two inequalities, we find that

sl —r/s| < qrle — pe/ael
50 that
lse —r| < |qe — pil,

violating the conclusion of Theorem 12.18. ]
Example 12.11. The simple continued fraction of the real number 7 is 7 = [3;7, 15,
1,292,1,1,1,2,1,3,...]. Note that there is no discemnible pattern in the sequence
of partial quotients. The convergents of this continued fraction are the best rational
approximations to 7. The first five are 3, 22/7, 333/106, 355/113, and 103,993/33,102.

We conclude from Corollary 12.18.1 that 22/7 is the best rational approximation of
with denominator less than or equal to 105, and so on. «
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Finally, we conclude this section with a result that shows that any sufficiently close
rational approximation to an irrational number must be a convergent of the infinite simple
continued fraction expansion of this number.

Theovem 12.19. If ¢ is an irrational number and if r/s is a rational number in lowest
terms, where r and s are integers with s > 0 such that

loe - /5| < 1/(2s%),
then r/s is a convergent of the simple continued fraction expansion of «.
Proof. Assume that r/s is not a convergent of the simple continued fraction expansion
of @. Then, there are successive convergents i /q; and pgy1/qq such that g =5 <
G 41- By Theorem 12.18, we see that

lqeet — pil < |sae — ri=sle —r/s| < 1/(2s).

Dividing by gy, we obtain

lor — pefag| < Y/ @sqp).

Because we know that jsp; — rq| = 1 (we know that spr — rgy is a nonzero integer
because r/s # pi/qz), it follows that

1 _ =gl

S qr
Pe T
g 5
_ P

qx
BT

2sq, 257

{where we have used the triangle inequality to obtain the second ineguality). Hence, we
see that '

<<

o o —

I+

1/2sq; < 1/25°.
Consequently,
Zqu = QS?',

which implies that g, > s, contradicting the assumption. u

Applying Continued Fractions to Attack the RSA Cryptosystem We can use a version
of Theorem 12.19 for rational numbers to explain why an attack on certain implemen-
tations of RSA ciphers works. We leave it as an exercise to prove that this version of
Theorem 12.19 is valid.

Theorem 12.20. Wiener’s Low Encryption Exponent Attack on RSA. Suppose that
n = pq, where p and ¢ are odd primes with ¢ < p <2q and that d < n'/4/3. Then,

Uploaded By: anonymous



12.3 Infinite Continued Fractions 487

given an RSA encryption key (e, n), the decryption key can be found using O ((log n)*)
bit operations.

Proof. We will base the proof on approximation of a rational number by continued
fractions. First note that because de = 1 (mod ¢(n)), there is an integer k such that
de — 1= k¢ (n). Dividing both sides of this equation by d¢ (1), we find that
e 1k
¢y de®n) d’
which implies that
e k 1

o) d dp(n)
This shows that the fraction k/d is a good approximation of ¢/¢ ().
Note also that g < /i1, because g < p and n = pg by the hypotheses of the theorem.
Using the hypothesis that g < p, it follows that
pHg—1=<2g+g—-1=3g—-1<3/n
Because p(nm) =n — p — g + 1, weseethatn —p(m)=n — (n — p—q+l=p+qg-—

1 <3,/

We can make use of this last inequality to show that k/d is an excellent approxima-
tion of ¢/n. We see that

e k| |de—kn
no El T nd
_|{de — ke (n)) — (kn + kg (n))
- nd
_ 1=k —¢(11))1 - 3k /n _ 3k
nd Y dyn

Because e < ¢ (n), we see that ke < k(1) = de — | < de, This implies that k < d. We
now use the hypothesis that d < n74/3 to see that & < n!/ 413

Tt follows that

e ki _3k/n _ 33y 1 1

R d|T nd T nd = anvt T ag

We now use the version of Theorem 12.19 for rational numbers. By this theorem, we
know that k/d is a convergent of the continued fraction expansion of e/n. Note also that
both ¢ and  are public information. Consequently, to find k/d we need only examine
the convergents of ¢/n. Because k/d is a reduced fraction, to check each convergent
to see whether it equals k/d, we suppose that its denominator equals k. We then use
this value to compute ¢ (1), because ¢ (1} = (de — 1)/ k. We use this purported value of
¢ () and the value of n to factor n (see the discussion in Section 8.4 to see how this is
done). Once we have found & /d, we know d because & /d is a reduced fraction and d is
its denominator. To see that k/d is reduced, note that ed — k¢ (n) = 1, which implies, by
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488 Decimal Fractions and Continued Fractions

Theorem 3.8, that (d, k) = 1. Because computing all convergents of a rational number
with denominator »n uses O {{log n)?) bit operations, we see that 4 can be found using
0 ((log #)*) bit operations. u

12.3 Exercises

1. Find the simple continued fractions of each of the following real numbers.

ayv2 Y5
B3 A U+V5/2

2. Find the first five partial quotients of the simple continued fractions of each of the
following real numbers.

V2 ce—Dfe+ D
by2r Ay (e? — D+ D)

3, Find the best rational approximation to = with a denominator less than or equal to
100,000.

4. The infinite simple continued fraction expansion of the number ¢ is

e=(2;1,2,1,1,4,1,1,6,1,1,8,.. .1

a) Find the first eight convergents of the continued fraction of e.

b) Find the best rational approximation to e having a denominator less than or equal to
536.

% 5. Let o be an irrational number with simple continued fraction expansion @ = [ag; a1,
ay, . - ). Show that the simple continued fraction of — is [-ap— 1; 1,ay— L, ap,
ey, - . .]ifal > ]l and {—ag - l;ﬂ2+ 1,61’3, . .] ifﬁL =1

% 6. Show that if pr/q; and pg,./qry are consecutive convergenis of the simple continued
fraction of an irrational number ¢, then

e — prfail < 1/(2g0)
ar
ot — Pept/gratl < 1/ Qg ).

(Hint: First show that |& — peyr/Getl + 1o — Pe/al = Pt/ Q1 — Pr/al =
1{(rgx4 1))

g5 7. Letw beanirrational number, & > 1. Show that the kth convergent of the simple continued
fraction of 1/« is the reciprocal of the (k — Dth convergent of the simple continued
fraction of «.

% 8. Let @ be an irrational number, and let p;/q; denote the jth convergent of the simple
continved fraction expansion of . Show that at least one of any three consecutive
convergents satisfies the inequality

lee — p;/4;1 < Y34
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12.3 Infinite Continued Fractions 489

Conclude that there are infinitely many rational numbers p/q, where p and ¢ are integers
with g # 0, such that

e — p/ql < 1/(+/3g%).

#* 9, Showthatifa = (1+ /%) /2, and ¢ > /5, then there are only a finite number of rational
numbers p/q, where p and g are integers, ¢ # 0, such that

loe - p/gl < 1/(cq™.
(Hint: Consider the convergents of the simple continued fraction expansion of +/5.)
If a and B are two real numbers, we say that 8 is equivalent to o if there are integers a, b, c,
and d such thatad — bc=+1and 8 = %.
10. Show that a real number ¢ is equivalent to itself.

11. Show that if o and f are real numbers with £ equivalent to o, then & is equivalent to B.
Hence, we can say that two numbers & and § are equivalent,

12, Show that if &, 8, and X are real numbers such that e and B are equivalent and Band A
are equivalent, then ¢ and A are equivalent.

13. Show that any two rational numbers are equivalent.

* 14, Show that two irrational numbers o and 8 are equivalent if and only if the tails of
their simple continued fractions agree, that is, if & = [ag; ay, 4y, ..., a 5y €15 €2, €34 -+ -],
ﬁ:{bo;bl,bz, ‘e ,bk,Cl,Cz,C3,. . .]., wherea,-,i =0,1,2,. . .,j;bf,izo, 1,2,. .. ,k;
and ¢;, i = 1,2,3, . .. are integers, all positive except perhaps aq and by,

Let o be an irrational number, and let the simple continued fraction expansion of « be
o = [ag; ay, a, . . .J. Let pp/q; denote, as usual, the kth convergent of this continued fraction.
We define the psendoconvergents of this continued fraction to be

Pical Gy = Uy + Pr2)/(tGx_y + gz2)s
where  is a positive integer, ¥ > 2, and ¢ is an integer with 0 < ¢ < a,.

15, Show that each pseudoconvergent is in lowest terms.

* 16, Show that the sequence of rational numbers Pra/de2s - - Pray_ /9, » Pr/ Gy s in-
creasing if k is even, and decreasing if k is odd.

* 17. Show that if » and s are integers with s > 0 such that

lee — r/s| < to = prs/a,l,

where £ is a positive integer and 0 < t < ay, then s > gy, or r/s = pp_,/q;_;. This
shows that the closest rational approximations to a real number are the convergents and
pseudoconvergents of its simple continued fraction.

13. Find the pseudoconvergents of the simple continued fraction of 7 for & = 2.

19. Find a rational number r/s that is closer to 7 than 22/7 with denominator 5 less than
106. (Hint: Use Exercise 17.)

20. Find the rational number r/s that is closest to ¢ with denominator s less than 100.
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490 Decimal Fractions and Continued Fractions

21. Show that the version of Theorem 12.19 for rational numbers is valid. That is, show that
if a, b, ¢, and d are all integers with & and d nonzero, (4, b) = (c,d)=land

1
25—,
b d| 24°
then c/d is a convergent of the continued fraction expansion of a/b.

a c

22. Show that computing all convergents of a rational number with denominator n can be
done using O{(log 7)?) bit operations.

12.3 Computational and Programming Exercises
Computations and Explorations

Using 2 computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Compute the first 100 partial quotients of each of the real numbers in Exercise 2.

2. Compute the first 100 partial quotients of the simple continued fraction of 2, From this,
find the rule for the partial quotients of this simple continued fraction.

3, Compute the first 1000 partial quotients of the simple continued fraction of 7. What is
the largest partial quotient that appears? How often does the integer 1 appear as a partial
guotient?

Programming Projects
Write programs in Maple, Mathematica, or a language of your choice to do the following.

1. Given a real number x, find the simple continued fraction of x.

4. Given an irrational number x and a positive integer n, find the best rational approximation
to x with denominator not exceeding 1.

12.4 Periodic Continued Fractions

We call the infinite simple continued fraction {ag; a1, a2, .+ -] periodic if there are positive
integers N and k such thata, == a, 13 for all positive integers n with n = N. ‘We use the
notation

[ag: @ @z, - -+ » Ay —1 ANy AN 41 ON k1]

to express the periodic infinite simple continued fraction

(05 @1, @35 - -+ » Q=12 AN» AN+1s - -+ + AN +h—1AN> ON 410 - - -}

For instance, [1;2, 3 4] denotes the infinite simple continued fraction [1;2,3,
4,3,4,3,4,...1 :

In Section 12.1, we showed that the base b expansion of a number is periodic if and
only if the number is rational. To characterize those irrational numbers with periodic
infinite simple continued fractions, we need the following definition.
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12.4 Periodic Continued Fractions 491

Definition. The real number  is said to be a quadratic irrational if « is irrational and
is a root of a quadratic polynomial with integer coefficients, that is,

Ae®+ Ba +C =0,
where A, B, and C are integers and A #£ 0.
Example 12.12. Let o =2 -+ +/3. Then « is irrational, for if o were rational, then by

Exercise 3 of Section 1.1, & — 2 = +/3 would be rational, contradicting Theorem 3.18.
Next, note that

ol —da+1=(7+443) 42+ /3 +1=0.
Hence, ¢ is a quadratic jrrational. -«
We will show that the infinite simple continued fraction of an irrational number is

periodic if and only if this number is a quadratic itrational. Before we do this, we first
develop some useful results about quadratic irrationals.

Lemma12.1, The real number « is a quadratic irrational if and only if there are integers
a, b, and ¢ with b > 0 and ¢ # 0, such that b is not a perfect square and

a=(a+b)/e.

Proof. I o is a quadratic irrational, then o is jrrational, and there are integers A, B, and
C such that Ae® + Ba + C = 0. From the quadratic formula, we know that

, _ —B+~BT—4AC

24

Because ¢ is a real number, we have B2 — 4AC > 0, and because « is irrational,
B? —4ACisnota perfect square and A 5 0. By either takinga = —B, b = B — 4AC,
andc=2A,ora=B,b=B2— 4AC, and ¢ = —2A, we have our desired representation
of a.

Conversely, if
a = (a +Vb)/c,

where a, b, and c are integers with b > 0, ¢ %0, and & not a perfect square, then by
Exercise 3 of Section 1.1 and Theorem 3.18, we can easily see that « is irrational.
Furthermore, we note that

a? — 2aca + (a2 — b} =90,
so that ¢ is a quadratic irrational. n

The following lemma will be used when we show that periodic simple continued
fractions represent quadratic irrationals.

Lemma 12.2, If « is a quadratic irrational and if ,s, ¢, and u are integers, then
(ra -+ 5)/(fer + 1) is either rational or a quadratic jrrational,
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492 Decimal Fractions and Contimied Fractions

Proof. From Lemma 12.1, there are integers a, b, and ¢ with & > 0,¢ # 0, and bnota
perfect square, such that

o= (a + «/—b—)/(.‘
Thus,

rat+s _ [P'((l-l-\/[—)) +S]/[I(n+x/1_)) +H]
c

tor -+ i €
_(ar+es)+ r/b
(at + cu) + /b
_ [{ar +cs) -+ r/bllat + cu) — /D]
- [(at + cu) + t+/Dll{at + cu) — t+/b]
_ [(ar + cs)at + cu) — rtb] - [r(at + ci) — t{ar -+ es) Wb
{at +c)? —1%b '

Hence, by Lemma 12.1, ¢ + §)/{ta + 1} is aquadratic jrrational, unless the coefficient
of +/B is zero, which would imply that this number is rational. u

In our subsequent discussions of simple continued fractions of quadratic irrationals,

we will use the notion of the conjugate of a quadratic irrational.

Definition. Let & = (@ + +/b)/c be a quadratic irrational. Then the conjugate of «,
denoted by o', is defined by o' = (a — Jby/e.

Lemma 12.3.  If the quadratic irrational & is a root of the polynomial Ax? 4+ Bx+C=
0, then the other root of this polynomial is ¢!, the conjugate of o.

Proof. From the quadratic formula, we see that the two roots of A4+ Bx+C=0

are
—B+ B2 —-4AC
24 '
If « is one of these roots, then @' is the other root, because the sign of +/ B2 —4AC is
reversed to obtain o from o. "

The following lemma tells us how to find the conjugates of arithmetic expressions
involving quadratic irrationals.

Lemma 124, Hoi={(a+ bWd)fe, and ¢y = {az + by+/d)/c; are rational or qua-
dratic irrationals, then

() (o+a) =0+

() (o +og) =a)—a)

(if) (orgorg) = offorh

(iv) {ayfon) = of/ay.
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12.4 Periodic Continued Fractions 493

The proof of (iv) will be given here; the proofs of the other parts are easier, and appear
at the end of this section as problems for the reader.

Proof of (iv). Note that

oty = {ap+ bivd) /e,
(@ + by/d)/c,
_ ala +b/d)ay — by/d)
ey{ay -+ byv/d)(a — by/d)
_ (e0may — cabibyd) + (cra3by — cyarby)/d
cy(a? — bad) ’
whereas
a;/aé _ (a; — 51\/3)/5‘1
(a — byv/d)/cy
_axla; = bd)(ay + by /d)
ey — by d)(ay + byV/d)
_ (c2a10, — cab1byd) — (coa2by — cra b)) /d
ci(a — b2d) '
Hence, {(0;/0) = a}/a. L]

The fundamental result about periodic simple continued fractions is called La-
grange’s theorem (although part of the theorem was proved by Euler). (Note that this
theorem is different from Lagrange’s theorem on polynomial congruences discussed in
Chapter 9. In this chapter, we do not refer to that result.} Enler proved in 1737 that a
periodic infinite simple continued fraction represents a quadratic irrational. Lagrange
showed in 1770 that a quadratic irrationality has a periodic continued fraction.

Theorem 12.21. Lagrange’s Theorem. The infinite simple continued fraction of an
irrational number is periodic if and only if this number is a quadratic irrational,

We first prove that a periodic continued fraction represents a quadratic irrational,
The converse, that the simple continued fraction of a quadratic irrational is periodic, will
be proved after a special algorithm for obtaining the continued fraction of a quadratic
irrational is developed.

Progf. Let the simple continued fraction of ¢ be periodic, so that

@ =lag;an, s ... ay 1,85, ay11, - - -, Auig):

Now, let

,6 = [aN; L2515 PR ’aN+k]'
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Then

B=lay;anits- -+ Ak B
and by Theorem 12.9, it follows that

(12.13) p o PPEt Pt
Bar + k-1
where p/q, and pp_ /g,y are convergents of [ay; @yt - .- aN 1x)- Because the

simple continued fraction of 8 is infinite, § is irrational, and by (12.13), we have
@B+ @1 — POB — Pr-1=0,
so that 8 is a quadratic irrational, Now, note that

a =y a.ay. ... ay_1, fL
so that, from Theorem 12.11, we have
o Boy—1+ Py-2
Ban-1+qn-2

where py_1/qy—180d py_2/qn_o are convergents of [ag; a, da, . . - » A1) Because
B is a quadratic irrational, Lemma 12.2 tells us that « is also a quadratic irrational (we
xnow that « is irrational because it has an infinite simple continued fraction expansion).

=

The following example shows how to use the proof of Theorem 12.21 to find the
quadratic irrational represented by a periodic simple continued fraction.

Example 12.13. Letx = [3;1:5]. By Theorem 12.21, we knoﬂhat x is a quadratic
irrational. To find the value of x, we let x = [3; y}, where y = [1;2], as in the proof of
Theorem 12.21. We have y = [1; 2, ], so that

y=1+—1T=3y+1.

It follows that 2y? — 2y — 1 = 0. Because y is positive, by the quadratic fornula, we
have y = 1+_2,.~/§ Because x =3 + %, we have

2 3+2—J§=4+J§_

x=3+ =
1++/3 -2 2 «

To develop an algorithm for finding the simple continued fraction of a quadratic
irrational, we need the following lemma.

Lemma 12.5. If « is a quadratic irrational, then & can be written as

a=(P+~d)/0,
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where P, @, and d are integers, @ #0,d > 0, d is not a perfect square, and o|(d — P?).

Proof. Because « is a quadratic irrational, Lernma 12.1 tells us that
o = (a ++/b)/c,

where a, b, and ¢ are integers, b > (), and ¢ # 0. We multiply both the numerator and the
denominator of this expression for ¢ by [c| to obtain

- alc] + Vbe?
elel

{where we have used the fact that |¢| = x/c_z). Now, let P =alc|, @ = cle|, and d = bc?.
Then P, Q, and d are integers, O # 0, because ¢ # 0, d > 0 (because b > 0). 4 is not
a perfect square because b is not a perfect square and, finally, Q|(d — P2) because
d— P2=bc? —a’? = (b — a¥) = £0(b — a?). n

We now present an algorithm for finding the simple continued fractions of quadratic

irrationals.

Theorem 12.22, Let ¢ be a quadratic irrational, so that by Lemma 12.5 there are
integers Py, Oy, and d such that

a = (Py+vd)/Qp,
where Qg # 0,d > 0, d is not a perfect square, and Qg|(d — P&). Recursively define
o= (P +~Vd)/ Qs
a = oy},
Perr=ar O — Fr.
O =(d — Pl )/ Qs
fork=10,1,2,....Then, @ = [ap; a;, @, . . ..

Proof.  Using mathematical induction, we will show that P, and (, are integers with
Or #0and Qp[(d — sz), fork =0,1,2,....First, note that this assertion is true for
k = @ from the hypotheses of the theorem. Next,, assume that P, and (, are integers
with O # 0 and Q4 |(d — P2). Then,

Popi=apOp — Fy
is also an integer, Further,
Oui={d—PL)/O
=[d — (@ Qx ~ PYY/ O
= (d ~ P})/ O + QP — a} 0.
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Because Qp|(d — sz), by the induction hypothesis, we see that Oy is an integer, and

because d is not a perfect square, we see that d # sz. sothat Oy 1 = (d— szﬂ) /O #0.
Because

O = — P2/ Qv

we can conclude that Oy, i{d — Pk2+1)‘ This finishes the inductive argument.

To demonstrate that the integers ag, aj, @,, - - . are the partial quotients of the simple
continued fraction of &, we use Theorem 12.15, If we can show that

Oy = 1/ (o — ap)s

fork=0,1,2,...,then we know that & = [ag; a), a3, . . .J. Note that
Po++d
o —dy=———" " ag
O

=(Vd — (@, Qr — POV Qi

= (Vd — P/ G

= (Vd — Py )(Vd + Py D/ Qp(Vd + Pryy)
=(d — P )/ (Qr(Vd + Pey))

= 04 Qi 1/ (QeVd + Pri))

= Qk+1/(«/g + Pryn)
= 1/otps

where we have used the defining relation for Q. to replace d — PJ.,f+1 with Q) Op11-
Hence, we can conclude that & = [ag; ap, g2, . - -1 n

We illustrate the use of the algorithm given in Theorem 12.22 with the following
example.

Example 12.14. Tetoe =3+ V7)/2. Using Lemma 12.5, we write
a=(6+28)/4,

where we set Py = 6, 0g =4, and d = 28. Hence, ap = [a} =2, and
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Pi=2.4-6=2, a1=(2+ﬁ§)/6,
01="(28-2%/4=6, a;=[(2+v2B)/6}=1,

Pp=1-6-2=4, wy = (4 ++/28)/2
0 =8-)/6=2,  a=[(4+v28)/2]=4,

Py=4.2-4=4, a3 = (4 ++/28) /6,
03=8-4/2=6  ay;=[(4+28)/6] =1,

Py=1.6—4=2, oy = (v28)/4,
Qu=28-20/6=4, a=[(2+V28)/4]=1,

[
Ps=1.4-2=2, as = (~/28)/6,
0s=(28-2%/4=6, as=[(2+v28)/6]=1,

and so on, with repetition, because P, = Ps and @ = {Js. Hence, we see that
G+VD2=244,1,1,1L,4,1,1,.. ]
={2;1,4,1,1]. «

We now finish the proof of Lagrange’s theorem by showing that the simple continued
fraction expansion of a quadratic irrational is periodic,

Proof of Theorem 12.21 {continued). Let « be a quadratic irrational, so that by Lemma
12.5, we can write « as

o= (Py+d)/ Q.
Furthermore, by Theorem 12.20, we have o = fag; a1, @y, . . ], where
ay = (P, +vVd)/ Oy,

a = [oy],
Peri=a O — Py,
Qrr1 = — Pl )/ O,
fork=0,1,2,....
Because o = [ay; ay, a9, . . ., o], Theorem 12.11 tells us that
& = (P19 + Pr—2)/(Gx-10% + Gr—2)-
Taking conjugates of both sides of this equation, and using Lemma 12.4, we see that

(12.14) o = (pr_10ty, + Pr—a)/(gr_10t; + Gy _2).
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When we sotve (12.14) for «, we find that

1 Pr—2

L “ 7 g
- ;o PEl
i1 gi1

Note that the convergents py_o/qy_2 and pg_(/qe— tend to @ as % tends to infinity, so

that
o — Pi—2 / o — Pr—1
qr—2 qr-1

tends to 1. Hence, there is an integer N such that @, < Ofork = N. Because o > 0 for
k > 1, we have

Po+vd P —+d_2/d

oy — oy = = >0,

o o O

sothat @ > Ofork = N.

Because 03 Qppy=d — Pk2+1, we see that for k > N,

O < QuQp=d — Pl =d.
Also for k = N, we have
2
Pl =d =Py — Ok Qs
so that
—_ d << Pk-l—l << ‘\/E

From the inequalities 0 < @y < d and —/d < P < +/d, which hold for k = N, we sce
that there are only a finite number of possible values for the pair of integers Py, &y for
k > N. Because there are infinitely many integers k with & > N, there are two integers
i and j such that P; = P;and @; = Q; with i < j. Hence, from the defining relation
for ay, we see that ¢; = a;. Consequently, we can see that a; = aj, @41 = Cj b 942 =
Ajpases- . Hence,

o= [(Io;al,az, PR« PR T 4 1Y ai+1’ ey aj_l,a,v,aiﬂ, N ’aj—l'-‘ . ]
= [aO; ay,dy, ... NP N /TP P PR ,aj_l}.
This shows that & has a periodic simple continued fraction. n

Purely Periodic Continued Fractions  Next, we investigate those periodic simple con-
tinued fractions that are purely periodic, that is, those without a pre-period.

Definition. The continued fraction [ag; ay, dg, . - .} is purely periodic if there is an
integer n such that a; = a4, fork=0,1,2,...,380 that

lag; ap as, . - 1= [ag; ay, dp, a3, - - -y 8y1)
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Example 12.15. The continued fraction [2;3]=(1+ V3)/2 is purely periodic,
whereas [2;2,4] = +/6 is not. -

The next definition and theorem describe those quadratic irrationals with purely
periodic simple continued fractions.

Definition. A quadratic irrational @ is called reduced if & > 1and —1 < ¢’ < 0, where
o' is the conjugate of «.

Theorem 12,23, The simple continued fraction of the quadratic irrational e is purely
periodic if and only if o is reduced. Further, if « is reduced and & = [ag; a, ag, . . ., @, )
then the continued fraction of —1/a"is (g,5a,_;, ..., agh

Proof.  First, assume that « is a reduced quadratic irrational. Recall from Theorem 12.18
that the partial fractions of the simple continued fraction of « are given by

ap =gl ey = 1o —ap),
fork=0,1,2,..., where ¢y = . We see that
Vg =ap —ay,
and by taking conjugates and using Lemma 12.4, we see that
(12.15) Ve = —a.

We can prove, by mathematical induction, that —1 < a}; <0fork=0,1,2,....First,
note that because oy = o is reduced, —1 < 9‘6 < (), Now, assume that —1 < a;c < (0. Then,
because q; = 1fork =0,1,2,. .. (note that ay = 1 because & > 1), we see from (12.15)
that

ey, <1,

sothat —1 < ey | < 0. Hence, ~1 <o <O0fork=0,1,2,....

Next, note that from (12.15) we have

o =ap+ ey,
and because —1 < Ot;’c < {, it follows that
—l<a+ Yoy, <0.
Consequently,
~1=1/op  <ap < —1fe
so that
a ={~1/er, }

Because a is a quadratic irrational, the proof of Lagrange’s theorem shows that there are
nonnegative integers / and j, { < j, such thato; = & ;» and hence with —1/u] = al/a;.
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Because a;_ = [—1/ejl and a;_; = [—l/a;.], we see that a;_|= a1 Furthermore,
becat_lse‘a,-,l = -1 +1/e; and @; y=aj 1+ ey, we also see that e =01
Continuing this argument, we s¢e thate;_p =2, ¥j—3= T and, finally, that
o =« j_1. Because
og=c = lag;dg, - . ., Tj—i-1s O’j—l}
= [GO; [2 TR ,aj-,'_.b ao]
R

= [{10; (2PN aj_i,l],

we see that the simple continued fraction of & is purely periodic.

To prove the converse, assume that o is a quadratic irrational with a purely periodic
continued fraction e = [ag; @1, 92, < - +» aih Because ¢ = [ag; ayuag. - > i o}, Theorem
12.11 tells that

opy + P
o= Py T Pk L

ogy -+ G-t
where pp.1/qr—1 and pi/q are the (k — Dth and kth convergents of the continued
fraction expansion of «. From (12.16), we see that

(12.16)

(12.17) gt + (g — P& — Pr1=0-
Now, let g be the quadratic irrational such that 8 = (@g @1, - - - » @1 ol that is, with
the period of the simple continued fraction for o reversed. Then B=lauar1-. >
ay, ag, B1, so that by Theorem 12.11, it follows that
_ By + P

B -+ i
where p}_,/q;,_; and p /g, ate the (k — th and kth convergents of the continued
{fraction expansion of 8. Note, however, from Exercise 10 of Section 12.2, that

(12.18) B

P/ Pre1 = 153 @15 - - - > 01, G0l = pi/a;
and
Qe Q-1 = a5 Gj—1, - - 102, 0] = Pr_ /1

Because p,_,/q;_, and P,/ g}, are convergents, we know that they are in lowest terms.
Also, py/pi..1 and gp/qy— are in lowest terms, because Theorem 12.12 tells us that

Prdi—1— Pr—19k = (—1)*~L, Hence,
Pp= P i = Pi-t
and
Poi =Gt Gt =9k-1
Inserting these values into (12.18), we see that

_ Bpr T+ g
Bry—1+ -1
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12.4 Periodic Continued Fractions 501

Therefore, we know that
Pr 1B+ (@t — PP — g =0
This imples that
(12.19) qx(=1/B) + (qe_y = PO(=1/B) ~ Py =0,
By (12.17) and (12.19), we see that the two roots of the quadratic equation

@GxXE+ (g — PRX — Pr_ =0

are o and —1/B, so that by the quadratic equation, we have o’ = —1/8. Because
B=lay,a,_1,...,ayapl, we see that 8 > 1, so that —1 < &' = —1/8 < 0. Hence, o
is a reduced quadratic irrational.
Furthermore, note that because 8 = —1/¢/, it follows that
~1/a'={a,,;a,,_1,. vy ﬂo]. =

We now find the form of the periodic simple continued fraction of \/ﬁ, where D
is a positive integer that is not a perfect square. Although +/D is not reduced, because
its conjugate, —+/D, is not between —1 and 0, the quadratic irrational [\/m ++/Dis
reduced because its conjugate, [@j — «/B, does lie between —1and 0. Therefore, from
Theorem 12.23, we know that the continued fraction of [Jm +/Dis purely periodic.
Because the initial partial quotient of the simple continued fraction of [«/l—)] ++/Dis

[[vD] + vD] =2[v/D} = 2aq, where ay = [v/D], we can write
[‘/5} ++/D= [2ap;ay,ay, ..., 4,]

=[ay;ay, a3, ..., a4, 2ay, a5, .. ., a4,

Subtracting ay = +/D from both sides of this equality, we find that

VD=EHU;(11,G’2,. .. ,2(!0,(11,&2,. . .2(10,. . ]

={agiay as, ..., aq,, 26,

To obtain even more information about the partial quotients of the continued fraction
of +/ D, we note that from Theorem 12.23, the simple continued fraction expansion of

—1/([+/D] = +/D) can be obtained from that for [v'D] + /D by reversing the period,
so that

{(~D ~[vVD) =lasa, 1. .., a5 2ag)

But also note that

~D— [«/E] =[0;ap,a;,...,aq,,2a),
so that by taking reciprocals, we find that

(VD - [VD)) =lay; az . .., o, 2aq).
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Therefore, when we equate these two expressions for the simple continued fraction of

1/{~/D — [/D}), we obtain

A= Quy @y = A5+ -2 By = AP

so that the periodic part of the continued fraction for /D is symmetric from the first to
the penultimate term.

In conclusion, we see that the simple continued fraction of +/ D has the form

v D= [ao; Ay, Ay, . - 53, 01 2(1’0}.

We illustrate this with some examples.

Example 12.16. Note that
V23={41,3,1,8},
V31=15,1,1,3,5,3,1,1,10],
Ja6=16:1,2,1,1,2,6,2,1,1,2,1,12],
JI6=18:1,2,1,1,5.4,5,1,1,2, 1,16,

and

V97 =19:1,5,1,1,1,1,1,1,5,1,18],

where each continued fraction has a pre-period of length 1, and a period ending with
twice the first partial quotient, which is symmetric from the first to the next-to-the-last
term. <

The simple continued fraction expansions of /d for positive integers d such that d
is not a perfect square and d < 100 can be found in Table 5 of Appendix D.

12.4 Exercises

1. Find the simple continued fractions of each of the following numbers.

&) /7 ¢) v23 e) /39
b) V11 d) V47 £) /94
2. Find the simple continued fractions of each of the following numbers.
ay+/101 c) 4/ 107 e) +/203
b) /103 d) +/201 ) 4/209

3, Find the simple continued fractions of each of the following numbers.

a)1++2 b) (2+J§)/3 o) (5rﬁ)/4

4. Find the simple continued fractions of each of the following numbers.

2) (1 + ﬁ)/z b) (14+J§7)/3 o) (13 -V2)/1
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- Find the quadratic irrational with each of the following simple continued fraction expan-
sions,
2)[2;1,5] b [2;1,5] o) [%1,3]

+ Find the quadratic irrational with each of the following simple continued fraction expan-
sions.
a) [1;2.3] b)[1;2,3] ) [1;2,3]

. Find the quadratic irrational with each of the following simple continued fraction expan-
sions.
a) [3; 6] b) [4;8] ¢} [5;10] d)[6;12]

. &) Let d be a positive integer. Show that the simple continued fraction of ~d2 - 1 is

[d;2d].
b} Use part (a) to find the simple continued fractions of +/101, +/290, and +/2210.

. Let d bs an integer, d > 2.

a) Show that the simple continued fraction of +/d? — 1is [d — 1;1,2d — 2],
b) Show that the simple continued fraction of +/d? — d is [d — 1; 2,2d -2}

¢) Use parts (a) and (b) to find the simple continued fractions of +/99, +/110, +/272, and
/600,

a) Show that if d is an integer, d > 3, then the simple continued fraction of ~/d2 — 2 is
d—-%11,d-2,1,2d - 2).

b) Shomt if d is a positive integer, then the simple continued fraction of +vd2 + 2 is
fd; d, 24}

¢} Find the simple continued fraction expansions of +/47, +/51, and /287,

Let & be an odd positive integer.

a) Show that the simple continued fraction of +/d2 + 4 is Ld;
d—-10/2,1,1,(d — 1)}/ 2,2d),ifd > 1.

b) Show that the simple continued fraction of vd? —4 is [d — 1; 1, (d — 3)/2, 2,
(d—~3)]2,1,2d —2)ifd > 3.

Show that the simple continued fraction of +/d, where d is a positive integer, has period
length one if and only if d == a2 + 1, where ¢ is a nonegative integer,

Show that the simple continued fraction of +/d, where d is a positive integer, has period
length two if and only if d = a® + b, where a and b are integers, & > 1, and b|2a.

Prove that if @ = (a; + b1v/d)/cy and oy = (@y + byv/d)/c; are quadratic irrationals,
then the following hold.

a) (o) + o) =af +ay

b} (g — o) =) —

) (@) =) - ay
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504 Decimal Fractions and Continued Fractions

15. Which of the following quadratic irrationals have purely periodic continued fractions?

a) 1+ /5 o) 4417 e} 3+ +/23)/2
)2+ +/3 d) (11— +/10)/9 ) (17 + /188)/3

16. Suppose that o = (a + ~/B)/c, where a, b, and ¢ are integers, b > 0, and b is not a
perfect square. Show that o« is a reduced quadratic irratjonal if and only if0<a<+b

and«/l?—-a<c<~f5+a<2«/l;.

17. Show that if @ is a reduced quadratic irrational, then —1/c is also a reduced quadratic
irrational.

= 18. Let k be a positive integer. Show that there are not infinitely many positive integers
D, such that the simple continued fraction expansion of D has a period of length
k. (Hint: Let ay =2, a, =5, and for k = 3, let a; = 2a3_1 + 2. Show that if I =

(ta, + D)2 4- 2ta,_, + 1, where ¢ is a nonnegative integer, then +/ D has a period of
length £ + 1.}

% 19, Let k be a positive integer. Let Dy = (3* -+ 1)? 4 3. Show that the simple continued
fraction of /Dy, has a period of length 6k.

12.4 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Mapte or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find the simple continued fraction of /100,007, +/1,000,007, and +/ 10,000,007.

2. Find the smallest positive integer D such that the length of the period of the simple
continued fraction of /D is 10, 100, 1000, and 10,000.

3. Find the length of the largest period of the simple continued fraction of /D, where D is
a positive integer less than 1003, less than 10,000, and less than 100,000. Can you make
any conjectures?

4. Look for patterns in the continued fractions of /D for many different vaiues of D,

Programming Projects
Write programs in Maple, Mathematica, or a language of your choice to do the following.

% 1, Find the quadratic irrational that is the value of a periodic simple continned fraction.

2. Find the periodic simple continued fraction expansion of a quadratic irrational.

12.5 Factoring Using Continued Fractions

We can factor the positive integer n if we can find positive integers x and y such that
x? —y*=nandx -y # . Thisis the basis of the Fermat factorization method discussed
in Section 3.6. However, it is possible to factor # if we can find positive integers x and
y that satisfy the weaker condition

(12.20% xt= y2 (modn), O0<y<x<nh, and x -+ y#n.
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12.5 Factoring Using Continued Fractions 505

To see this, note that if (12,20) holds, then n divides x2 — y2 = (x + yHx — y), and n
divides neither x — y nor x + y. It follows that (1, x — y) and (n, x + y) are divisors
of n that do not equal 1 or n. We can find these divisors rapidly using the Euclidean
algorithm,

Example 12.17. Note that 29% — 17% == 841 — 289 = 552 = 0 (mod 69). Because
200 — 1P = (29— 1729+ 1) =0 {mod 69), both (29 — 17,69 = (12, 69) and
(29 + 17,69) = {46, 69) are divisors of 69 not equal to either 1 or 69; using the Euclidean
algorithm, we find that these factors are (12, 69) = 3 and (46, 69) = 23, -«

The continued fraction expansion of ./n can be used to find solutions of the con-
gruence x* = y? (mod ). The following theorem is the basis for this.

Theorem 12,24, Let n be a positive integer that is not a perfect square. Define o =
(B + )/ Qg ay =Togl, Pryy =y O — Py, and Qppy = (n — P, )/ Oy, for k =
0,1,2,..., where ¢y = /. Furthermore, let p;/q; denote the kth convergent of the
simple continued fraction expansion of ./#. Then, ‘

P~ ngt = (=110,

The proof of Theorem 12.24 depends on the following nseful lemma.

Lemma 12.6. Letr + s./n =t + u/n, where r, s, f, and i are rational numbers and
n is a positive integer that is not a perfect square, Then, r = ¢ and s = u,

Proof. Becauser + s /n =1 + u/n, we see that if s # u, then
r—t
V=

H—8

Because (r —2)/(i — ) is rational and ./n is irrational, it follows that s = u, and
consequently, that r =¢. | |

We can now prove Theorem 12,24,
Proof. Because \/n =ag = [ag;ay,ay, . . ., @, ox41), Theorem 12.9 tells us that
= ZtiPk + Pr—t
19k F G
Because a1 = (Ppys + +/1)/ Opy1, we have
(Pegr + /1) pi + Q1 Peey

M= .
{(Pe1+ i) @ + Oy 10k

Therefore, we see that

nqy + (Prgid + Qupr9e-Dvn = (P 1px + QupiPr_t) + pevn.

By Lemma 12.6, we see that ngy = Py pp + Qry 1 21 and Ppiqy + Qretgi—) = Pre
When we multiply the first of these two equations by g; and the second by py, subtract

STUDENTS-HUB.com

Uploaded By: anonymous



506

Decimal Fractions and Continued Fractions

the first from the second, and then simplify, we obtain

2 —
pi— ndp = (Pudic 1 — Pi-190 Qv = (G iy 7SN
where we have used Theorem 12.10 to complete the proof. Ll

We now outline the technique known as the contimeed fraction algorithm for fac-
toring an integer 72, which was proposed by D. H. Lehmer and R. E. Powers in 1931,
and forther developed by J. Brilthart and M. A. Morrison in 1975 (see [LePo3 1} and
[MoBr75] for details). Suppose that the terms py, Gk Oy a, and o, have their usual
meanings in the computation of the continued fraction expansion of /n. By Theorem
12.24, it follows that for every nonnegative integer k,

p? = (—D¥"1 0y (mod n),

where p;, and Q. are as defined in the statement of the theorem. Now, suppose that k
is odd and that Oy, is a square, that is, Q1= 52, where s is a positive integer. Then
p% = 52 (mod #), and we may be able to use this congruence of two squares modulo
n to find factors of n. Summarizing, to factor n we carry out the algorithm described
in Theorem 12.10 to find the continued fraction expansion of /1. We look for squares
among the terms with even indices in the sequence {Q.}. Each such occurrence may lead
to a nonproper factor of n (or may just lead to the factorization # = 1 - 1), We illustrate
this technigue with several examples.

Example 12.18. We can factor 1037 using the continued fraction algorithm. Take
o =+/1037 = (0 ++/1037)/1with Py =0 and Qg = 1, and generate the terms Py, Oy, e,
and a;. We look for squares among the terms with even indices in the sequence {Qy}.
We find that Oy = 13 and Q, =49. Because 49 = 72 is a square, and the index of
0, is even, we examine the congruence p? = (—D?Q, (mod 1037). Computing the
terms of the sequence {p;}, we find that py = 126, This gives the congruence 1292 =49
(mod 1037). Hence, 1292 — 72 = (129 — 7)(129 + 7) = 0 (mod 1037). This produces
the factors (129 — 7, 1037) = (122, 1037) = 61and (129 + 7,1037) = (136,1037y = 17
of 1037. -«

Example 12.19. We can use the continued fraction algorithm to find factors of
1,000,009 (we follow computations of [Ri85]). We have =9, @z = 445, Q4= 873,
and Q4 = 81. Because 31 = 92 js a square, we examine the congruence p% =(—1*0,
(mod 1,000,009). However, p3 = 2,000,009 = —9 {med 1,000,009), so that p; + 9 is
divisible by 1,000,009. 1t follows that we do not get any proper factors of 1,000,009
from this.

We continue until we reach another square in the sequence {Q i} with & even. This
happens when k = 18 with Qg = 16. Calculating p;7 gives p1z = 494,881
From fhe congruence p2, = (—~D!3Q;5 (med 1,000,009), we have 494,881% =
42 (mod 1,000,009). It foltows that (494881 — 4, 1000009) = (494877, 1000009) =293
and (494881 + 4, 1000009) = (494885, 1000009} = 3413 are factors of 1,000,009. <
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12.5 Factoring Using Continued Fractions 507

More powerful techniques based on continued fraction expansions are known. These

are described in [Di84], [Gu75], and [WaSm87]. We describe one such generalization in
the exercises.

12.5 Exercises

7

. Find factors of 119 using the congruence 19?2 = 22 (mod 119).

. Factor 1537 using the continued fraction algorithm.

. Factor the integer 13,290,059 using the continued fraction algorithm. (Hint: Use a com-

puter program fo generate the integers ;. for the continued fraction for ./13,290,059.
You will need more than 50 terms.}

. Letn be a positive integer and let py, ps,. .., and p,, be primes. Suppose that there exist

integers xy, X3, ..., X, such that
xf = (=1DfpPt. .. pimigmod n),

Xy = (=1)*p( - pir(mod n),

X = (D pfY - plr(mod ),

~

where
801+€02+""f“€0r:2€0
ey et tey =2e

€n1t et t e, =2e,.

Show that x* = y* (mod n), where x = x;x; - - x, and y = (= Dfap{l . .. per. Explain
how to factor n using this information. Here the primes py, .. ., p,, together with —1,
are called the factor base,

- Show that 143 can be factored by setting x; = 17 and x; = 19, taking the factor base to

be (3, 5.

fe s . ki;
. Letn beapositive integerand let py, ps, . . ., p, be primes. Suppose that O, = ;.:1 pjf

fori=1,...,t, where the integers Q; have their usual meaning with respect to the

continued fraction of /4. Explain how n can be factored if Z;=l k; is even and )::= ki
isevenfor j =1,2,...,r.

Show that 12,007,001 can be factored using the continued fraction expansions of
V12,007,001 with factor base —1,2,31,71,97. (Hint: Use the factorizations Q4 =
2297, Qp=2%-71, Qu =2, @3, =31.97, and O, =31-71, and show that
PoP1iPzrPazban = 9.815,310.)

. Factor 197,209 using the continued fraction expansion of /197,209 and factor base

2,3,5.
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12.5 Computational and Programming Exercises

Computations and Explorations

Using a computational program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Use the continued fraction algorithm to factor F, = 27 4 1.

% 2. Use the continued fraction algorithm to find the prime factorization of Ny, where N;is
the jth term of the sequence defined by N; =2, Nyyy = pipz--- P+ 1, where p; is
the largest prime factor of N;. (For example, N, = 3, Ny =17, Ny =43, N5 = 1807, and
S0 On.}

Programming Projects

Write programs using Maple or Mathematica, or alanguage of your choice to do the following
things.

# 1. Factor positive integers using the continued fraction algorithmn.

%% 2. Factor positive integers using factor bases and continued fraction expansions (see Exer-
cise 6).
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Some Nonlinear
Diophantine Equations

Introduction

An equation with the restriction that only integer (or sometimes rational) solutions
are sought is called a diophantine equation. We have already studied a simple type of
diophantine equation, namely linear diophantine equations (Section 3.6). We learned
how all solutions in integers of a linear diophantine equation can be found. But what
about nonlinear diophantine equations?

It is a deep theorem (beyond the scope of this text) that there is no general method
for solving all nonlinear diophantine equations. However, many results have been es-
tablished about particular nonlinear diophantine equations, as well as certain families
of nonlinear diophantine equations. This chapter addresses several types of nonlinear
diophantine equations. First, we will consider the diophantine equation x2 + y? = 72,
satisfied by the lengths of the sides of a right triangle. We will be able to provide an
explicit formula for alf of its solutions in integers.

After studying the diophantine equation x2 + y2 = z2, we will consider the famous
diophantine equation x" + z" = 2", where n is an integer greater than 2. That is, we will
be interested in whether the sum of the nth powers of two integers can also be the nth
power of an integer, where none of the three integers equals 0, Fermat stated that there
are no solutions of this diophantine equation when n > 2 (a statement known as Fermat’s
last theoremy), but for more than 350 years no one could find a proof. The first proof of
this theorem was discovered by Andrew Wiles in 1995, which ended one of the greatest
challenges of mathematics. The proof of Fermat's last theorem is far beyond the scope
of this book, but we will be able to provide a proof for the case when 1 = 4.

Next, we will consider the problem of representing integers as the sums of squares,
We will determine which integers can be written as the sum of two squares. Furthermore,
we will prove that every positive integer is the sum of four squares,

509
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13.1

Some Nonlinear Diophantine Equations

Finally, we will study the diophantine equation x% — dy* = 1, known as Pell’s
equation, We will show that the solutions of this equation can be found using the simple
continved fraction of +/d, providing another example of the usefulness of continued
fractions.

Pythagorean Triples

The Pythagorean theorem tells us that the sum of the squares of the iengths of the legs
of a right triangle equals the square of the length of the hypotenuse. Conversely, any
triangle for which the sum of the squares of the lengths of the two shortest sides equals
the square of the third side is a right triangle. Consequently, to find all right triangles
with integral side lengths, we need to find all triples of positive integers x, y, z satisfying
the diophantine equation

(13.1) Py =

Triples of positive integers satisfying this equation are called Pythagorean triples after
the ancient Greek mathematician Pythagoras.

Example 13,1, Thetriples3,4,5; 6,8, 10; and 5, 12, 13 are Pythagorean triples because
32+ 42 =52 6% + 8 = 10?2, and 5% + 122 = 13%, «

Unlike most nonlinear diophantine equations, it is possible to explicitly describe all
the integral solutions of (13.1). Before developing the result describing all Pythagorean
triples, we need a definition.

Definition. A Pythagorean triple x, y, z is called primitive if (x,y,2) =L

a’+ b =c?, where a, b, and ¢ are the lengths of the two legs and of the hypotenuse of a right triangle,
respectively. The Pythagoreans believed that the key to understanding the world lay with natural
numbers and form. Their central tenet was “Everything is Number.” Because of their fascination with
the natural numbers, the Pythagoreans made many discoveries in number theory. In particular, they
studied perfect mimbers and amicable numbers for the mystical properties they felt these numbers
possessed.

PYTHAGORAS (c. 572~¢. 500 5.C.E.) was born on the Greek island of Samos.
After extensive travels and studies, Pythagoras founded his famous scheol at
the Greek port of Crotona, in what is now southern Italy. Besides being an
academy devoted to the study of mathematics, philosophy, and science, the
school was the site of a brotherhood sharing secret rites. The Pythagoreans, as
the members of this brotherhood were called, published nothing and ascribed all
their discoveries to Pythagoras himself. However, it is believed that Pythagoras
himself discovered what is now called the Pythagorean theorem, namely that
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13.1 Pythagorean Triples 511

Example 13.2.  The Pythagorean triples 3,4, Sand 5, 12, 13 are primitive, whereas the
Pythagorean triple 6, 8, 10 is not. «

Letx, y, z be a Pythagorean triple with (x, v, z) = d. Then there are integers x,, ¥1, 2;
withx =dx|, y=dy,,z =dz,and (x}, y,z) = L. Furthermore, because

A yl=g

we have
(/A + (3/dY = (z/d)?,
so that
Xpbyi =22

Hence, xy, y1, z; is & primitive Pythagorean triple, and the original triple x, y, z is simply
an integral multiple of this primitive Pythagorean triple.

Also note that any integral multiple of a primitive (or for that matter any)
Pythagorean triple is again a Pythagorean triple. If X1, ¥}, 21 is a primitive Pythagorean
triple, then we have

xf + yf = Zf,
and hence,
(dx)? + (dy* = (dzp)?,
so that dx;, dyy, dzy, is a Pythagorean triple.

Consequently, all Pythagorean triples can be found by forming integral multiples of
primitive Pythagorean triples. To find all primitive Pythagorean triples, we need some
lemmas. The first lemma tells us that any two integers of a primitive Pythagorean triple
are relatively prime.

Lemma 13.1. I x,y,z is a primitive Pythagorean triple, then (x, y) = (x,2) =
(o)=L

Froof. Suppose that x, y, z is a primitive Pythagorean triple and (x, ¥} = L Then, there
is a prime p such that p { (x, ), so that p | x and p | y. Because plxand p|y, weknow
that p | (x% + y?%) = z2. Because p | 2%, we can conclude that p | z. This is a contradiction,
because (x, y, z) = 1. Therefore, (x, ¥) = 1. In a similar manner we can easily show that
(x,zy=(y,z) =1L n

Next, we establish a lemma about the parity of the integers of a primitive
Pythagorean triple,

Lemma 13.2. I x, y, zis a primitive Pythagorean triple, then x is even and yisoddor
x is odd and y is even.
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Proof. et x,y,z be a primitive Pythagorean triple. By Lemma 13.1, we know that
{x,¥) = 1, so that x and y cannot both be even. Also x and y cannot both be odd. If x
and y were both odd, then we would have

x2=y?=1(mod 4),
so that
22 =x%+y? =2 (mod 4).
This is impossible. Therefore, x is even and y is odd, or vice versa. ]

The final lemma that we need is a consequence of the fundamental theorem of
arithmetic. Tt tells us that two relatively prime integers that multiply together to give
a square must both be squares.

Lemma 13.3. If r, s, and ¢ are positive integers such that {r, s) = 1 and rs = 12, then
there are integers s and n such that 7 = m? and s =n’.

Proof Ifr = lors = 1, then the lemma is obviously true, so we may suppose thatr > 1
and s > 1. Let the prime-power factorizations of r, s, and f be

ap di

. a
PEpPUPy Py
72 R R .
S = Pyys Puya vv’
and

b b b
! :qllq2 - qkk'
Because (r, ) = 1, the primes occurring in the factorizations of » and s are distinct.
Because rs = 12, we have
ay _a; ay Sl Guy? a, _ 2by 2h 20y

PL Py Py Pusd P P = Gy
From the fundamental theorem of arithmetic, the prime-powers occurring on the two
sides of the above equation are the same. Hence, each p; must be equal to ¢; for some
j with matching exponents, so that a; = 2b;. Consequently, every exponent g; is even,
and therefore g;/2 is an integer. We see that r = m? and s = n%, where m and n are the
integers

a2 aaf? a,/2
= pl p,z P “11/
and
I ST L Y a,/2
n=p. Pyy2 M B

We can now prove the desired result that describes all primitive Pythagorean triples.

Theorem 13.1. The positive integers x, y, z form a primitive Pythagorean triple, with
y even, if and only if there are relatively prime positive integers m and 1, m > n, with
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m odd and n even or m even and n odd, such that

- x=m?—n?
¥ = 2mn,
z= m2 + nz.

Proof.  Letx, y,z beaprimitive Pythagorean triple. We will show that there are integers
m and n as specified in the statement of the theorem. Lemma 13.2 tells us that x is odd
and y is even, or vice versa. Because we have assumed that ¥ is even, x and z are both
odd. Hence, z + x and z — x are both even, so that there are positive integers r and s
withr = (z + x)/2 and 5 = (z — x) /2.

Because x? + y? = 2%, we have y? = 22 — x2 = (z + x)(z — x). Hence,

B~ ()

We note that (r, s} = 1. To see this, let (r, s) = d. Because d |randd|s,d|(r+s5s)=z2
and d | (r — s) = x. This means that d | (x,z) = 1, so that d = |.

Using Lemma 13.3, we see that there are positive integers m and n such that » = m?
and s = n2, Writing x, v, and z in terms of m and n, we have

X=r—s=m*— 112,

¥y = vdrs = vV4m?n? = 2mn,

z=r +s:mz+nz.
We also see that (m, n) = 1, because any common divisor of » and # must also divide
x=m?—n%y=2mn,and 7 = m? + #?, and we know that {x,y,z) = 1. We also note
that m and n cannot both be odd, for if they were, then x, y, and z would all be even,
contradicting the condition (x, ¥, z) = 1. Because {m,n) =1and m and n cannot both
be odd, we see that m is even and 7 is odd, or vice versa. This shows that every primitive
Pythagorean triple has the appropriate form.

To complete the proof, we must show that every triple

x=ml— nz,
¥ =2mn,
z=m? + 122,

where m and n are positive integers m > n, (i, n) = 1, and m # n (mod 2), forms a
primitive Pythagorean triple. First note that m? — n?, 2mn, m? 4 n? forms a Pythagorean
triple since

x4 y? = (m? — 4+ 2mn)>
=(m?*— 21:12112 + 114) + 4mZn?
=m* -+ 2m*n? +nt
=(m®+ r12)2

= 22_
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To see that this triple forms a primitive Pythagorean triple, we must show that these
values of x, y, and z arc mutnally relatively prime. Assume for the sake of contradiction
that (x, y, z) = d > 1. Then, there is a prime p | (x, y, z). We note that p 7 2, because
x is odd (because x = m? — nz, where m? and n? have opposite parity), Also, note that
because p[xandplz, pl (2 +x)= 2mand pl(z —x) = 1%, Hence, p | m and p | n,
contradicting the fact that (n, n) = 1. Therefore, (x,y,2) = 1, and x, y, 2 is a primitive
Pythagorean triple, concluding the proof.

The following example illustrates the use of Theorem 13.1 to produce a Pythagorean

triple.

Example 13,3, Letm=5andn=2,sothat im,n)=1,m # n (mod 2), and m > n.
Hence, Theorem 13.1 tells us that

x=n12—n2=

y=2mn=2-5-2=20,

52 22 21,

z=mz+n2=52+22=29

is a primitive Pythagorean triple.

We list the primitive Pythagorean triple generated using Theorem 13.1 withm <6

in Table 13.1.

mo|on ! x=mton? | y=2mn | z=m+ n?
2 1 3 4 5
3 2 5 i2 13
4 1 15 8 17
4 3 7 24 25
3 2 21 20 29
5 4 9 40 41
6 1 35 12 37
6 5 11 60 61

13.1 Exercises

Table 13.1 Some primitive Pythagorean triples.

1. a) Find all primitive Pythagorean triples x, y, z with z < 40.
b) Find all Pythagorean triples x, y, z with z < 40.

2. Show that if x, v, z is a primitive Pythagorean triple, then either x or y is divisible by 3.

3. Show that if x, y, z is a primitive Pythagorean triple, then cxabtly one of x,y, and z is

divisible by 5.
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13.1 Pythagorean Triples 515

4. Show that if x, y, z is a primitive Pythagorean triple, then at least one of x,y,and z is
divisible by 4.

5. Show that every positive integer greater than 2 is part of at least one Pythagorean triple.
6. Letx;=3,y,=4,z;=5,and let x,, ,, Ty, forn=2,3,4,. .., bedefined recursively by
) Xpp1=30, + 2z, + 1,
Ynt1=3x, + 2z, + 2,
Zppr = 4x, + 3z, + 2.
Show that x,,, ¥, z, is a Pythagorean triple,

7. Show that if x, y, z is a Pythagorean triple with y=ux+1, then x, v, z is one of the
Pythagorean triples given in Exercise 6.

8

9. Find all solutions in positive integers of the diophantine equation x? + 3y2 = 72,

Find all solutions in positive integers of the diophantine equation x2 -- 2y% =72

* 10. Find all solutions in positive integers of the diophantine equation w? + x2 4 y? = 72,
11. Find all Pythagorean triples containing the integer 12.
12. Find formulas for the integers of all Pythagorean triples x, y, z with z = y + 1.
13. Find formulas for the integers of all Pythagorean triples x, y, z with z = y + 2.

* 14, Show that the number of Pythagorean triples x, y, z (with x2 -+ ¥% = z%) with a fixed
integer x is (r(x2) — 1)/2 if x is odd, and (t(x?/4) — 1)/2 if x is even.

# 15. Find all solutions in positive integers of the diophantine equation 2 4+ py? = 722, where
P is a prime.

16. Find all solutions in positive integers of the diophantine equation 1/x2 4- 1/ ¥ =1/7"%

17. Show that f, f,13, 2fni1fys2, and fr:2+I + f"2+2 form a Pythagorean triple, where f;
denotes the kth Fibonacci number.

I8, Find the length of the sides of all right triangles, where the sides have integer lengths
and the area equals the perimeter.

13.1 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find as many Pythagorean triples x, ¥, Z as you ean, where cach of x, y, and z is 1 less
than the square of an integer. Do you think that there are infinitely many such triples?
Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the following.
1. Find all Pythagorean triples x, y, z with x, ¥, and z less than a given bound.

2. Find all Pythagorean triples containing a given integer,
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Fermat’s Last Theorem

In the previous section, we showed that the diophantine equation x2+y2 =277 has
infinitely many solutions in nonzero integers x, y, z. What happens when we replace
the exponent 2 in this equation with an integer greater than 27 Next to the discussion of
the equation x? + y2 = z? in his copy of the works of Diophantus, Fermat wrote in the
margin:

“However, it is impossible to write a cube as the sum of two cubes, a fourth power
as the sum of two fourth powers and in general any power as the sum of two similar
powers. For this I have discovered a truly wonderful proof, but the margin is too small
to contain it

Fermat did have a proof of this theorem for the special case of n = 4. We will present
a proof for this case, using his basic methods, later in this section. Although we will
never know for certain whether Fermat had a proof of this result for all integers n > 2,
mathematicians believe it is extremely unlikely that he did. By 1800, all other statements
that he made in the margins of his copy of the works of Diophantus were resolved; some
were proved and some were shown to be false. Nevertheless, the following theorem: is
called Fermat’s last theorent.

Theorem 13.2. Fermat’s Last Theorem. The diophantine equation
d.rl'l + yll — z.'l
has no solutions in nonzero integers x, y, and z when n is an integer withn > 3.

Note that if we could show that the diophantine equation

has no solution in nonzero integers X, y, and z whenever p is an odd prime, we would
know that Fermat's last theorem is true (see Exercise 2 at the end of this section).

The quest for a proof of Fermat’s last theorem challenged mathematicians for more
than 350 years. Many great mathematicians have worked on this problem without ul-
timate success. However, a long series of interesting partial results was established,
and new areas of number theory were born as mathematicians attempted to solve this
problem. The first major development was Euler’s proof in 1770 of Fermat’s last theo-
rem for the case n = 3. (That is, he showed that there are no solutions of the equa-
tion x3 + y® = 23 in nonzero integers.) Euler's proof contained an important error, but
Legendre managed to fill in the gap soon afterward.

In 1805, French mathematician Sophie Germain proved a general result about
Fermat’s last theorem, as opposed to a proof for a particular vatue of the exponent 7.
She showed that if p and 2p -+ 1 are both primes, then x? 4+ y? = z” has no solutions in
integers x, v, and z, with xyz # 0 when p } xyz. As a special case, she showed that if
x5 4 y3 = 2%, then one of the integers x, y, and z must be divisible by 5. In 1823, both
Dirichlet and Legendre, in independent work, completed the proof of the case when
n = 5, using the method of infinite descent used by Fermat to prove the n = 4 case {and
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13.2 Fermat’s Last Theorem 517

which we will demonstrate later in this section). Fourteen years later, the case of n =7
was settled by Lamé, also using a proof by infinite descent.

In the mid-nineteenth century, mathematicians took some new approaches in at-

ternpts to prove Fermat’s last theorem for all exponents ., The greatest success in this

@ direction was made by the German mathematician Ernst Kummer. He realized that a
potentially promising approach, based on the assumption that unique factorization into
primes held for certain sets of algebraic integers, was doomed to failure. To overcome this

SOPHIE GERMAIN (1776-1831) was born in Paris and educated at home, us-
ing her father’s extensive library as a resource. She decided as a young teenager
to study mathematics when she discovered that Archimedes was murdered by
the Romans. She started by reading the works of Buler and Newton. Although
Germain did not attend classes, she learned from university course notes that she
managed fo obtain. After reading the notes from Lagrange’s lectures, she sent
him a letter under the pseudonym M. Leblanc. Lagrange, impressed with the
insights displayed in this letter, decided to meet M. Leblanc; he was surprised
to find that its author was a young woman. Germain corresponded under the psendonym M. LeBlanc
with many mathematicians, inchuding Legrende who included many of her discoveries in his book
Theorie des Nombres. She also made important contributions to the mathematical theories of elasticity
and acoustics. Gauss was impressed by her work and recommended that she receive & doctorate from
the University of Géttingen. Unfortunately, she died Just before she was to receive this degree.

ERNST EDUARD KUMMER (1810-1893) was born in Sorau, Prussia (now
Germany). His father, a physician, died in 1813. Kummer received private
tatoring before entering the Gymnasium in Sorau in 1819, In 1828, he entered
the University of Halle to study theology; his training for philosophy included
the study of mathematics. Inspired by his mathematics instructor I, F, Scherk,
he switched to mathematics as his major field of study. Kummer was awarded
a doctorate from the University of Halle in 1831, and began teaching at the
Gymnasium in Sorau, his old school, that same year. The following year he took
a similar position teaching at the Gymnasium in Liegnitz (now the Polish city of Legnica), holding
the post for ten years. His research on topics in function theory, including extensions of Gauss’s work
on hypergeometric series, atiracted the attention of leading German mathematicians. They worked to
find hirm a university position.

In 1842, Kummer was appointed to a position at the University of Breslau (now Wroclaw, Poland)
and began working on number theory. In 1843, in an attempt to prove Fermat’s last theorem, he
introduced the concept of “ideal numbers.” Although this did not lead to a proof of Fermat’s last
theorem, Kummer's ideas led to the development of new areas of abstract algebra and the new subject
of algebraic number theory. In 1855, he moved to the University of Berlin where he remained until
his retirement in 1883,

Kummer was a popular insiructor. He was noted for the clarity of his lectures as well as his sense
of humor and concern for his students. He was married twice. His first wife, the cousin of Dirichlet’s
wife, died in 1848, eight years after she and Kummer were married.
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difficulty, Kummer developed a theory that supported unique factorization into primes.
His basic idea was the concept of “ideal numbers.” Using this concept, Kummer could
prove Fermat’s last theorem for a large class of primes called regular primes. Although
there are primes, and perhaps infinitely many primes, that are irregular, Kummer’s work
showed that Fermat’s Jast theorem was true for many values of #. In particular, Kum-
mer’s work showed that Fermat's last theorem was true for all prime exponents less than
100 other than 37, 59, and 67, since these arc the only primes less than 100 that are ir-
regular, Kummer’s introduction of “ideal numbers” gave birth to the subject of algebraic
number theory, which blossomed into a major field of study, and to the part of abstract
algebra known as ring theory. The exponents Kummer’s work did not address—37, 5%,
67, and other relatively irregular primes—fell to a variety of more powerful techniques
in subsequent years.

Tn 1986, German mathematician Gerhard Frey made the first connection of Fermat’s
last theorem to the subject of elliptic curves. His work surprised mathematicians by
linking two seemingly unrelated areas. Frey also managed to show (in 1983) that x"+
y" = z" can have only a finite number of solutions in nonzero integers. Of course, if this
finite number was shown to be zero for n >3, Fermat’s last theorem would be proved.

Computers were used to run several different numerical tests that could verify that
Fermat's last theorem was true for particular values of n. By 1977, Sam Wagstaff used
such tests (and several years of computer time) to verify that Fermat’s last theorem held
for all exponents # with # < 125,000. By 1993, such tests had been used to verify that
Fermat’s last theorem was true for all exponents with n < 4 - 105, However, at that
time, no proof of Fermat’s last theorem seemed to he in sight.

@C Then, in 1993, Andrew Wiles, 2 professor at Princeton University, shocked the
mathematical world when he showed that he could prove Fermat’s last theorem. He did
this in a series of lectures in Cambridge, England. He had given no hint that the subject

of his lectures was a proof of this notorious theorem. The proof he outlined was the
culmination of seven years of solitary work. It used a vast array of highly sophisticated

ANDREW WILES (b, 1953} became interested in Fermat's last theorem at
the age of 10 when, during a visit to his local library, he found a book stating
the problem. He was struck that though it looked simple, none of the great
imathematicians could solve it, and he knew that he would never let this problem
go. In 1971, Wiles entered Merton College, Oxford. He graduated with his B.A.
in 1974, and entered Clare College, Cambridge, where he pursued his doctorate,
working on the theory of elliptic curves under John Coates. He was a Research
Feliow at Clare College and & Benjamin Pierce Assistant Professor at Harvard
from 1977 unti! 1930. In 1981, he held a post at the Institute for Advanced Study in Princeton, and
in 1082 he was appeinted to a professorship at Princeton University. He was awarded a Guggenheim
Fellowship in 1985, and spent a year studying at the Institut des Hautes Erudes Scientifique and the
Ficole Normale Supérieure in Paris. Ironically, he did not realize that during his years of work in the
field of elliptic curves he was learning techniques that would someday help him solve the problem
that obsessed him.

-
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Wiles’s Seven-Year Qutest

In 1936, Wiles learned of work by Frey and Ribet that showed that Fermat's last theorem fol-
lows from a conjecture in the theory of elliptic curves, known as the Shimura-Taniyama con-
Jecture. Realizing that this led to a possible strategy for proving the theorem, he abandoned
his ongoing research and devoted himself entirely to working on Fermat's last theorem,

During the first few years of this work he talked to colleagues about his progress. How-
ever, he decided that talking to others generated too much interest and was too distracting.
During his seven years of concentrated, solitary work on Fermat’s last theorem he decided
that he only had time for “his problem" and his family, His best way to relax during time
away from his work was to spend time with his young children.

In 1993, Wiles revealed to several colleagues that he was close to a proof of Fermat’s
last theorem. After filling what he thought were the remainin g gaps, he presented an ouiline
of his proof at Cambridge. Although there had been false alarms in the past about promising
proofs of Fermat’s last theorem, mathematicians generally believed Wiles had a valid proef.
However, a subtle but serious error in reasoning was found when he wrote up his results
for publication. Wiles worked diligently, with the help of a former student, for more than a
year, almost giving up in frustration, before he found a way to fill the gap.

Wiles's success has brought him countless awards and accolades. It has also brought
him peace of mind. He has said that “having solved this problem there’s certainly a sense
of loss, but at the same time there is this tremendous sense of freedom. T was so obsessed
by this problem that for eight years I was thinking about it all the time —when I woke up in
the morning to when I went to sleep at night. That particular odyssey is now over. My mind
1s at rest.”

The Wolfskehl Prize

‘There was added incentive besides fame to prove Fermat’s last theorem. In 1908, the German
industrialist Paul Wolfskehl bequeathed a prize of 100,000 marks to the Gottingen Academy
of Sciences, to be awarded to the first person to publish a proof of Fermat’s last theorem.
Unfortunately, thousands of incorrect proofs were published it 4 vain attemnpt to win the
prize, with more than 1000 published, usually as privately printed pamphlets, between 1908
and 1912 alone. (Many people, often without serious mathematical training and sometimes
without a clear notion of what a correct proof is, attempt to solve famous problems such ¢
as this one even if no prize is available.) Even though Wiles's proof was acclaimed to be |
correct, it took two years for the Gttingen Academy of Sciences to award the Wolfskehl j
prize to Wiles; they wanted to be certain the proof was really correct.

Contrary fo rumors that the prize had been reduced by inflation to almost nothing,
maybe even a pfennig (a German penny), Wiles received approximately $50,600. The prize
of 160,000 marks, originally worth around $1,500,000, had been reduced to approximately
$500,000 after World War I by German hyperinflation, and the introduction of the deutsche
mark after World War II further reduced its value. Many people have speculated about
why Wolfskehl left such a large prize for a proof of Fermart’s last theorem. People with a
romantic slant enjoyed the rumor that, suicidal after being jilted by his true love, he had
regained his will to live when he found out about Fermat’s last theorem. However, more
realistic biographical research indicates that he donated the money to spite his wife, Marie,
whorm he was forced to marry by his family. He did not want his fortune going to her after
he died, so instead it went to the first person who could prove Fermat’s last theorem.
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methods related to the theory of elliptic curves. Knowledgeable mathematicians were
impressed with Wiles’s arguments. Word began to spread that Fermat’s last theorem had
finally been proved. However, when Wiles’s 200-page manuscript was studied carefully,
a serious problem was found. Although it appeared for a time that it might not be possible
to fill the gap in the proof, more than a year fater, Wiles (with the help of R. Taylor)
managed to fill in the remaining portions of the proof. In 1995, Wiles published his
revised proof of Fermat’s last theorem, now only 125 pages long. This version passed
careful review. Wiles’s 1995 proof marked the end of the more than 350-year search for
a proof of Fermat’s last theorem.

Wiles's proof of Fermat’s last theorem is one of those rare mathematical discoveries
covered by the popular media. An excellent NOVA episode about this discovery was
produced by PBS (information on this show can be found at the PBS Web site). Another
source of general information about the proof is Fermat’s Enigma: The Epic Quest to
Solve the World’s Greatest Mathematical Problem by Simon Singh ([S197)). A thorough
treatment of the proof, including the mathematics of elliptic curves used in it, can
be found in [CoSiSt97]. The original proof by Wiles was published in the Annals of
Mathematics in 1995 ([Wi93]).

Readers interested in learning more about the history of Fermat’s last theorem, and
how investigations relating to this conjecture led to the genesis of the theory of algebraic
pumbers, are encouraged to consult [Ed96], [Ri79], and [Va96].

The Proof forn = 4

The proof we will give for the case when 1 = 4 uses the method of infinite descent devised
by Fermat. This method is an offshoot of the well-ordering property, and shows that
a diophantine equation has no solutions by showing that for every solution there is a
“synaller” solution, contradicting the well-ordering property.

Using the method of infinite descent, we will show that the diophantine equation
Ayt = 72 has no solutions in nonzero integers x, ¥, and z. This is stronger than
showing Fermat’s last theorem is true for n = 4, because any oyt =2t = (@) gives

a solution of x* + y* = z2.

Theorem 13.3. The diophantine equation

o yt=g?

has no solutions in nonzero integers x, y, and 2.

Proof. Assume that this equation has a solution in nonzero integers x, ¥, and z. Because
we may replace any number of the variables with their negatives without changing the
validity of the equation, we may assume that x, y, and z are positive integers.

We may also suppose that (x, y) = 1. To see this, let (x,y) =d. Then x = dx; and

y = dyy, with (xg, y1) = 1, where x4 and y, are positive integers. Because w4yt = 22,
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we have

(dx)* + (dyp)* =22,

50 that

LY

d (xf + y;‘) =z2,
Hence, d*!z? and, by Exercise 43 of Section 3.5, we know that d? | z. Therefore,
z = d?z), where z; is a positive integer. Thus,
doxf + ¥ = (@2t = ',

so that '

Kyl =ah
This gives a solution of x* + y* = 22 in positive integers x = x1, y = y;, and z = z, with
(-xh }’1) =1L

Sosuppose that x = xg, y = ¥g, and z = z is asolution of x* + y* = 72, where Xgs Yoo
and zq are positive integers with (xg, yp) = 1. We will show that there is another solution
in positive integers x = x1, ¥ = yy, and z = z; with (xy, ;) = 1, such that 21 < Zp-

Because xg + yg = 23, we have
2,2 22 _ 2
()™ + (yg)" =25,

so that x5, y2, z, is a Pythagorean triple. Furthermore, we have (x2 vy =1 forif pis
a prime such that p [xg and p | yé, then p | xp and p | yg, contradicting the fact that
(xg, ¥o) = L. Hence, xg, yg, Zg is a primitive Pythagorean triple, and by Theorem 13.1,
we know that there are positive integers m and # with (m, n) = 1, m # n (mod 2), and

xg =m® - 112,
'y% = 2mn,
Zp= nm? + nz,

where we have interchanged xé and yg, if necessary, to make yg the even integer of this
part,

From the equation for xg, we see that

xg +n?=m?
Because (m,#) = 1, it follows that Xy, #, m is a primitive Pythagorean triple, m is odd,
and » is even. Again, using Theorem 13.1, we see that there are positive integers » and
s with (7, 5) = 1, ¥ # 5 (mod 2), and

.1’0 = ?’2 - S2,
n=72rs,
m= 1‘2 + 52.
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Because m is odd and (m,n) = 1, we know that {m, 2n) = 1. We note that because
yg == (2n)m, Lemma 13.3 tells us that there are positive integers z; and w with m = z%
and 21 = w?. Because w is even, w = 2v, where vis a positive integer, so that

V=nj2=rs.

Because (7, s} = 1, Lemma 13.3 tells us that there are positive integers x; and y, such
that r = xf and 5 = yf. Note that because (r, 5) = 1, it easily follows that (x;, v} = L
Hence,

x? _5_},;1 =rttst=m :zf,
where X1, y1, 21 are positive integers with (xy, ¥1) = 1. Moreover, we have z; < 2o, because

ZISZT:mZ

<m*+nt =1

To complete the proof, assume that x4 4+ y* = 7% has at least one integral solution.
By the well-ordering property, we know that among the solutions in positive integers,
there is a solution with the smatlest value zg of the variable z. However, we have shown
that from this solution we can find another solution with a smaller value of the variable
z, leading to a contradiction. This completes the proof by the method of infinite descent.
u

Conjectures About Some Diophantine Equations

The resolution of a longstanding conjecture in mathematics often leads to new conjec-
tures, and this certainly is the case for Termat's last theorem, For example, Andrew Beal,
a banker and amateur mathematician, conjectured that a generalized version of Fermat’s
{ast theorem is true, where the exponents on the three terms in the equation x" + y* ="
are allowed to be different.

Beal’s Conjecture The equation x“ + y? = z° has no solutions in positive integers
x,v,2,a,b,c,wherea =3, b >3, and ¢ > Jand (x,y) = (y,2) = (x,2) = L

Beal’s conjecture has not been solved. To generate interest in his conjecture, Andrew
Beal has offered a prize of $100,000 for a proof or a counterexample.

The proof of Fermat’s last theorem in the 1990s settled what was the best-known
conjecture related to diophantine equations. Surprisingly, in 2002, another well-known,
longstanding conjecture about diophantine equations was also settled, In 1844, the
Belgian mathematician Eugene Catalan conjectured that the only consecutive positive
integers that are both powers (squares, cubes, or higher powers) of integers are g =2
and 9 = 32, Tn other words, he made the following conjecture.

The Catalan Conjecture The diophantine equation
_ yn =1

has no solutions in positive integers x, ¥, i, and n, where m > 2 and n = 2, other than
x=3y=2 andm=2, and n =3,
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Certain cases of the Catalan conjecture have been settled since the fourteenth century
when Levi ben Gerson proved that 8 and 9 were the only consecutive integers that are
powers of 2 and 3. That is, he showed that if 3* — 2" £ -1, where m and 1 are positive
integers withm > 2andn > 2, thenm = 3andn = 2. In the eighteenth century, Euler used
the method of infinite descent to prove that the only consecutive cube and square are 8 and
8. That is, he proved that the only solution of the diophantine equation x° — y2 = +11is
x =2and y = 3. Additional progress was made during the nineteenth and early twentieth
centuries, and in 1976, R. Tijdeman showed that the Catalan equation had at most a finite
nuinber of solutions. It was not until 2002 that the Catalan conjecture was settled, when
Preda Mihailescu finally proved that this conjecture is correct.

A new conjecture has been formulated which attempts to unify Fermat’s last theorem
and Mihailescu’s theorem proving the Catalan conjecture.

Fermat-Catalan Conjecture The equation x? + y? = ;¢ has at most finitely many
solutions if (¥, y) = (y,2) = (x,z) = land 1 + } + el

The Fermat-Catalan conjecture remains open. At the present time, ten solutions of
this diophantine equation are known that satisfy the hypotheses, They are:

1+28=132
P47 =3
7132 =2%
2T 417 =712,

3P 411t = 1222,
177 4 76271° = 210639282,
14143 + 22134592 = 657,
92623 4 153122832 = 1137,
438 .+ 96222% = 300429072,
338 1+ 15490342 = 156133,

The abe Conjecture

In 1985, Joseph Oesterié and David Masser formulated a conjecture that intrigues many
mathemalticians. If true, their conjecture could be used to resolve guestions about many
well-known diophantine equations. Before stating the conjecture we need to introduce
some notation.

Definition. If # is a positive integer, then rad(n) is the product of the distinct prime
factors of n. Note that rad(n) is also called the squarefree part of n because it can be
obtained by eliminating all the factors that produce squares from the prime factorization
of n.
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Example 134, lin= 24.32.53.92. 11, thenrad(n) =2 3.5.7-11=2310.
We can now state the conjecture.

abe Conjecture Tor every real number € > 0 there exists a constant K (¢) such that if
a, b, and ¢ are integers such that a + b = ¢ and {a, b) = 1, then

max(|aj, |B, e < K (¢)(rad(abo)) Fe.

Many deep results have been shown to be consequences of this conjecture. Tt would take
us too far afield to develop the background and motivation for the abc conjecture. To learn
about the origins of the conjecture and its consequences, Sec {GrTu(2] and Ma00]. In
the following example we will show how the abe conjecture can be used to prove a resule
related to Fermat’s last theorem.

Example 13.5. We canapply the abc conjecture to obtain a partiat solution of Fermat’s
last theorem. We follow an argument of Granville and Tucker [GrTu02]. Suppose that

x" + )}II = z",

where x, y, and z ate pairwise relatively prime integers. Let @ = x", b=y" andc=2".
We can estimate rad(abc) = rad(x"y"z"} by noting that

rad(x"y"z") = rad(xyz) £ xyz < 2.

The equality rad (x"y"z") = rad(xyz) holds because the primes dividing x" y"z" are the
same as the primes dividing xyz. The first inequality follows because rad(m) < m for

|ﬁLEVI BEN GERSON (1288-1344), born at Bagnols in southern France, was @ man
of many talents. He was a Jewish philosopher and biblical scholar, a mathematician,
an astronomer, and a physician. Most Tikely he made his living by practicing medicine,
especially since he never held a rabbinical post. Little is known about the particutars of his
life other than that he lived in Orange and later in Avignon, In 1321, Levi wrote The Book
of Numbers dealing with arithmetical operations, including the extraction of mots, Later in
tife, hie wrote O Sines, Chords and Arcs, a book dealing with trigonomeiry, which gives
sine tables that were long noted for their accuracy. In 1343, the bishop of Meaux asked
Levi to write a commentary on the fizst five books of Buclid, which he called The Harmony
of Numbers. Levi also invented an instrument (o measure the angular distance between
celestial objects called Jacob’s staff. He observed bath lunar and solar eclipses and proposed
new astronomical models based on the data he collected. His philosophical writings are
extensive. They are considered to be major contributions to medieval philosophy.

Levi maintained contacts with prominent Christians, and was noted for the universality
of his thinking, Pope Clement VIeven translated some of Levi's astronomical writings into
Latin, and the astronomer Kepler made use of this translation. Levi was fortunate to live
in Provence, where popes provided some protection to Jews, rather than another part of
France. However, af times persecution made it difficult for Levi to work, even preventing

Lhim from obtaining important volumes of Jewish scholarship.

STUDENTS-HUB.com

Uploaded By: anonymous
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every positive integer m and the last inequality holds because x and y are positive, so
thaty <zandy < z. .

Now applying the abc conjecture and noting that max(lal, |5, |c|) = 2", for every
¢ > {), there exists a constant K {¢} > 0 such that

& < KM

If we can take € = 1/6 and n > 4, it is casy to see that n — 3(1 + ¢) > n/8. This implies
that

" < K(1/6),

where K (1/6) is the value of the constant X (€) for € = 1/6. Tt follows that z < K (1/6)%/7,
Consequently, in a solution of x™ 4 y" = z" with n > 4, the numbers x, y, and z are all
less than a fixed bound, which implies that there are oniy finitely many such solutions.

-«

13.2 Exercises

1. Show that if x, y,z is a Pythagorean triple and » is an integer with n > 2, then

x" + ylt # 2.".

2. Show that Fermat's last theorem is a consequence of Theorem 13.3, and of the assertion
that x# + y# = z” has no solutions in nonzero integers when p is an odd prime.

il

Using Fermat’s little theorem, show that if p is prime, and
ay ifxP~t £ Pl 7Pl then p | xyz.
b} ifx¥ + yP =77, then p|(x + y — z).

s

Show that the diophantine equation x* — y* = z? has no solutions in nonzero integers
using the method of infinite descent.

5. Using Exercise 4, show that the area of a right triangle with integer sides is never a perfect
square.

EUGENE CATALAN (1814-1894) was bom in Bruges, Belgium. He gradu-
ated from the Ecole Polytechnique in 1835. He then was appointed to a teaching
post at Chalons sur Mame. Catalan obtained a lectureship in descriptive geom-
etry at the Ecole Polytechnique in 1838, with the help of his schoolmate Joseph
Liouville who was impressed by Catalan’s mathematical talents. Unfortunately,
Catalan’s career was aversely affected by the reaction of the authorities to his
political activity in favor of the French Republic. Catalan published extensively
on topics in number theory and other areas of mathematics. Perhaps he is best
known for his definition of the numbers now known as Catalan numbers, which appear in so many
contexts in enumeration problems. He used these numbers to solve the problem of determining the
number of regions produced by the dissection of a polygon into triangles by nenintersecting diagonals.
It turns out that Catalan was not the first to solve this problem, because it was solved in the eighteenth
century by Segner, who presented a less elegant solution than Catalan.
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% 6. Show that the diophantine equation x* + 4y* = z2 has no solutions in nonzero integers.
% 7. Show that the diophantine equation x* + 8y* = z? has no solutions in nonzero integers.
8. Show that the diophantine equation x* 4 3y* = z? has infinitely many solutions.

9, Find all solutions in the rational numbers of the diophantine equation y? =x*+ L.

@ A diophantine equation of the form y® = x3 + k, where k is an integer, is called a Bacher

equation after Claude Bachet, a French mathematician of the early seventeenth century.

10. Show that the Bachet equation y* = x> 4+ 7 has no solutions. (Hint: Consider the con-
gruence resulting by first adding 1 to both sides of the equation and reducing modulo 4.}

* 11. Show that the Bachet equation y* = x> 4 23 has no solutions in integers x and y. (Hint:
Look at the congruence obtained by reducing this equation modulo 4.)

# 12, Show that the Bachet equation y? = x? + 45 has no solutions in integers x and y. (Hint:
Look at the congruence obtained by reducing this equation modulo 8.)

13. Show that in a Pythagorean triple there is at most one perfect square.

14, Show that the diophantine equation x? 4+ y? = z> has infinitely many integer solutions,
by showing that for each positive integer &, the integers x = 32— 1,y =k(k? - 3),and

z = k% + 1 form a solution.

15. This exercise asks for a proof of a theorem proved by Sophie Germain in 1803, Suppose
that n and p are odd primes, such that p | xyz whenever x, y, and z are integers such that
X" 4 y" 4 7% =0 (mod p). Further suppose that there are no solutions of the congruence
w" = n (mod p). Show that if x, y, and z are integers such that x™ 4+ y" -+ 2% =0, then

nixyz.

h

CLAUDE GASPAR BACHET DE MEZIRIAC (1581-1638) was born in
Bourg-en-Bresse, France. his father was an aristocrat and was the highest judi-
cial officer in the province. His early education took place at a house of the Jesuit
order of the Duchy of Savoy. Later, he studied under the Jesuits in Lyon, Padua,
and Milan. In 1601, he entered the Jesuit Order in Milan where it is presumed
that he taught. Unfortunately, he became ill in 1602 and eft the Jesuit Order.
He resolved to live a life of leisure on his estate at Bourg-en-Bresse, which pro-
duced a considerable annual income for him. Bachet married in 1612, Bachet

spent atmost all of his life living on his estate, except for 1619-1620 when he lived in Paris. While
in Paris, it was suggested that he become tutor to Louis XTI This led to a hasty departure from the
royal court,

Bachet's work in number theory concentrated on diophantine equations. In 1612, he presented
a complete discussion on the solution of linear diophantine equations. Tn 1621, Bachet conjectured
that every positive integer can be writien as the sum of four squares; he checked his conjecture for all
integers up to 325. Also, in 1621, Bachet discussed the diophantine equation that now bears his name.
He is best known, however, for his Latin translation from the originat Greek of Diophantus’ book
Arithmetica. It was in his copy of this book that Fermat wrote his marginal note about what we now
calt Fermat’s last theorem. Bachet also wrote books on mathematical puzzles. His writings were the
basis of most fater books on mathematical recreations. Bachet discovered a method of constructing
magic squares, He was elected to the French Academy in 1635.
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13.2 Fermat’s Last Theorem 527

16. Show that the diophantine equation w? -+ x3 + 33 = 77 has infinitely many nontrivial
solutions. (Hint: Take w = 9zk*, x =z(1 — 9%, and y = 3zk(1 - 3k3), where z and k
are nonzero integers.)

17. Can you find four consecutive positive integers such that the sum of the cabes of the first
three is the cube of the fourth integer?

18. Prove that the diophantine equation w* + x* = ¥* -+ z* has infinitely many nontrivial
solutions. (Hins: Follow Euler by taking w = m” + m*n? — 2m%n* 4+ 3m2n’ + mnf,
x=m% — 3002 — 2m°n? 4 20 17, y=m"+mn% — 2m3n% — 3m%n® + mnS, and
z=mb -+ 3mn® — 2m*n® + w3 4 07, where m and n are positive integers.)

19. Show that the only solution of the diophantine equation 3" — 27 = —1in positive integers
mandrism=2andn = 1.

20. Show that the only solution of the diophantine equation 3" — 2" = | in positive integers
mandnism=3andn =2,

21. The diophantine equation x> + % -+ z? = 3xyz is called Markov's equation.
a) Show thatif x = a, y = b, and z == ¢ is a solution of Markov’s equation, then x == a,
¥y =b, and 2 = 3ab — ¢ is also a solution of Markov’s equation.
#b) Show that every solution in integers of Markov’s equation is generated starting with
the solution x = 1, y = 1, and z = | and successively using part (a).

*% 22, Apply the abc conjecture to the Catalan equation x™ — y" = 1, where i and n are integers
with m > 2 and n > 2 to obtain a partial solution of the Catalan conjecture.

*% 23, Apply the abc conjecture to show that there are no solutions to Beal's conjecture when
the exponents are sufficiently large.

The positive integer d is called a congruent number if there is a right triangle of area d
with sides that have rational numbers as their length. (Unfortunately, the terminology for
congruent numbers is easily confused with the terminology for the congruence of numbers).
The problem determining which positive integers are congruent numbers is more than a
millennium old (see [Gu94]).

24. a) Show that d is a congruent number if and only if there are positive rational numbers
a, b, and ¢ such that ab =24 and 4% + 5% = 2.
b) Show that 5, 6, and 7 are congruent numbers by considering right triangles with sides
of length 3/2, 20/3, and 41/6; sides of length 3, 4, and 5; and sides of length 35/12,
24/5, and 337/60, respectively. Also, show that 24 and 30 are congruent numbers.

25. a} Show that 1 is a congruent number if and only if there is a right triangle with area
equal to a perfect square with sides of integer length.
b) Use part {a) and Theorem 13.1 to show thatif 1 is a congruent number, then there is a
solution in positive integers of the diophantine equation x2 + y* = z*. Deduce from
this fact and Exercise 4 that 1 is not a congruent number.

In 1983, J. Tunnelt characterized congruent numbers using the theory of elliptic curves
(see [Ko96] for details). Suppose that 4 is a squarefree positive integer, a = 1 when
is odd and @ = 2 when 4 is even, n is the number of triples of integers (x, y, z) such
that x2 + 2ay? 4 82% = d/a, and m is the number of triples of integers (x, v, z) such that
x* + 2ay? + 3272 = d/a. Tunnell showed that if n # 2m, then d is not a congruent number.
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He also showed that if # = 2m and a well-known conjecture about elliptic curves is true, then
d is a congruent number.
26. a) Show thatm =n =2, whend = lor d="2.
b) Show that m ==n =4, whend =3 or d=10.
¢) Show thatn =12 andm = 2, whend = 1L
d) Show that n = 8 and m = 4, when d=734.
e) Show thatn =m =0, when d is of the form 8% + j, where k is a positive integer and
j=35.6,0r7.
f) Using Tunnell's theorem and parts (a), (b), and (c), show that 1, 2, 3, 10, and 11 are
not congruent pumbers.

g) Tunnell’s conjecture implies that 34 is a congruent number, Show that 34 is a con-
eruent number by finding a right triangle with sides of rational length with area 34.

Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, o programs you have written,
carry out the following computations and explorations.

1. Euler conjectured that no sum of fewer than 1 nth powers of nonzero integers is equal to
the nth power of an integer. Show that this conjecture is false (as was shown in 1966 by
Lander and Parkin) by finding four fifth powers of integers whose sum is also the fifth
power of an integer. Can you find other counterexamples to Euler’s claim?

2. Given a positive integer », find as many pairs of equal sums of nth powers as you can.

Programming Projects

Write programs using Maple, Mathematica, or a language of your choice to do the following.
1. Given a positive integer n, search for solutions of the diophantine equation x” + y" =2".
2. Generate solutions of the diophantine equation x* -+ y? = 73 (see Exercise 16).

3. Given a positive integer k, search for solutions in integers of Bachet’s equation yr=
3
2 +k

4. Generate the solutions of Markov’s equation, defined in Exercise 21.

Sums of Squares

Mathematicians throughout history have been interested in problems regarding the rep-
resentation of integers as sums of squares. Diophantus, Fermat, Fuler, and Lagrange are
among the mathematicians who made important contributions to the solution of such
problems. In this section, we discuss two questions of this kind: Which integers are the
sum of two squares? What is the least integer n such that every positive integer is the
sum of 7t squares?
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We begin by considering the first question. Not every positive integer is the sum of
two squares. In fact, » is not the sum of two squares if it is of the form 4k + 3. To see this,
note that because @2 = 0 or 1 (mod 4) for every integer a, x2 + y2 =0, 1, or 2 (mod 4).

To conjecture which integers are the sum of two squares, we first examine some
small positive integers.

Example 13.6. Among the first 20 positive integers, note that

1=0%+12, 11 is not the sum of two squares,
2=12412, 12 is not the sum of two squares,
3 is not the sum of two squares, 13 =32 422,

4 =2% 402, 14 is not the sum of two squares,
5=12 422 15 is not the sum of two squares,

6 is nat the sum of two sgnares, 16 = 42 02,
7 is not the sum of two squares, 17 =42 - 12,

§=2% 4122, 18 =132 + 37,
9=232 402 19 is not the sum of two squares,
10=3%+ 17, 20 =22 442, «

It is not immediately obvious from the evidence in Example 13.6 which integers,
in general, are the sum of two squares. (Can you see anything in common among those
positive integers not representable as the sum of two squares?)

We now begin a discussion that will show that the prime factorization of an integer
determines whether this integer is the sum of two squares. There are two reasons for this.
The first is that the product of two integers that are sums of two squares is again the sum
of two squares; the second is that a prime is representable as the sum of two squares if
and only if it is not of the form 4k + 3. We will prove both of these results. Then we will
state and prove the theorem that specifies which integers are the sum of two squares.

The proof that the product of sums of two squares is again the sum of two squares
relies on an important algebraic identity that we will use several times in this section.

Theorem 13.4. If m and n are both sums of two squares, then mn is also the sem of
two squares,

Proof. Letm =a®+ b andn = ¢* + d2. Then
(13.2) mn = (@* + b*)(c? + d%) = (ac + bd)? + (ad — be)%.

The reader can easily verify this identity by expanding all the terms. =

Example 13.7. Because 5= 22 + 12 and 13 = 32 + 22, it follows from (13.2) that
65=5.13= (2 + (3? + 2%
=23+1-2742.2-1-32 =82+ 12, «
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One crucial result is that every prime of the form 4k + 1is the sum of two squares.
To prove this result we will need the following lemma.

Lemma 13.4. If p is a prime of the form 4m + 1, where m is an integer, then there
exist integers x and y such that +* + y? = kp for some positive integer kEwithk < p.

Proof. By Theorem 11.4, we know that —1 is a quadratic residue of p. Hence, there

is an integer a, a < p, such that a? = —1 (mod p). It follows that a* 4+ 1=kp for some
positive integer k. Hence, x4yt =kp, where x =aand y = 1. From the inequality
kp:.r2+y2§(p—1)2+1_<p2,weseethatk<p. u

We can now prove the following theorem, which tells us that all primes not of the
form 4k -F 3 are the sum of two squares.

Theorem 13.5. If p is a prime, not of the form 4k -+ 3, then there are integers x and y
such that x2 + y* = p.

Proof. Note that 2is the sum of two squares, because 12 + 12 = 2. Now, suppose that p is
a prime of the form 4k -+ 1. Letm be the smallest positive integer such that x2 4y e=mp
has a solution in integers x and y. By Lemma 13.4, there is such an integer less than p;
by the well-ordering property, a least such integer exists. We will show that m = 1.

Assume that m > L. Let @ and b be defined by
a=x (modm), b=y (mod m)
and
—mj2 <a<mfl, —mf2 <b=m/f2

Tt follows that a® + b2 = x% + y* = mp = 0 (mod m). Hence, there ig an integer k such
that

a® + b* =lm.
We have
(02 + bz)(x2 + yz) = (km)(mp) = km® D-
By equation (13.2), we have
@+ P+ yz} = {ax + .by)2 + {ay — bx)z‘
Furthermore, because a = s (mod m) and b=y (mod m), we have
ax +by=x%+ y? =0 (mod m)
ay—bx=xy—-yx=0 (mod m).
Hence, (ax + by)/m and (ay — bx)/m are integers, so that
(ax ha by)2 + (M)Z =km?p/m* =kp

m i
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is the sum of two squares. If we show that 0 < k < m, this will contradict the choice of m
as the minimum positive integer such that x> + y? =m p has a solution in integers. We
know that a® + b* = km, —m/2 <a < mf2,and ~mf2 < b < m /2. Hence, a® < m?/4
and b? < m%/4. We have

O<km=a’+b*< 2(1?12/4) sz/Q.

Consequently, 0 < & <m /2. Tt follows that & < . All that remains s to show that & #0.
If k = 0, we have a? + 52 = 0. This implies that @ = b = 0, so that x = y = 0 (mod m),
which shows that m | x and m | y. Because x% 4+ y? = mp, this implies that m?2 | mp,
which implies that m | p. Because m is less than p, this implies that m = 1, which is
what we wanted to prove. n

We can now put all the pieces together, and prove the fundamental result that
classifies the positive integers that are representable as the sum of two squares.

Theorem 13.6. The positive integer » is the sum of two squares if and only if each
prime factor of n of the form 4k 4 3 accurs to an even power in the prime factorization
of .

Proof.  Suppose that in the prime factorization of n there are no primes of the form
4k + 3 that appear to an odd power. We write n = 21, where u is the product of primes.
No primes of the form 4k + 3 appear in . By Theorem 13.5, each prime in « can be
written as the sum of two squares. Applying Theorem 13.4 one time fewer than the
number of different primes in u shows that « is also the sum of two squares, say

w=x%4 yz.
1t then follows that # is also the sum of two squares, namely
n=(tx)* + (ry)%.

Now, suppose that there is a prime p, p = 3 (mod 4), that occurs in the prime factorization
of 1 to an odd power, say the (2j + 1)th power. Furthermore, suppose that » is the sum
of two squares, that is,

n=x2 =+ yz.
Let (x,y) =d,a=x/d,b=y/d, and m = n/d* Tt follows that (a, b) = 1 and
a® -+ b =m.

Suppose that p* is the largest power of p that divides d. Then m is divisible by p2/—2+1,
and 2 — 2k + 1 is at least 1 because it is nonnegative; hence, p | m. We know that p
does not divide a, for if p | a, then p | b, because b* = m — a2 and (a, b) = 1.

Thus, there is an integer z such that az = b (mod p). It follows that
a® +b? =a® + (az)? = a®(1 + z%) (mod p).
Because a® -+ b? = m and p | m, we see that

a*(14 2% =0 (mod p).
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Because (a, p) = 1, it follows that 1+ 2 =0 (mod p). This implies that 7t =
—1(mod p), which is impossible because —1is not a quadratic residue of p, because p =
3 (mod 4). This contradiction shows that n could not have been the sum of two squares.

]

Because there are positive integers not representable as the sum of two squares, we
can ask whether every positive integer is the sum of three squares. The answer isno, asit
is impossible to write 7 as the sum of three squares (as the reader should show). Because
three squares do not suffice, we ask whether four squares do. The answer to this is yes, as
we will show. Fermat wrote that he had a proof of this fact, although he never published
it (and most historians of mathematics believe that he actually had such a proof). Euler
was unable to find a proof, although he made substantial progress toward a solution, Tt
was in 1770 that Lagrange presented the first published solution.

The proof that every positive integer is the sum of four squares depends on the
following theorem, which shows that the product of two integers both representable as
the sum of four squares can also be so represented. Just as with the analogous result for
two squares, there is an important algebraic identity used in the proof.

Theorem 13.7. If m and n are positive integers that are each the sum of four squares,
then mn is also the sum of four squares.

Proof Letm=a?+b*+c?+d>andn=e>+ f2+ g% + h%. The fact that mn is also
the sum of four squares follows from the following algebraic identity:

(13.3) mn = (@ 4+ b+ A+ d)E+ gt R
= (ae +bf +cg +dh)y? + (af — be +ch — dg)*
+ (ag — bh — ce + df): + (ah + bg — cf —de)”.
The reader can easily verify this identity by multiplying all the terms. L]
We illustrate the use of Theorem 13.7 with an example.
Example 13.8. Because7 =22+ 12 + 12+ 12and 10 = 3 + 12+ 0% + 0%, from (13.3)
it follows that
70=7.10= >+ 1+ 2+ BE + 2+ 0>+ 09
—(2.341.141.0+1-024+@-1-1-34+1.0-1.0
F(2.0-1.0-1.3=1.12+2-0+1-0-1-1—1-3

=7+ 242 +4% «

We will now begin our work to show that every prime is the sum of four squares. We

begin with a lemma.,

Lemma 13.5. If p is an odd prime, then there exists an integer k, k < p, such that
lqtr=x2-+-y2+22—|—w2

has a solution in integers x, ¥, z, and w.
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Proaf.  We will first show that there are integers x and y such that
x2+y2+ 1=0 (mod p)

with0 <x < p/2and0 <y < p/2.

Let
2
S={02,12,... (5’;1)]
o2
—1\2
T=[—1—02,4—12,...,—1—(%*”2 )}

No two elements of § are congruent modulo p (because x? = y? (mod p) implies that
x =y (mod p)). Likewise, no two elements of 7 are congruent modulo p. Tt is easy
to see that the set S U T" contains p + 1 distinct integers. By the pigeonhole principle,
there are two integers in this union that are congruent modulo p. It follows that there
are integers x and y such that x2=—1 — ¥* (mod pywith0<x<(p—1)/2 and
0<y<(p—1)/2. We have

and

x2+y2+150(m0dp);

it follows that x% + y> + 1+ 0% = kp for some integer k. Because x% + y? + 1 <
2((p — D/2)* + 1 < p?, it follows that k < p. "

We can now prove that every prime is the sum of four squares.

Theorem 13.8. Let p be a prime. Then the equation x% + y2 + z2 + w? = p has a
solution, where x, y, z, and w are integers.

Proof. Theresult is true when p = 2, because 2 = P4+ 12402402 Now, assume that
p is an odd prime. Let 1 be the smallest integer such that x% + y2 + 22 + w2 = mp has
a solution, where x, y, z, and w are integers. (By Lemma 13.5, such integers exist, and
by the well-ordering property, there is a minimal such integer.) The theorem will follow
if we can show that m = 1, To do this, we assume that m > I and find a smaller such
integer.

¥ is even, then either all of x, y, 7, and w are odd, all are even, or two are odd and
two are even. In all these cases, we can rearrange these integers (if necessary) so that
x =y (mod 2) and z = w (mod 2). It then follows that (x — y)/2, (x + »)/2, (z — w)/2,
and (x + w)/2 are integers, and

2 2 2 2
X —y x+y Z—w AN
(mz ) +( 2 ) -]-( 5 ) +( 3 ) =(m/2}p.

This contradicts the minimality of m,
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Now suppose that /n is odd and m > 1. Let a, b, ¢, and d be integers such that
a=x(modm), b=y '(mod m), c=z{modm), d = w (mod m),
and
—mf2<a<mf2, —-mf2<b<mf2, —m[l<c< mf2, —mj2<d-<mf2
We have
a2+ b4+ d? = x? + y2 + 72 + w? (mod m);
hence,
A+ + P4 db=km
for some integer k, and
O<d®+b+t+d < d(m 2yt = m?.

Consequently, 0 <k em k=0 wehavea =b=c=d=0,sothatx=y=z=w =0
{mod m). From this, it follows that m? | mp, which is impossible because lem<p.It
follows that & > 0,

We have
(x2 + y2 +z2 4+ 1,112)(rl2 + Sl +dy=mp km= m*kp.
But by the identity in the proof of Theorem 13.7, we have
(ax +by +cz+ dw)2 + (bx —ay 4+ dz — cw)?
+(cx —dy—az+ bw)? + (dx +cy —bz — aw)2 = mzkp.
Each of the four terms being squared is divisible by m, because
ax +by +ecz+dw zx2+y2+zz+ w? = 0 (mod m),
by —aytdz—cw=yx —-xy+wz—zw = 0 {mod m},
cx —dy —az+bw=zx —wy — xZ+yw =0 (mod m),
dx +cy —bz—aw=wx +2zy — ¥Z — xw =0 {mod m).
Let X, ¥, Z, and W be the integers obtained by dividing these quantities by m, that is,
X =(ax + by +cz+dw)/m,
Y = (bx — ay +dz — cw)/m,
7 = (cx — dy — az + bw)/nt,
W = (dx + cy — bz — aw)/m.
1t then follows that
X2 4 Y2+ Z2 4 WP = mkp/m® = kp.
But this contradicts the choice of m; hence, m must be 1. |

We now can state and prove the fundamental theorem about representations of
integers as sums of four squares.
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Theorem 13.9. Every positive integer is the sum of the squares of four integers.

Proof. Suppose that n is a positive integer. Then, by the fundamental theorem of
arithmetic, # is the product of primes. By Theorem 13.8, each of these prime factors
can be written as the sum of four squares. Applying Theorem 13.7 a sufficient number
of times, it follows that » is also the sum of four squares. n

We have shown that every positive integer can be written as the sum of four squares.
As mentioned, this theorem was originally proved by Lagrange in 1770. Around the same
time, the English mathematician Edward Waring generalized this problem. He stated, but
did not prove, that every positive integer is the sum of 9 cubes of nonnegative integers,
the sum of 19 fourth powers of nonnegative integers, and so on. We can phrase this

conjecture in the following way.

EDWARD WARING (1736-1798) was born in Qld Heath in Shropshire, En-
gland, where his father was a farmer. As a youth, Edward attended Shrewsbury
School. He entered Magdalene College, Cambridge, in 1753, winning a schol-
arship qualifying him for a reduced fee if he also worked as a servant, His
mathematical talents quickly impressed his teachers and he was elected a fellow
of the college in 1754, graduating in 1757, Noted by many as a prodigy, Waring
was nominated for the Lucasian Chair of Mathematics at Cambridge in 1759,
after some controversy, he was confirmed as the Lucasian professor in 1760 at

the age of 23,

Waring's most important work was Medirationes Algebraicae, which covered topics in the
theory of equations, number theory, and geometry. In this book he makes ane of the first important
contributions to the part of abstract algebra now known as Galois theory. It was also in this book that
he stated without proof that every integer is equal to the sum of not more than 9 cubes, that every
integer is the sum of not more than 19 fourth powers, and so on—the result we now call Waring’s
theorem. To honor his contributions in the Medirationes Algebraicae, Waring was elected a Fellow
of the Royal Society in 1763, However, few scholars read the book because of its difficait subject
matter and because Waring was a poor communicator who used a notation that made his work hard
to understand,

Surprisingly, Waring also studied medicine while holding his chair in mathematics. He graduated
with an M.D. in 1767 and for a brief time practiced medicine at several hospitals, before giving up
medicine in 770, His lack of success in medicine has been attributed to his shy manner and poor
eyesight. Waring was able to pursue medicine while holding his chair in mathematics because he
did not present lectures on mathematics. Tn fact, Waring was noted as a poor communicator with
handwriting almost impossible o read. Regrettably, this is not such a rare trait among mathematics
professors!

Waring was married to Mary Oswell in 1776. He and his wife lived in the town of Shrewsbury
for a while, but his wife did not fike the town. The couple later moved to Waring’s country estate.

Waring was considered by his contemporaries to possess an ¢dd combination of vanity and mod-
esty, but with vanity predominating. He is recognized as one of the greatest English mathematicians
of his time, although his poor communication skiils mited his reputation while he was afive. More-
over, according to one account, near the end of his life he fell into a deep religious melancholy which
approached insanity and prevented him from accepting several awards.
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Waring’s Problem. If & is a positive integer, is there an integer g (k) such that every
positive integer can be written as the sum of g(k) kth powers of nonnegative integers,
and no smaller number of kth powers will suffice?

Lagrange’s theorem shows that we can take g(2) =4 (because there are integers
that are not the sum of three squares). In the nineteenth century, mathematicians showed
that such an integer g (k) exists for 3 = k < % and k = 10. But it was not until 1906 that
David Hilbert showed that for every positive integer k, there is a constant g (k) such that
every positive integer may be expressed as the sum of g(k) kth powers of nonnegative
integers. Hilbert’s proof is extremely complicated and is not constructive, so that it gives
no formula for g(k). It is now known that g(3)=9,8(4) = 19, g(5) =37, and

gy =[G/ +2F -2

for6 <k < 471,600,000, Proofs of these formulas rely on nonelementary results from
analytical number theory. There are still many unanswered questions about the values of
g k).

Although every positive integer can be written as the sum of 9 cubes, it is known
that the only positive integers not representable as the sum of 8 cubes are 23 and 239.
Tt is also known that every sufficiently large integer can be represented as the sum of
at most 7 cubes. Observations of this sort lead to the definition of the function G k),
which equals the least positive integer such that all sufficiently large positive integers
can be represented as the sum of at most G (k) kth powers. The preceding remarks imply
that G(3) < 7. It is also not hard to see that G(3) = 4, because no positive integer 7
with # = £4 (mmod 9) can be expressed as the sum of three cubes (see Exercise 22). This
implies that 4 < G(3) = 7. It may surprise you to Jearn that it is still not known whether
G(3=4,56,0r7 The vatue of G{k) is extremely difficult to determine; the only known
values of G(k) are G(2) =4 and G(4) = 16. The best currently known inequalities for
G(k), with k = 5,6,7, and 8 are 6<G(5)<17,9=G(O) = 24,8 < G(T) <32, and
32 < G(8) <42,

The interested reader can learn about recent results regarding Waring’s problem
by consulting the numerous articles on this problem described in [Le74]. The paper of
Wunderlich and Kubina [WuKu90] established the upper limit of the range for which it
has been verified that g(k) is given by this formula.

13.3 Exercises

1. Given that 13 =32 422,29 =5 + 22, and 50 = 7% + 12, write each of the following
integers as the sum of two squares.

a)377-=13-29 c) 1450 =29 . 50
b) 650 == 13- 50 d) 18,850 =13-29.50
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- Determine whether each of the following integers can be written as the sum of two

squares,

a) 19 d) 45 g) 99
b) 25 e) 65 h) 999
c) 29 f) 80 i 1000

- Represent each of the following integers as the sum of two squares.

a) 34 ¢} 101 €) 21,658

' b) 90 d) 490 f} 324,608

10.

11

12.

% 13,

. Show that a positive integer is the difference of two squares if and only if it is not of the

form 4k + 2, where k is an integer.

- Represent each of the following integers as the sum of three squares if possible,

a3 ¢} 11 e) 23
b) 90 dy 18 )28

. Show that the positive integer » is not the sum of three squares of integers if  is of the

form 8% + 7, where k is an integer.

. Show that the positive integer » is not the sum of three squares of integers if n is of the

form 4™ (8% + 7), where m and k are nonnegative integers.

. Prove or disprove that the sum of two integers each representable as the sum of three

squares of integers is also thus representable,

cGiventhat 7=22+ P+ 124+ 2 15=F 4+ 22+ P4 1>, and 34 =42 - 42 4 12 + 12,

write each of the following integers as the sum of four squares.

a)105=7-15 €)238=7-34
by 510=15-34 dy3570=7-15-34

Write each of the following positive integers as the sum of four squares.

a)6 c) 21 e) 99
b) 12 d; 89 f) 555

Show that every integer n, 71 > 170, is the sum of the squares of five positive integers.
(Hint: Write m = n — 169 as the sum of the squares of four integers, and use the fact that
169=13=12+5=122+4* 4+ =102+ 82 + 224 12)

Show that the only positive integers that are not expressible as the sum of five squares
of positive integers are 1, 2,3,4,6,7,9, 10, 12, 15, 18, 33. {Hint: Use Exercise 11, show
that each of these integers cannot be expressed as stated, and then show all remaining
positive integers less than 170 can be expressed as stated.)

Show that there are arbitrarily large integers that are not the sums of the squares of four
positive integers.

We outline a second proof for Theorem 13.5 in Exercises 14-15.
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# 14. Show thatif p is prime and a is an integer not divisible by p, then there exist integers x and
y such that ax = y (mod p) with 0 <| x |< /P and 0 <| y |< /p. This result is called
@ Thue's lemma after Norwegian mathematician Axel Thue, (Hint: Use the pigeonhole
principle to show that there are two integers of the form au — v, with0 <u < [/pland
0 = v =(,/p], that are congruent modulo p. Construct x and y from the two values of

u and the two values of v, respectively.)

15, Use Exercise 14 to prove Theorem 13.5. (Hint: Show that there is an integer a with
a? = —1(mod p). Then apply Thue’s lemma with this value of a.)

16. Show that 23 is the sum of nine cubes of nonnegative integers but not the sum of eight
cubes of nonnegative integers.

Exercises 17-21 give an elementary proof that g(4) = 50.
17, Show that

4 2
Z ((x,- + xj)4 4 (x; — xj)4) =6 (Z xf) )
1gi<j<d k=1
(Hint: Start with the identity (x; +x )% + (x5, —x))* = 25} 4 12x7x% 2x;!.)

18. Show from Exercise 17 that every integer of the form 6n?, where a is a positive integer,
is the sum of 12 fourth powers.

19, Use Exercise 18 and the fact that every positive integer is the sum of four squares to show
that every positive integer of the form 6n1, where m is a positive integer, can be written
as the sum of 48 fourth powers.

20. Show that the integers 0, 1,2, 81, 16, 17 form a complete system of residues modulo 6,
each of which is the sum of at most two fourth powers. Show from this that every integer
2 with 11 > 81 can be written as 6m - k, where nt is a positive integer and k comes from
this complete system of residues, Conclude from this that every integer n with s < Blis
the sum of 50 fourth powers.

21. Show that every positive integer n with n < 81 is the sum of at most 50 fourth powers.
(Hint:For 51 < n < 81, start by using three terms equal to 2+ ) Conclude from this exercise
and Exercise 20 that g(4) < 50.

22. Show that no positive integer n, n = =4 (mod 9), is the sum of three cubes.

prove that certain diophantine equations such as y3 — 257 =1 have a finite number of solutions.
Edmund Landau characterized Thue's theorem on approximation as “the most important discovery
in elementary number theory that I know.”

L AXEL THUE (1863-1922) was born in Ténsberg, Norway. He received his
5 degree from the University of Oslo in 1889. He studied under the German
mathematician Lie in Liepzig and in Berlin from 1891 until 1894, and he was
professor of applied mechanics at the University of Oslo from 1903 undl 1922.
Thue was the first person to study the problem of finding an infinite sequence
over a finite alphabet that does not contain any occurrences of adjacent identical
Blocks. His work on the approximations of algebraic numbees was seminal, and
was Jater improved by Siegel and by Roth. tsing his results, he managed to
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23. Show that G(4) = 15 by showing that if # is a positive integer with 1 = 15 (mod 16),
then » cannot be represented as the sum of fewer than 15 fourth powers of integers.

24. Use the fact that 31 is not the sum of 15 fourth powers and the method of infinite
descent, to show that no positive integer of the form 31 . 16™ is the sum of 15 fourth

powers, (Hint: Suppose that Z}il x;‘ =31-16". Show that each x; must be even, so
that 17 (x,/2)* =31 16m~1)

13.3 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find the number of ways that each integer less than 100 can be written as the sum of two
squares. {(Count the sum (x2) + (+y?) four times, once for each choice of signs.)

2. Using numerical evidence, make a conjecture concerning which positive integers can be
expressed as the sum of three squares. (Be sure to consult Exercise 7.)

3. Explare which positive integers can be written as the sum of # cubes of nonnegative
integers forn =2,3,4, 5.
Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the following,

# 1. Determine whether a positive integer # can be represented as the sum of two squares and
so represent it if possible.

* 2. Given a positive integer n, represent » as the sum of four squares.

13.4 Pell’s Equation
In this section, we study diophantine equations of the form
(13.4) x*—dy?=n,

where 4 and » are fixed integers. When d < O and n < 0, there are no solutions of (13.4).
When d < 0 and n > 0, there can be at most a finite number of solutions, because the
equation x2 — dy? = n implies that | x |< \/nand | y |< «/n/[d |. Also, note that when
d is a perfect square, say d = D?, then

x*—dy?=x*— DYy = (x + Dy)(x - Dy) =n.

Hence, any solution of (13.4), when 4 is a perfect square, corresponds to a simultaneous
solution of the equations

x+ Dy=a,
x—Dy=5s,
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where a and b are integers such that n = ab. In this case, there are only & finite number
of solutions, because there is at most one solution in integers of these two equations for
each factorization n = ab.

For the rest of this section, we are interested in the diophantine equation xt—dy*=
n, where d and n are integers and d is a positive integer that is not a perfect square. As
the fotlowing theorein shows, the simple continued fraction of +/d is very useful for the
study of this equation.

Theorem 13.10. Letd and n be integers such that d > 0, d is not a perfect square, and
In|<d I x2 — dy? = n, then x/y is a convergent of the simple continued fraction of

.

Proof.  First consider the case where n = 0. Because x> — d y? = n, we see that

(13.5) x+ y-\/c?)(x — y\/c?) =n.

From (13.5), we see that x — y\/{—z‘ > 0, so that x > yﬁ . Consequently,
z Jd =0,
¥

and, because 0 < n < +/d, we see that

L B )]
y y

| P ody?

y(x + yVd)

H
< P ———
yQ2yd)
Jd
<
2y2/d
1

2y

Because 0 < ’;‘ —d < 5)1—;, Theorem 12.19 tells us that x/y must be a convergent of

the simple continued fraction of Jd.

When 2 < 0, we divide both sides of x? - dy? =n by —d, to obtain
y: — (1/d)x* =—n/d.

By a similar argument to that given when n > 0, we see that y/x is a convergent of
the simple continued fraction expansion of 1/ J/d. Therefore, from Exercise 7 of Section
12.3, we know thatx/y = 1/(y/x) mustbe a convergent of the simple continued fraction

of d = 1/(1/~/d). n
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We have shown that solutions of the diophantine equation x2 — dy® =n, where
[ 1 |< +/d, are given by the convergents of the simple continued fraction expansion of
v/d. We will restate Theorem 12,24 here, replacing n by d, because it will help us to use
these convergents to find solutions of this diophantine equation.

Theorem 12.24, Let d be a positive integer that is not a perfect square. Define o =
(P + VD)) O ap = [og]y Py = @y Qy — Py, and Qpyy = (d — PE D/ Oy, for k=
0,1,2,..., where ey = +/d. Furthermore, let Pi/qr denote the kth convergent of the
simple continued fraction expansion of +/d. Then

PE—dgl =010

'The special case of the diophantine equation x2 - dy? = n withn = Iis called Pell’s
equation, after John Pell. Although Pell played an important role in the mathematical
community of his day, he played only a minor part in solving the equation named in his
honor. The problem of finding the solutions of this equation has a long history. Special
cases of Pell’s equations are discussed in ancient works by Archimedes and Diophantus.
Moreover, the twelfth-century Indian mathematician Bhaskara described a method for
finding the solutions of Pell’s equation. In more recent times, in a letter written in 1657,
Fermat posed to the “mathematicians of Europe” the problem of showing that there are
infinitely many integral solutions of the equation x2 — 4 y2=1, when d is a posifive
integer greater than 1 that is not a square. Soon afterward, the English mathematicians
Wallis and Brouncker developed a method to find these solutions, but did not provide
a proof that their method works. Euler provided all the theory needed for a proof in a
paper published in 1767, and Lagrange published such a proof in 1768. The methods
of Wallis and Brouncker, Euler, and Lagrange all are related to the use of the continued
fraction of +/d. We will show how this continued fraction is used to find the solutions of
Pell’s equation. In particular, we will use Theorems 13.9 and 12.24 to find all solutions of

JOHN PELL (1611~1683), the son of a clergyman, was born in Sussex, England, and was
educated at Trinity College, Cambridge. He became a schoolmaster instead of following
his father’s wishes that he enter the clergy. After developing a reputation for scholarship in
both mathematics and languages, he took a position at the University of Amsterdam. He
remained there until, af the request of the Prince of Orange, he joined the faculty of a new
college at Breda. Ameng Pell's writings in mathematics are a book, Idea of Mathematics, as
well as many pamphlets and articles. He corresponded and discussed mathematics with the
leading mathematicians of his day, including I.eibniz and Newton, the inventors of calculus,
Euler may have called x* — dy? = 1 “Pell’s equation” because he was familiar with & book
in which Pell augmented the work of other mathematicians on the solutions of the equation
22— 12y = p.

Pell was involved with diplomacy; he served in Switzerland as an agent of Oliver
Cromwell and he joined the English diplomatic service in 1654. He finally decided to join
the clergy in 1661, when he took his holy orders and became chaplain to the Bishop of
London. Unfortunately, at the time of his death, Pell was living in abject poverty.
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Pell’s equation and the related equation x> — dy? = —1. More information about Pell’s
equation can be found in [Ba03], a book entirely devoted to this equation.

Theorem 13.11, Letd be apositive integer that is not a perfect square. Let pr/q; denote
the kth convergent of the simple continued fraction of Jd, k=1,2,3...,and et n be
the period length of this continued fraction. Then, when # is even, the positive solutions
of the diophantine equation x? — dy? = larex = pjy_1, ¥ =qju-1 J =123, and
the diophantine equation x2 — dy* = —1 has no solutions. When » is odd, the positive
solutions of x? — dy? = late X = Pyjn_p, ¥ =4ajn—1 j = 1,2,3,. . . ,and the solutions
of x2 —dy* = —lare x = PRj-hn—1s Y =4d@j tn-i J = 1,2,3,....

Proof. Theorem 13.9 tells us that if xg, yq is a positive solution of x* —dy? = +1. then
Xo = Pp» Yo = Gx> Where py/qy is a convergent of the simple continued fraction of Jd.
On the other hand, from Theorem 12.24, we know that

pp —dap = (=D Qg
where Q. is as defined as in the statement of Theorem 12.24,

Because the period of the continued expansion of Vd is n, we know that Q;, =
Qp=1forj=1,2,3,...,because Jd= ‘DU—ED—‘@. Hence,

pﬁnml —d q?ﬂ_l =(— l)fn Q,;j — (_1)111‘

This equation shows that when 7 is even, pj,_i, ;[ is @ solution of 2 —dyt=1
for j=1,2,3...,and when n is odd, pyj,_1, g2jn—1 is a solution of x? — dy? = 1and
P2¢j—tn—1s 420~ n—1 is a solution of x? — dy? = —1for j =1,2,3,....

To show that the diophantine equations 12 —dyt=1and x? — dy* = —1 have no
solutions other than those already found, we will show that @y = I implies that n Lk
and that Q; # —1for j=1,2,3,.... '

We first note that if 0y = 1, then

BHASKARA (1114-1185) was born in Biddur, in the Indian state of Mysore, Bhaskara
was the head of the astronomical observatory at Ujjain, the center of mathematical studies
in India for many centuries. He is the best known of all Indian mathematicians of his era.
Bhaskara’s works on mathematics include Eilevari (The Beautiful) and Bijaganita (Seed
Counting), which are both textbooks that cover parts of algebra, arithmetic, and geometry.
Bhaskara studied systems of linear equations in more unknowns than equations, and knew
many combinatorial formulas. He investigated the solutions of many different diophantine
equations. In particular, he solved the equation x* — dy? = linintegers ford = 8, 11,32, 61,
and 67, nsing what he called the “cycle method.” One illustration of his keen computational
skill is his discovery of the solution of 52 — 61y* = 1 with x = 1,766,319,049 and y =
226,153,080, Bhaskara also wrote several important books on astronomy, including the
Siddhantasiromant.,
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U1 = Pey+Vd.

Because ¢ = [ak+-l;ak+2’ -+ .J, the continued fraction expansion of oy, is purely
pertodic. Hence, Theorem 12.23 telis us that -1 < ®y1= Ppyy —+/d < 0. This implies
that Py () = [V/d], so that @, — og, and n | k.

To see that Qj #F-1for j=1,2,3,... , note that Qj = —1 implies that o=

—P; — ~d. Because o j has a purely periodic simple continued fraction expansion, we
know that

w—1<ozj.~—m—Pj+\/E<0
and

From the first of these inequalities, we see that Pj > —+/d, and from the second, we see
that P; < —1 — +/d. Because these two inequalities for p ;j are contradictory, we see that

Q;#~—-L

Because we have found all solutions of x2 — dy?=1land x? — dy? = —1, where ¥
and y are positive integers, we have completed the proof. n

We illustrate the use of Theorem 13.10 with the following examples.

Example 13.9, Because the simple continued fraction of V13 is f3;1,1,1,1, 6], the
positive solutions of the diophantine eguation x2 — 132 =1 are Pioj—1 q10j—1 J =
1,2,3,..., where P10j-1/910j—1 is the (107 — 1)th convergent of the simple continued
fraction expansion of +/13. The least positive solution is pg = 649, gy = 180. The positive
solutions of the diophantine equation x2 — 13y% = —1 are Pioj—6d =1,2,3,...; the
least positive solution is py = 18,4 - 4 =5, «<

Example 13.10, Because the continued fraction of /14 is 13;1,2,1,6), the positive
solutions of x2 — [4y2 = | are Paj_ndaj1,5=1,2,3,..., where Pyj-1/q;—y is the
Jjth convergent of the simple continued fraction expansion of +/14, The least positive
solution is p3 = 15, g3 = 4. The diophantine equation x% — 14y? = 1 has no solutions,
because the period length of the simple continued fraction expansion of +/14 is even.

-

We conclude this section with the following theorem, which shows how to find afl
the positive solutions of Pell’s equation, x* — dy? = 1, from the least positive solution,
without finding subsequent convergents of the continued fraction expansion of +/d.

Theorem 13.12. Let xy, y; be the least positive solution of the diophantine equation
x2—d y% =1, where d is a positive integer that is not a perfect square. Then all positive
solutions xy, y, are given by

Xt mVd = (o + y/a)k
fork=1,2,3,....(Note that X and y; are determined by the use of Lemma 13.4.)
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Proof Wemust show thatx;, vy isa solution fork = 1,2, 3, . .., and that every sclution
is of this form.

To show that xp,, y. is a solution, first note that by taking conjugates, it follows that
Xy — yi/d = (x; — yv/d)¥ because, from Lemma 12.4, the conjugate of a power is the
power of the conjugate. Now, note that
xf - d)’;% = (e + V) (g — N d)

= (e + yV D — V)

=G} -y

=1
Hence, xp, ¥, is a solutionfork=1,2,3,....

To show that every positive solution is equal to xg, y; for some positive integer &,
assume that X, ¥ is a positive solution from x, y; for k=1,2,3,....Then there is an
integer n such that

vy + yWaD" < X + YA < (5, + vyt
When we multiply this inequality by {x; + y;+/d)™", we obtain
1< () — yWDHX + YVd) < xy +yd,
because x? - dy} = 1 implies that x; — yivd = (x] + yv/d
Now, let

5+ t/d = (x) — y VA (X + Y/d)

and note that
52 —dt? = (s — t/d) (s + t/d)
= (ry + YWAX — YD — yV DX + ¥
= —dyly"(X? - dYh)
=1.
We see that s, ¢ is a solution of x? — dy? =1 and, furthermore, we know that I <

s + 14/d < x| + y;/d. Moreover, because we know that s + t/d > 1, we see thal
0 < (s + 1+/d)~! < 1. Hence,

s:-;-[(s+r\/3)+(s~ur\/3)]>0
and
t=-L [(s+f«/g)—(s—t\/3)]>0.
24/d
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This means that s, ¢ is a positive solution, so that s Z X1, and ¢ > yq, by the choice of
X1, 1 as the smallest positive solution. But this contradicts the inequality 5 + 14/d <
x1 + y1v/d. Therefore, X, ¥ must be X, ¥ for some choice of £. |

The following example ilustrates the use of Theorem 13.11.
Example 13.11. From Example 13.9, we know that the least positive solution of the

diophantine equation x? — 13y? = 1 is ¥1 = 649, y = 180. Hence, all positive solutions
are given by xy, y, where

X+ V13 = (649 + 180/13)%.
For instance, we have
X3 + y2+/13 = 842,401 + 233 640/13.

Hence, x; = 842,401, y, = 233,640 is the least positive solution of x2 — 13y% = 1, other
than Xy = 649, = 180. -«

Exercises
1. Find all of the solutions, where x and ¥ are integers, of each of the following equations,
x?43yi=4 b) x2 4592 =7 ) 242 +7y? == 30
2. Find all of the solutions, where x and ¥ are integers, of each of the following equations.
a)x?—y?=3 b) 2%  4y? = 40 ¢) 4x? - 9y2 = 100

3. For which of the following values of n does the diophantine equation % — 31y2 =
have a solution?

al c)2 e} 4
b) —1 d)y -3 f) —45

4. Find the least positive solution in integers of each of the following diophantine equations.
ayx? —29y2 = —1 byx? —29y2 =1

5. Find the three smallest positive solutions of the diophantine equation x2 — 37y2 =1,

6. For each of the following values of d, determine whether the diophantine equation

x? — dy? = —1 has solutions in integers.
a)2 e) 17
b)3 331
06 ) 4l
d) 13 ) 50

7. The least positive solution of the diophantine equation x2 — 6ly?=1is x;,=
1,766,319,049, v, = 226,153,980. Find the least positive solution other than xy, y;.

8. Show that if' p;/q, is a convergent of the simple continued fraction expansion of +/d,
then | p? qu‘? i< 1+2v4d.

STUDENTS-HUB.com

Uploaded By: anonymous



546

13.4

Some Nonlinear Diophantine Equations

9. Show that if d is a positive integer divisible by a prime of the form 4k +3, then the
diophantine equation 12 — dy? = —1 has no solutions.

10. Let d and n be positive integers.
a} Show that if r, 5 is a solution of the diophantine equation xi - dyz =land X,Y isa
solution of the diophantine equation x* — dy? =n, then Xr = d¥s, X5 & ¥r is also
a solution of x2 — dy? =n.
b) Show that the diophantine equation x> — dy? = n either has no solutions or has
infinitely many solutions.

11. Find those right triangles having legs with lengths that are consecutive integers, (Hint:
Use Theorem 13.1 to write the lengths of the legs as x = s2 — ¢? and y == 2st, where s
and ¢ are positive integers such that (s,#) = 1,5 > ¢ and s and ¢ have opposite parity.
Then x — y = 1 implies that (s — 1) — 2/ = £1.)

12. Show that the diophantine equation x* — 2% = 1 has no nontrivial solutions.

13. Show that the diophantine equation x% — 2y? = —1 has no nontrivial solutions.

14. Show thatif,, the nth triangutar number, equals the mth square, so thatn(n + 1)/2 =m?,
then x = 2n -+ 1and y = m are solutions of the diophantine equation x* — 8y? = 1. Find
the first five solutions of this diophantine equation in terms of increasing values of the
positive integer x and the corresponding pairs of triangular and square numbers.

Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find the least positive solution of the diophantine equation x> — 109y* = 1. (This prob-
lem was posed by Fermat to English mathematicians in the mid-1600s.)

2, Find the least positive solution of the diophantine equation w2 —991y? =L

3. Find the least positive solution of the diophantine eguation x* — 1,000,099 i = 1.

Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the folowing.

1, Find those integers n with [ 71 | < +/d such that the diophantine equation x* — dy* =n
has no solutions.

2. Find the least positive solutions of the diophantine equations x? - dy*=1 and
2 2
xe—dy*=-1.

3. Find the solutions of Pell’s equation from the least positive solution (see Theorem 13.12).
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14

sian Integers

Introduction

In previous chapters we studied properties of the set of integers. A particularly appealing
aspect of number theory is that many basic properties of the integers relating to divisi-
bility, primality, and factorization can be carried over to other sets of numbers, In this
chapter we study the set of Gaussian integers, numbers of the form q + bi , where a and
b are integers and { = /1. We will introduce the concept of divisibility for Gaussian
integers and establish a version of the division algorithm for these numbers. We will
describe what it means for 2 Gaussian integer to be prime, We will develop the notion of
greatest common divisors for pairs of Gaussian integers and show that Gaussian integers
can be written uniquely as the product of Gaussian primes {taking into account a few
minor details), Finally, we will show how the Gaussian integers can be used to deter-
mine how many ways a positive integer can be written as the sum of two squares. The
material in this chapter is a smalt step into the world of algebraic number theory, a major
branch of number theory devoted to the study of algebraic numbers and their properties.
Students continuing their study of number theory will find this fairly concrete treatment
of the Gaussian integers a useful bridge to more advanced studies. Excellent references
for the study of algebraic number theory include [AIWi(3], [Mo96], [M099], [Po99],
and [Ri01].

Gaussian Integers and Gaussian Primes

In this chapter we extend our study of number theory into the realm of complex numbers.
We begin with a brief review of the basic properties of the complex numbers for those
who have either never seen this material or need a brief refresher.

547
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548 The Gaussian Integers

The complex numbers are the numbers of the form x + yi, where i = 4/—1.Complex
numbers can be added, subtracted, multiplied, and divided, according to the following
nile.

(a+bi)+(c+di)=(atc)+ b+
(a+bi)—(c+di):(a“c)+(b—d)i
(a + bi)(c +di) = ac + adi + bei + bdi® = (ac — bd) + (ad + be)i
a+bi a+tbi c—dir_ac—l—bd (—ad -+ bc)i
ctdi c+di c—di +d? ¢* + d2

Note that addition and multiplication of complex numbers are commutative. We use
the absolute vatue of an integer to describe the size of this integer. For complex numbers,
there are several commonly used ways to describe the size of numbers.

Definition. If z = x + iy is a complex number, then |z], the absolute value of z, equals

|2} = /x> + ¥

and N (), the norm of z, equals

j2f? = 2%+ 5%

(Given a complex number, we can form another complex nwmber with the same
absolute value and norm by changing the sign of the imaginary part of the number.

Definition. The conjugate of the complex number z =4a + bi, denoted by Z, is the
complex number x — fy.

Note that if w and z are two complex numbers, then the conjugate of wz is the product
of the conjugates of w and z. That is, (wz) = (W)(z). Also note that ifz=x+iyisa
complex number, then

= +iy)x - iy) =" +y = N@).
We will now prove some useful properties of norms.

Theorem 14.1, The norm function N from the set of complex numbers to the set of
nonnegative real numbers satisfies the following properties.

(i) N({(z)is a nonnegative real number for afl complex numbers z.

(i) N(zw)= N{z)N(w) for all complex numbers z and w.

(i) N{(z) =0ifand onlyif z =0.

To prove (i), suppose that z is a complex number, Then z = x + iy, where x and y

are real numbers. It follows that N(z) = x? + ¥* is a nonnegative real number because
both x? and y? are nonnegative real numbers.
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To prove (ii), note that

N(zw) = @u)ew) = (@w)@ B) = (D (WH) = N (@) N (w),
whenever z and w are complex numbers.

To prove (iii), note that 0 = 0 + 0i, so that ¥ ©=04+02=0, Conversely, suppose
that N(x +iy) =0, where x and y are integers. Then x? + y? = 0, which implies that
x = 0and y = 0 because both x? and y? are nonnegative. Hence, x +iy =0+ ;0 =10.

a

(Gaussian Integers

In previous chapters we generally restricted ourselves to the rational numbers and
integers. Animportant branch of number theory, called algebraic number theory, extends
the theory we have developed for the integers to particular sets of algebraic integers,
By an algebraic integer, we mean a root of a monic polynomial (that is, with leading
coefficient 1) with integer coefficients. We now introduce the particular set of algebraic
integers we will study in this chapter.

Definition. Complex numbers of the form g + bi » where a and b are integers, are called
Gaussian integers. The set of all Gaussian integers is denoted by Z[i).

Note that if y = a + bi is a Gaussian integer, then it is an algebraic integer satisfying
the equation

}/2 —2ay + (a2+b2) =0,

as the reader should verify. Because y satisfies a monic polynoinial with integer coef-
ficients of degree two, it is called a quadratic irrational. Conversely, note that if « is
a number of the form r - si, where r and 5 are rational numbers and « is a roof of a
monic quadratic polynomial with integer coefficients, then « is a Gaussian integer (see
Exercise 20.) The Gaussian integers are named after the great German mathematician
Carl Friedrich Gauss, who was the first to extensively study their properties.

The usual convention is to use Greek letters, such as o, B, ¥, and § to denote Gaussian
integers. Note that if » is an integer, then n == » + 07 is also a Gaussian integer, We call
an integer n a rational integer when we are discussing Gaussian integers.

The Gaussian integers are closed under addition, subtraction, and multiplication, as
the following theorem shows,

Theorem14.2. Supposethato = x + iy and 8 = w + iz are Gaussian integers, where
X, ¥, w, and z are rational integers. Then o + B, — B, and af are all Gaussian integers,

Proof. We have a—l—ﬁ:(x+iy)—|—(w+iz)=(x+w)+i(y+z), o« —f=
G+iy)—(w+i)=&—w)+i(y —z), andef = (x +iydw+iz)=xw +iyw+
ixz+i’yz = (xw — ¥z) + i(yw + xz). Because the rational integers are closed under
addition, subtraction, and multiplication, it follows that each of « + B, e — 8, and B
are GGaussian integers, m
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Although the Gaussian integers are closed under addition, subtraction, and multipli-
cation, they are not closed under division, which is also the case for the rational integers.
Also, note that if & = « -} bi is a Gaussian integer, then N (@) = a* + b is a nonnegative
rational integer.

Divisibility of Gaussian Integers

We can study the set of Gaussian integers much as we have studied the set of rational
integers. There are straightforward analogies to many of the basic properties of the
integers for the Gaussian integers. To develop these properties for the Gaussian infegers,
we need to introduce some concepts for the Gaussian integers anatogous to those for the
ordinary integers. In particular, we need to define what it means for one Gaussian integer
to divide another. Later, we will define Gaussian primes, greatest common divisors of
pairs of Gaussian integers, and other important notions.

Definition. Suppose that @ and B are Gaussian integers. We say that ¢ divides p if there
exists a Gaussian integer y such that § = ay. If o divides §, we write o | B, whereas if
o does not divide £, we write o [ 8.

Example 14,1, We see that 2 — i | 13+ because
(2—5+3=13+1.
However, 3+ 2i f 6 + 5i because
6-+5 (645)(3—-2i) 28-+3i _ §+3_z

342 (34203-2) 13 13 13

which is not a Gaussian integer. «<

Exaniple 14.2. We see that —i | {a + bi) for all Gaussian integers a -+ bi because
a + bi = —i(—b + ai), whenever a and b are integers. The only other Gaussian integers
that divide ali other Gaussian integers are 1, —1, and i. We will see why this is true later
in this section. |

Example 14.3. The Gaussian integers divisible by the Gaussian integer 3+ 2i are the
numbers (3 + 2i)(a + ib), where a and b are integers. Note that 3+ 2iY e +ib) =
3a + 2ia + 3ib + 2i%h = (3a — 2b) 4 i(2a + 3b). We display these Gaussian integers
in Figure 14.1. «

Divisibility in the Gaussian integers satisfies many of the same properties satisfied
by divisibility of rational integers. For example, if &, 8, and y are Gaussian integers
and & | B and B | v, then « | y. Furthermore, if «, B, v, v, and e are Gaussian integers
and ¥ | @ and ¥ | B, then ¥ | (ua + vB). We leave it to the reader to verify that these
properties hold.

In the integers, there are exactly two integers that are divisors of the integer 1, namely
1 and — L. We now determine which Gaussian integers are divisors of 1. We begin with
a definition.
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i 4+ 71
1+35i
6+4i
=2 + 3
3+2f
541 —0 847
S5-—1i
3-2i 10-2i
2-3i
7-4i
~-1-5¢
4 - 6i

Figure 14.1 The Gaussian integers divisible by 3 + 24,

Definition. A Gaussian integer ¢ is called a unit if € divides 1. When ¢ isa unit, ex is
an associate of the Gaussian integer o

We now characterize which Gaussian integers are units in a way that will make them
easy to find.

Theorem 14.3. A Gaussian integer € is a unit if and only if Nie) = 1.

Proof.  First suppose that € is a unit. Then there a Gaussian integer v such that ev = L
By part (ii) of Theorem 14.1, it follows that N(ev) = N (e)N(v) = 1. Because ¢ and
v are Gaussian integers, both N(e) and N(v) are positive integers. It follows that
NEey=Nw) =1

Conversely, suppose that N (¢} = 1. Then ¢€ = N(e) = 1. It follows that ¢ | 1and ¢
is a unit, x

‘We now determine which Gaussian integers are units,

Theorem 14.4. The Gaussian integers that are units are 1,—1,i, and —i.

Proof. By Theorem 14.3, the Gaussian integer € = g + bi is a unit if and only if
N(€) = 1. Because N(€) = N(a + bi) =a* + b?, ¢ is a unit if and only if a2 + » = L
Because a and b are rational integers, we can conclude that € = a + bi is a unit if and
only if (a, &) = (1, 0), (~1,0), (0, 1), or (0, —1). It follows that € is a unit if and only if
e=1,-1,i or —I. n
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Now that we know which Gaussian integers are units, we see that the associates of
a Gaussian integer f are the four Gaussian integers f, —B,ip, and -if.

Example 14.4. The associates of the Gaussian integer —2 + 3i are —2 + 3i,
(24 3) =2 — 3, i(~2430)=-2+3*=-3-2, and —i(-2+3)=
20 —3i2 =3 +2. «

Gaussian Primes

Note that a rational integer is prime if and only if it is not divisible by an integer other than
1, —1, itself, or its negative. To define Gaussian primes, we want o ignore divisibility by
units and associates.

Definition. A nonzero Gaussian integer 7 is a Gaussian prime if itis not a unit and is
divisible only by units and its associates.

Tt follows from the definition of a Gaussian prime that a Gaussian integer is prime
if and only if it has exactly eight divisors, the four units and its four associates, namely
1, =1, i, —i, #, —-m,im, and —im. {(Units in the Gaussian integers have exactly four
divisors, namely the four units. Gaussian integers that are not prime and are not units
have more than eight different divisors.)

An integer that is prime in the set of integers is called a rational prime. Later
we will see that some rational primes are Gaussian primes, but some are not. Prior to
providing examples of Gaussian primes, we prove a useful result which we can use to
help determine whether a Gaussian integer is prime.

Theorem 14.5. If 7 is a Gaussian integer and N () = p, where p isa rational prime,
then 7 and 7 are Gaussian primes, but p is not a Gaussian prime.

Proof Suppose that w = ¢f, where « and § are Gaussian integers. Then N(w) =
N(ap) = N(@)N(B), so that p = N{a)N(B). Because N () and N(B) are positive
integers, it follows that N (@) = land N(8) = p or N(e) = pand N(B) = 1. We conclude
by Theorem 14.3 that either « is aunitor is a unit, This means that 7 cannot be factored
into two Gaussian integers neither of which is a unit, so it must be a Gaussian prime.

Note that N () =7 - 7. Because N () = p, it follows that p = 77T, which means
that p is not a Gaussian prime. Note that because N(T) = p, T is also a Gaussian prime.
| |

We now give some examples of Gaussian primes.

Example 14.5. We can use Theorem 14.5 to show that 2 — i is a Gaussian prime
because N(2 —i) =22+ 12=5 and 5 is a rational prime. Also, note that 5=
(2 +i}{2 — i), so that 5 is not a Gaussian prime. Simitarly, 2+ 3i isa Gaussian prime
because N(2 + 3i) = 22 432 — 13 and 13 is a rational prime. Moreover, 13 is not a
Gaussian prime because 13 = (2 -+ 312 — 3i). <
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'The converse of Theorem 14.5 is not true. It is possible for a Gaussian prims to have
a norin that is not a rational prime, as we will see in Example 14.6.

Example 14.6. The integer 3 is a Gaussian prime, as we will show, but N(3) =
NGB+0)=3>+02=9is not a rational prime. To see that 3 is a Gaussian prime,
suppose that 3 = (a + bi)(c + di), where a + bi and ¢ + di are not units. By taking
norms of both sides of this equation, we find that

N@)=N{a +bi)- (c +di)).
It follows that
S=N(@+ib)N(c+id),

using part (i) of Theorem 14.1. Because neithera + ibnor¢ + id is a unit, N(a 4 ib) #
I and N(c+id) # 1. Consequently, N{a + iby = N(c + id) = 3. This means that
Na +iby =a® -+ b? =3, whichis impossible because 3 is not the sum of two squares.
It follows that 3 is a Gaussian prime. «

We now determine whether the rational prime 2 is also a Gaussian prime.

Example 14.7. To determine whether 2 is a Gaussian prime, we determine whether
there are Gaussian integers « and 8 neither a unit such that 2 — ap, where o = q + ib
and f = c + id. If 2 = af, by taking norms, we see that

N(2) = N{@)N(B).
Because N(2) = N(2 + 0i) = 22 -+ 0% = 4, this means that
N@N(B) = (@’ + 1) +dHy = 4.

Because neither & nor § is a unit, we know that N (@) %= 1 and N(8) # 1. It follows that
a? +b* =2 and ¢ + d*> =2 so that each of a, b. c, and o equals 1 or —1. Consequently,
o and $ must take on one of the values 1 -+ i, =14+, 1—i,or—1—{.0On inspection,
we find that when o = 147 and f = 1 — {, we have aff = 2. We conclude that 2 is not
a Gaussian prime and 2 = (14+i){(1 — 7).

However, 1 +/ and 1 — i are both Gaussian primes, becanse N A+D=N1-D=
2 and 2 is prime, so that Theorem 14.5 applies, <

Looking at Examples 14.5, 14.6, and 14.7, we see that some rational primes are also
Gaussian primes, such as 3, while other rational primes, such as 2 = (1 — /){1 +{) and
5= (2 +1)(2 — i) are not Gaussian primes. In Section 14.3 we will determine which
rational primes are also Gaussian primes and which are not.

The Division Algorithm for Gaussian Integers

In the first chapter of this book we introduced the division algorithm for rational integers,
which shows that when we divide an integer a by a positive integer divisor b, we obtain
a nonnegative remainder r less than b. Furthermore, the quotient and remainder we
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obtain are unique. We would like an analogous result for the Gaussian integers, but
in the Gaussian integers it does not make sense to say that a remainder of a division is
smaller than the divisor. We overcome this difficulty by developing a division algorithm
where the remainder of a division has norm less than the norm of the divisor. However,
unlike the situation for rational integers, the quotient and remainder we compute are not
unique, as we will itlustrate with a subsequent example.

Theorem 14.6. The Division Algorithm for Gaussian Integers. Let o and 3 be Gaus-
sian integers with 8 # 0. Then there exist Gaussian integers ¥ and p such that

a=py+p

and 0 < N(p) < N{(B). Here y is called the quotient and p is called the remainder of
this division.

Proof. Suppose that «/f = x + iy. Then x + iy is a complex number which is a
Gaussian integer if and only if A divides & Suppose that s =[x + %} and t =[y + %]
(these are the integers closest to x and y, respectively, rounded up if the fractional part
of x or y equals 1/2; see Figure 14.2).

With these choices for 5 and ¢, we find that

x+iy=(+fy+itt+g)

where f and g are real numbers with | fl<1/2 and |g| = 1/2. Now, lety =& -+ti and

p =0 — By.By Theorem 14.1, we know that N{(p) = 0.

| *lap

3

Figure 14.2 Determining the quotient y when & is divided by 8.
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To show that N (p) < N(B), recalling that et/ = x + iy and using Theorem 14.1
(ii), we see that

N{p) = N(a — By) = N(((e/B) — ¥)B) = N((x + iy) — )8)
=N({{x+iy) — yIN(B).
Because y =s +ti,x —s = f,and y — t = g, we find that

N(p)=N{x+iy) — (s -+HHIN(BY= N(f +ig)N(B).
Finally, because | f| =< 1/2 and [g] < 1/2, we conclude that

N{p}=N(f +igdN(B) < (1/* + (/PN (B) < N(BY/2 < N(B).
This completes the proof, [

Kemark. 1In the proof of Theorem 14.6 when we divide a Gaussian integer & by a
nonzero Gaussian integer §, we construct a remainder p such that 0 < N {p) < N(B)/2.
That is, the norm of the remainder does not exceed 1/2 of the norm of the divisor. This
will be a nseful fact to rermember.

Example 14.8 illustrates how to find the quotient and remainder computed in the
proof of Theorem 14.6. This example also illustrates that these values are not unique, in
the sense that there are other possible values that satisfy the conclusions of the theorem.

Example 14.8. Let o = 13+ 20/ and 8 = —3 + 5/. We can follow the steps in the
proof of Theorem 14.6 to find y and p such that e = By + p and N(p) < N(B), that is,
with 13+ 20i = (=34 5i)y + p and 0 < N(p) < N(—=3 + 5i) = 34. We first divide o
by £ to obtain

134200 61 125,

-3+5 34 34
Next, we find the integers closest to % and %55 namely 2 and —4, respectively.
Consequently, we take y =2 — 4/ as the quotient. The corresponding remainder is
p=o—Fy=(13+4+20i) — (=34 50y = (13 + 20{) — (=3 + 51)(2 — 4i) = —1 — 2i.
We verify that N (o) < N(B) by noting that N(—1—2i) =5 < N(-34+5y=134, as
expected. :

Other choices for y and p besides those produced by the construction in the proof
of Theorem 14.6 satisfy the consequences of the division algorithm. For example, we
cantake y =2 —3i and p =4 4, because 13+ 20f = (=3 + 5i)(2 — 3) + (4 + 1) and
N@& -+ i) =17 < N(—3 + 5i) = 34. (See Exercise 19.) <

14.1 Exercises

1. Simplify each of the following expressions, expressing your answer in the form of a
Gaussian integer a + b1,

2 2+ )23 1) b) (2 — 3i)3 €) —i(—i +3)
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2.

3.

10.

11,
12,
13.

14.
15.

16.

17.

18.

Simplify each of the following expressions, expressing your answer in the form of a
Gaussian integer @ -+ bi.

a) (=14 D31+ b) 3 +2i)(3 —)? o) 2+ D25 — i)
Determine whether the Gaussian integer « divides the Gaussian integer 8 if

ao=2—1i, =5+5i. u=58=2+3i.

boe=1-ip=8 Ao =342, =26

. Determine whether the Gaussian integer o divides the Gaussian integer 8, where
Aa=3 =417 So=5+3,8=30+60
bya=24+1i, =15 dyor =11+ 41, =274

. Give a formula for all Gaussian integers divisible by 4 + 3 and display the set of all

such Gaussiar integers in the plane.

. Give a formula for all Gaussian integers divisible by 4 — 7 and display the set of all such

Gaussian integers in the plane.

Show that if &, B, and y are Gaussian integets and o |pand B |y, thena | y.

. Show that if @, B, ¥, g, and v are Gaussian integers and y | and y | B, then

v | (pe +vf).

. Show that if € is a unit for the Gaussian integers, then & =e.

Find all Gaussian integers o = a + bi such that & = a — bi, the conjugate of «, is an
associate of «.

Show that the Gaussian integers o« and § are associates if a | B and f | o
Show that if & and # are Gaussian integers and & | 8, then N(a} | N(8).

Suppose that N (&) | N(8), where o and B are Gaussian integers. Does it necessarily
follow that o | 87 Suppty either a proof or a counterexample.

Show that if @ divides 8, where & and § are Gaussian integers, then & divides B.

Show that if & = @ + bi is a nonzero Gaussian integer, then o has exactly one associate
¢ + di (including o itself), where ¢ > O and d > 0,

For each pair of values for o and 8, find the quotient y and the remainder p when o
is divided by 8 computed following the construction in the proof of Theorem 14.6, and
verify that ¥ {p) < N(B).

Ao=ld+ 17, f=2+3i yu=338=5+1i
Ma=7—19,=3-4
For each pair of values for & and 8, find the quotient y and the remainder p when o

is divided by 8 computed following the construction in the proof of Theorem 14.6, and
verify that N{p) < N(8).

Aa=24—-9,8=3+3i )e=87i,8=11-2i
Pa=18+ 15, 8=3+4
For each pair of values for o and g in Exercise 16, find a pair of Gaussian integers y and

p such that e = By + p and N(p} < N{(B) different from that computed following the
construction in Theorem 14.6.
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22.

23.

24

25,
26.
27.

28.
29,

30.
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For each pair of values for o and 8 in Exercise 17, find a pair of Gaussian integers y and
p such that o = Sy + p and N{p) < N(8) different from that computed following the
construction in Theorem 14.6.

Show that for every pair of Gaussian integers & and 8 with 8 # 0 and 8 X o, there
are at least two different pairs of Gaussian integers y and p such that & = By + p and
N{p) < N(B).

Determine all possible values for the number of pairs of Gaussian integers ¥ and p such
thatee = By + pand N{(p) < N (8) whena and § are Gaussian integers and B #£O0.(Hint:
Analyze this geometrically by looking at the position of «/8 in the square containing it
and with four lattice points as its corners.)

Show that if a number of the form r -+ sf, where » and s are rational numbers, is ai
algebraic integer, then r and s are integers.

Show that t + 7 divides a Gaussian integer a -+ ib if and only if @ and b are both even or
both odd.

Show that if 7 is a Gaussian prime, then N() =2 or N(r) = I (mod 43,
Find all Gaussian primes of the form o + 1, where o is a Gaussian integer.
Show that if @ + bi is a Gaussian prime, then b 4 ai is also a Gaussian prime.

Show that the rational prime 7 is also a Gaussian prime by adapting the argument given
in Example 14.6 that shows 3 is a Gaussian prime.

Show that every rational prime p of the form 44 + 3 is also a Gaussian prime.

Suppose that @ is a nonzero Gaussian integer which is neither a unit nor a prime. Show
that a Gaussian integer 8 exists such that 8 | & and 1 < N(8) < /N ().

Explain how to adapt the sieve of Eratosthenes to find all the Gaussian primes with norm
less than a specified Hmit,

31. Find all the Gaussian primes with norm less than 100,

32, Display all the Gaussian primes with norm less than 200 as lattice points in the plane.

We can define the notion of congruence for Gaussian integers. Suppose that o, 8, and y are
Gaussian integers and that y 7 0. We say that o is congruent to 8 modulo y and we write

a=p (mody)ify | (@ — B).

33. Suppose that z is a nonzero Gaussian integer. Show that each of the following properties

34.

35,

holds.

a) If & is a Gaussian integer, then @ = o (mod ).

b) Ifo =8 (mod 1), then 8 = o (mod ).

c) fo=p8 (mod u)and =y (mod p), then o = y (mod ).

Suppose thate = B fmod ) and y =4 (mod p), where o, g, ¥, 8, and u are Gaussian
integers and 1 # 0. Show that each of these properties holds.

a)o+y=p5+8 (mod u) ¢)ay = B8 (mod u)
o —y=p—25(modp)

Show that two Gaussian integers o = a, -+ ib; and 8 = a, + ib, can multiplied using
only three multiplications of rational integers, rather than the four in the equation shown
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in the text, together with five additions and subtractions. (Hint: One way to do this uses
the product {(a; + & }{az + b,). A second way uses the product b, (a; + bo).)

36, When a and b are real numbers, let{a + bi}=la}+ {b}i, where {x}is the closest integer
to the real number x, rounding up in the case of a tie. Show that if z is a complex numbet,
no Gaussian integer is closer to 2 than [z} and N{z — [z} = 1/2.

Let k be a nonnegative integer. The Gaussian Fibonacci number Gy is defined in terms of
the Fibonacci numbers with G = fi +1 fry1- Exercises 37-39 involve Gaussian Fibonacci
nurnbers.

37. a) List the terms of the Gaussian Fibonacci sequence fork =0,1,2,3,4,3. (Recall that
fo=0)
b) Show that G = Gy t+ Gra fork=2,3....

8. Show that N(Gy) = far4 for ali nonnegative integers k.
39, Show that G,42G,y1— Ga 4Gy ==D"2+ i), whenever it is a positive integer.

40. Show that every Gaussian integer can be written in the form ap{—1- D"+
a,,_l{-l-l—f)"" R N e Rt} + ap, where a; =0 or 1for j=0,1,...,n— 1,n.

41. Show that if o is a number of the formm r + §f, where r and s are rational numbers and ¢
is a root of a monic quadratic polynomial with integer coefficients, then o is a Gaussian
integer.

42. What can you conclude if w =@ + bi is a Gaussian prime and one of the Gaussian
integers (¢ + 1)+ bi, {a — 0+ bi,a+ (b i, and g + (b —Diisalsoa Gaussian
prime?

43, Showthatifm;=a — 14+ bi,my=a- |+ bi,my=a+ (b~ Di,andmy=a + b+ i
are all Gaussian primes and |a} 4 || > 5, then 5 divides both a and b and neither @ nor

b is zero.

44, Describe the block of Gaussian integers containing no Gaussian primes that can be
constructed by first forming the product of all Gaussian integers & -+ bi with a and b
rational integers, 0 =a =m, and0 < b <n.

45. Find alt Gaussian integers . £, and y such thateffy =a + B+y=L

46. Show that if 7 is a Gaussian prime with N () # 2, then exactly one of the associates of
7 is congruent to either 1 or 3+ 2i modulo 4.

Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, OF Programs you have written,
carry out the following computations and explorations.

1. Find all pairs of Gaussian integers ¥ and p such that 180 — 181 = (12 -+ 13Dy +p and
Ni{py < N2+ 134).

. Use a version of the sieve of Eratosthenes to find all Gaussian primes with norm less
than 1000,

3. Find as many different pairs of Gaussian primes that differ by 2 as you can.
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4. Find as many triples of Gaussian primes that form an arithmetic progression with a
common difference of 2 as you can.

5. Find as many Gaussian primes of the form o + & + (9 + 4i) as you can.

6. Estimate the probability that two randomly chosen Gaussian integers are relatively prime
by testing whether a large number of randomly chosen pairs of Gaussian integers are
relatively prime,

Programming Projects
Write programs using Maple, Mathematice, or a langnage of your choice to do the following.

1. Given two Gaussian integers o and B, find all pairs of Gaussian integers ¥ and p such
thato = B + p,

L

Implement a version of the sieve of Eratosthenes to find all Gaussian primes with norm
less than a specified integer.

3. Given a positive real number & and a positive integer #, find all Gaussian primes with
norm less than n that can be reached, starting with a Gaussian prime with norm not
exceeding five moving from one Gaussian prime to the next in steps not exceeding k.

4. Display a graph of the Gaussian primes that can be reached as described in the preceding
programming project,
*% 5. Given a positive real number k, search for Gaussian moats, which are regions of width k

in the complex plane surrounding the origin that contain no Gaussian integers. (See
@f [GeWaWi98] for more information about Gaussian moats.)

14.2 Greatest Common Divisors and Unique Factorization

In Chapter 3 we showed that every pair of rational integers not both zero has a greatest
commen divisor. Using properties of the greatest common divisor, we showed that if
a prime divides the product of two integers, it must divide one of these integers. We
used this fact to show that every integer can be uniquely written as the product of the
powers of primes when these primes are written in increasing order. In this section we
will establish analogous results for the Gaussian integers. We first develop the concept
of greatest common divisors for Gaussian integers. We will show that every pair of
Gaussian integers, not both zero, has a greatest common divisor. Then we will show
that if a Gaussian prime divides the product of two Gaussian integers, it must divide one
of these integers. We will use this result to develop a unique factorization theorem for
the Gaussian integers.

Greatest Common Divisors

We canrot adapt the original definition we gave for greatest common divisors of integers
because it does not make sense to say that one Gaussian integer is larger than another
one. However, we will be able to define the notion of a greatest common divisor for a pair
of Gaussian integers by adapting the characterization of the greatest common divisor of
two rational integers that does not use the ordering of the integers given in Theorem 3.10.
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Definition. Let o and f be Gaussian integers. A greafest common divisor of o and 8
is a Gaussian integer y with these two properties:

() yleandy|p;
and

(i) if8|candd|p,thend|y.

if y is a greatest common divisor of the Gaussian integers o and 8, then it is
straightforward to show that ail assoclates of y are also greatest common divisors of
o and B (see Exercise 5). Consequently, if y is a greatest common divisor of ¢ and B,
then —y, iy, and —i y are also greatest commaon divisors of « and B. The converse is also
true, that is, any two greatest common divisors of two Gaussian integers are associates,

as we will prove later in this section. First, we will show that a greatest common divisor
exists for every two Gaussian integers.

Theorem 14.7. If o and B are Gaussian integers, not both zero, then
(1) there exists a greatest COMMON divisor y of & and §;

and

(i) if y is a greatest common divisor of & and 8, then there exist Gaussian integers
s and v such that y = o + vf.

Proof. Let S be the set of norms of nonzero Gaussian integers of the form

po +vp,

where 4 and v are Gaussian integers. Because po + vp is a Gaussian integer when
 and v are Gaussian integers and the norm of a nonzero Gaussian integer is a positive
integer, every elementof Sis a positive integer. S is nonempty, which can be seen because
N{l-a+0 -f)=N(eand N{O- o+ 1-8) = N(B) both belong to S and both cannot
be 0.

Because S is a nonempty set of positive integers, by the well-ordering property, it
contains a least element. Consequently, 2 Gaussian integer y exists with

Y = ot + vobs

where i and vy are Gaussian integers and N{y) < N (o + vp) forall Gaussian integers
poand v.

We will show that y is a greatest common divisor of @ and f. First, suppose that
8o and § | B. Then there exist Gaussian integers p and o such thata = 8p and 8 = do.
1t follows that

¥ = ot + VoB = Hodp + Voo = 8(Lipp + Voo)-
We see that§ | v.

To show that y | and y |8 we will show that y divides every Gaussian integer of
the form e + vB. So suppose that T = jo + v B for Gaussian integers fy and vy. By
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Theorem 14.6, the division algorithm for Gaussian integers, we see that
T=yn+¢,

where 5 and ¢ are Gaussian integers withQ < & (£) < N(y).Purthermore, 7 is a Gaussian
integer of the form por + v8. To see this note that

=7 —yn= (e +viB) — (e + vpBIn = (j1; — pon)a + (v — vom)B.

Recall that  was chosen as an element with smallest possible norm among the nonzero
Gaussian integers of the form pe + vB. Consequently, because ¢ has this form and
0= N() < N(y), we know that N(Z) =0. By Theorem 14.1, we see that & =0.
Consequently, v = y5. We conclude that every element Gaussian integer of the form
He + v is divisible by y. [ |

We now show that any two greatest common divisors of two Gaussian integers must
be associates.

Theorem 14.8.  If both y, and y, are greatest common divisors of the Gaussian integers
« and B, not both zero, then ¥, and y, are associates of each other.,

Proof.  Suppose that y; and y, are both greatest common divisors of ¢ and 8. By part
(it) of the definition of greatest common divisor, it follows that y; | 3, and v2 | 1. This
means there are Gaussian integers ¢ and 6 such that ¥2 = €y and y; = 8y,. Combining
these two equations, we see that

¥1 =€y
Divide both sides by y, (which does not equal 0 because 0 is not a common divisor of
two Gaussian integers if they are not both zero) to see that
fe =1.

We conclude that 8 and € are both units. Because Y1 =~0y,, we see that y, and y, are
associates. n

The demonstration that the converse of Theorem 14.8 15 also true is left as Exercise 5
at the end of this section.

Definition. The Gaussian integers « and p are relatively prime if 1is a greatest common
divisor of & and 8.

Note that 1 is a greatest common divisor of & and B if and only if the associates of 1,
namely —1,7, and —, are also greatest common divisors of & and B. For example, if we
know that i is a greatest common divisor of & and P, then these two Gaussian integers
are relatively prime.

We can adapt the Euclidean algorithm {Theorem 3.11) to find a greatest common
divisor of two Gaussian integers.

Theorem 14.9. A Euclidean Algorithm for Gaussian Integers. Letpy=c and p; =
£ be nonzero Gaussian integers. If the division algorithm for Gaussian integers is
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successively applied to obtain p; = i1Vt + 74 with N(pjya) < N(pjp) for
j=0,1,2,...,n—2and pp; = 0, then p,,. the last nonzero rematinder, is a greatest
common divisor of o and .

We leave the proof of Theorem 14.9 to the teader; it is a straightforward adaption
of the proof of Theorem 3.11. Note that we can also work backward through the steps
of the Buclidean algorithm for Gaussian integers (0 eXpress the greatest common divisor
found by the algorithm as a linear combination of the two Gaussian integers provided as
input to the algorithm. We illustrate this in the following example.

Example 14.9. Suppose that o = 97 4+ 210i and B = 123+ 16i. The version of the
Euclidean algorithm based on the version of the division algorithm in the proof of
Theorem 4.6 can be used to find the greatest common divisors of « and B with the
following steps.
97 + 210§ = (123 + 161)(1+2i) + (6 — 52i)
123 4 16i = (6 — 52)(2i) + (19 + 4}
6 - 52i = (19 4 4i)(=3{) + (—6 + 5)
19 + 4i = (—6 + 50)(=2 — 20) + (=3 +20)
—6+5i=(=3+20)2+1
—342i=i(2+3)+0

We conclude that i is a greatest common divisor of 97 + 210i and 123 4 16i.
Consequently, all greatest common divisors of these two Gaussian integers are the
associates of 7, namely 1, —1, , and —i. it follows that 97 4+ 210i and 123+ o are
relatively prime.

Because 97 4 2107 and 123 + 16 are relatively prime, we can express 1 as a linear
combination of these Gaussian integers. We can find Gaussian integers p and v such that
1= pe + v by working backward through these steps and then multiplying both sides
by —i to obtain 1, These computations, which we leave to the reader, show that

(97 4- 210i)(—24 + 21i) + (123 4+ 160)(57+ 17iy = 1. «

Unique Factorization for Gaussian Integers

The fundamental theorem of arithmetic staies that every rational integer has a unigue
factorization into primes. Its proof depends on the fact that if the rational prime p divides
the product of two rational integers ab, then p divides either @ or b. We now prove an
analogous fact about the Gaussian integers which will play the crucial role in proving
unique factorization for the Gaussian integers.
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Lemma 14.1. If 7 is a Gaussian prime and & and B are Gaussian integers such that
wiaf, thenw | orm | B.

Proof.  Suppose that 7 does not divide «. We will show that 7 miast then divide g. If
7 f e, then we also know that exr f o when € is a unit, Because the only divisors of %
are |, —1,i,~i,m, —m,im,and —ir, it follows that a greatest common divisor of & and
o must be a unit, This means that 1is a greatest common divisor of 77 and @. By Theorem
14.7, we know that there exist Gaussian integers p and v such that

l=pnr 4 vor.
Multiplying both sides of this equation by £, we see that
B =nrup) + v(ap).

By the hypotheses of the theorem, we know that 7 [ af sothat 7w | v(xB). Because
B =r(uf) + v{ep), it follows (using Exercise 8 of Section 14.1) that = i B. u

Lemma 14.1 is a key ingredient in proving that the Gaussian integers enjoy the
unique factorization property. Other sets of algebraic integers, such as Z[/—35], the
set of quadratic integers of the form a + by/—3, do not enjoy a property analogous to
Lemma 14.1 and do not enjoy unique factorization.

We can extend Lemma 14.1 to products with more than two terms.
Lemma 14.2. If r is a Gaussian prime and oy, &g, - -, &y, are Gaussian integers such
that 7 | &rjor; - - - @, then there is an integer j such that [e;, where 1 < j <m.

Proof.  'We can prove this result using mathematical induction. When m =1, the result
is trivial. Now suppose that the result is true for m = k, where k is a positive integer. That
is, suppose that if

T ooy - ..oy,

where o; is a Gaussian integer for i = 1,2,. .., k, then 7 [ ; for some integer i with
1 <i < k. Now suppose that

7 ey - oy g,

where o, i = 1,2,.. .,k + 1 are Gaussian integers. Then 7 [oey{ery « - oz, ), s0 that
by Lemma 14.1, we know that 7 | ¢y or | Oy - oty | If { oy - - ooy g, wecanuse
the induction hypothesis to conclude that [ e; for some integer j with2 < j <k + L.
It follows that 7 [ & ; for some integer j with 1 < j <k + 1, completing the proof. =

We can now state and prove the unique factorization theorem for Gaussian integers.
Not surprising, Carl Friedrich Gauss was the first to prove this theorem.

Theorem 14.10. The Unique Factorization Theorem Jor Gaussian Integers. Sup-
pose that y is a nonzero Gaussian integer which is not a unit. Then
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(i) ¥ can be written as the product of Gaussian primes; and
(ii) this factorization is unique in the sense that if

y=miy e Ty =P O

where 7y, g, . . ., Tgs 1> P25 - - - » £ Are all Gaussian primes, then s = f, and
after renumbering the terins, if necessary, 7; and p; are associates for i =
1,2,...,5.

Proof. We will prove part (i) using the second principle of mathematical induction
where the variable is N(y), the norm of y. First note that because y # 0 and y is nota
unit, by Theorem 14.3, we know that N(y) # 1. It follows that N (y) = 2.

When N(y) =2, by Theorem 14.5, we know that y is a Gaussian prime. Conse-
quently, in this case, y is the product of exactly one Gaussian prime, itself.

Now assume that N(y) > 2. We assume that every Gaussian integer § with N (8) <
N(y) can be written as the product of Gaussian primes; this is the induction hypothesis.
If y is a Gaussian prime, it can be written as the product of exactly one Gaussian
prime, itself. Otherwise, ¥ = 16, where 7 and # are Gaussian integers which are not
units. Because 5 and @ are not units, by Theorem 14.3, we know that N () > 1 and
N{@) > 1. Furthermore, because N{(y) = N ()N (8}, we know that 2 = Ny < Ny)
and 2 < N(0) < N(y). Using the induction hypothesis, we know that both » and B are
products of Gaussian primes. Thatis, n = mmy - - - 7, Where ), 719, . . ., Wp aTC Gaussian
primes and 8 = p1p; - + - p;, Where py, P2, . . ., ; are Gaussian primes. Consequently,

y=0n=mmy - TP Py

is the product of Gaussian primes. This finishes the proof that every (Gaussian integer
can be written as the product of Gaussian primes.

We will also use the second principle of mathematical induction to prove part (ii) of
the theorem, the uniqueness of the factorization in the sense described in the statement
of the theorem, Suppose that ¥ is a nonzero Gaussian integer which is not a unit. By
Theorem 14.3, we know that N(y) = 2. To begin the proof by mathematical induction,
note that when N (¥) =2, y is a Gaussian prime, so ¥ can only be written in one way
as the product of Gaussian primes, namely the product with one term, y.

Now assume that part (ii) of the statement of the theorem is true when 8 is a Gaussian
integer with N (8) < N(y). Assume that y can be written as the product of Gaussian
primes in two ways, that is,

Yy=mmy e Ty =0020 0 P

wherte 7y, g, . . . 4 s, Py, P2r - - - » Py are all Gaussian primes. Note thats > 1; otherwise,
y is a Gaussian prime which already can be written uniquely as the product of Gaussian
primes.

Because g | mywy + - - o and wywg - - Wy = pypy - - P, We see that wy [ prop - - Py
By Lemma 14.2, we know that | | p;, for some integer k with 1 < k < 7. We can reorder
the primes py, P2, - - - » Oy if NECESSary, so that my | 1. Because p is a Gaussian prime, it
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is only divisible by units and associates, so that 7y and p) must be associates. It follows
that py = €7}, where.€ is a unit. This implies that

Tty My =MDy Py = €M Py -+ py.

We now divide both sides of this last equation by | to obtain
T3« W= (€p2)P3 -+ .

Because mr; is a Gaussian prime, we know that N () = 2. Consequently,
T N(myms -+ ) < Ny - - - ) = N(y).

By the induction hypothesis and the fact that Ty e = (eMm)p3 - - py, WE can
conclude that s — 1 =17 — 1, and that after reordering of terms, if necessary, g; is an
associate of ; for i = 1,2,..., s — 1. This completes the proof of part (ii). n

Factoring a Gaussian integer into a product of Gaussian primes can be done by
computing its norm. For each prime in the factorization of this norm as a rational integer,
we ook for possible Gaussian prime divisors of the Gaussian integer with this norm. We
can perform trial division by each possible Gaussian prime divisor to see whether it
divides the Gaussian integer.

Example 14.10. To find the factorization of 20 into Gaussian integers, we note that
N(20) = 20% = 400. It follows that the possible Gaussian prime divisors of 20 have
norm 2 or 5. We find that we can divide 20 by 1 + i four times, leaving a quotient of —3.
Because 5= (14 2i)(1 - 2i), we see that

20 = —(L+ D' +20)(1 - 24). <

14.2 Exercises

1. Use the definition of the greatest commen divisor of two Gaussian integers to show that
if 71 and r, are Gaussian primes that are not associates, then 1 is a greatest common
divisor of ; and my.

2. Use the definition of the greatest common divisor of two Gaussian integers to show that
if € is a unit and & is a Gaussian integer, then 1 is a greatest common divisor of @ and €.

3. Show that if p is a greatest common divisor of the Gaussian integers o and 8, then ¥ is
a greatest common divisor of @ and f.

4. a) By extending the definition of a greatest common divisor of two Gaussian integers,
define the greatest common divisor of a set of more than two Gaussian integers,
b) Show from your definition that a greatest common divisor of three Gaussian integers

o, 8, and y is a greatest common divisor of ¥ and a greatest common divisor of &
and §.

Show that if & and g are Gaussian integers and ¥ is & greatest common divisor of o and
B, then all asscciates of y are also greatest conmmon divisors of o and B.

Ly

&,

Show that if & and B are Gaussian integers and N{a) and N(B) are relatively prime
rational integers, then o and 8 are relatively prime Gaussian integers,
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7.

10.

1L

12.

13.

14.

15.

16,

17,

18.

19,

Show that the converse of the statement in Exercise 6 is not necessarily true, that is, find
Giaussian integers o and f such that o and f§ are relatively prime Gaussian integers, but
N(x) and N(f) are not relatively prime positive integers.

_ Show that if @ and f are Gaussian integers and y is a greatest common divisor of & and

B, then N{y) divides ((N(a), N{B).

. Show if @ and b are relatively prime rational integers, then they are also relatively prime

Gaussian integers.

Show that if o, B, and y are Gaussian integers and n is a positive integer such that
af =y"and & and B are relatively prime, then o = 8", where ¢ is a unit and 8 is a
Gaussian integer.

a} Show all steps of the version of the Fuclidean atgorithm for the Gaussian integers
described in the text to find a greatest common divisor of @ =44 + 18 and g =
12— 16i.

b) Use the steps in part (a) to find Gaussian integers p and v such that w(dd 4 18y +
v(12 — 16} equals the greatest common divisor found in part (a).

a) Show all steps of the version of the Euclidean algorithm for the Gaussian integers
described in the text to show that 2 — 11 and 7 + 8i are relatively prime.

b} Use the steps in part (a) to find Gaussian integers ¢ and v such that w2 —1hy -+
v(7+8i)=1

Show that two consecutive Gaussian Fibonacci numbers Gy and Gy, (defined in the
preamble to Exercise 37 of Section 14.1), where k is a positive integer, are relatively
prime Gaussian integers.

How many divisions are used to find a greatest common divisor of two consecutive
Gaussian Fibonacci numbers G and Gy (defined in Exercise 37 of Section 14.1),
where k is a positive integer? Justify your answer.

Derive a big-O estimate for the number of bit operations required to find a greatest
common divisor of two nonzero Gaussian integers and B, where N (@) < N(B). (Hint:
Use the remark following the proof of Theorem 14.6.)

For each of these Gaussian integers, find its factorization into Gaussian primes and a unit
where each Gaussian prime has a positive real part and a nonnegative inaginary part.

ayS+i b) 4 cy22+7i dy 210+ 2100

For each of these Gaussian integers, find its factorization into Gaussian primes and a unit
where each Gaussian prime has a positive real part and a nonnegative imaginary part.

ay 7+ 6i b3 — 13i c) 28 d) 4004

Find the factorization into Gaussian primes of each of the Gaussian integers k + (7 — k)i
for k=1,2,3,4,5,6,7, where each Gaussian prime has a positive real part and a
nonnegative imaginary part.

Determine the number of different Gaussian integers, counting associates separately, that
divide

a) 10. ¢} 27000.
b) 256 4+ 128i.  d) 5040 +40320.
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20.

21.

22,

23.

14.2 Greatest Common Divisors and Unique Factorization 567

Determine the number of different Gaussian integers, counting associates separately, that
divide

ay 198, b) 128 + 256i. ¢} 169000. d) 4004 + 8008i.

Suppose that @ + i) is a Gaussian integer and » is a rational integer. Show that » and
a + ib are relatively prime if and only if » and b + ai are relatively prime.

Use the unique factorization theorem for Gaussian integers {Theorem 14.10) and Ex-
ercise 13 in Section 10. to show that every nonzero Gaussian integer can be written

N 81 ez Ek - .
uniquely, except for the order of terms, as €m mw,” -+« ¥, where € is a unit and for
i=5L2,... .k, ®ij=a;+ z'bj is a Gaussian prime with a;>0 and_bj >0, and e;isa
positive integer.

Adapt Euclid’s proof that there are infinitely many primes (Theorem 3.1} to show that
there are infinitely many Gaussian primes.

Exercises 2441 rely on the notion of a congruence for Gaussian integers defined in the
preamble to Exercise 33 in Section 14.1.

24,

25.
26.
27,

28.

29,

30.

31.

32,

33.

a) Define what it means for 8 to be an inverse of the & modulo p, where o, B, and p
are Gaussian integers,

b) Show that if & and p are relatively prime Gaussian integers, then there exists a
Gaussian integer # which is an inverse of & modulo g,

Find an inverse of 1+ 2/ modulo 2 4 3i.
Find an inverse of 4 modulo 5 + 2i.

Explain how a linear congruence of the form ex = S(mod s} can be solved, where «,
#. and p are Gaussian integers and « and p are relatively prime.

Solve each of these linear congruences in Gaussian integers.

2) 2+ i)y =3 (mod 4 — i) ¢) 2x = 5 (mod 3 — 24)

b) 4y = -3+ 4i (mod § + 27)

Solve each of these linear congruences in Gaussian integers.

a}3x =247 (mod 13) ¢} B34 i)x =4 (mod 2+ 37)
b)Sx =3 -2 (mod4 +1)

Solve each of these linear congruences in Gaussian integers.
a)5x =2 —3i (mod 11) ¢y (24 5)x =3 (mod 4 — 7i)
bydx=7+i (mod 3+ 2

Develop and prove a version of the Chinese remainder theorem for systems of congru-
ences for Gaussian integers.

Find the simultaneous solutions in Gaussian integers of the system of congruences
x =2 {mod 2+ 3i)
x =3 {mod 1+ 4i).

Find the simultaneous solutions in Gaussian integers of the system of congruences
x =143/ (mod 2 -+ 5i)
x =2 i (mod 3 — 4i).
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34. Find a Gaussian integer congruent to 1 modulo 11, to 2 modulo 4 + 3/, and to 3 modulo
1476

A complete residue system modulo y, where y is a Gaussian integer, is a set of Gaussian
integers such that every Gaussian integer is congruent modulo y to exactly one element of
this set.

35. Find a complete residue system modulo

ayl—i. b) 2. o) 2+ 3.
36. Find a complete residue system modulo

ay b4 21 b} 3. ¢y 4 —1i.

37. Prove that a complete residue system of &, where o is a Gaussian integer, has N{a)
elements.

A reduced residue system modulo ¥, where y is a Gaussian integer, is a set of Gaussian
integers such that every Gaussian integer that is relatively prime to y is congruent to exactly
one element of this set.

38. Find a reduced residue system modulo

a) —14 3. b 2. cys5—1.
38, Find a reduced residue system modulo

a2+ 2. b) 4. cy4+2i.

40. Suppose that 7 is a Gaussian prime. Determine the number of elements in a reduced
residue system modulo 7,

41. Suppose that  is a Gaussian prime. Determine the number of elements in a reduced
residue system modulo ¢, where ¢ is a positive integer.

42, 2) Show that the algebraic integers of the form r + §+/—3, where r and s are rational
numbers, are the numbers of the forma + ben, where a and b are integers and where
w = (=14 +/=3)/2. Numbers of this form are called Eisenstein integers after Max
Eisenstein who studied them in the mid-nineteenth century. (They are also sometimes
called Eisenstein-Jacobi integers because they were also studied by Carl Jacobi.) The
set of Eisenstein integers is denoted by Z[e].

b) Show that the sum, difference, and product of two Fisenstein integers is also an
Eisenstein integer.

¢) Show that if & is an Eisenstein integer, then @, the complex conjugate of &, is also an
Eisenstein integer. (Hint: First show that & = o)

d) If « is an Eisenstein integer, we define the nerm of this integer by N{o) = at —ab-+
b2 if @ = a + bw, where a and b are integers. Show that N(e) = @ whenever o is
an Eisenstein integer.

e) If o and B are Eisenstein integers, we say that o divides g if there exists an element
y in Z{w] such that 8 = ay. Determine whether 1 + 2o divides 1+ 5w and whether
3 + o divides 9 + 8w.

) An Eisenstein integer € is a unit if € divides I. Find all the Eisenstein integers that
are units,
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14.2 Greatest Common Divisors and Unique Factorization 569

g) An Eisenstein prime w in Z[w) is an element divisible only by a unit or an associate
of . (An associate of an Eisenstein integer is the product of that integer and a unit.)
Determine whether each of the following clements are Eisenstein primes: 1+ 2ew,
3—2w,5+ 4w, and =7 — 2w.

#h) Show that if « and g # 0 belong to Z[w), there are numbers ¥ and p such that
o = fy + pand N(p) < N(B). That is, establish a version of the division algorithm
for the Eisenstein integers,

i) Using part (h), show that Eisenstein integers can be uniquely written as the product of
Eisenstein primes, with the appropriate considerations about associated primes taken
into account,

) Find the factorization into Eisenstein primes of each of the following Eisenstein
integers: 6, 5+ 9w, 114, 37 + 7T4w.

43. a) Show that the algebraic integers of the form » + s+/—3, where » and 5 are rational
numbers, are the numbers of the form a + ba/—35, where a and b are rational integers.
(Recall that we briefly studied such numbers in Chapter 3. In this exercise, we look
at these numbers in more detail.)

b) Show that the sum, difference, and product of numbers of the form a + b+/—3, where
a and b are rational integers, is again of this form.

¢} We denote the set of numbers a -+ b+/—5 by Z[+/—5]. Suppose that & and £ belong
to Z[+/—5]. We say that o divides £ if there exists a number y in Z[+/—5] such that
B = oy Determine whether —9 4 11./—5 is divisible by 2 4 3./—5 and whether
8 4 134/ =5 is divisible by 1 + 4./—5.

d) We define the norm of a number @ = a + b+/—5 to be N{a) = o + 552. Show that
N(xf) = N(u)N(B) whenever & and 8 belong to Z[/—51.

e) We say € is a unit of Z[/—5}if € divides 1. Show that the units in Z[+/-5] are 1
and — 1L

f) We say that an element « in Z[+/—5] is prime if its only divisors in Z{v/—5] are I,
—1, &, and —or. Show that 2, 3, 1 + +/—35, and } — +/—5 are all primes, that 2 does not
divide either I 4+ +/—50r 1 — /5. Conclude that 6 =2 . 3 = (1 + +/—-5)}(1 — +/—5)
can be written as the product of primes in two different ways. This means that Z[/—5]
does not have unique factorization into primes.

g) Show that there do not exist elements ¥ and p in Z[/—5] such that 7 — 2/ =3 =
(t+ v —=3)y¥ + p, where N(p) < N(1+ +/—5) = 6. Conclude that there is no analog
for the division algorithm in Z[./~3}

k) Show thatif & =3 and g == 1 4 4/—3, there do not exist numbers 1t and v in Z[+/—5}
such thatep 4 Bv = 1, even though o and 8 are both primes, neither of which divides
the other.

14.2 Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find the unique factorization into a unit and a product of Gaussian primes, where
each Gaussian prime has a positive real part and a nonnegative imaginary part of
(2007 — k) - (2008 — k)i for all positive integers k with &k < 8.
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570 The Gaussian Integers

2. Find a prime factor of smallest norm of each of the Gaussian integers formed by adding
1 to the product of all Gaussian primes with norm less than » for as many » as possible,
Do you think that infinitely many of these numbers are Gaussian primes?

3. Determine whether two randomly selected Gaussian integers are relatively prime, and
by doing this repeatedly, estimate the probability that two randomly selected Gaussian
integers are relatively prime.

Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the following.

1. Find a greatest common divisor of two Gaussian integers using a version of the Euclidean
atgorithm for Gaussian integers.

2. Express a greatest common divisor of two Gaussian integers as a linear combination of
these Gaussian integers.

3. Keep track of the number of steps used by the version of the Euclidean algorithm for
Gaussian integers that uses the construction in the proof of the division atgorithm for
Gaussian integers to find quotients and remainders,

4. Find the unique factorization of a Gaussian integer into a unit times Gaussian primes,
where each Gaussian prime in the factorization is in the first quadrant.

14.3 Gaussian Integers and Sums of Squares

Tn Section 13.3 we determined which positive integers are the sum of two squares. In
this section we will show that we can prove this result using what we have learned about
Gaussian primes. We will also be able to determine the number of different ways that a
positive integer can be written as the sum of two squares using Gaussian primes.

In Section 13.3 we proved that every prime of the form 4k + 1 is the sum of two
squares. We can prove this fact in a different way using Gaussian primes.

Theorem i4.11. Tf p is arational prime of the form 4% + 1, where k isa positive integer,
then p is the sum of two squares.

Proof. Suppose that p is of the form 4k + 1, where & is a positive integer. To prove that
p can be written as the sum of two squares, we show that p is not a Gaussian prime. By
Theorem 11.5, we know that -1 is a quadratic residue of p. Consequently, we know that
there is a rational integer ¢ such that 2 == —1 (mod p). 1t follows that p | (2 + 1). We
can use this divisibility relation for rational integers to conclude that p | (r +i}(t — 7).
If p is a Gaussian prime, then by Lemma 14.1, it follows that p [t +iorp|t—i. Both
of these cases are impossible because the Gaussian integers divisible by p have the form
pla + bi) = pa + pbi, where a and b are rational integers. Neither 7 4 nor ¢t — { has
this form. We can conclude that p is not a Gaussian prime.

Because p is not a Gaussian prime, there are Gaussian integers o and B, neither a
unit, such that p = af. Taking norms of both sides of this equation, we find that

N(p)=p* =N(ap) = N@N(B).
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14.3 Gaussian Integers and Sums of Squares 57

Because neither o nor 8 is a unit, N(a) # 1and N(B) # 1. This implies that N (o) =
N(B) = p. Consequently, if « = a + bi and 8 = ¢ + di, we know that

p=N@=a"+5" and p=N(B)=c?+d>
It follows that p is the sum of two squares. n

To find which rational integers are the sum of two squares, we will need to determine
which rational integers are Gaussian primes and which factor into Gaussian primes. To
accomplish that task, we will need the following lemma.

Lemma 14.3. If v is a Gaussian prime, then there is exactly one rational prime p such
that 7r divides p.

Progf. We first factor the rational integer N(7) into prime factors, say N(m) =
1Py - - py, Where p;is prime for j=1,2,...,7, Because N(r) = n7, it follows
that w | N(r), so that = | pypy - - - p,. By Lemma 14.2, it follows that 7 | p; for some
integer j with 1 < j < ¢. We have shown that 7 divides a rational prime.

To complete the proof, we must show that 7 cannot divide two different rationat
primes. So suppose that 7 | py and & | p,, where Py and p; are different rational primes.
Because p) and p, are relatively prime, by Corollary 3.8.1, there are rational integers m
and n such that mp; + np, = 1. Moreover, because 7 | prand i | p, we see that 7w | |
(using the divisibility property in Exercise 8 of Section 14.1.) But this implies that 7 is
a unit, which is impossible, so & does not divide two different rational primes. |

We can now determine which rational primes are also Gaussian primes and the
factorization into Gaussian primes of those that are not.

Theorem 14,12,  If p is a rational prime, then p factors as a Gaussian integer according
to these rules,

(i) I p=2, then p=—i(1+i)*=i(1—17)? where 147 and 1 — i are both
Gaussian primes with norm 2.
(i) If p=3 (mod 4), then p = 7 is a Gaussian prime with N (m) = p=.

(iii) If p=1 (mod 4), then p = 77/, where  and 7’ are Gaussian primes which
are not associates with N(z) = N(n') = p.

Proof. Toprove (i), wenotethat2 = —i(1+i)2 =i (1—1)2, where the factors —i and i
are units. Furthermore, N(1+{) = N(1—i) = 1> + 12 = 2. Since N(I+D=N(1-D
is a rational prime by Theorem 14.3, it follows that 1 4 and 1 — 7 are Gaussian primes.

To prove (ii), let p be a rational prime with p =3 (mod 4). Suppose that p=qap,
where @ and B are Gaussian integers with o = g + b/ and B =c+di and neither
« nor f is a unit. By part (i) of Theorem 14.1, it follows that N(p) = N (af) =
N(o)N{(B). Because N(p) = p?, N(a) =a? + b2, and N{B) = % + d2, we see that
p? = (a® + b%)(c? + d%). Neither & nor § is a unit, so neither has norm 1. It follows
that N{o) =a® + b2 = pand N(B) =c? 4+ d? = p- However, this is impossible because
p=3 (mod 4), so that p is not the sum of two squares.
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To prove (iit), let p be a rational prime with p =1 (mod 4). By Theorem 14.11,
there are integers a and b such that p = a? + P2 I my=a —bi and my =a + bi, then
p? = N(p) = N(m)N(myp), so that N(m) = N(m,) = p. It follows by Theorem 14.5
that i and 7, are Gaussian primes.

Next, we show that | and 7, are not associates. Suppose that m, = €79, Where € is
a unit. Because € is a unit, e = 1, —1,1, or —I.

If € == 1, then 7r; = 7o This means thatx + yi =x — yi, so that y = 0. This implies
that p = x>+ y* = x%, which is impossible because p is prime. Similarty, when € = — 1,
then 7| = —7,. This implies that x + yi = —x + yi, which makes x = 0. This implies
that y> = p, which is also impossible. If € = i, then x +iy=i(x —iy) =y +ix, s0
that x = y. Similarly, if e = —i, then x +iy = —i(x — iy), so that x = —y. In both of
these cases, p = X2+ y2 = 2x2, which is impossible because p is an odd prime. ‘We have
shown that all four possible values of € are impossible. It folows that 7 and 7 are not
associates, completing the proof of (iii). =

We have all the ingredients we need to determine the number of representations of
a positive integer as the sum of two squares using the unique factorization theorem for
the Gaussian integers, Recall that we determined which positive integers can be wiitten
as the sum of two squares in Section 13.6.

Theorem 14.13. Suppose that # is a positive integer with prime power factorization

H :Zmpilpgz N pjiq'lflquz PN q[f‘,

where m is a nonnegative integer, pj, P2, ..., Ps 4I€ primes of the form 4k +1, 4,
Ga, . - - » q; ate primes of the form 4k +3, e, €. .., 8 &I€ nonnegative integers, and
firfas. . frare even nonnegative integers. Then there are

dey+ Di{eg+ 1o (es+ D

ways to express n as the sum of two squares. (Here the order in which squares appear in
the sum and the sign of the integer being squared both matter.)

Proof. To count the number of ways to write 1 as the sum of the squares, that is, the
number of solutions of n = a? 4- %, we can count the number of ways to factor n mto
Gaussian integers a + ib and @ — ib, that is, to write n = (1 +{v)(u — iv).

We will use the factorization of n to count the number of ways we can factor
n as the product of two conjugates, that is, n = (i + iv)(u — iv). First, note that by
Theorem 14.11, for each prime p; of the form 4k + 1 that divides n, there are integers
a; and by, such that p; = a% + b%. Also, note that because 1+ i =i(1— i), we have
P = (1 4 I')m(l _ i)m — (f(l . i))m(l _ l-)m — im(l _ i)2m'
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14.3 Gaussian Integers and Sums of Squares 573

Consequently, we have
=" D @y + by) N ag — b)) ag + byi)2(ay — byi)?
oo (ag — byi)os(a, + bsi)f:qiflquZ gt

Next, note that € == i™ is a unit because it takes on one of the values 1, —1, 7, or —i. This
means that a factorization of » into the product of a unit and Gaussian primes is

n = E(}. — I')Zm(ﬂl =+ b;i)el(ﬂ’i - blf)el(az + bzf)ez(az - bzf)el
coag — bgi)os(a; + b g 2 - -q,n.

Because the Gaussian integer i - fv divides n, its factorization into a unit and Gaussian
primes must have the form

1+ iv = gl — i)"(ay + by ay — by ay -+ byi)%2(ay — byi Y2
. . k
co(a — by (a, — biYrsg'q,f2 - g/,

where episaunit, w, g4,..., 85 fi1,. . ., By and &y, . . ., k, are nonnegative integers with
ngEZm,OEgige,-,Oshigefforizi,...,s,ando;gkjgfjforj=1,...,r.

Forming the conjugate of & -+ iv, we find
i — iv =1+ 1) (ay — by (ay + bii)"1(ay — byi)¥2(ay + byi)™
, ke ke k k
s lag = b (ag + b)) gy - gp'.
‘We can now rewrite the equation n = (i + i v) (1 — {v) as

grthy gsth, 2K 2k,
1 SRR i P I

n=2"p

Comparing this with the factorization of » into a unit and Gaussian primes, we

see that w =m, gith=e;fori=1,...,s, and 2k;=f;for j=1,...,t. We
see that the values of w and &; for j =1,...,¢ are determined, but we have ¢; 4 1
choices for g;, namely g; =0,1,2,...,¢;, and that once g; is determined, so is h; =
¢; — g;. Furthermore, we have four choices for the unit 5. We conclude that there are
4{e; + ez + 1) - - - {e; + 1) choices for the factor # + iv and for the number of ways
to write 1 as the sum of two squares, [

Example 14,11,  Suppose thatn =25 = 5%, Then by Theorem 14.13, there are 4 - 3= 12
ways to write 25 as the sum of two squares. (These are (£3)2 + (£4)?, (£4)2 + (£3)2,
(£52 + 0% and 0 + (£5)2. Note that the order in which terms appear matters when we
count these representations.)

Suppose that n =90 =2 - 5 - 32, Then by Theorem 14.13, there arc 4 - 2 = 8 ways
to write 90 as the sum of two squares. (These are (3)2 -+ (£9)% and (£9)2 + (£3)2
Note that the order in which terms appear matters when we count these representations.)

Letn = 16,200 =2%. 5%. 3*. By Theorem 14.13, there are 4 - 3 = 12 ways to write
16,200 as the sum of two squares, We leave it to the reader to find these representations.
«
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Conclusion

In this section we used the Gaussian integers to study the solutions of the diophantine
equation x% + y* = n, where n is a positive integer. The Gaussian integers are useful
in studying a variety of other types of diophantine equations. For example, we can
find Pythagorean triples using the Gaussian integers (Exercise 7), and we can find the

solutions in rational integers of the diophantine equation x” + y? = 73 (Exercise 8).

Exercises

1. Determine the number of ways to write each of the following rational integers as the sum
of squares of two rational integers.

a)5 b) 20 c) 120 d) 1000

2. Determine the number of ways to write each of the following rational integers as the sum
of squares of two rational integers.

ay 16 b) 99 c) 650 d) 1001000

3. Explain how to solve a linear diophantine equation of the form ax + By =y, where a,
f, and y are Gaussian integers so that the solution (x, y) is a pair of Gaussian integers.

4. Find all solutions in Gaussian integers of each of these linear diophantine equations.
a) 3+ 2)x+5y="Ti B)Sx+Q2—-Dy=3

5. Find all solutions in Gaussian integers of each of the following linear diophantine
equations.

DG4+ +G-Dy=T b T+ix+T-Dy=1

6. Tn this exercise we will use the Gaussian integers to find the solutions in rational integers
of the diophantine equation x* + 1=,

a) Show that if x and y are integers such that x>+ 1=y then x —i and x +1{ are
relatively prime.

b) Show that there arc integers » and s such thatx = r® — 3rs? and 3rls — 5% = L. (Hint:
Use part (a) and Exercise 10 in Section 14.2 to show that there is a unit € and a
Gaussian integer § such that x +i = (65)3.)

¢) Find all solutions in integers x2 -+ 1= y° by analyzing the equations for r and s in

part (b},

7. Use the Gaussian integers to prove Theorem 13.1 in Section 13.1, which gives primitive
Pythagorean triples, that is, solutions of the equation x% + y? = 2% in integers x, y, and
z, where x, y, and z are pairwise relatively prime. (Hint: Begin with the factorization
x2 4+ y2 = (x + iy}(x - iy). Show that x 4 iy and x — Iy are relatively prime Gaussian
integers and then use Exercise 10 in Section 14.1.)

8 3

Use the Gaussian integers to find all solutions of the diophantine equation 2ryi=z
in rational integers x, y, and z.

9. Prove the analog of Fermat's little theorem for the Gaussian integers, which states that
if @ and 7 are relatively prime, then o™ ~1 = 1 (mod 7). (Hint: Suppose that p is the
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unique rational prime with s | p. Consider separately the cases where p = 1 (mod 4),
p=2{mod4), and p =3 {mod 4)).

10. Define ¢(y), where y is a Gaussian integer, to be the number of elements in a reduced
residue system modulo y. Prove the analog of Buler’s theorem for the Gaussian integers,
which states that if y is a Gaussian integer and « is a Gaussian integer that is relatively
prime to y, then

a?" = | (mod y).

11, Prove the analog of Wilson’s theorem for the Gaussian integers, which states that if 7 is
a Gaussian prime and {ey, &o, . . ., &} is a reduced system of residues modulo 7, then

oy -, = —1 (mod ).

12. Show that in the Eisenstein integers (defined in Exercise 42 in Section 14.2)
a} the rational prime 2 is an Eisenstein prime,
b) a rational prime of the form 3k + 2, where k is a positive integer, is an Eisenstein
prime.
c) a rational prime of the form 3k + L, where k is a positive integer, factors into the
product of two primes that are not associates of one another.

Computational and Programming Exercises
Computations and Explorations

Using a compntation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. In Chapter 13 we mentioned that Catalan’s conjecture has been settled, showing that 23
and 37 are the only powers of rational integers that differ by 1. An open question for
Gaussian integers is to find all powers of Gaussian integers that differ by a unit. Show
that (114 116)? and (3/)5, (1 —i)® and (1 + 2¢)%, and (78 + 78i)? and (23/)° are such
pairs of powers. Can you find other such pairs?

2. Show that 3+ 13> + (74+i)* = 34 100)% + (1 + 1003, (6 +30)* + 2+ 6 =
@+20"+ @+, @+ +2-3) =3+, +6)+ 3 2) =
(6+iY + (—2+430)%, (9+6i)° + (3= 100)° = (6 +1)° + (6 — 5i)%, and (15 + 14i)° +
(5 — 18i)° = (18 — 7)> + (2 4 3/)>. Can you find other solutions of the equation
x4 y" = w" + 2", where x,y, 7, and w are Gaussian integers and » is a positive integer?

3. Show that Beal’s conjecture, which asserts that there are no nontrivial solutions of the
diophantine equation x“ + yb =z, where a, b, and ¢ are integers witha > 3, b > 3,
and ¢ = 3, does not hold when x, y, and z are allowed to be pairwise relatively prime
Gaussian integers by showing that (—2 +)? + (-2 — {}* = (1 +)*. Can you find other
counterexamples?

Programming Projects
Write programs using Maple, Mathematica, or a language of your choice to do the following.
1. Find the number of ways to write a positive integer # as the sum of two squares.

2. Find all representations of a positive integer n as the sum of two squares.
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of Integers

In this appendix, we state a collection of fundamental properties for the set of integers
{...,—2,-1,0,1,2,...} that we have taken as axioms in the main body of the text.
‘These properties provide the foundations for proving results in number theory. We begin
with properties dealing with addition and multiplication. As usual, we denote the sum
and productof e and b by a +banda - b, respectively. Following convention, we write
abfora-b.

* Closure: a + b and a - b are integers whenever a and b are integers.

* Commutative laws:a+b=>b+aanda-b=b - a for all integers a and b.

* Associative laws: (a +b) +c=a+ (b+c)and(a-b) -c=a - (b-c) forall integers
a,b,and ¢.

* Distributive law: (a +b) -c=a-c+ b - ¢ forall integers a, b, and ¢,
* Identity elements: a + 0 =a and g - 1 = a for all integers a.

* Additive inverse: For every integer a there is an integer solution x to the equation
a + x = 0; this integer x is called the additive inverse of a and is denoted by —a. By
b — a we mean b + (—a).

* Cancellation law: 1f a, b, and ¢ are integers witha - c=h - ¢, ¢ #£ 0, then a = b.
We can use these axioms and the usual properties of equality to establish additional

properties of integers. An example illustrating how this is done follows. In the main body
of the text, results that are easily proved from these axioms are used without comimnent.

Example A.1. To show that 0 - a = 0, begin with the equation 0 + 0 = 0; this holds
because 0 is an identity element for addition. Next, multiply both sides by a to obtain

(04 0)-a=0-aqa. By the distributive law, the left-hand side of this equation equals
(0+0)-a=0-a+0-a.Hence, 0-a+0.a=0-a. Next subtract 0 - g from both

577
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sides (which is the same as adding the inverse of 0 a). Using the associative law for
addition and the fact that O is an additive identity element, the left-hand side becomes
0-a+(-a—0-a)=0-a 40 =0-a. The right-hand side becomes 0-a —0-a =0.
We conclude that 0 a = 0. <

Ordering of integers is defined using the set of positive integers {1,2,3, .. ). We
have the following definition.

Definition. If @ and b are integers, thena < bif b —aisa positive integer. If @ < b,
we also write b > a.

Note that a is a positive integer if and only if a > 0.

The fundamental properties of ordering of integers follow.

» Closure for the Positive Integers: a + b and a - b are positive integers whenever a and
b are positive integers.

« Trichotomy law: For every integer a, exactly one of the statements a > 0, a =0, and
a < 0is true, '

The set of integers is said to be an ordered sel because it has a subset that is closed
under addition and multiplication and because the trichotomy law holds for every integer.

Basic properties of ordering of integers can now be proved using our axioms, as the
following example shows. Throughout the text we have used without proof properties of
ordering that easily follow from our axioms.

Example A.2. Suppose that a, b, and c are integers with & < b and ¢ > 0. We can
show that ac < be. First, note that by the definition of a < b we have b —a > 0.
Because the set of positive integers is closed under multiplication, ¢(b — a) > 0. Because
c(b — a) = cb — ca, it follows that ca < cb. -«

We need orie more property to complete our set of axioms.

o The Well-Ordering Property: Every nonempty set of positive integers has a least
element.

We say that the set of positive integers is well ordered. On the other hand, the set of all
integers is not well ordered, because there are sets of integers that do not have a smallest
element (as the reader should verify). Note that the principle of mathematical induction
discussed in Section 1.3 is a consequence of the set of axioms listed in this appendix.
Sometimes, the principle of mathematical induction is taken as an axiom replacing
the well-ordering property. When this is done, the well-ordering property follows as
a consequence.
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Exercises

1,

Use the axioms for the set of integers to prove the following statements for all integers
a,b,and c.

a-b+c)=a-b+a-c Sdat+G+c)={(ct+a)+bh
bya+b?=a’+2ab+b  Hb—a)+c—b)+(a—e)=0

. Use the axioms for the set of integers to prove the following statements for all integers

a and b,
Ay (~D-a=—a ¢} (—a) - (L =ab
b)—~(a-by=a-(—b) d) —(a + by = (—a) + (—b)

3. What is the value of —07? Give a reason for your answer.

4. Use the axioms for the set of integers to show that if 2 and b are integers with b =0,

thena =0orb=0.

S. Show that an integer a is positive if and only if @ > 0.

6. Use the definition of the ordering of integers, and the properties of the set of positive

integers, to prove the following statements for integers a, b, and ¢ witha < band ¢ < 0.

aatc<hb+tc c)ac > be
bya?=0 Dl <0

7. Show that if @, b, and ¢ are integers witha > b and b > ¢, then a > ¢.

8. Show that there is no positive integer that is less than 1.
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Binomial Coefficients

Sums of two terms are called binomial expressions. Powers of binomial expressions are
used throughout number theory and throughout mathematics. In this section we will
define the binomial coefficients and show that these are precisely the coefficients that
arise in expansions of powers of binomial expressions.

Definition. Letm and k be nonnegative integers with k < m. The binomial coefficient

(%) is defined by
(m) _ m!
k) kMm—k)U

When k and m are positive integers with k > m, we define (}') = 0.

In computing (’,f) we see that there is a good deal of cancellation, because

my m! 23 ccm—-bm—-k+ D (m—Dm
(k)_k!(m—k)!_ K'1.2:3.0 (m—k)
_m—k+D---(m-—-Dm
ki

Example B.1. To evaluate the binomial coefficient G), we note that

35. «

7)_lL_1-2-3-4.5-6-7H5-6-7_
3/ 34 1.2.3.1.2.3.4 1.2.3

We now prove some simple properties of binomial coefficients.

581
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582 Rinomtial Coefficients

Theorem B.1. Let n and k be nonnegative integers with k < n. Then
n n
i = =1, and
o (3)=0)
g n
if = .
o (k) (n - k)

Proof. 'To see that (i) is true, note that

(1)- 2=t
o/  om! nl

and

To verify (ii), we see that

(n) _ n! _ n! _( n ) .
k'"mm*mf_m—kmnﬁm—kmd’n—k'

An important property of binomial coefficients is the following identity.

Theorem B.2. Pascal’s Identity. Letn and k be positive integers with # > k. Then

( ) ( : ) (n 1) )
P)'OOf. We perform the ﬂdditiOIl

(fl)+( n )_ n! + n!
k k—1) kin—k} (k- Din—k+ 1!

by using the common denominator k!(n — k + 1}1. This gives

(n) + ( P ) _ nlin—k+ 1) + nik
k E—1) kin—k+11 kln—k+D!
i —k+D+H
T kK —-k+ D!
_ nln+ i)
Tk —k+ D!
I n!
TR =k D!

(n + I)

= B
k

Using Theorem B.2, we can construct Pascal’s triangle, named after French math-

ematician Blaise Pascal who used the binomial coefficients in his analysis of gambling
games. In Pascal’s triangle, the binomial coefficient (f;) is the (k + D)st number in the
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Binomial Coefficients 583

(1 + 1)st row, The first nine rows of Pascal’s triangle are displayed in Figure B.1. Pas-
cal’s triangle appeared in Indian and Islamic mathematics several hundred years before
it was studied by Pascal.

1

121
1331
14641
15101051
1615201561
172135352171
1828 56705628 81

Figure B.1 Pascal's triangle.

We see that the exterior nuinbers in the triangle are all 1, To find an interior number,
we simply add the two numbers in the positions above, and to either side, of the position
being filled. From Theorem B.2, this yields the correct integer.

Binomial coefficients occur in the expansion of powers of sums. Exactly how they
occur is described by the binomial theorem.

Theorem B.3. The Binomial Theorem. Let x and y be variable, and n be a positive
integer. Then,

G+ ) = (‘;)xr: + (’;)xn—ly + (;)xrl—2y2 R
+ ( H ).\‘2}’"2+ ( n )xynﬁlﬁ_ (’i)yn,
n—12 -1 n

or, using summation notation,

BLAISE PASCAL (1623-1662) exhibited his mathematical talents early even
though his father, who had made discoveries in analytic geometry, kept math-
ematical books from him to encoorage his other interests. At 16, Pascal dis-
covered an important result concerning conic sections. At 18, he designed a
calculating machine, which he had built and successfully sold. Later, Pascal
made substantial contributions to hydrostatics. Pascal, together with Fermat,
laid the foundations for the modermn theory of probability. It was in his work
on probability that Pascal made new discoveries concerning what is now called
Pascal’s trangle, and gave what is considered to be the first lucid description of the principle of
mathematical induction. In 1654, catalyzed by an intense religions experience, Pascal abandoned his
mathematical and scientific pursuits to devote himself to theology. He returned to mathematics only
once: one night, he had insomnia caused by the discomfort of a toothache and, as a distraction, he
studied the mathematical properties of the cycloid. Miraculously, his pain subsided, which he took as
a signal of divine approval of the study of mathematics.
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584 Binomial Coefficients

n
(x + )’)" — Z (t;)xn—-_fyf‘

=0
Proof. Weuse mathematical induction. Whenn =1, according to the binomial theorem,

the formula becomes
1 1
t_ 1,0 0.1
(x+¥ (O)x ¥ (1),1 y.

But because (§) = () = 1, this states that (x + y)' = x + y, which is obviously true.

We now assume that the theorem is true for the positive integer i, that is, we assume
that

n
x+" =) (n.)x"’j .
=0

We must now verify that the corresponding formula holds with n replaced by n + 1,
assuming the result holds for n. Hence, we have

o+ = e+ ) e+ )

=12 (n.)X"”' Y iG+w

j=0 ™

n n
=3 (e ()
=0 N =0 ™
We see by removing terms from the sums and subsequently shifting indices, that
n n

Z (n.)xn—j-lvlyj — er—I + E (u.)xnff+lyf
and

] ; n=1 "

Z ( .)xnﬁryj+1 — Z ( ')xn—} y]+1 + yn—l—l

=0 =0

n
ZZ( n )xn—j+1yj+yu+1_
PR At
Hence, we find that
i X
(x +yy = x4 Z [(’;) + (j n 1)] XniFhyT L
j=t

By Pascal’s identity, we have

()+()-07)
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so we conclude that

. n
(x + y)n+1 ___xn+1 + Z (FI + l)x"j+iyj 4 y"‘”.

=1~
n-t+l
— Z (R *{- l)xn+l—-jyj‘
j=0 N 7
This establishes the theorem. ]

The binomial theorem shows that the coefficients of (x 4+ y)* are the numbers in the
(2 + 1)st row of Pascal’s triangle,

We now illustrate one use of the binomial theorem,

Corollary B.1. Let n be a nonnegative integer. Then
n n
M= (1+ D" = Z (”) "= = Z: (n)
j=0 M j=o M
Proof, Letx =1and y = 1in the binomijal thecrem. n

Corollary B.1 shows that if we add all elements of the (n + 1)st row of Pascal’s
triangle, we get 2", For instance, for the fifth row, we find that

HRGRARCNCRERE

Exercises
1. Find the value of each of the following binomial coefficients.
» () 9 (3) o ()
b (7) 9 (5) £ (o)
2. Find the binomial coefficients (3), (3), and ('9), and verify that G+ Q=0

3. Use the binomial theorem to write out all terms in the expansions of the following
expressions.

a) (@ + b)° c)(m—n)" e) (3x — 4y)°
b) (x 4 y)1° d) Qa+3)* £ Grx+ 78

4. What is the coefficient of x™y !0 in (2x 4 3y)2007
¥

5. Letn be a positive integer. Using the binomial theorem to expand (1 -+ (—1))", show that
n

Z(—l)"(") —o.

k=0 k

6. Use Corollary B.1 and Exercise 5 to find

Py
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586 Binomial Coefficients
()6 ()
4 2 4
()0 ()
i 3 5 '

7. Show that if n, r, and k are integers with0 <k <r <n,then
0)E-60
r/\k k)\r—k/
% 8. What is the largest value of (7'}, where m is a positive integer and n is an integer such
that 0 < n < m7 Justify your answer.

9, Show that
r r r r+1

where n and r are integers with } <r <n.

and

The binomial coefficients (%), where x is a real number and 2 is 2 positive integer, can be
defined recursively by the equations (}) = x and

( x )_x—n(x)

n+1 n+1\n)

10. Show from the recursive definition that if x is a positive integer, then (7) = k—'(rLlI)“'
where k is a integer with 1 = k = x.

. . o ek ; ; x+1
11. Show from the recursive definition that if x is a positive integer, then (%) + (,5) = (; M 8
whenever n is a positive integer.

12. Show that the binomial coefficient (}: . where » and k are integers with 0 < k < n, pives
the number of subsets with k elements of a set with 7 elements.

13. Use Exercise 12 to give an alternate proof of the binomial theorem.

14. Let S be a set with n elements and let Py and P, be two properties that an element of
$ may have. Show that the number of elements of § possessing neither property Py nor
property Pj is

n — (P + (P — n(Py, P,

where n(Py), n(Py), and n(P|, Py) are the number of elements of § with property Py,
with property P, and both propertics P, and P,, respectively.

15. Let S be a set with n elements and Iet Py, P, and P be three properties that an element
§ may have. Show that the number of elements of § possessing none of the properties
Pl,P2,3!'IdP3iS

i — [n{Py) + n{Py) + n(Fa))
— n(Py, Py) — n(Py, Py) — n(Py, P3} +n(Py, Py, Pk
where n(F;, ..., F;) is the number of elements of § with properties Py ..., Py

# 16. Tn this exercise we develop the principle of inclusion-exclusion. Suppose that § is a set

with 1 elements and Iet Py, Py, . . ., P, be ¢ different properties that an element of § may
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have. Show that the number of elements of S possessing none of the ¢ properties is
n—[n(Pp+n(P) -+ +n(P)]
+ (P, Po) +n(Py, Py + -+ -+ (P, p]
= [Py Py, P) + (P, Py, P+ -+ -+ (P, P, P)]

+ o (=Dn(P, Py, .., P,
wheren(P;, £,,.. ., P,vj) is the number of clements of S possessing ali of the properties
P Piyee o I ;- The first expression in brackets contains a term for each property, the
second expression in brackets contains terms for all combinations of two properties,
the third expression contains terms for all combinations of three properties, and so
forth, {Hint: For each element of 5, determine the number of times it is counted in

the above expression. If an element has k of the properties, show that it is counted
L= () + )~ -+ (—=DH(Y) times; this is 0 when & > 0, by Exercise 5.)

* 17. What are the coefficients of (x; + x, 4 - - - + x,,)”? These coefficients are called pulti-
nomial coefficients.

18. Write out all terms in the expansion of (x + y + z)7.
19, What is the coefficient of x®y*z> in the expansion of (2x — 3y + 57)127

Computational and Programming Exercises
Computations and Explorations

Using a computation program such as Maple or Mathematica, or programs you have written,
carry out the following computations and explorations.

1. Find the least integer # such that there is a binomial coefficient (7)), where k is a positive
integer greater than 1,000,000,

Programming Projects

Write computer programs using Maple, Mathematica, or a language of your choice to do the
following,

1. Hvaluate binomial coefficients.
2. Given a positive integer », print out the first » rows of Pascal's triangle.

3. Expand {x + y)", given a positive integer », using the binomial theorem.
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Using Maple and ‘
Mathematica for
Number Theory

Investigating questions in number theory often requires computations with large integers.
Fortunately, there are many tools available today that can be used for such computations.
This appendix describes how two of the most popular of these tools, Maple and Mathe-
matica, can be used to perform computations in number theory, We will concentrate on
existing commands in these two systems, both of which support extensive programming
environments that can be used to create useful programs for studying number theory. We
will not describe these programming environments here.

C.1 Using Maple for Number Theory

S

The Maple system is a comprehensive environment for numerical and symbolic compu-
tations. It can also be used to develop additional functionality, We will briefly describe
some of the existing support for number theory in Maple. For additional information
about Maple, consult the Maple Web site at http: //www.maplesoft . com.

In Maple, commands for computations in number theory can be found in the
numtheory package. Some useful commands for number theory are included in the
standard set of Maple commands, and a few are found in other packages, such as the
combinat package of combinatorics commands. You need to let Maple know when
you want to use one or more commands from a package. This can be done in two
ways: You can either load the package and then use any of its commands, or you can
prepend the name of the package to a particular command, For example, after running
the command with (numtheory), you can use commands from the numtheory package
as you would standard commands. You can also run commands from this package by
simply prepending the name of the package before the command. You will need to do this
every time you use a command from the package, unless you run the with (numtheory)
command,

589
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Additional Maple commands for number theory can be found in the Maple V Share
Library, which can be accessed at http: //www. cybermath.com/share_home.html.

A useful reference for using Maple to explore number theory (and other topics in
discrete mathematics) is Exploring Discrete Mathematics with Maple [R097). This book
explains how fo use Maple to find greatest common divisors and least common malti-
ples, apply the Chinese remainder theorem, factor integers, Tun primality tests, find base
b expansions, encrypt and decrypt using classical ciphers and the RSA cryptosystem,
and perform other number theoretic computations. Also, Maple worksheets for num-
ber theory and cryptography, written by John Cosgrave for a course at St. Patrick’s
College in Dublin, Ireland, can be found at http://www.spd.dcu.ie/ johnbcos
/Maple_3rd_year.htm.

Maple Number Theory Commands

The Maple commands relevant to material in this text are presented according to the
chapter in which that material is covered. These commands are useful for checking com-
putations in the text, for working or checking some exercises, and for the computations
and explorations at the end of each section. Furthermore, programs in Maple can be
written for many of the explorations and programming projects listed at the end of each
section. Consult the appropriate Maple reference materials, such as the Maple V Pro-
gramming Guide [Mo96], for information about writing programs in Maple.

Chapter 1

combinat [fibonacci) (n) computes the nth Fibonacci number.

iquo(inty,inty) computes the quotient when int, is divided by inf,.

irem(int;,inty) computes the remainder when int is divided by inf,.

floor (expr) computes the largest integer less than or equal to the real expression expr.
numtheory [divisors] (n) computes the positive divisors of the integer 1.

Maple code for investigating the Collatz 3x + 1 problem has been written by Gaston
Gonnet, and is available in the Maple V Release 5 Share Library.

Chapter 2
convert (int, base, posint) converts the integer inf in decimal notation to a list
representing its digits base posint,

convert{int,binary) converts the integer int in decimal notation to its binary equiv-
alent.

convert (inf,hex) converts the integer int in decimal notation to its hexadecimal
equivalent.

convert (bin,decimal ,binary) converts the integer bin in binary notation to its
decimal equivalent.

convert (oct,decimal ,octal) converts the integer oc? in octal notation to its decimat
equivalent.
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C.1 Using Maple for Number Theory 591

convert (fex,decimal,octal) converts the integer hex in hexadecimal notation to its
decimal equivalent,

Chapter 3

isprime(n) tests whether n is prime.

ithprime(n) calculates the nth prime number where 7 is a positive integer.
prevprime(n) calculates the largest prime smaller than the integer .
numbertheory [fermat] (n) calculates the nth Fermat number,

ifactor(n) finds the prime-power factorization of an integer n.

ifactors(x) finds the prime integer factors of an integer n.

iged(inty, .. ., int,) computes the greatest common divisor of integers inty, . . ., inf,.

igcdex(inty, inty) computes the greatest common divisor of the integers int; and inty-
using the extended Euclidean algorithm, which also expresses the greatest common
divisor as a linear combination of int; and int,.

ilem(inty,. . .,int,) computes the least common multiple of the integers inty,...,int,.

Chapter 4

The operator mod can be used in Maple; for example, 17 mod 4 tells Maple to reduce 17
to its feast resicte modulo 4.

msolve(eqn,m) finds the integer solutions modulo m of the equation egn.

chrem{[r;...,nJ, [my,...,m,]) computes the unique positive integer inf such that inf
moedm; =n; fori=1,...,r.
Chapter 6

numtheory [phi] (#) computes the value of the Euler phi function at .

Chapter 7

numtheory [invphi]} (n) computes the positive integers m with ¢ (m) = n.
numtheory [sigmal (#) computes the sum of the positive divisors of the integer n.
numtheory [tau] (n) computes the number of positive divisors of the integer .

numbertheory [bigomega] (n) computes the value of 2 (7}, the number of prime
factors of n. '

numtheory [mersenne] (n) determines whether the nth Mersenne number M, = 2" — 1
is prime.

numtheory fmobius] (n) computes the value of the Mébius function at the integer .
Chapter 9

numtheory[order] (r}, n,) computes the order of n; modulo »,.
numtheory [primroot] (n) computes the smallest primitive root modulo 7.
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puntheory [mlogl (71, g, n3) computes the index, or discrete logarithunn, of ny to the
base ny modulo ny. (The function numtheory [index] (ny, 12, ny) is identical to this
function.)

numtheory [lambda) (#) computes the iminimal universal exponent of 2.

Chapter 11

pumtheory [quadres] (infy, inty) determines whether inty is a quadratic residue mod-
ulo infy.

nuntheory [1egendrel (n), n,) computes the value of the Legendre symbol (;;—;)

numtheory [jacobi] (ny, nz) computes the value of the Jacobi symbol (% .

numtheory (msqrt] (i, 1) computes the square root of 7 modulo r3.

Chapter 12

numtheory [pdexpand] (rat) computes the periodic decimal expansion of the rational
number rat.
numtheory [cfrac] (rat) computes the continued fraction of the rational number rat.

numtheory [invcfrac] (¢f) converts a periodic continued fraction ¢f to a quadratic
jrrational numbet.
Chapter 13

numtheory [sum2sqr] (1) computes all sums of two squares that sum to 1.

Chapter 14

Maple supports a special package for working with Gaussian integers. To use the com-
mands in this package, first run the command

with(GaussInt);

After running this command you can add, subtract, multiply, and form powers of Gaus-
sian integers using the same operators as you ordinarily do. Maple requires that you enter
the Gaussian integer a + ib as a 4 bxl. (That is, you must include the * operator between
b and the letter I, which Maple uses to represent the imaginary number i.)

. GaussInt [GInearest] {(c) returnsthe Gaussian integer closest to the complex nuimber

¢, where the Gaussian integer of smallest norm is chosen in the case of ties.
GaussInt [GIquol (m,n) finds the Gaussian integer quotient when m is divided by n.

GaussInt [GIrem] (m, ) finds the remainder Gaussian integer divisor when m is di-
vided by n.

GaussInt [GInorm] (m) gives the norm of the complex number 1.
GaussInt [GIprime] (m) returns true when m is a Gaussian prime and false otherwise.

GaussInt [GIfactor] {m) returns a factorization of m into 2 unit and Gaussian primes.
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GaussInt [GIfactors] (m) finds a unit and Gaussian prime factors and their multi-
plicities in a factorization of the Gaussian integer m.

GaussInt [GIsieve] (m), wherem is a positive integer, generates a list of Gauss primes
a + ib with 0 < ¢ < b and norm not exceeding m2.

GaussInt [GIdivisor] () finds the set of divisors of the Gaussian integer m in the
first quadrant.

GaussInt [GInodiv] (m) computes the number of nonassociated divisors of m,

GaussInt[GIged] (my, my, ..., m,) finds the greatest common divisor in the first
quadrant of the Gaussian integers my, my, ..., m,.

GausslInt [GIgedex] (a,b,'s',"t') finds the greatest common divisor in the first quad-
rant of the Gaussian integers @ and b and finds integers s and ¢ such that as s + br equals
this greatest common divisor,

GaussInt [GIchrem] ([ag, ay,...,a,]) [1g, 1y, . . ., u,]) computes the unique Gaussian
integer i such that m is congruent to a; modulo u; fori =1,2,...,r.

GaussInt [GIlem] (ay, ..., a,) finds the least common multiple in the first quadrant
(that is, with positive real part and nonnegative part), in terms of norm, of the Gaussian
integers ag, ..., a,.

GaussInt [GIphi] (n) returns the number of Gaussian integers in a reduced residue set
modiilo 2, where n is a Gaussian integer.

GaussInt [GIquadres] (a, b) returns 1 if the Gaussian integer a is a quadratic residue
of the Gaussian integer b and --1 if & is a quadratic nonresidue of 5.

Appendices

binomial (n, r) computes the binomial coefficient 1 choose r.

Using Mathematica for Number Theory

The Mathematica system provides a comprehensive environment for numerical and
symbol computations. It can also be used to develop additional functionality. We will
describe the existing Mathematica support for computations relating to the number
theory covered in this text, For additional information on Mathematica, consult the
Mathematica Web site at http: //wuw.mathematica.com.

Mathematica supports many number theory commands as part of its basic system.
Additional number theory commands can be found in Mathematica packages that are
collections of programs implementing functions in particular areas. The Mathematica
system bundles some add-on packages, called standard packages, with its basic of-
ferings. These standard packages include a group supporting commands for functions
from number theory, including Continued¥ractions, FactorIntegerECM, Num-
berTheoryFunctions, and PrimeQ. There are other Mathematica packages that can
be obtained using the Internet; access them at http: //www.mathsource . com. Consult
the Mathematica Book [Wo03] to learn how to load and use them.
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You cannot use a command form package without having first told Mathemat-
jca that you want to run commands from this package, which is done by loading
it. For example, to load the package NumberTheoryFunctions, use the command:
Tn[1] :=NumberTheory ‘ NumberTheoryFunctions®

Another resource for using Mathematica for number theory computations is Math-
ematica in Action by Stan Wagon [Wa99]. This baok contains useful discussions of how
to use Mathematica to investigate large primes, run extended versions of the Euclidean
algorithm, solve lincar diophantine equations, use the Chinese remainder theorem, work
with continued fractions, and generate prime certificates.

Number Theory Commands in Mathematica

The Mathematica commands relevant to material covered in this book are presented here
according to the chapter in which that material is covered. (The command for loading
these functions if they are part of add-on packages is also provided.) These commands
are useful for checking computations in the text, for working or checking some of the
exercises, and for the computations and explorations at the end of each section. Fur-
thermore, it is possible to write programs in Mathematica for many of the explorations
and programming projects listed at the end of each section. Consult Mathematica ref-
erence materials, such as the Mathematica Book [Wo03], for information about writing
programs in Mathematica.

Chapter 1

Fibonacci [n] gives the nth Fibonacci number S
Quotient [m,n] gives the integer quotient when m is divided by .
Mod [m,n} gives the remainder when m is divided by n.
The Collatz (3x + 1) problem has been implemented in Mathematica by Ilan

Vardi. You can access this Mathematica package at http://www.mathsource. con
/Content/Applications/Mathematics/0200-305.

Chapter 2

IntegerDigitsin, b] gives a list of the base b digits of .

Chapter 3

prime(#] produces output True if # is prime and False if # is not prime.
Prime[n] gives the nth prime number.
PrimePi[x] gives the number of primes less than or equal to x.

In[1] :=NumberTheory ‘NumberTheoryFunctions ‘
NextPrime[n] gives the smallest prime larger than .

GCD [n, #y, . - - » 1) gives the greatest common divisor of the integers 7y, o, . - <5 Mo

ExtendedGCD[n, m} gives the extended greatest common divisor of the integers n
and m.
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LCM[ny, 1, ..., m;] gives the least common multiple of the integers ny, g, . . . , 14
FactorInteger [n] produces a list of the prime factors of 1 and their exponents.
Divisorsin] gives alist of the integers that divide ».

IntegerExponent [n, b] gives the highest power of b that divides n.

In[1] :=NumberTheory ‘NumberTheoryFunctions®
SquareFree[n] returns True if n contains a squared factor and False otherwise.

In[1] :=NumberTheory ‘FactorIntegerECM®
FactorIntegerECM[n] gives afactor of a composite integer n produced using Lenstra’s
elliptic curve factorization method.

Chapter 4

Mod [k, n] gives the least nonnegative residue of k modulo #,
Mod [k, n, 1] gives the least positive residue of k modulo 7.
Mod [k, n, —n/2] gives the absolute least residue of k modulo n.

PowerMod {a, b, n] gives the value of a® mod n. Taking b == —1 gives the inverse of a
modulo g, if it exists.

In[1] :=NumberTheory ‘NumberTheoryFunctions®

ChineseRemainder [list;, list;] gives the smallest nonnegative integer r such that
Mod[r, list;] equals list;. (For example, ChineseRemainder [{r), ra}, {rmymg}] pro-
duces the solution of the simultaneous congruence x =r; mod m and x = ry, mod m,.)

Chapter 6

EulerPhi [n] gives the value of the Euler phi function at n,

Chapter 7

DivisorSigmalk, n] gives the value of the sum of the kth powers of divisors function
at n. Taking & = 1 gives the sum of divisors function at n. Taking & = 0 gives the number
of divisors of n.

MoebiusiMul[n] gives the value of p(n).

Chapter 8

The RSA Public Key Cryptosystem has been implemented in Mathematica by
Stephan Kaufmann. You can obtain the Mathematica package, instructions for how
to use it, and a Mathematica notebook from the Mathsource Web site at http://wuw
.mathsource.com/Content/Applications/ComputerScience/0204-130.

Chapter 9

MultiplicativeOrder [k, n] gives the order of k modulo #.

PrimitiveRoot [n] gives a primitive root of n when n has a primitive root, and does
not evaluate when it does not.
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In[1] :=NumberTheory ‘PrimeQ’
PrimeQCertificate[n] produces a certificate verifying that # is prime or composite.

CarmichaelLambdaln] gives the minimal universal exponent A(n).

Chapter 11

JacobiSymbol [n, m] gives the value of the Jacobi symbol (£).

m
SqrtMod[d, n] gives a square root of d module » for odd n.

Chapter 12

RealDigits [x] gives a list of the digits in the decimal expansion of x.
RealDigits[x, b] gives a list of the digits in the base b expansion of x.

The following functions dealing with decimal expansions are part of the Number
Theory‘ContinuedFractions’ package. Load this package using Inf1i] :=Number
Theory‘Continued Fractions® before using them.

PeriodicForm[{dg, .. ., {@m. .- -}}, €xp] presents a repeated decimal expansion in
terms of a preperiodic and a periodic part.

PeriodicForm[{ag,. . . {@y, - - -}}, expr, b] represents a base b expansion.

Normal [PeriodicFormlargsl] gives the rational number corresponding to a decimal
expansion.

The following functions dealing with continued fractions are part of the Number
Theory‘Continued Fractions’ package. Load this package using In {1} :=Number
Theory ' Continued Fractions® before using them.

ContinuedFraction[x,n] gives the first n terms of the continued fraction expansion
of x.

ContinuedFraction[x] gives the complete continued fraction expansion of a qua-
dratic irrational number.

FromContinued Fraction[lisf] finds a number from its continued fraction expan-
sion.

ContinuedFractionForm({ag, aj, . . .}] represents the continued fraction with partial
quotients ap, ¢ . . -

ContinuedFractionForml{ag. ap,....{Po P1.-- .J}] represents the continued frac-
tion with partial quotients ap, @; . . . and additional quotients py, P2, .« - -

Normal [ContinuedFractionForm [quotients]] gives the rational or quadratic irra-
tional number corresponding to the given continued fraction.

Convergents [rat] gives the convergents for all terms of the continued fraction of a
rational or quadratic irrational x.

Convergents [nium, terms] gives the convergents for the given number of terms of the
continued fraction expansion of nunt.

Convergents [¢f] gives the convergents for the particular continued fraction ¢ f 18-
turned from ContinuedFraction or Cont inuedFractionForm.
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C.2 Using Mathematica for Number Theory 597

GuadraticIrrationalQlexpr] tests whether expr is a quadratic irrational.

Chapter 14
Divisors[n, Gaussianintegers —> True] lists all Gaussian integer divisors of the
Gaussian integer n,

DivisorSigmalk, n, Gaussianintegers -> True] gives the sum of the kth powers of
the Gaussian integer divisors of the Gaussian integer n.

Factorinteger [n, GaussianIntegers —> True] produces a list of the Gaussian prime
factors of the Gaussian integer n with positive real parts, and nonnegative imaginary
parts, their exponents, and a unit,

PrimeQ [», Gaussianlntegers ~> True] returns the value of True if # is a Gaussian
prime and False otherwise,

Appendices

Binomial [n, m] gives the values of the binomial coefficient Cfl)
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Number Theory Web Links

In this appendix we provide an annotated list of key Web sites for number theory. These
sites are excellent starting points for an exploration of number theory resources on the
Web. At the time of publication of this book, these sites could be found at the URLs
listed here. However, with the ephemeral nature of the Web, the addresses of these sites
may change, they may cease to exist, or their content may change, and neither the author
nor the publisher of this book is able to vouch for the contents of these sites. If you have
trouble locating these sites, you may want to try using a search engine to see whether
they can be found at a new URL. You will also want to consult the comprehensive guide
to all the Web references for this book at http: //wuw.awlonline.com/rosen. This
guide will help you lecate some of the more difficult-to-find sites relevant to number
theory and to cryptography.

The Fibonacci Numbers and the Golden Section (http: //www.mcs . surrey.ac.uk
/Personal/R.Knott/Fibonacci/fib.html)

An amazing collection of information about the Fibonacci numbers, including their
history, where they arise in nature, puzzies involving the Fibonacci numbers, and their
mathematical properties can be found on this site. Additional material addresses the
golden section. An extensive collection of links to other sites makes this an excellent
place to start your exploration for information about Fibonacci numbers.

The Prime Pages (http://www.utn.edu/research/primes/)

This is the premier site for information about prime numbers. You can find a glossary,
primers, articles, the Prime FAQ, current records, conjectures, extensive lists of primes
and prime factorizations, as well as links to other sites, including those that provide
useful software. This is a great site for exploring the world of primes!

599
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The Great Internet Prime Search (http://www.mersenne. org)

Find the latest discoveries about Mersenne primes at this site. Youcan downioad software
from this site to search for Mersenne primes, as well as primes of other special forms.
Links to other sites related to searching for primes and factoring are provided. This is
the site to visit to sign up for the communal search for a new prime of world-record size!

The MacTutor History of Mathematics Archives (http: / /wuu-groups.dcs
.st-and.ac.uk/history/index.html)

This is the main site to visit for biographies of mathematicians. Hundreds of important
rnathematicians from ancient to modern times are covered. You can also find essays on
the history of important mathematical topics, including the prime numbers and Fermat’s
last theorem.

Frequently Asked Questions in Mathematics (bttp://db.uwaterloo.ca
/alopez-o/math-faq/math-faq.html)

This is a compilation of the frequently asked questions from the USENET newsgroup
sci.math. It contains several sections of questions relating to number theory, including
primes and Fermat’s last theorem, as well as a potpourri of historical information and
mathematical trivia.

The Number Theory Web (attp://www.numbertheory. org/ntw/web.html)

This site provides an amazing collection to links to sites containing information relevant
to number theory. You can find links to sites providing software for number theory cal-
culations, course notes, articles, online theses, historical and biographical information,
conference information, job postings, and everything else on the Web related to number

theory.

RSA Labs—Cryptography FAQ (attp://www. rsasecurity.com/rsalabs /fag/)

This site provides an excellent overview of modern cryptography. You can find de-
scriptions of cryptographic applications, cryptographic protocols, public and private key
cryptosystems, and the mathematics behind them.

The Mathematics of Fermat’s Last Theorem (nttp://www.best. com/~cgd
/home/f1t/£1t01 . htm)

This site provides an excellent introduction to Fermat's last theorem. It provides discus-
sions of each of the important topics involved in the proof of the theorem.

NOVA Online—The Proof (http://uww.pbs. org/wgbh/nova/proot)

This site provides material relating to a television program on the proof of Fermat’s last
theorem, Included are transcripts of the program and of an interview with Andrew Wiles,
and links to other sites on Fermat’s last theorem.
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Table E.1 gives the least prime factor of each odd positive integer less than 10,000 and
not divisible by 5. The initial digits of the integer are listed to the side and the last digit
is at the top of the column. Primes are indicated with a dash. The table is reprinted with
permission from U. Dudley, Elementary Number Theory, Second Edition, Copyright ©
1969 and 1978 by W. H. Freeman and Company. Al rights reserved.

Table E.3 gives the least primitive root » modulo p for each prime p, p < 1000.

Table E.4 is reprinted with permission from I. V. Uspensky and M. A. Heaslet, Elemen-
tary Number Theory, McGraw-Hill Book Company. Copyright © 1939.
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Tables -
1 3 7 9 1 3 7 9 r 3 7 9 137]
- ]

0 —— — 3 40 — 13 11 — 80 3 11 3 — i20 — 317 3
I - — - — a4 3 17 3 — gt — 319 3 121 7 — — 23
23— 3 — 42 — 3 7 3 g2 — — — — 22 03 — 3 —
3 — 3 — 3 43 — — 19 — 83 3 7 3 — 123 — 3 — 3
4 — — — 7 44 3 — 3 — g4 29 3 7 3 124 17 11 29 —
5 3 — 3 — 45 18 3 — 3 85 23 — — — 125 3 7 3 —
6 — 3 — 3 46 — — — 7 g6 3 — 311 126 13 3 7 3
7 —— 7 — 47 3 11 3 — 8§ 13 3 — 3 127 31 19 — —
g 3 — 3 — 48 13 3 — 3 88 — — — 17 128 3 — 3 —
9 7 3 — 3 4 — 17 T — 8 3 19 3 29 129 — 3 — 3
00— —— — 50 3 — 3 — 90 17 3 — 3 130 — — — 7
1m 3 — 37 51 7 3113 91 — 11 7 — 131 3 13 3 -—
12 it 3 — 3 52 — — 17 23 52 3 13 3 — 132 — 3 — 3
3 — 7 — — 53 313 3 7 93 7 3 — 3 133 1t 31 7 13
14 3 11 3 — 54 — 3 — 3 94 — 23 — 13 134 317 319
15— 3 — 3 55 19 7 — 13 95 3 8 3 7 135 7 323 3
6 7 — — 13 56 3 — 3 — 9 31 3 — 3 136 — 29 — 37
i7 3 — 3 — 57 — 3 — 3 97 — 7 — 11 137 3 — 3 7
8 — 311 3 5§ 7 11 — 19 98 3 — 3 23 38 — 319
0w ——— — 59 3 — 3 — 99 — 3 — 3 i3 13 711 —
20 3 7 3 1 60 — 3 — 3 w7 1719 — 140 3 23 3 —
21 — 3 7 3 6t I3 — — — 100 3 — 3 — M1 17 313 3
213 — — — 62 3 7 317 102 — 313 3 42 7 — — —
23 3 — 3 — 6 — 3 7 3 103 — — 17 — 43 3 — 3 —
24 — 313 3 64 — — — 11 w4 3 7 3 — 144 11 3 — 3
25 — 11— 7 65 3 — 3 — 05 — 3 7 3 145 — — 31 —
26 3 — 3 — 66 — 3 23 3 w0 — — 11 — M6 3 7 3 13
27 — 3 — 3 67 11 — — 7 07 329 313 147 — 3 7 3
2 — — 71 68 3 — 313 108 23 3 — 3 148 — — — —
29 3 — 313 69 — 317 3 109 — — — 7 149 3 — 3 —
30 7 3 — 3 70— 19 7 — o 3 — 3 — 150 19 3 11
31 — — — 1 71 323 3 — i1 3 — 3 15t — 17 37
32 317 3 7 72 1 3 — 3 112 19 — 7 — 152 3 — 31
3B — 3 — 3 73 17 — I — 13 3 1 3 153 — 329 3
¥ 7 - — 74 3 — 3 7 14 7 331 3 154 23 — 7 —
35 3 — 3 — 75 — 3 — 3 s — — 13 19 155 3 — 3 —
36 19 3 — 3 7% — 7 13 — 16 3 — 3 7 156 7 3 — 3
37 7 — 13 — 7 3 — 319 117 — 3 11 3 157 — 11 19 —
38 7 — 3 — 78 11 3 — 3 g — 7 — 29 58 3 — 3 7
317 3 — 3 7% 713 — 17 19 3 — 3 1 159 37 3 — 3

Table E.1 Factor table.
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I 3 7 9 1 3 7 9 I 3
160 — 7 — — 200 3 — 3 7 240 7 3
161 3 — 3 — 201 — 3 — 3 241 — 19
62 — 3 — 3 202 43 7 - — 242 3 —
163 7 23 — 11 203 3 19 3 — 243 11 3
164 3 31 3 17 204 13 3 23 3 244 — 7
165 13 3 — 3 205 7 — 1 29 245 3 1t
66 11 — — — 200 3 — 3 — 246 23 3
67 3 7 3 23 207 19 3 31 3 247 7 —
168 41 3 7 3 208 — — — — 248 3 13
169 19 — — — 200 3 7 3 — 249 47 3
170 3 13 3 — 21011 3 7 3 250 41 —
171 29 3 17 3 211 — — 29 13 2351 3 7
172 — — 11 7 212 311 3 — 252 — 3
173 3 — 3 37 213 — 3 — 3 253 — 17
74 — 3 — 3 214 — — 19 7 254 3 —
175 17 — 7 — 215 3 — 3 17 255 — 3
76 3 41 3 29 216 — 3 11 3 256 13 11
177 7 3 — 3 217 13 410 7 — 257 3 31
178 13 — — — 218 3 37 3 11 258 29 3
179 311 3 7 218 7 313 3 259 — —
180 — 3 13 3 220 31 — — 47 260 3 19
181 — 7 23 17 221 3 — 3 7 261 7 3
182 3 — 3 31 222 — 317 3 262 — 43
183 — 31 3 223 23 7 — — 263 3 —
184 7 19 — 43 224 3 — 3 13 264 19 3
185 3 17 3 1t 225 — 3 37 3 265 11 7
86 — 3 — 3 226 7 31 — — 266 3 -
187 — — — — 227 3 — 3 43 267 — 3
188 3 7 3 — 228 — 3 — 3 268 7 —
8% 31 3 7 3 229 29 — — 11 269 3 —
180 — 11 — 23 230 3 7 3 — 270 37 3
191 3 — 3 19 231 — 3 7 3 211 — —
192 17 3 41 3 232 11 23 13 17 2712 3 7
193 — — 13 233 3 — 3 273 — 3
194 3 29 3 — 234 — 3 — 3 274 — 13
95 — 319 3 23 — 13 — 7 275 3 —
196 37 13 7 11 236 3 17 3 23 276 11 3
197 3 — 3 — 237 — 3 — 3 277 17 47
198 7 3 — 3 238 — — 7 — 278 3 11
199 11 — — — 239 3 — 3 — 279 — 3

- Tables 603
709 1 3 7 9
29 3 | 280 — — 7 53
— 4l | 281 3 29 3 _
370 282 7 311 3
— 3| 8 19— 7
— 31 284 3 — 3 7
3 — 285 — — 3
— 3 286 — 47 19
— 37 287 3 13 3 —
319 288 43 3 — 3
11 3 289 7 11 — 13
23 13 20 3 — 3 —
3 11 291 4t 3 — 3
T 3 292 23 37 — 29
43 — 293 3 7 3 —
3 — 24 17 3 71 3
— 3 295 13 — — 11
17 7 2 3 — 3 —
3 — 297 - 3 13 3
13 3 298 11 19 29 7
7 23 299 3 41 3
3 — 300 — 3 31 3
— 3 0 — 23 7 —
37T 11 302 3 — 313
3 37 3 — 3
— 304 — 17 1I —
— — | 305 343 3 7
317 306 — 3 — 3
— 3 307 377 17 —
— — 308 3 — 3 —
3 — 309 11 319 3
— 3 310 7 29 13 —
11 — 311 3 11 3 —
3 — 312 — 3 53 3
7 3 313 31 13 - 43
41 — 34 3 7 3 47
33 315 23 3 7 3
— 3 316 29 — — —
- 7 317 319 3 11
3 — 318 — 3 — 3
— 3 319 — 3t 23 7

Table E.1 {continued)
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Tables
—
1 3 7 ¢ 1 3 79 1 3 7 9 1 3 7 9
320 3 — 3 — 360 13 3 — 3 400 — — — 19 440 3 7 3 —
321 13 3 — 3 361 23 — — 7 061 3 — 3 — 441 11 3 7 3
322 — 11 7 — 62 3 — 319 a2 — 3 — 3 442 — — 19 43
323 3 53 3 41 363 — 3 — 3 403 29 37 11 7 443 3 11 3 23
324 7 3 17 3 364 11 — 7 41 404 3 13 3 — 444 — 3 — 3
325 — — — — 365 3 13 3 — 405 — 3 — 3 445 — 61 — 7T
326 3 13 3 7 366 7 319 3 406 31 17 7 13 46 3 — 3 M
327 — 320 3 367 — — — 13 507 3 — 3 — 447 17 3 11 3
328 17 7 19 11 68 320 3 7 408 3 60 3 448 — — 67
329 3 37 3 — 369 — 3 — 3 400 — — 17 — 449 3 — 11
30 — 3 — 3 370 — 7 11 — 410 3 11 3 7 450 7 3 — 3
331 7 — 31 — 371 3 47 3 — 411 — 3 23 3 451 13 — — —
332 3 — 3 — 372 61 3 — 3 412 13 —_— 452 3 — 3 7
333 — 3 47 3 373 7 — 37 — 413 3 — 3 — 453 23 3 13 3
334 13 — — 17 374 3 19 3 23 414 41 3 11 3 454 19 7 — —
335 3 7 3 — 375 11 3 13 3 415 7 — — — 455 3 29 3 47
336 — 3 7 3 376 — 33 — — 416 3 23 3 11 456 — 3 — 3
337 — — 11 31 377 3 7T 3 — 417 43 3 — 3 457 7 17 23 19
338 3 17 3 — 378 19 3 7 3 418 37 47 53 39 458 3 — 3 13
339 — 3 43 3 379 17 — — 29 419 3 7 3 13 459 — 3 — 3
340 19 41 — 7 380 3 — 3 31 90 — 3 7 3 460 43 — 17 11
341 3 — 3 13 381 37 3 1t 3 421 — Il — — 461 3 3 31
342 1103 23 3 g2 — — 43 7 422 3 4t 3 — 462 — 3
343 47 — 7 19 383 3 — 3 11 423 — 3 19 3 463 11 41 — —
344 11 3 — 384 23 3 — 3 424 — — 31 7 464 3 — 3 —
345 j— 3 385 — — 7 17 425 3 — 3 — 465 — 3 — 3
346 — — — — |/ 3 — 3 53 426 — 3 17 3 466 59 — 13 7
347 3 23 3 7 387 7 3 — 3 427 — — i1 467 3 — 3 —
348 59 3 11 3 388 — 11 13 — 428 3 — — 468 31 3 43 3
349 — 7 13 — 389 3 17 3 7 429 7 3 — 3 469 — 13 7 37
350 3 31 3 11 300 47 3 — 3 430 It 13 59 31 470 3 — 3 17
351 — 3 — 3 391 — 7 — — 431 3 19 3 7 471 7 3 53 3
352 7 13 — — 392 3 — 3 — 432 29 3 — 3 472 — — 29 —
353 3 — 3 — 393 — 3 31 3 433 61 7T — — 473 3 — 3 7
354 — 3 — 3 394 7 — — 11 434 3 43 3 — 474 11 3 47 3
355 53 11 — — 395 3 59 37 3 435 19 3 — 3 475 — 7 67 —
356 3 7 3 43 306 17 3 — 3 436 7 — 11 17 476 3 11 3 19
357 — 3 7 3 397 11 29 41 23 437 3 — 3 29 477 13 3 17 3
358 — — 17 37 398 3 7 3 — 438 13 3 41 3 478 7T — — —
5 3 — 3 59 369 13 3 7 3 436 — 23 — 53 479 3 -— 3 —

Table E.1 (continued)
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Tables 605

1 3 7 9 i 3 7 ¢ 1 3 7 ¢ 1 3 7 9
480 — 3 11 3 520 7 11 41 — 560 3 13 3 71 600 17 3 — 3
481 17 — — 61 521 3 13 3 17 561 31 3 41 3 601 — 11 13
48 3 7 3 U 522 23 3 — 3 | 562 7 — 17 13 602 3 19 3 ..
483 — 3 3 523 — — — 13 563 3 43 3 — 603 37 3 — 3
484 47 29 37 13 524 3 7 3 29 564 — 3 — 3 604 7 — — 23
485 3 23 3 43 525 59 3 1 3 565 — — — — 605 3 — 3 73
486 — 3 31 3 526 — 19 23 11 566 3 7 3 - | 606 11 3 — 3
487 — 11 — 7 527 3 — 3 — 567 53 3 7 3 607 13 — 59 —
438 3 19 3 — 528 — 3 17 3 568 13 — 11 — 608 3 7 3 —
489 67 3 59 3 529 11 67 — 7 569 3 — 3 41 609 — 3 7 3
490 13 — 7 — 5306 3 — 3 — 50 — 313 3 610 — 17 31 41
491 3 17 3 — 531 47 3 13 3 571 — 29 — 611 3 — 31F 29
492 7 313 3 | 53217 — 7 73 572 3 59 3 17 612 — 3 11 3
493 — — — 11 533 3 — 3 19 573 11 3 — 3 613 — — 17 7
494 3 — 3 7 534 3 — 3 5 — — 7 — 6l4 3 — 3 11
495 — 3 — 3 535 — 53 11 23 575 3 11 3 13 615 — 3 47 3
496 1} 7 — — 536 331 3 7 576 7 3 73 3 6l 68 — 7 31
497 3 — 3 13 537 41 3 19 3 577 29 23 53 — 617 3 — 3 37
498 17 3 — 3 538 —— 7 — 17 578 3 — 3 7 618 7 3 23 3
499 7 — 19 — 539 3 — 3 — 579 — 311 619 41 11— —
500 3 — 3 — 540 11 3 — 3 580 — 7 — 37 620 3 — 3 7
501 — 329 3 541 7 — — — 581 3 — 3 11 621 — 3 — 3
02 — — 11 47 542 3 11 3 a1 582 — 3 — 3 622 — 7 13 —
503 3 7 3 — 543 — 3 — 3 583 719 13 — 623 3 23 3 17
5064 71 3 7 3 544 — — 13 — 584 3 — 3 — 624 79 3 — 3
505 — 31 13 — | 545 3 7 3 53 585 — 3 — 3 625 7 133 — Il
506 3 61 3 37 546 43 3 7 3 586 — 11 — — 626 3 — 3 —
507 11 3 — 3 547 — 13 — — 587 3 7 3 — 627 — 3 — 13
508 — 13 — 7 548 3 — 3 11 588 — 3 7 3 628 11 61 — 19
509 3 11 3 — 549 17 3 23 3 589 43 71 — 17 629 3 7 3 —
50 — 3 — 3 55 — — — 7 5% 3 — 3 19 630 — 3 7 3
511 19 — - 551 3 37 3 — 591 23 3 61 631 — 59 — 71
512 3 47 3 23 552 — 3 — 3 592 31 — — 632 3 — 3 —
513 7 3 1t 3 553 — 11 7 29 593 3 17 3 — 633 I3 3 — 13
514 53 37 — 19 554 3 23 3 31 594 13 3 19 3 634 17 — 11 7
515 3 — 3 7 555 7 3 — 3 595 11 — 7 59 635 3 — 3 -
516 13 — 3 556 67 — 19 — 596 3 67 3 47 636 ~— 3 — 3
517 — 31 — 557 3 — 3 17 597 7 3 43 3 637 23 — 7 —
518 3 71 3 — 558 — 3 37 3 598 — 31 — 53 638 3 13 3 —
519 29 3 — 3 559 — 7 29 11 599 3 13 3 7 639 7 3 — 3

Table E.1 (continued)
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Tables
_
t 3 7 9 1 3 79 Tt 3 7 9 1 3 79
o
640 37 10 43 13 | &0 3 — 311 | 72019 3 — 3 760 11 — — 7
661 311 3 7 | es1 7 317 3| 21— — T— 761 323 319
642 — 3 — 3 | 68219 —— — | 72 331 3 — %62 — 329 13
643 59 7 41 47 | 683 3 — 3 T | 723 3 - 3 | 763 1317 7 —
614 319 3 — | 684 — 341 3 | T4 13— — 11 | 764 3 — 5=
645 — 3 11 3 | 685 13 7 — 19 125 3 — 3 7 765 7 3 13 3
646 72329 — | 686 3 — 3 — | 72653 313 3 766 47 19 11 —
67 3 311 | 67 — 313 3 | 72711 71929 § 767 3 — 3 7
648 - 313 3 | 688 7 — 7183 | 728 3 — 3% 768 — 3 — 3
640 — 43 73 67 | 689 3 61 3 — | 72923 3 — 3 969 — 7 43 —
60 3 7 323 | 690 67 3 — 3 | 730 767 — — | 710 31— 313
651 17 3 7 3 | 691 — 31 — 1L 731 71 313 | 1M1 3 — 3
652 — 11 61 — | 692 3 113 | 2 — 317 3 772 T—— 59
63 3 47 313 | 69320 3 7 3 | 73— — 14l 773 1 371
654 31 3 — 3 | €94 11 53 — — | 7 3 7T 3 — 774 — 3 61 3
55 — — 79 7 | 695 317 3 — | S — 3 7 3 75 B —— =
656 3 — 3 — | 696 — 3 — 3 | 76 173753 — | 776 3 3 17
657 — 3 — 3 | 697 — 19 — 7 | 737 3793 347 7719 3 7 3
658 — 20 7 11 | 698 3 — 329 { 1738 11 38 3 | 7783l 43 13 —
69 319 3 — | €09 — 3 — 3 | 73919 —13 7 3 79 3 311
660 7 3 — 3 | 700 —47 743 | 740 3 11 331 780 29 3 37 3
661 11 17 13 — | 701 3 — 3 — | 74l — 3 — 3 781 73 13 — 7T
62 337 3 7 | M2 7 3 — 3 | 724113 717 4 782 3 - 3 —
663 19 3 — 3 | 703 79 1331 — | ™3 3 — 343 783 41 3 17 3
664 29 7 17 61 | 704 3 — 3 7 | 44 311 3 | 784 — 11 7 47
665 3 —— 3 — | 70511 3 — 3} M5 —29 — — | 78 3 .. 329
666 — 359 3 | 70623 737 — | ™6 317 3 7 786 7 3 — 3
667 7 — 11 — | 707 311 3 — | 74731 3 — 3| 7817 ———
668 34l 3 — | 70873 319 3 | M8 — 7 — — | 788 3 3 7
€O — 337 3 | 709 7 41 4731 | M9 359 3 — | 78913 353 3
610 — — 19 — | 710 3 — 3 — | 75013 3 — 3 700 — 7 — 11
611 3 7 3 — | 7113 311 3 | 751 7T 11— 73 791 3 41 3 —
672 11 3 sl —49 - — {752 3 — 3 — | 1928 3 — 3
€3 53 — — 23 | 713 3 7 311 | 73317 3 — 31 73 T — 17
674 3 1t 3 17 | 714 37 3 | 754 — 19 — — | 794 313 3 —
675 43 3 29 3 | 715 — 23 17 — | 735 3 3 — | 795 — 373 3
676 — — 67 716 3 13 3 67 | 156 — 7 3 | 796 19 — 31 13
7 313 3 — | m1m 3 — 3 | 7576 — — 1 797 3 7 379
€8 — 3 11 3 | 718 43 1L — 7 | 758 3 — 3 — 798 23 3 7 3
679 — —— 713 | 719 3 — 323 | 759 — 371 3 79961—~115

Table E.1 {continued)
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1 3 7 9 1 3 7 9 ¥} 3 7 9 1 3 7 9
800 3 53 3 — 840 31 3 7 3 88 13 — — 23 9 3 — 3 —
80t — 3 — 3 841 13 47 19 — 881 3 3 — 921 61 3 13 3
802 13 711 23 7 842 3 — 3 — 882 — 3 7 3 922 — 23 — 11
803 3 29 3 — B3 — 3 11 883 — 11 — — | 923 3 3 —
804 11 3 13 3 844 23 — — 7 884 3 37 3 — 924 — 3 7 3
805 83 — 7 — | 845 3 79 3 11 885 53 3 17 3 925 11 19 — 47
806 3 11 3 — 846 — 3 — 3 886 — — — 7 926 3 539 3 13
807 7 3 41 3 847 43 37 7 61 887 3 19 3 13 927 713 3 — 3
808 — 59 - — 848 3 17 3 13 888 83 3 — 3 928 — — 37 7
809 3.— 3 7 849 7 3 29 3 880 17 — 7 11 929 3 — 13 17
810 — 3 11 3 850 — 11 47 67 890 3 28 3 59 930 71 3 41 3
811 — 7 — 23 851 3 — 3 7 891 7 3 37 3 931 -~ 67 T —
812 3 — 3 11 852 — 3 - 3 892 11 — 79 — 932 3 — 3 19
813 47 3 79 3 853 19 7 — — 893 3 — 3 7 933 7 3 — 3
814 7 17 — 29 84 3 — 3 83 894 — 3 23 13 934 — — 13 —
815 3 31 3 41 855 17 3 43 3 895 — 7 13 17 935 3 47 3 7
816 — 3 — 3 856 7 — 13 11 8§46 3 — 3 — 936 11 14 3
817 — 11 13 — 857 3 — 3 23 897 — 3 47 3 937 — — 83
818 3 7 3 19 858 — 3 31 3 898 7 13 11 89 938 3 11 3 41
819 — 3 7 3 859 11 13 — — 899 3 17 3 — 939 — 3 — 13
820 59 13 29 — 860 3 7 3 — @0 — 3 — 3 940 7 — 23 97
821 3 43 3 — ger 79 3 7 3 901 — — 71 29 941 3 — 3 -
822 — 319 3 862 37 — — — 902 3 7 3 — 942 — 3 11 3
823 — — — 7 863 3 89 3 33 903 i1 3 7 3 943 - — — —
824 3 — 3 713 864 — 3 — 3 904 — — 83 — 944 3 7 3 11
825 37 3 23 3 865 41 17 11 805 3 11 3 — 945 13 3 7 3
826 11 — 7 — 866 3 — 3 — G0 13 3 — 3 046 — — — 17
827 3 — 3 17 867 13 3 — 3 907 47 43 29 7 M7 3 — 3 —
828 3 — 3 868 — 19 7 — 908 3 31 3 6l 948 19 3 53 3
829 — — — 43 869 3 — 3 — 909 — 3 11 3 949 — It — 7
830 319 3 7 870 7 3 — 3 913 19 — 7 — 950 3 13 3 37
831 — 3 — 3 871 31 — 23 — 91t 3 31 3 H 951 — 3 31 3
832 53 7 1t — 872 311 3 7 912 7 3 — 3 952 — 89 7 13
833 3 13 3 31 873 — 3 — 3 9i3 23 — — 13 953 3 — 3 —
834 19 3 17 3 874 — 7 — 13 914 3 41 3 7 954 7 3 — 3
835 7 — 61 13 875 3 — 3 193 915 — 3 — 955 — 41 19 11
83 3 — 3 — 8§76 — 3 11 3 916 — 7 89 53 95 3 73 3 7
837 11 3 — 3 877 7 31 67 — 917 3 — 3 67 957 17 61 3
838 17 83 — — 878 3 — 3 1t 918 — 3 — 3 958 11 7 — 43
839 3 7 3 37 879 59 3 19 3 919 7 29 17 — 959 3 53 3 29

Table E.1 {continued)
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Tables

i 3 7 9 1 3 7 9 1 3 7 9 i 3 7 9
960 — 3 13 3 970 89 31 18 7 980 3 — 3 17 990 — 3 — 3
961 7 — 59 — 971 3 11 3 — 98] — 3 — 3 901 11 23 47 7
962 3 — 3 — 972 — 3 71 3 982 7 11 3t — 992 3 — 3 —
963 — 3 23 3 973 37 — 7 — 83 3 — 3 — 993 — 319 3
964 31 — 11 — 974 3 — 3 — 084 13 3 43 3 994 — 61 7 —
965 3 7 3 13 975 7 3 11 3 985 — 59 — - 995 3 37 3 23
%66 — 3 7 3 976 43 13 — 986 3 7 31N 9% 7 3 — 3
967 19 17 — — 977 3 29 3 987 — 3 7 3 997 13 — 11 17
g68 3 23 3 — 978 — 3 — 3 988 41 — — [1 g8 3 67 3 7
969 11 3 — 3 979 — 7 97 41 980 3 13 3 19 900 97 3 13 3

Table E.1 (continued)
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n din) t(n)

1 1 1

2 1 2

3 2 2

4 2 3

5 4 2

6 2 4

7 6 2

8 4 4

g 6 3
10 4 4
11 10 2
12 4 6
13 12 2
14 6 4
15 S 4
16 2 5
17 6 2
18 6 6
19 18 2
20 8 6
2] 12 4
22 10 4
23 22 2
24 8 8
25 20 3
26 12 4
27 18 4
28 12 6
29 28 2
30 8 8
31 30 2
32 16 6
33 20 4
34 16 4
35 24 4
36 12 9
37 36 2
38 18 4
39 24 4
40 i6 8
41 40 2
42 12 8
43 42 2
44 20 6
45 24 6
46 22 6
47 4% 2
48 16 10
49 42 3

84
78
72
48
124
57

Table E.2 Values of some arithmetic functions.
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Tables

n @(n) T{n) a(n)
50 20 4] 93
51 32 4 72
52 24 6 98
53 52 2 54
54 i8 8 120
55 40 4 72
56 24 8 120
57 36 4 80
58 28 4 90
59 58 2 60
60 16 12 168
61 60 2 62
62 30 4 96
63 36 & 104
64 32 7 127
65 48 4 84
66 20 8 144
o7 66 2 68
68 32 6 126
69 44 4 %6
70 24 8 144
Tt 70 2 72
72 24 12 195
73 72 2 74
74 36 4 114
75 40 6 124
76 36 6 140
) 60 4 96
78 24 8 168
79 78 2 80
20 32 10 186
g1 54 . 5 121
82 40 4 126
83 82 2 84
84 24 12 224
85 64 4 108
86 42 4 132
87 56 4 120
88 40 8 180
89 88 2 90
90 24 12 234
91 T2 4 112
a2 44 6 168
93 60 4 128
94 46 4 144
95 72 4 120
96 32 12 252
97 96 2 98
98 42 6 171
99 60 6 156

100 40 9 217
Table E.2 (continued}
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Tables
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Table E.3 Primitive roots modido primes.
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Tables
Numbers

P 1 2 3 4 5 6 17 8 g 0 11 12 13 14 15 16

3 2 1

5 4 ] 3 2 Indices

7 6 2 1 4 5 3

11 1{4] 1 8 2 4 9 7 3 6 5

13 12 1 4 2 9 5 11 3 8 10 7 6

17 16 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

19 18 1 13 2 16 14 6 3 g 17 12 15 5 7 11 4
23 22 2 16 4 1 18 19 6 10 3 9 20 14 2t 17 8

29 28 1 5 2 22 6 12 3 W 23 25 7 18 13 27 4

31 30 24 1 18 20 25 728 12 2 14 23 19 11 22 2l 4

37 36 i 26 2 23 27 32 3 16 24 30 28 11 33 13 4

41 40 26 15 12 22 1 39 38 30 8 3027 31 25 31 24

43 42 27 P12 25 28 35 39 2 16 30 13 32 20 26 24

47 46 18 20 36 1 38 32 8 40 19 7 10 1 4 21 26

33 52 1 17 2 47 18 14 3 34 43 6 19 24 15 12 4
59 58 1 50 2 6 51 18 3 42 7 25 52 45 19 56 4

61 60 1 6 2 22 7 4 3 12 23 15 8 40 50 28 4

67 66 T 39 2 15 40 23 3 12 16 59 41 19 24 54 4

71 70 6 26 12 28 32 1 18 52 34 31 3% 39 7 54 24

73 72 8 6 16 1 14 33 24 2 o 55 22 59 41 7 32

79 7R 4 1 g8 62 5 53 12 2 66 68 9 34 57 63 16

83 82 1 72 2 27 73 8 3 62 28 24 T4 T 9 17 4
£9 88 I6 1 32 70 17 81 48 2 8 8 33 23 g 71 o4
97 96 34 70 68 1 8§ 31 6 44 35 8 42 25 65 71 40

Numbers

p 7 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
19 10 9

23 7 12 15 5 13 11 Indices

29 2t 11 9 24 17 26 20 g 16 19 15 14

31 T 26 4 8§ 29 17 27 13 10 5 3 16 g 15

37 7 17 35 25 22 31 i5 29 10 12 6 34 21 M 9 5 20
41 33 16 9 34 14 29 36 13 4 17 3 1t 7 23 28 10 138
43 38 29 19 37 36 15 6 40 8 17 3 5 41 11 34 g 31
47 16 12 45 37 6 25 5 28 2 2 14 22 35 39 3 44 27
53 10 35 37 49 31 7 39 20 42 25 51 16 46 13 33 5 23
59 40 43 38 g 10 26 15 53 12 46 34 20 28 57 49 5 17
61 47 13 26 24 535 16 57 9 44 41 18 51 35 2% 59 5 21
67 64 13 10 17 62 60 28 42 30 20 51 25 44 35 47 5 32
71 49 58 16 40 27 37 15 4 56 45 8 13 68 60 11 30 57
73 21 20 62 7 39 63 46 30 2 67 18 49 35 i5 11 40 6l
79 21 6 32 70 54 72 26 13 46 38 3 61 11 67 56 20 69
83 s6 63 47 29 8 25 60 75 56 7% 52 10 12 18 38 5 14
89 6 18 35 14 82 12 57 4% 52 39 3 25 59 87 31 80 85
97 %9 78 81 69 5 24 717 16 2 59 18 3 13 9 46 74 60

Table Ed Indices.
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Tables
Numbers
r 34 35 38 37 38 39 40 41 42 43 44 45 46 47 48 40
37 § 19 18
41 19 21 2 32 35 6 20 Indices
43 23 18 14 7 4 33 22 & 21
47 34 33 30 42 17 31 9 15 24 13 43 41 23
53 11 9 36 30 38 41 50 45 32 22 8 29 40 44 21 93
59 41 24 44 55 39 37 9 14 11 33 27 48 16 23 54 36
61 48 11 14 39 27 46 25 54 56 43 17 34 58 20 10 38
67 65 33 14 22 11 38 18 53 63 9 61 27 29 50 43 4
71 55 20 64 20 22 65 46 25 33 48 43 10 21 g 50 2
78 29 34 28 64 70 65 25 4 47 51 71 13 54 31 38 66
79 25 37 10 19 36 35 74 75 58 49 76 64 30 5% 17 28
83 57 35 64 20 48 67 30 40 81 I 26 7 61 23 76 16
89 22 63 34 1t 51 24 30 21 10 29 28 72 73 54 65 M4
97 27 32 16 91 19 95 7 8 39 4 58 45 15 84 14 62
Numbers
P 50 51 52 53 54 55 56 57 58 50 60 61 62 63 614 65
53 43 27 26
59 13 32 47 22 35 31 21 30 29 Indices
61 45 53 42 33 19 37 52 32 36 31 130
67 31 37 21 57 52 8 26 49 45 36 56 7 48 35 6 34
71 62 5 51 23 14 59 19 42 4 3 66 69 17 53 36 67
73 I0 27 3 53 26 56 57 68 43 5 23 58 19 45 48 60
79 50 22 42 77 7 52 65 33 15 31 71 45 60 55 24 1%
83 35 46 79 59 53 51 11 37 13 34 19 66 39 70 6 22
89 68 T 55 78 19 66 41 36 75 43 15 69 47 383 8§ 5
97 36 63 93 10 52 87 37 55 47 &7 43 64 80 75 12 26
Numbers
P 66 67 68 69 0 L 72 73 74 75 U6 77 78 79 80 81
67 33
T 63 47 6@ 41 35 Indices
78 69 50 37 52 42 44 3§
79 73 48 2% 27 41 51 14 44 23 47 40 43 39
83 15 45 58 50 36 33 65 69 21 44 49 32 68 43 31 42
89 13 56 38 358 79 62 50 20 27 53 &7 77 40 42 46 4
97 94 57 6 51 66 11 S0 28 29 72 33 21 33 30 41 88
Numbers
14 82 8 84 B85 8 87 83 89 9n 9 92 93 94 95 95
83 41
89 37T 61 26 76 45 60 44 Indices
97 23 17 73 90 38 83 92 s4 79 356 4% 20 22 82 48

Table E.4 (continued)
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Tables
Indices

P 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16

3 2 1

5 2 4 3 1

7 3 2 6 4 5 i Numbers

11 2 4 8 5 10 g 7 3 6 1

13 2 4 B 3 6 12 1 g 5 10 7 1

17 3 g 10 13 5 15 11 16 14 8 7 4 12 2 6 1

19 2 4 § 1la 13 7 14 9 8 17 15 I 3 6 12 b

23 5 2 10 4 20 8 17 16 1 g 22 18 21 13 19 3

29 2 4 8 16 3 6 12 24 19 9 13 7 14 28 27 25

31 3 9 27 1% 26 16 17 20 29 25 13 8 24 10 36 28

37 2 4 8 16 32 27 17 34 31 25 i3 26 15 30 23 9

41 6 36 11 25 27 39 29 10 19 32 28 4 24 21 3 I8

43 3 g 27 3% 28 41 37 25 32 10 30 4 12 36 22 23

47 5 25 31 14 23 21 11 8 40 12 13 18 43 27 41 17

53 2 4 % 16 32 i1 22 44 35 17 34 15 30 7 14 28

59 2 4 g 16 32 S5 1o 20 40 21 42 25 50 41 23 46

6t 2 4 8 1 32 3 6 12 24 48 35 g 18 36 i1 22

67 2 4 g 16 32 64 61 55 43 19 38 9 18 36 5 10

71 7 49 59 58 31 2 14 27 47 45 3 4 28 354 23 19

13 5 25 52 41 59 3 15 2 10 50 31 9 45 6 30 4

79 3 9 27 2 6 18 54 4 12 36 29 8 24 72 58 16

83 2 4 8 16 32 64 45 7 14 28 56 29 58 33 66 49

89 3 9 27 81 65 17 51 64 14 42 37 22 66 20 60 2

97 2 25 28 43 2 8 40 6 30 53 71 &4 29 48 46 36

Indices

r 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
19 10 t

23 15 6 7 12 14 1 Numbers

29 21 13 26 23 17 5 10 20 11 22 15 i

31 22 4 12 5 15 14 1l 2 6 18 23 7 21 ;

k) 18 36 35 33 29 21 5 10 20 3 6 12 24 11 22 7 14
41 26 33 34 40 35 5 30 16 4 2 12 31 22 g 13 37 17
43 26 35 19 14 42 40 34 16 -5 15 2 6 18 11 33 13 39
47 38 2 10 3 15 28 46 42 22 16 33 24 26 36 39 7 35
53 3 6 12 24 48 43 33 13 26 52 51 49 45 I 21 42 31
59 33 7 14 28 56 53 47 35 11 22 44 29 58 57 55 51 43
61 44 27 54 47 33 5 10 20 40 19 38 15 30 60 5% 57 53
67 20 40 13 26 52 37 07 14 28 56 45 23 46 25 50 33 66
71 62 g8 S56 37 46 33 53 l6 4l 3 21 5 35 32 11 6 42
73 20 27 62 18 17 12 &0 g 40 54 51 36 34 24 47 16 7
79 48 65 37 32 17 S5t 74 64 34 23 69 49 68 46 59 19 57
83 15 30 60 37 74 65 47 11 22 44 5 19 20 40 80 77T 71
89 6 18 S4 73 41 34 13 39 28 & T4 44 43 40 31 4 12
97 83 27 38 93 77 04 §2 22 13 65 34 73 T4 79 7 35 78

Table E.4 (continued)
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Tadices
P 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
37 28 19 1
41 20 38 23 15 8§ 7 i Numbers
43 £ 7 21 20 17 8 24 29 1
47 3 29 4 20 6 3 9 45 37 44 32 19 i
53 9 18 36 19 38 23 46 39 25 50 47 41 29 5 10 20
59 27 534 49 39 19 38 17 34 9 18 36 13 26 52 45 131
61 45 29 58 55 49 37 I3 26 52 43 25 S0 39 17 34 7
a7 65 63 59 51 35 3 6 12 24 48 29 58 49 31 62 57
71 10 70 64 22 12 13 20 69 57 44 24 26 40 &7 43 17
73 35 20 72 63 48 21 32 14 70 58 i 63 23 42 64 9%
79 13 39 38 35 26 78 76 70 352 77 73 61 25 75 67 43
83 59 35 70 57 31 62 41 8 81 79 75 67 51 19 38 76
39 36 19 57 82 68 26 78 56 79 59 8% 8% 80 62 8 24
97 2 10 50 56 8 42 16 80 12 60 9 45 31 S8 95 92
Indices
p 50 51 52 53 54 55 36 57T 58 59 60 61 62 63 64 65
53 440 27 I
59 3 6 12 24 48 37 15 30 1 Numbers
61 14 28 56 51 41 21 42 23 46 31 1
67 47 27 34 41 15 30 60 53 39 11 22 44 21 42 17 34
71 48 52 9 63 15 34 25 33 18 55 30 68 SO 66 36 39
73 67 43 69 53 46 11 55 56 61 I3 65 33 190 22 37 39
79 56 71 55 7 21 63 31 14 42 47 62 28 5 15 45 56
83 69 55 27 54 25 S50 17 34 68 53 23 46 9 18 36 72
89 72 38 25 75 47 52 67T 23 69 29 87 83 71 35 16 48
97 72 69 54 76 89 57 91 67 44 26 33 68 49 51 61 14
Indices
P 66 67 68 69 70 T7I 72 73 74 75 76 77 18 79 350 8l
67 i
71 60 65 29 41 1
73 49 26 57 66 38 44 1
79 030 11 33 20 60 22 66 40 41 44 53 1
83 6l 39 78 73 63 43 3 6 12 24 48 13 2% 52 91 42
89 55 76 50 6 5 15 45 46 49 5% 85 77 53 0 32 7
97 ¢ 5% 4 2 3 15 75 8 32 63 24 23 18 90 62 19
Indices
P 82 83 8 85 8 87 8 8 90 91 92 93 94 95 0g
83 1 Numbers
&9 21 63 11 33 10 30 1
97 95 87 47 41 11 55 81 17 8 37 88 52 66 130 |
Table E.4 (continued)
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d d d J/d T
2 [1;2] 53 [7;3,1,1,3,14}

3 [51,2] 54 [1;7,1,6,2, 14]

5 4] 55 (1:2.2,2,14]

6 [22,4] 56 [7:2,14]

7 21514 57 1L L4,1,1,14]

8 (1.4 58 [hL1,0,11,1,14]

10 [3:8) 59 [7:1,2,7.2,1,14]

1 [%3,6] 60 [71,2,1,14]

12 [3;2,6} 61 (111.4.3,1,2,2,1,3,4, 1,14}
13 [35L 5L LL6} 62 [1,1.6,1,14]

14 31,216 6 [7;1,14]

15 (31,8 65 (8:16]

17 [4:8] 66 188, 16]

18 [4:4,8] 67 [8:5%2,1,1,7,1,1,2,516]
19 [42,1,3,1,2,8 68 [8;4,16]

20 [4;2,8] 69 18;3,3,1,4,1,3,3,16]

21 [4:1,1,2,1,1,8] 70 [8:21,2, 1,2, 16]

2 [41,2,4218 71 %217, 1,2, 2, 18]

23 [41,3,1,8 72 [8;2,16]

24 [41,8 73 [%1.5,5,5 1,1, 16]

26 [5;10)] 74 [8;1,1,11,16]

27 [%5.10] 75 18;1L,1,1,16

2% [5;3,2,3,10] 76 [&1.2,1,55451,1,241,16]
29 15;,2,1,1,2,10] 77 %1323, 1,161

30 [5:2,10] 7% (%14, 1,16

31 [5:1,1.3,53,1,1, 10 79 [$1,7,1,16]

32 [5LLILIO 80 [8;1, 16}

13 [51,2,1,10] 82 [9:18)

34 [5:1,4,1,10] 83 [9;9, 181

35 [5:5,10] 84 [%;6,18]

37 {6:12) 85 [%:4,1,1,4,18]

38 [6;6 12] 86 [9:3.L,1,1,81,1,1,3,18]
39 [6413) 87 [9;3,18]

40 [6;3,12] 88 [%3Z,1,1,1,2, 18]

4 [6:2,2,121 89 [%:2,3,3,2,18]

42 162,12) 50 [9;2,18]

43 [6;1,1,3,1,5,1,3,1,1,12] 91 ;11,515 11,18}

4 16;1,1,1,2,1,1,1,12) 92 [9;1,1,2,4,2,1,1,18]

45 [6:1,2,2.2,1,12] 93 [%;1,1,L,464, L1 1,18]
46 [6:1,3,451,2,6,2,1,1,3,1,12} 04 9;1,2,31,1,51,81,51,1,3,2,1, 18]
47 16:1,5,1,12] 095 19;1,2 1,18

48 [6:1,12] 96 [9;1,3,1,18]

50 [7;14] 97 ;L5 1,1L,1,11,1,51%18]
51 [7,7.14} 98 (9, 1.81,18)

52 (141,214, 14] 99 [9;1,18]

Table E.5 Simple continued fractions for square roots of positive integers.
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. Exercises

Ansxjvq_s to Qdd~Numb_e_red

Section 1.1

. a. well-ordered; every subset of this set is also a subset of the set of positive integers and hence

must have a least element

b. well-ordered; every subset of this set is also a subset of the set of positive integers and hence
must have a least element

¢. not weil-ordered; the set of positive rational numbers

d. well-ordered; the set of numerators of the numbers in any subset is a subset of the set of positive
integers, so it must have a least element b, and then b/2 is the least element of the subset

e. not well-ordered; the set of positive rational numbers

. Let a/b and c/d be the given rational numbers, where a, b, ¢, and d are integers with » and 4

nonzero. The sum of the two rational numbers is {ad + bc)/(bd), which is a rational number
since the numerator and denominator are integers and the denominator is not 0. Similaly, their
product is {ac)/ (bd), which is a rational mumber for the same reasons.

. Suppose that +/3 = a/b, with ¢ and b positive integers, Then the set § = {k+/3 | k and k+/3 are

positive integers} is nonempty since it contains @ = b+/3. By the well-ordering property, § has a
smallest element, say s = ¢+/3. Consider s’ = 5+/3 — s = 3 — 5. Since 3 and s are both integers,
5" must also be an integer. Note that 5" = 5(+/3 — 1), so s’ is positive since /3 > 1, and s” is less
than s since +/3 < 2. This contradicts the choice of s, so our original assumption that +/3 is rational
is wrong.

a0 bh-1 3 d-2 e0 f—4

11,

13

15.

9. a {8/5)=3/5 b7} =17 o {—11/4}=1/4 d{7}=0

0if x is an integer; —I otherwise

We have [x] < x and [y] < y. Adding these two inequalities gives [x] + [y} < x + y. Hence,
[x + yi= [[x] + [yl =[x+ [¥].

Letx =a+r and y = b + s, where a and b are integers and r and s are real numbers such that
O0<r,s < LThenlxy]=[ab + as + br + srl=ab + [as + br + sr), whereas [x][y] = ab. Thus

617
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17.

19.

21.
23,
25,
27

29

3.
33,

3s.

a7,

39.

41.

Answers to Odd-Numbered Exercises

xy)= 1y} Ex and y are both negative, then fxy] < [x}fy] ifone of x and y is positive and the
other negative, then either [xy] or [x][y] could be Jarger.

Tetx =[x]+r.Since0<r < x4+ % ={x]+r+ %.Ifr < % then [x]is the integer nearest tox,
and [x + 11 = [x] since (x] S x + L=[xl4r+ L <x]+LHr= 1, then [x1+ 1is the integer
nearest to x (choosing this integer if x is midway between [x] and {x -+ 1], and [x + %] =[x]+1
since (x]+ t=x+r+ % < [x]+ 2.

If x is a positive integer, then the two sides are identical. So suppose that x = n? 4+ m + ¢, where
n is the largest perfect square integer less than x, m is a nonnegative integer, and 0 <€ < 1. Then
both 4/x and +/Tx]= % 4 m are between n and n + L. Therefore, both sides of the equation
equat n.

agn—5 B.27+3 cllvnliynl da= 1, a =3, and @, = @1 +a, pfornz=3
a,=2""Ya,= n?—n+d/2a=La= 2. and a, = a,_ +2a, o forn 2 3
This set is exactly the sequence a, =1 — 100 and hence is countable,

The function f(a + b/2) = 223 is a one-to-one map of this set into the set of positive integers,
which is countable,

Suppose that {A;} isa countable collection of countable sets. Then each A; can be represented by a
sequence: Ay = (@1 @12, 13 - - YAy =laan a0, 603 - h A3 = {31 332,033+ - by - - Consider
the Hsting ayy, €12, 621 @13 G22: W -« = in which we first list the elements with subscripts adding
to 2, then the elements with subscripts adding to 3, and so on. Further, we order the elements
with subscripts adding to k in order of the first subscript. Form a new sequence ¢; as follows. Let
¢y = ap. Given that ¢, is determined, let ¢, 41 be the next element in the listing that is different
from each ¢; with i == 1,2, ..., 2. Then this sequence is exactly the elements of e, A which
is therefore countable.

aa=4,b=1 boa=Tb=10 c.a="75b=06% da=1b=20

The number ¢ lies in an interval of theform r/k <@ < (r + Dk, whereO<r = k — 1. If we divide
this interval into equal halves, then @ must lie in one of the halves, so eitherr/k <ot < (2r + 1)/2k
or (2r + D2k sa<(r+ 1)/ k. In the first case, because |a — r/k| < 172k, we cant take u =v.
In the second case, we can take u =r -+ 1, because |o — (r + D/ k< 12k

First we have I«/i —~1/1]=0414... < 1/12. Second, by Exercise 30 (a), we have 'i«./i —~7/5] <
i/50 < 1/5. Third, observing that 3/7 = 0.428 . . . leads us to try |2 —10/7 = 0.014... <
17 =00204. ... Fourth, observing that 5/12 = 0.4166 ... leads us to try |2 17712} =
0.00245 ... < 1/122 =0.006%4 . . ..

Assume thath > Oandg > 0. Note thatifg > b, then|p/q —a/bl = \pb —agl/qb=1/qb > /g%
Therefore, solutions to the inequatity have 1 = ¢ = b, For a given g, there can be only finitely
many p such that the distance between the rationat numbers a /b and p/q is less than 1/4° (indeed,
there is at most one). Therefore, there are only finitely many p/q satisfying the inequality.

a.3,6,9,12,15,18,21,24,27, 30 b 1,356 810,12,13,15,17 ¢ 2,4,7,9,11, 14, 16,
18,21,23 4.3,6,9,12, 15, 18,21, 25, 28,31

Assume that 1/ -+ I/f = L First, show that the sequences mo and nf are disjeint. Then, for an
integer k, define N {k) to be the number of elements of the sequences mu and i less than k. Then
N(k) = [kfo] -+ [k/B1 By definition of the greatest integer Function, kfa — b < [kfe] < kjo
and k/B — 1< [k/B) < k/B. Add these inequalities to deduce that k — 2 < N (k) < k. Hence,
N(k)=k — 1, and the conclusion follows. To prove the converse, note that if 1/e + 1/f # 1, then
the spectrom sequences cannot partition the integers.
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Assume that there are only finitely many Ulam numbers. Let the two largest Ulam numbers be

i,y and i, Then the integer u,_; -+ u,, is an Ulam number larger than u,,. It is the unique sum of
two distinct Ulam numbers u; and u; with i < j, since u; -+ wip<wy, jtu,if fenorif j=n
andi <n— 1

Section 1.2

a5 b.-—-15 ¢29/20
. a.510  b.24600 e, —255/256
. The sum ZE:l[\/E} counts for every value of k with +/k > 1. There are n such values of

k in the range £ =1,2,3,...,n It counts another 1 for every value of k with /% > 2.
There are n — 3 such values in the range. The sum counts another | for each value of
with +/k = 3. There are n — 8 such values in the range. In general, form =1,2,3,. .., [/n]
the sum counts a 1 for each value of k¥ with +/k > m, and there are n — {m? — 1) values

in the range. Therefore, :=II\/E} = Z[ﬁf nem? - D =[Juln + 1) — Z,[,‘/jg m?=

= i3

[Valtn + 1) — (/I + DRI+ 1) /6.

. The total number of dots in the n by » + 1 rectangle, namely n(n + 1), is 21, since the rectangle

is made from two triangular arrays. Dividing both sides by 2 gives the desired formula.

. From Exercise 8 we have p, = ;_ (3t —2) =3 Yk =2 1=+ D2 -2n=

(3n? — n)/2. On the other hand, tig+nt=n(n— /2 + 0% = (312 — 1)/2 as well.

a, Consider a regular heptagon which we border successively by heptagons with 3,4, 5, . .. dots
on each side. Define the heptagonal number s, to be the number of dots contained in the & nested
heptagons,

b. (5k% — 3k)/2

ByExercise 12wehave 7, = 3} _ e =3 F_, k(k+ 1)/2. Note that (k + 1* — & =342 4+ 3k + 1

=3(k* + &) + L sothatk® + k = (k -+ 1)> = k*/3 — 1/3.Tt follows that T, = (1/2) 1_i_, k(k + D)

= (1/6) 35 ((k + D — k%) — (1/6) 3"} _, 1. Because the first sum telescopes, we conclude that

T, = (1/6){(n + 1)* — ) — /6 = (n* + 3n2 4 2m) /6.

Each of these four quantities is the product of 100 integers. The largest product is 1001, since it

is the product of 100 factors of 100. The second largest is 100! which is the product of the integers

1,2,..., 100, and each of these terms is less than or equal to 100. The third largest is (502 which

is the product of 12,22, . ., 502, and each of these factors j? is less than j(50 -+ j). The smatlest

is 2190 a5 is easily seen.

We have 3 7 1/(k(k + D) =30 (/k — 1/(k + )). Let a; =1/(j -+ I). Notice that this

is a telescoping sum. Using the notation in the text preceding Example 1.19, we have

YWk =1k + 1) =37 ((a; 1 —ap)=—(a, —ap) =1 - 1/(n + D.

We sum both sides of the identity (k + 1)* ~ &3 =3%2 + 3k + L from k =1 to k = n. Then

the sum telescopes, as in Example 1.19, vielding Ez;[((k + 1P B =m+D>— 1. Also
2t GR2 304+ 1) =300 KD + 3005 k) + 2 1= 35 K 4+ 3n(n + D/2 + 1.

As these two expressions are equal, solving for EL{ k? yields, after several steps of algebra,

Pohe1 kE=nln + D20 + D/

a. 10! == (7H(8- 9 10) = (7V(720) = (T)H{6]

b, 101= (7D(6D) = (TD(5Y - 6 = (TH(3H(3DH

e 161 = (14H(15 - 16) = (140240} = (14H{5H(2D

d. 9= (THE-H=TNE-6-2)=(THEHEHED
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x=y=1z=2

Section 1.3

. Forn = 1 we have 1 < 2! = 2. Now assume < o Thenn+1<2" +1<27+2° =ontl,

. For the basis step, Z,lcﬁ 2 =1=2- % For the inductive step, we assume that 3 p_, I/ K<

2 — 1/n. Then TPl k2 =Y4  VE + 1@+ 2 <2- i+l D=
2— (4D =yt + D =2— (% 41+ Dfen + D) £2- (2 )/ + 1) =
2—1f{n+1),as desired.

L All= [ L ’i } The basis step is trivial. For the inductive step, assume that A" = [é "; ] Then

I n 11 1 n+l
ndl _ ANA — —
A *AA_[G 1][0 1]“[0 1 ]

. For the basis step, ):}:1 j2 =1=11+ D2 149 /6. For the inductive step, we assume that

Yt j2=n(+ D@a+ 1)/6. Then z’};} =200 Pr@+hr=nm+de+]) /6+
(4 D=+ D+ D+ DEE+ 1 + /6.

. For the basis step, Zf,.:i j(+H=2=1.2-3/3 Assume itis true for n, Then TG+ D=

rin+ B +2)/3+ i+ Dr+2D=r+ Bin+Dn/3+ D= (n+ Din +2)J(n 4+ /3.

2n(r:+1)/2

Proof using mathematical induction. We see that 12 =4 3. Now assume {hat postage of n
cents can be formed, with n =da + 5b, where a and b are nonnegative integers. To form

1 + | cents postage, if a > 0 we can replace a 4-cent stamp with a S-cent stamp; that is,
n4+l=d@—D+5E+ 1 1f no 4-cent stamps are present, then all 5-cent stamps were used. It
follows that there must be at least three 5.cent stamps and these can be replaced by four 4-cent
stamps; that is, n -+ 1= d(a + 4) + 5(b — 3).

We use mathematicat induction. The inequality is true forn = Osince Hp=Hi=1=1= 1+ 0/2.
Now assume that the inequality is true for n, that is, Ha» = 14+ n/2. Then Hya1= Z?k:l 1/i+

n+l . ntl

Z§:2n+l 1j = Hyp+ ZL@ a2z a2+ gl =14 nf2+12=1+ @+ 1/2.
For the basis step, (2- D=2 < 221(192 = 4. For the inductive step, we assume that
@n)! < 27 (n)?. Then 2(n + D)!= Qr)i2n + H2n +2) < 222 + D2n +2) <
22 (1220 + 2% = 220 + ) 2.

Let A be such a set, Let B = {x —k -+ 1jx e Aand x = &}, which is clearly a set of positive
integers. Sincek € A and k > k, we know that k—k+ 1==1isin B.Sincen + lisin A whenever
nis,n+ 1 —k-+ lisin B whenevern — k + 1is. Thus B satisfies the hypothesis for mathematical
induction, ie., B is the set of positive integers. Mapping B back to A in the natural manner, we
find that A contains the set of integers greater than or equal to k.

For the basis step, 42 == 16 < 24 = 4L For the inductive step, we assume that n? < nl. Then
(4 12=n+2n+l<nl+ntl<n calbnt=(n+ Dnl= @+

We use the second principle of mathematicat induction to prove that  — 1 moves are NECESSAry
and sufficient to assemble a puzzle with n pieces. For the basis step (n = 1), if the puzzle has only
one piece, then it clearly may be assembled with no moves, For the inductive step, assume that
a puzzle of k pieces takes & — 1 moves, for all k < n. To assemble a puzzie of n + 1 pieces, first
assemble n pieces, using n — 1 moves. This leaves two blocks—the assembled n pieces and the
last piece. Now make the move consisting of putting these two blocks together. Thus assembling
a puzzle of n + 1 pieces can be done inn = (r+ 1) — 1 moves. To see that it cannot be done
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in fewer moves, look at the situation just before making any last move, where there are two
blocks, say of sizes { and 7 + 1 — i. By the inductive hypothesis, it required {/ — 1 moves to put
together the first block and n + 1 — i — 1 = n — / moves to put together the second block. Thus
i —14+n —i=n~ 1 moves have been required thus far, These, together with the final move,
account for n moves, as desired.

Suppose that f(n) is defined recursively by specifying the value of £{1) and a rule for finding

[+ yfrom f(n). We will prove by mathematical induction that such a fanction is well-defined.
First note that f(1) is well-defined since this value is explicitly stated. Now assume that £(n) is
well-defined. Then f(n + 1) also is well-defined since a rule is given for determining this value
from f(n).

65,536

We use the second principle of mathematical induction. The basis step consists of verifying
the formula for n=1and n =2. Forn =1 we have f(I})=1=2'+(—1)!, and for n =2
we have f(2) = 5=22 3 (—)2. Now assume that F =2k 4 (—DF for all positive integers
k with k < n, where n > 2. By the inductive hypothesis, f() = fin—D+2f(n—-2)=
(2r=-1 4 (_i)n——l) + 2(2r:72 4 (“ l)n——2) = (2nut + 21:—1) + (_ 1):1—2(_1 + 2) e R + (—1)".

We usc the second principle of mathematical induction. We see thatag=1<3%=1,a;=3 <3 =
3,and ay = 9 < 32 = 9. These are the basis cases. Now assume that a, < 3 for all integers k with
O<k<nTfollows thata, =a,_j+a, s+a, <3 1432433331134 0)=
13393 < 27. 33 = 39,

Let P, be the statement for n. Then P, is true, since we have ({a; + a3)/2)% — aya, =
({a) — @3)/2)* = 0. Assume that P, is true. Then by P5, for 2n positive real numbers
dy,. ..o Gon We have ay +- - +ay, 2 2(/@a; + Ja5ag + - - - + /Gy _1dz). Apply P, to
this last expression to get @y + - -+ + ay, > 2n(ayay - - - a2,) V. This establishes P, for

n =2 for all k. Again, assume P, is true. Let g = (aya, - - - a,_)Y/@=Y, Applying P,,
we have aj+ay + - ba, g =nl@ay - a,_1g)V" = n(g" )" = ng. Therefore
aytay+---+a, = (n— 1)z, which establishes F,_;. Thus P, implies F,_;. Putting these
two pieces together establishes P, for all n.

We follow the hint. The basis step follows immediately because the algorithm stops after 1 step
when applied to a fraction of the form 1/4. To carry out the induction step, assume that the
algorithm terminates for all fractions with numeralor less than p. Given a fraction p /a, apply
the algorithm and find the unit fraction 1/s such that 1/(s - 1) > p/g > 1/5. When we subtract
1/s from p/q, the remainder is p/g — 1/5 = (ps — g)/gs. On the other hand, when we multiply
the inequality 1/(s ~ 1} > p/q = 1/s by g(s — 1), we see that ¢ > p{s — D). This implies that
P > ps — g, showing that the numeraior of {ps — g)/q is less than the numerator of the fraction
p/q. Applying the induction hypothesis finishes the proof.

Section 1.4

1.a.55 b233 c¢6l0 d4.2584 e.6765 175025

Note that 2fn+2 =fa=ltat - f)= Jag2 + fn-{-l = fn—|—3' Add f, 1o both sides.

- For the basis step (when n = 1 and n = 2), note that f, = fl2 +2ffr because 1=1242.0-1

and fy = f22 + 2ff> because 3=1 +2.1- 1. For the induction step, assume that fr =
sz +2fi i fy for k=12,...,n, where n > 3. Using the induction hypothesis, we have
Sra—g= f,;z_z +2fiafrpand fo, 5= fnz_l + 2fn—2fn—1- We have fo, = foy1+ fana=
2fm-2+ fan3=3fon—2— Fon—s because fo, 1= fo, 3+ fon_3a0d fo,_o = fay_3+ fan-s-
Using the inductive hypothesis, this last expression equals 3 g, ;’—_1 +6f afn1— f,f_z -
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2fnf3fn—2 = anzél + 6(fn - fn—l)fn—l - (fn - fn—1)2 - z(thAI - fn»z)(fn - fn—l) =

-2 ,;2._1 + 6fnf;|-l - fnz + zfn(fn - fn—l) - 2fn—1(fn - fn—-l) = f;,z + 2fn—1fnv which
completes the induction step.

et f2j1= o Rasis case n = 1 is trivial. Now assume that 327 f2j-1= fou- Using this

inductive hypothesis, we have Zr}ﬂ frjo1= (o foj-) + fangs = fou ¥ Jon1 = fama2:

. The sum is f,_y — (1" To see this in the case that n = 2k is even, note that the sum is

(it fat+ - (At fit o+ faad which equals (for1 — ) — fxr = fopy— 1=
foci—1=fa— {—1)" by Exercises 8 and 9. Similarly, when n =2k + 1is odd, we have

;f1+f3+'"+f2k+1)—(f2+f4+'"+f2k)=f2k+2*(f2k+1— D= fy+i=fuatl=
p— (=17

By Exercise 5, we have fo, = fr?' +2fi1fu= Fullu + ot fop = far— fom{f +
fo-D)= f,12+5 - fﬂz..;-

We use mathematical induction. To complete the basis step, note that Z}=1 sz = f, f, because
the left-hand side is ff — 12 = 1 and the right-hand side is ff,=1+1= 1. For the induction step,
assume that 3_, f7 == £ fy41, Te follows that }:'j‘.;f} =Y 4 i = fafan ¥ fra=
Jarrlfn + Fra0) = Farifugns completing the proof,

We use mathematical induction and the recursive definition f, = fu_1 t fr—z» With fo= 0 and
f1=LForn=1,wehave f3fo — fi=1.0- 12 = 1 = (— 1)}, Hence, the basis step holds. Now
assume that fy 1 o1 — £2 = (D7 Then oy = f2 = Gart + S fo = Faralfn 4 a0 =
f,;z - fr1+1fnf[ =—(—1)'=(~ I)H-HA

For fixed m, we proceed by induction on n. For the basis step, note that when n =1, the identity
holds because fy11= fufz + fifp-1=fu + Fu—1- When n =2, the identity holds because

ﬂu+2 =fufst Fafm-1= 2fm+ Jmo1= S+ (fmt+ S = St Sot1e For the induction
step, assume that the identity holds for 1,2,..., &, where k = 3. Then fpi = Fufip1 + Jm—1 fe

and f kot = fufi + Fn1fi-te Adding these equations gives us fpig + fmtk—1= fu(fer1
£ + fa1(fe + fe—). This simplifies t0 frre41= Fnferz + foetfirr

?ﬁl L; = Ly 2 — 3. We prove this by induction. The basisstepis Ly=1=L3 — 3. Assume that

the formuta holds for n and compute Z’:; Li=30  LitLy=Lapa— 34+ Ly =Ly —3

Z?:l Ly = Lyyyy — 1. We prove this by induction. The basis step is L, = 3 = Ly — L Assume
that the formula holds for n and compute ZI’:} Loy=Y 11 Lo+ Lonya=Lowta— 14 Lopaz =
Lypes— b

We proceed by induction. The basis step is L2=1=1LLy—2. Assume that the formula holds
for n. Then S L2 =30 | Li+ Loy = Lalap =2+ L2 = Lysy(ly+ Loy) 2=
Ln+1Ln+2 — 2.

For the basis step we check that Lifi=1=f; and L, f, =3 = fy. Assume that the identity
is true for all positive integers up to n. Then Farilnr1 = gz — J)( frusa — fr) from
Exercise 24. This equals f2,, = f2=(fup1 + o = (ot + fo)t = R4 2 fafa +
an - fnzfl —2furfu2— ff..z = 3.}.1 - f,,z)j) + (fnz - fnzgz) + 2(fn+1fn — factfe2}=
Far1 = a0 o+ Fu 0+ o — o2 Fo2) + 2 fon—1, where the last term is obtained

from Exercise 16. This equals f Ly + fo—1ln—1+ 2fm-1- Applying the induction hypothesis

yields foq + fano2+ 2fau-1= (an + fra-} + (f2n1 F fone) = fons1+ fon = foasz, Which
completes the induction.
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27. We prove this by induction on n. If # = 2, use induction on m to establish the basis step for
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1. For the induction step on n, note that L, ,; = Lopin + Lyapn 1= by + FaLnp) +
(fm+1LnuI + men—Z) = fm+1(Ln -+ Lnul) + fm(LngI + Ln—2) = fm+iLr:+1 + f;nLn'
S0=fo+ fr+ fu85=fro+ fi+ fo+ 2. 110 = fi, + fo, 20=fiz+ fro+ fo
We proceed by mathematical induction. The basis steps (n = 2, 3) are easily seen to hold.
For the inductive step, we assume that f, <o~ and f,_; <" 2 Now f,, = f, + f,_, <
a1+ "2 = ", since o satisfies o = o 4 "2,
We use Theorem 1.3, Note that a2 = + 1 and gt = B+ 1, since @ and B are the
roots of x% — ¥ — 1==0, Then Fan = (02" — B2 /5 = (13} (e + n*— (8 + DM =
A3 (X (el = 30, DB = VB T (el — ) = i=1 (7 f; since the
first term is O in the second-to-last surmn.
We have det{F") = det(F)" = (—1)" and det [ﬂ‘“ I ] = fosrfu—1— fﬂ2

n =1
fu= Jarz2 — Sorv For=1 faa=—1, fa=2 fog=-3, f5=35, fe=-8, Joq =13,
Fog=—2L f 9=34, f1g=—55
The square has area 64 square units, while the rectangle has area 65 square units. This corresponds
to the identity in Exercise 14, which tells us that £ fs — ff,2 = 1. Notice that the slope of the
hypotenuse of the triangular piece is %, while the slope of the top of the trapezoidal piece is %
We have 2 — % = fﬁ. Thus the “diagonal” of the rectangle is really a very skinny parallelogram

3
of area 1, hidden visually by the fact that the two slopes are nearly equal.

We solve the equation r2 — r — 1 =0 to discover the roots ri=(1++5)/2andr, = (1 - V5 /2.
Then according to the theory in the preamble, f, = Cyr + Corfl. For n =10 we have 0=
Cy+ Cory = Cy + Cy,and forn = bwehave L= Cpry + Cory = Cy(1+ +/3)/2 + Cy(1 - /5)/2.
Solving these two equations simultaneously yields C; = 1/+/3 and €, = —1/+/3. So the explicit
formulais £, = (1/v/5)] — (/3 = ¢F — rR//5.

We seck to solve the recurrence relation L, = L,,_; 4 L,,_, subject to the initial conditions Ly=1
and L; = 3. We solve the equation r? — v — 1=0 to discover the roots g — (14 /5)/2 and
B={1—+/3)/2.Then according to the theory in the preamble to Exercise 41, L,=C™ 4+ Cyp".
Forn=1wehave L; = 1= Co + C,8, and for n = 2 we have 3 = Cia® + G2, Solving these
two equations simultaneously yields C) = 1 and C; = 1. So the explicit formula is Ly=a"+p".
Birst check that o? =« + 1 and % = 8 + 1. We proceed by induction. The basis steps

are (¢ — f)/v5=V5/v/5=1= f; and (¢® — B2)//5= (1 +a) - (i + BN/ = (-
BY/~S = 1= f,. Assume that the identity is true for all positive integers up to . Then
St =St oy =(@" = BO/V5+ @7~ B 5= (@ N+ D — BB+ 1)/5 =
(e lia?) — ,8"‘1(}52))/\/5 = ("l — ﬁ”"‘l)/\/g, which completes the induction.

Section 1.5

- 3|99 since 99 =173-33; 5) 145 since 145=5.29; 7 [ 343 since 343 =7 - 49; 888 | 0 since

0=888.0
a.yes b.yes cno dno eno fono
a.g=35r=13 bg=17r=0 cg=-3r=7 dog=-6,r=2

. By the hypothesis, b = ra and d = sc for some r and s. Thus bd = rs (ac), soac | bd.

If a | b, then b = na and ke = n{ca), i.e., ac | be. Now suppose that ac | be. Then be = nac, and,
asc#0, b=na,ie.,alb.
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‘The statement is trivially true for k = 1. Assume therefore that a | b and a¥ | b*; we want to show
that a®+1 [ B¥+1. But this follows directly from Exercise 7.

Leta=2x 4 1land b=2y + t be odd, and ¢ = 2z even. Then ab = (2x + D2y + D=
dxy +2x +2y +1=2@xy +x + ) F 1, sa ab is odd. On the other hand, if w is any integer,
then cw = (2z)w = 2(zw) is even.

By the division algorithm a = bg +r withO <r <b. Thus —a = —bg-r=—(g+Db+b-T.
If0<b—r < b, then we are done. Otherwise, b —r =b,0rr = 0 and —a = —gb +0.

2. Note that if @ = bg +r, thena = (--b}(-—q) + r. Therefore, to divide by a negative numbet, just
divide by the corresponding positive number and take the negative of the guotient. The remainder
stays the same.

b.3

By the division algorithm, let m = gn +r, with 0 sr=n-— i and g = [m/n}. Then
fm+ /nl=MHgn+r+ D/nl=lg + @+ N/nl=q -+ + O/t Er=0,12,...,n— 2,
then m £ kn — 1 for any integer Land I/n<(@+D/n<l and so [(r + B/n]=0.In
this case, we have [(m + D/nl=g+0= Em/n]. On the other hand, if r =n — 1, then
m=gn+n—1l=n(g+ )—1l=nk—1 and [(r + D/n}j=1L In this case, we have
[n+ D/nl=g+1= fm/nl+ 1.

The positive integers divisible by the positive integer d are those integers of the form kd, where k
is a positive integer. T he number of these that are less than x is fhe number of positive integers k
wiih kd < x, or equivalently with k <x/d . There are [x /d] such integers.

128,18
457

Tt cosis 11— 22f—x] cents to mail a letter weighing x ounces. It cannot cost $1.45; a 10-ounce
letter costs $2.31.

Multiplying two integers of this form gives us (4n -+ D{4m + D= 16mn +4m+dn+ 1=
dfdmn +m+n) + L Similarly, (dn + 3p{dm + 3) = 16mn + 12m + 12n +9=
Admn + 3m +3n +2) + 1.

Every odd integer can be written in the form 4k + 1 or 4k -+- 3. Observe that (4% + 4 = 162%* +
4(4k)? + 6(dk)* + 4ak) + 1= 16(16k* -+ 16K + 6k% + k) + L. Proceeding farther, (4k 4+ % =
(@k)* + 1204k + S4(4k)? + 108(4K) + 3* = 16(16%" + 48K% + 54k* + 27Tk + 5) + 1.

Of any three conseculive integers, one is & multiple of 3. Also, at least one is sven. Therefore, the
product is a multiple of 2 - 3= 6.

The basis case is true: 3 423 4 3% = 36 is divisible by 9. Assume the inductive hypothesis
that 1 + (1 + 1 + (n + 2)° is divisible by 9. Then (n -+ P @e2P 3=
P4 AP+t W)=+ D+ 2% + (On? 4+ 270+ 27).
In this last expression, the first surmmand is divisible by 9 by the inductive hypothesis, and the
second is clearly divisible by 9, so we are done.

We proceed by mathematical induction. The basis step is clear. Assume that 3 | f; if and only if
417, for all { <4k. Since fari1= Far + fap_1» knowing that 3| fyx and 3 [ fagy tells us that
3§ fuppr Similarty, 3] fag and 3 J fogq imply 3 1 fysa Als0 fupys =2 faryr + fap 2nd since

3| Fug but 3 f 2 fyepns we have 3 [ faqa. Finally, as Fapes = 3fappr + 2fa and 312 S and
313 fapy1, We see that 3| faeps. This has taken us up to the next value of k, as required.

The basis cases (n = 6 and n = 7) state that fg = Sf+3f1and f1=5f3+3 fa» which are true,
since 8=5-+3and 13=5-2+3 1. Assume the inductive hypothesis (second principle). Then

Sur1= fnt fact= Sfa—a 3feost Sfust 3fa—s= S(faat fu—s) + S(fnr—s + fr-6) =
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5fu—a+ 3f,_4, as desired, For the second statement, the basis case is the true statement that
S5 =15 1is divisible by 5. Agsuming the inductive hypothesis that [, 1s divisible by 5, we see that
Juxs (n + 5 being the next multiple of 5 after ») is the sum of two multiples of 5, namely 5 £, 11
and 31,,.

39, 59, 89, 134, 67, 101, 152, 76, 38, 19, 29, 44, 22, 11, 17, 26, 13, 20, 10, 5, 8,4, 2, 1

We prove this using the second principle of mathematical induction, Since T(2) = 1, the Collatz
conjecture is true for # = 2. Now assume that the conjecture holds for all integers less than .
By assumption, there is an integer k such that k iterations of the transformation 7', starting at 1,
produces an integer m less than #. By the inductive hypothesis, there is an integer ! such that
iterating 7 / times starting at m produces the integer 1. Hence, iterating T k -+ / times starting
with r feads to 1.

We first show that (2 4+ +/3)" + (2 — 3)" is an even integer. From the binomial theorem

it follows that (2++3)* + 2~ V3" =371, (ﬁ)zﬂ“fﬁf + X (2 (-Div3 =
202" +3(3)2% % 4 3()2"4 + ... = 2/, where [ is an integer. Next, note that (2 — +/3)" < 1.

We sce that [(2 + v3)" = (2 + /3" + (2 — v3)" — 1. It follows that [(2 + +/3)2] is odd.

Section 2.1

(5554}, (2112) ;4
{17531, (1111100111},
(8F5) 5. (T4E) 6

The reason is that we are using the blocks of three digits as one “digit,” which has 1000 possible
values

. —39,26

If m is any integer weight less than 2, then by Theorem 2.1, m has a base 2 expansion
m=a_ 2 g 224 .. 4 a2! + ay2°, where each a; is O or 1. The 2° weight is used if
and only if ¢; = L.

Let w be the weight to be measured. By Exercise 12, w has a unique balanced temary expansion.
Place the object in pan 1. If ¢; = 1, then place a weight of 3 in pan 2, If ¢; = —1, then place a
weight of 3' in pan 1. If ¢; = 0, then do not use the weight of 3', Now the pans will be balanced.
To convert a number from base r to base r”, take the number in blocks of size n. To go the other
way, convert each digit of a base " number to base r, and concatenate the resnlts,

(apay_q ... @100 . .. 00),, where we have placed m zeros at the end of the base b expansion
of n

a-—6 bi3 c¢-14 4.0

H m is positive, then a,_) =0 and a,_sa,_5...ap is the binary expansion of m. Hence,
m= Z:’;g‘ ;2" as desired. If m is negative, then the one’s complement expansion for m has
its leading bit equal to 1. By the definition of one’s complement, we can think of obtaining the
remaining # — 1 bits by sublracting —m, written in binary, from 111... | (withn — 1 1s), since
subtracting a bit from 1 is the same thing as complementing it. Equivalently, if we view the bit
String (@, _pGp_; . .. ap) as a binary number, then it represents (27! — 1} — (). In symbols,
this says that (27~ — 1) — (—m) = Zf;g a;2'. Solving for m gives us the equation we are trying
to prove (since a,_; = 1).

a—-7 bl3 c-—-15 4d -1

Complement each of the digits in the two’s complemnent representation for m and then add 1.
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4n

We first show that every positive integer has a Cantor expansion. To find & Cantor expansion of
the positive integer 2, let m be the unique positive integer such that ml < n < (m + DL By the
division algorithm, there is an integer a,, such that 1t = m! - @, + 1y, Where 0 @, =m and
0 < r, < ml Weiterate, finding thatr, = (m — D!~ a1+ 1o where 0 < g,y <m — land
0 <y < (n—NLWe iterate m — 2 more times, obtaining r; = ( — B a;+ 7y, Where
0<ag_<i—land0=r_<l-— Difori=m+Lmm—1... .2, with = . At the
last stage, we have r, = 11- a1+ 0, where r, =0 or Land rp = ay.

Call a position good if the number of ones in each column is even, and bad otherwise. Since a
player can affect only one row, he or she must change some colitmn sums. Thus any move from a
good position produces a bad position. To find a move from a bad position to a good one, construct
a binary number by putting a 1 in the place of each column with odd sum, and & 0 in the place of
each column with even sum, Subtracting this number of matches from the largest pite will produce
2 good position,

a. First show that the result of the operation must yield a multiple of 9. Then it suffices to check
only multiples of 9 with decreasing digits. There are only 79 of these. If we perform the operation
on each of these 79 numbers and reorder the digits, we will have one of the following 23 numbers:
7551, 9954, 5553, 9990, 9981, 8820, 0810, 9620, 8532, 8550, 9720, 9972, 7731, 6543, 8730,
3640, 8721, 7443, 9963, 7632, 6552, 6642, or 6174. It will suffice to check only 9810, 7551, 9990,
$550, 9720, 8640, and 7632,

b. 8

Consider ap = (1234). We find that Tg repeats with period 6. Therefore it never goes o &
Kaprekar’s constant for the base 6. Hence there is no Kaprekar's constant for the base 6.

Section 2.2
(10010110110},

. (1011101100),

(10110001100,
g = (11111, r = (1100),
(3314430)5

. (4320023)s

Py

21.

(1666515
(B705736) 15

Represent (1823518719 nsing three words, {(018)(235X(1837) 10005 and (22135674} using three
words, ((022)(135)(674)) 1000, Where each base 1000 digit is represented by three base 10 digits
in parentheses. To find the sum, difference, and product of these integers from their base 1000
representations we carry out the algorithms for such computations for base 1000.

We must assume that the sum actually represents 2 number in the appropriate range. Assume that
n bits are being used, so that numbers strictly between 97—l 4nd 2"~! can be represented. The

answer is almost, but not quite, that to obtain the one’s complement representation of the sum of
two numbers, we simply add the two strings representing these numbers using the usual grade-

school right-to-left algorithm, as in Example 2.4. Instead, after performing this operation, there

may be a carry out of the left-most cobumn: in such a case, we then add 1 more to the answer.

Leta= (ﬂmﬂm_] e (lzﬂl)[ and b = (bmbm——l ‘s bzbl)!. Then a -+ b= (dm-lvldmdmfl PN dzd])!
is obtained by adding the digits from right to left with the following rule for producing carries.
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fa;+b; +c;_4 where ¢;_y is the carry from adding a;_yand b;_y, is greater than j, then
c; =L, and the resulting jth digit is d;=a; + b;+c;_1 — j — 1. Otherwise, the resulting
digitis d; = a; + b; +¢;_y, and ¢; = 0. To subtract b from a, assuming a > b, we let
di=a;—b;j+c;_andsetc;=0ifa; - b; 4 c;_pis between 0 and j (inclusive). Otherwise,
dj=a;—b;+c; 1+ j+1and c¢; = —1 In this manner, a — b = (dpidyy—q - - . dadi)y.

We have (a, ... a;5)% = (10(a, . . . ap) o + 5)% = 100(a, . . . a4+ 100(a, . .. apyp +25=
100(a,, . .. apip- ((a, - - . ayd1p + 1) + 25. The decimal digits of this number consist of the decimal
digits of (, ... ap g - (@, . .. apyg + 1) followed by 25 since this first product is multiplied by
100, which shifts its decimal expansion two digits.

Section 2.3

a.yes bh.one cyes d.oyes e.yes foyes

. First note that (n° 4 4n? log 1 + 101n?) is O(+®) and that (14n log # 4+ 8n) is O(nlogn) as in

Example 2.11. Now applying Theorem 2.3 yields the result,
Use Exercise 4 and follow Example 2.9, noting that (log n)® < n® whenevern isa posiiive integer.

What we want to show is equivalent to the statement that log(n™) is at most a constant times
log(n!), which in turn is equivalent to the statement that n" is at most a constant power of n!
{because of the fact that C log A = log{A®)). We will show that in fact n" < foralln > L
To do this, let us write (1!)% as (n - BAn—0D-2)-((n—2)-3)---(2- (= 1))+ (1 ). Now
clearly each product pair (7 + 1) - (n — i)} is at least as big as n (indeed, the ones near the middle
are significantly bigger than r). Therefore, the entire product is at least as big as »”, as desired.

- Suppose that f is O(g), where f(n) and g(n) are positive integers for every integer 2. Then there

is an integer C such that f{n) < Cg(n) forallx € 5. Then f*(n} < C*g*(n) for all x & S. Hence,
ftis 0¢gh).

The number of digits in the base b expansion of n is 1 k, where k is such that 5* < » < p*+1,
since there is a digit for each of the powers of 8%, 51, . . ., b*. Note that this inequality is equivalent
tok <log, n <k + 1 50k = [log, n]. Hence, there are [log,, n] + 1 digits in the base b expansion
of n. :

To multiply an r-digit integer by an m-digit integer in the conventional manner, one must multiply
every digit of the first number by every digit of the second number (with carries), to produce an
array of about mn digits. Then we need to add these partial products, but this requires only about
mn additions as we proceed column by column. In all, the number of operations is at most a
constant multiple of man, as desired,

a. O{(n log )1 for every € = 0
b. O((n log m)1+¢) for every € > 0

(1100011),

a. ab= (10" + 10")A By + 10"(A; — Ap)(By — B + (10" + 1) Ag By, where A; and B; are
defined as in identity (2.2)
bh. 6351 . 11522328

That the given equation is an identity may be seen by direct calculation. The seven multi-
plications necessary to use this identity are a1y, 21352y, (@)1 — @2 — a2) (b1 — b1z — ba2),
(@2 + apn)biz — b), (ayr + a1z — a5 — aplby, (a — ay){by; — bip), and

@by — bay — bpy + baa).
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Let k = [logy 7]+ 1. Then the number of multiplications for 2% % 2% matrices is O(7%). But
7k _ plog, Dilloga HHD | which is O (2818 Tl8T) = 0 (n'°827), The other bit operations are
absorbed into this term.

Section 3.1

.a.yes boyes coyes dono  e.yes f.no
. 2.3,5,7,11,13,17,19,23,29, 31,737, 41,43,47,53,59,61,67,71,73,79, %3, 89, 97, 101, 103,

107, 109, 113, 127, 131,137, 139, 149

. nomne

1£ » is not prime, then let n = kI, where 1 < & < . From the hint (which follows from algebra)

we see that a¥ — 1 is a factor of a” — 1 This means that a* — 1 =1, whence g* =72. But this is

impossible. Therefore, n is prime. Clearly, a # 1. Note that n cannot equal 2 unless a = 2, since
otherwise a® — 1 factors nontrivially as the difference of two sguares; SO We can assume that n is
an odd prime. But then " — 1 factors algebraically as (a — D@14+ +a+ D), and this is

nontrivial if @ > 2. We conclude that a =2.

We can show that there are infinitely many primes by showing that given an integer #, there isa
prime p with p > n. We assume thatn = 3.ByLemma3.1, §,=n!—lhasa prime divisor p. If
p<nthen p|nlandsop | n!— 8, = 1, acontradiction. It follows that p > 1.

3,7,31,211,2311,59

If n is prime, then we are done. Otherwise, 2 /p < (In)> I n/p is prime, then we are done.
Otherwise, by Theorem 3.2, 1/ p has a prime factor less than /7/p < &/, a contradiction.

a7 019 a7l

If 1 is prime, then the statement is true for n. Otherwise,  is composite, so n is the product of
two integers @ and b such that L <@ <b <n. Since 1 = ab and by the inductive hypothesis both
a and b are the product of primes, we conclude that » is also the product of primes.

53

Forn="0,1,2,...,10, the values of the function are 11, 13, 19, 29, 43, 61, 83, 109, 139, 173,
211, each of which is prime, But 2 112 4+ 11=112- 11+ D = 11-23.

Assume not. Let xp be a positive integer. It follows that f(xg) = p, where p is prime. Let k be an
integer. We have f (xg +kp) = ap{xo + kpy® + - - - +ay(xg + kp) + aq. Note that by the binomial
theorem (o + kp) = Yo (D)~ (kp)". 1t follows that f(xg +kp) = Y qaxgtNp=
£ (xg) + Np, for some integer N.Since p | f{xp) it follows that p | (flxpy+Np)=flxg+ kp).
Since f(xq -+ kp) is supposed to be prime, it follows that f(xo + kp) = p for all integers k. This
contradicts the fact that a polynomial of degree 7 takes on each value no more than n times. Hence,
£ (3) is composite for at feast one integer y.

At each stage of the procedure for generating the Iucky numbers, the smallest number left, say

k, is designated to be a lucky number and infinitely many numbers are left after the deletion of
every kth integer left. It follows that there are infinitely many steps, and at each step a new lucky
number is added to the sequence. Hence, there are infinitely many lucky numbers. :

Section 3.2

1. 24, 25,26,27,28
. Suppose that p, p +2, and p + 4 are all prime. We consider three cases. First, suppose that p is of

the form 3k. Then p cannot be prime unless k == 1, and then the prime tripletis 3, 5, 7. Next, suppose
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that p is of the form 3k +- 1. Then p +2 = 3k + 3= 3(k + 1) is not prime. We obtain no prime
triplets in this case. Finally, suppose that pis of the form 3% + 2. Then p +4 =3k + 6 =3(k +2)
is not prime. We obtain nd prime triplet in this case ejther.

5 (7,11,13), (13,17, 19), (37,41,43), (67,71, 73).

7.a.5 b7 29 d.53
9. 127, 149, 173, 197, 227, 257, 293, 331, 367, 401

11

13

15.

17,
19.
21.

23,

25,

27.

a.7=34+2+2 bl17=114+34+3 €. 27=23+242
d.97=804+5+3 e l01=974+24+2 £199=191+5+3

Suppose that # > 5 and that Goldbach’s conjecture is true. Apply it to rn — 2 if 1 is even or to
n — 3if n is odd. Conversely, suppose that every integer greater than 5 is the sum of three primes.
Let n > 2 be an even integer. Then n + 2 is also even and the sum of three primes, not all odd,

Let p < n be prime. Using the division algorithm, divide each of the first p + 1 integers in the
sequenceby ptogeta=gop +ro,a+k=qp+ry...,a-t pk=g,p-+rp withO<r; < pfor
each {. By the pigeonhole principle, at least two of the remainders are equal, say r; =r - Subtract
the corresponding equations to geta + ik —a — jk=g;p+r; — q;p — r;, which reduces to
( — J}k ={g; — q)p. Therefore, p | (i — j)k, and because p is prime, it must divide one of the
factors. But since (i — j) < p, we must have p | k.

The difference is 6, achieved with 5, 11, 17, 23,
The difference is 30, achieved with 7, 37, 67, 97, 127, 157.

I p* — g# = 1, with p and g primes, then porgiseven, sothat porgis 2. If p =2, there are several
cases: we have 2% — gf = 1. If o is even, say o =2k, then 2% — D=2  — DR+ 1) = gP.
So g | (2f — 1) and g | (2% + 1); hence q = 1, a contradiction. If « is odd and 8 is odd,
then 2% = 1+ gf = (1 4+ )@t — g2 4+ ... £ 1). Thus 1+ g = 2" for some n. Then

2¢ = (2" — F 4 1=2". (odd number), since B is odd, So 2*7" is odd and therefore @ = n.
Thus 2¢ = 14+ (2% — ¥, and so B =1, which is not allowed. If « =2k + 1 and g8 = 2n, then
2%+ = 1 1 g2, Since g is 0dd, ¢? is of the form 4m -+ 1, and by the binomial theorem, 0 is
g*". Thus the right-hand side of the last equation is of the form 4m + 2, but this forces k = 0, a
contradiction, If g = 2, then p® — 28 == 1, whence 28 = (p — D(p*~ 1 + PE e p4 1,
where the last factor is the sum of o odd terms but must be a power of 2; therefore, & = 2k for
some k. Then 28 = ( p’C — I} pk + 1). These last two factors are powers of 2 that differ by 2; this
forcesk=1,==2, =3, p=73, and g =2 as the only solution: 32 — 23 =29 — 8= 1,

Since 3p > 2n, we see that p and 2 p are the only multiples of p that appear as factors in (2n)1.

Thus p divides (2r)! exactly twice. Since 2p > n, we know that p is the only multiple of p that
appears as a factor in L. Thus p divides n! exactly once. Then since (27) = (2n)}/ (nln), the two
factors of p in the numerator are canceled by the two jn the denominator. and therefore p does

not divide the quotient.

By Bertrand’s postulate, there must be a prime in each interval of the form (251, 2%), for
k=2.3,4,....Thus there are at least k — 1 primes less than 2¢, Since the prime 2 is not counted
here, we have at least k primes less than 2%,

First suppose that m < n, Then I/n + I/ (n+ D+ -+ Y+ o) < Yn+1/n+D+. -+
V@Ra—-D<l/n+1/n4. -+ 1/n<n(l/n) =1, so the sum cannot be an integer. Now suppose
m > n. By Bertrand’s postulate, there is a prime p such that n < p <n + m. Let p be the largest
suchprime. Thenn +m < 2p. Supposethat I/n + 1/(n + D +-- -+ 1/p+ -+ 1/ +m) =a,
where a is an integer, Note that p occurs as a factor in only one denominator, since 2p > n + m.
Let O = []i1™ j,and let Q; = Q/#, fori =n,n -+ 1,...,n + m. Multiply the equation by Q to

i J’
j=n :
get 0, + Quypy+- -+ @p+ -+ Quym = Qp. Except for the term Q, on the left-hand side

STUDENTS-HUB.com

Uploaded By: anonymous



630

29

31,

11.

13

15,
17,
19,

21

23.

25.

Answers to Odd-Numbered Exercises

of the equation, every term on both sides is divisible by p. When we solve the equation for O,
and factor p out, we obtain an equation of the form @, = pN, where N is an integer. But this
impties that p divides Q. 2 contradiction.

Suppose that #t has the stated property and n > p? for some prime p. Since p? is not prime, there
must be a prime dividing both p? and n, and the only possibility is p itself, that is, p | n. Now
if 2 > 72, then n is greater than 22, 3%, and 5% and hence divisible by 2, 3, 5, and 7. This is the
basic step for induction. Now assume 7 is divisible by py, p2.- -+ Pi- BY Bonse’s inequality,
p% w1 <PiP27 " Pi <M. S0 Piyl | 1 also. This induction implies that every prime divides i, whick
is absurd. Therefore, if # has the stated property, it must be less than 72 = 49, To finish, check the
remaining cases.

First suppose 1t > 8. By Bertrand’s postulate, we have p,_; < py < 2p,_yand py_g < Puoy <

2py_2- Therefore, Pﬁ < (2]3';:-1)(2}’”71) < (zpnﬁl)(q’pn—z) < Pn-1Pn—23 < Pp—1Pa-2P5 =
Py—1Py—aPn_3 Since n > 8. Now check the casesn =6 and 7.

Section 3.3

.a.5 b1l e6 4.1 ell 12
a

1

. By Theorem 3.8, (ca, ch) = cma -+ cnb = ¢l + [ma + nb|, where cma + cnb is as small as

possible. Therefore, {ma + nbj is as small a positive integer as possible, i.c., equal to (a, b).

. lor2

et =2k, Since (@, b) [ band bis odd, (a, D) is odd. But (a, b) | a = 2k. Thus {a, b) | k. Therefore
(a,b) = (k, by = (a/2,b).

Letd = (a, b). Then {(a/d, b/d) = L soif g (a/d)}, then (g, b/d)=11In particular, if we lete =
{ajd, befd), thene| (afd), so (e, Bjdy = 1; therefore ¢ | c. Since e | (a/d}, we know thai e { a, 50
e | {a, ¢). Conversely, if f = (a,<), then (fLih=Lsold, =L therefore f | (a/d), and trivially
f | (bc/d). Therefore, f | e, whence e == f. Then (a,b){a,c) =de= d(a/d, be/d) = (a,bc).

10,26,65
.2 bS5 9 d4d.3 e7 L1001
We proceed by induction, the basis case n = 2 being Exercise 7. Then using the basis

case and Lemma 3.2, we have {cay, cag, . .., cag) = (€01, €0y, - -+, €3, {ca, 1, cay)) =
(cay, €ag, . - - 1 Cllp 2, €(@y_1,85)) = clay, @y, .+« » Gy_z, (dy_1, @)} by the inductive hypothesis.
But this last expression equals c(ag, @, . - -, ;) by Lemma 3.2,

Suppose that (6k + a, 6k + by=4d. Thend | b —a. We have a, bef{—-1,1,2,3,5) s0ifa< bit
follows that b — a € {1,2,3,4,6}. Hence, d € (1,2,3, 4, 6. To show that d = 1it is sufficient to
show that neither 2 nor 3 divides (6% + a, 6k + B). If p=2or3and p | (6% + a, 6k + b), then
p | a and p | b. However, there are no such pairs a, b in the set {—1, 1, 2,3,5L

We proceed with the Enclidean algorithm: 8a + 3 = 1{5a + D+Ba+ D, Sa+2=

1G3a + 1+ Qa+ 1, 3a+1=12a + D+ (a), 2a+ 1=2(a)+ (1) Therefore
Ba+3,5a+2)=1

From Exercise 21, we know that 6k — 1, 6k 4+ 1, 6k + 2, 6k + 3, and 6k + 5 arc pairwise
relalively prime. To represeat n as the sum of two relatively prime integers greater than 1, Iet
n =12k + k, 0 < h < 12. We now examine the twelve cases, one for each possible value of h:
h=0,n=06k—D+©®k+Dih=1n= 06k 1) + (6k -+ 2); h =2,n = (6k — D+ k-3
h=3n=(Ok+ 1+ Gk+2sh=4n=(06k+D+ (6k +3);h=5n=(6k 12} + (6k + 3);
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h=8n=0k+ D+ (0k+5k=Tn=(6k+2)+ 6k + 5 h =8, n =6k + 3} + (6k -+ 5);
h=9%n=Q02k+D+2Lh=10,n=(12k+TD+ %K h=11,n=(12k + 9 + 2.

Let 5 be the set of all fractions P/ = (xa + ye)/(xh + vf), where x and y are relatively prime
positive integers. Then every element of § lies between a/b and e/f and is in lowest terms. The
first clement of § to appear in a Farey series will have the smatlest 0, i.e., x = y = 1. This fraction
must be c/d by hypothesis.

Sincea/b < (@ +c)/{b+d) < c/d, wehave b + d > n, ora/b and c/d would not be consecutive,
since otherwise (a + ¢}/ (& + d) would have appeared in the Farey series of order ».

Since (a/b) + (c/d) = {(ad + be)/(bd) is an integer, bd | ad + bc. Certainly, then, bd |
dlad + be) = ad® + cbd. Now since bd | cbd, we have bd | ad®. From this, bdn = ad? for
some integer n, and it follows that bn = ad, or b | ad. Since (a, b} = 1, we must have b | d.
Similarly, we can show that d | #; hence b =d.

Note that a lattice point lies on the diagonal from {0, 0} to (@, b) if and only if [bx /a]is an integer.
Letd = (a,b) and a = cd, so that (c, b) = 1. There are exactly x multiples of ¢ less than or equal to
a since ed = @, so there are exactly & -+ 1 lattice points on the diagonal, One way to count the lattice
points is to consider the rectangle, which has (a + 1)(b + 1) points, and divide by 2. But we need
to add back in half the points on the diagonal, which gives us (@ + 1)(& + 1)/2 + ({a. b) + 1)/2.
Another way is to count each column above the horizontal axis, starting with{ =1,2,...,a — L
The equation of the diagonal is y = (ba)x, so for a given i, the number of points on or below the
diagonal is [bi /a]. So the total number of interior points in the trangle plus the points on the the
diagonal is fz"ll[bi /a). Then the right-hand boundary has b points and the lower boundary has
a + 1 points, So in all, we have Z;:ll[bi fal+a -+ b + 1 points. Equating the two expressions
and simplifying gives the identity.

Assume there are exactly r primes and consider the » + | numbers {r + 1)1 + 1. From Lemma
3.1, each of these numbers has a prime divisor, but from Exercise 34, these numbers are pairwise
relatively prime, so these prime divisors must be urique, so we must have at least r 4 1 different
prime divisors, a contradiction.

Section 3.4

l.a.15 b6 ¢2 d5

.2 —1.7542.45 1.6-2224(—13}-102 e —138-666+65-1414  d. —1707-20785 +

800 - 44350

.al b7 o5

al-6+1-104+(=D-15 b0-70+(-H-98+1.105 ¢ —~13-280+0-330+9-405+
0. 450

2
s 2n-2
- Suppose that we have the balanced ternary expansions for integers a > b, If both expansions end

in 0, then both are divisible by 3, and we can divide this factor of 3 out by deleting the trailing
UOs {a shift), in which case (a, b) = 3{a/3, b/3). If exacily one expansion ends in 0, then we can
divide the factor of 3 out by shifting, and we have (a, &) = (a/3, b}, say. If both expansions end
in Lorin —1, then we can subtract the larger from the smatler to get (@, b) = (a — b, b), say, and
then the expansion for & — b ends in 0. Finally, if one expansion ends in 1 and the other in —1,
then we can add the two to get (a + b, b), where the expansion of # + b now ends in 0. Since
a -+ b is no larger than 2a and since we can now divide a + & by 3, the larger term is reduced by
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a factor of at least 2/3 after two steps. Therefore, this algorithm will terminate in a finite number
of steps, when we finally have @ = b = L.

Lemma: ¥f ¢ and d are integers and ¢ =dg % r, where g and r are integers, then (¢, d) = (d, 7).
{Proof of lemma: If an integer e divides both ¢ and d, then since r = =(c — dg), Theorem 1.8
showsthate|r.Tfe|d ande | r, thensince c = dg + r, from Theorem 1.8 we see that e | ¢. Since
the common divisors of ¢ and d are the same as the common divisors of 4 and r, we see that
(¢,d) = (d,r).] Let ro = a and ry = b be positive integers with @ > b, By successively applying
the least-remainder division algorithm, we find that ro = g1 + €22, =1 [2<ery <N/ .
oz = Fae1dno1+ €nTns ~Tu-1/2 < €yfn = Fpotf 25 Faet = P We eventually obtain a remainder
of 0 since the sequence of remainders @ =rg>r >r > - = 0 cannot contain more than a
terms. By the lemma we see that (@, D=(rer)=Lr)=-=2n Fyet) = Faets Ta) =
(£, 0} = r,,. Hence (@, b) =714, the last nonzero remainder,

Let vy = vy =2and v; =2v;_y + yp fori = 4.

Performing the Euclidean algorithm withrg =m and ry = n, we find thatrg =r1g, + 72, O=gr<r,
Fo=rady 0Py <ty ooy Tk = TGk F -1 0 ST < e and rp_3 = re—19k—t
We have (1, n) = r_1. We will use these steps to find the greatest common divisor of a” — 1
and a" — 1. First, we show that if » and v are positive integers, then the least positive residue
of @ — 1 modulo a® — 1is " — 1, where r is the least positive residue of u modulo v. To see
this, note that ¥ = vg + r, where r is the least positive residue of 1 modulo v. It follows that
gt — fe= @t 1= (a¥ — D@ @D 4. ;a4 a7) + (a" — ). This shows that the
remainder is a” — 1 when a* — 11is divided by a” — 1. Now let Ry = a” —tand Ry=a"— L
When we perform the Euclidean atgorithm starting with Ry and R we obtain Ry = Ry Q1+ Ry,
where R2 =a'i— 1, Rl = RQQZ + R3, where R3 =a"— 1, cenn Rk—3 = Rk—-ZQk—l + Rk—l’
where R;_; = a"-1"". Hence the last nonzero remainder, Re_y = a1 — 1=al — 1is the
greatest common divisor of a® —landa" — L

Note that (x, y) = (x —t¥, ¥}, as every divisor of x and y is also a divisor of x — #y. So, every
move in the game of Euclid preserves the g.c.d. of the two numbers, Since (4,0} =a, if the
game beginning with {a, b} terminates, then it must do so at {(a, b}, 0)}. Since the sum of the two
numbers is always decreasing and positive, the game must terminate.

Choose i so that d has no more than 7 bits and g has 2m bits, if necessary appending initial zeros (o
g. By Theorems 2.5 and 2.7, g can be divided by d using & (m?) = O(log; g log, d}bit operations.
Suppose that r is the number of steps used by the Euclidean algorithm to find (a, b). Then by
Theorem 3.13, n = O(log, a). The total number of bit operations for divisions in the Euclidean
algorithm is 3 O(log, g; loga ry) = 37 O(logy g logy ) = Olog, b 31, logr qi) =

O (log, b log, [T}, 4:), where g; and 7; are as in the proof of Theorem 3.13. Dropping the

remainder in each step of the Euclidean algorithm, we have inequalities r; = ryy1diq1s fOF
i=0,1,...,1n— L Multiplying these inequalities together yields ﬂ:’____ol r; = 11}, rig;- Canceliing
common factors reduces this 1o a = rg = #, [T, 4;. Therefore, the total number of bit operations

is O(og, blog, [T7., 4;) = Ollogy blogz a) = O ((logy @)?).

We apply the @;’s one at a time. When we multiply (qi‘ é) (ro,, ) = (q’;r" ) = (1’,’1‘71 )
n n

the top component is the last equation in the series of equations in the proof of Lemma 3.3.

When we maultiply this result on the left by the next matrix, we get (q”f 1 (1)) (r’;—l) =
n

AT Py s . . L
(q" lr" vt ”) = (r" 2), which is the matrix version of the last two equations in
n—1 n—l1

the proof of Lemma 3.3. In general, at the ith siep we have (q"l‘ L é) (r"*"‘l) =

i
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Y - Ty—ie . . .
(q,, Famiet +Tnmy ) = ( ni=2 ), so that we inductively work our way up the equations

Th—i-1 Pr—i—i

in the proof of Lemma 3:3, until finally we have (:‘P) = (g)
1

Section 3.5

»a.22.38 D313 2282 A 17 e 2-3.37 £2° g£5.103 h 2343

i.24.32.5.7 j26.% Kk3.5.-72.13 L32.11-101

3.3-5.7-11-13-17- 19
5.a.2,3 b2,35 23,57 11,13, 17,19 d.2, 3, 7, 13, 29, 31, 37, 41, 43, 47

7. integers of the form p?, where p is prime; integers of the form pg or p?, where p and g are

1.

13.

15.
17,
19.

21.

23.

25,

27.

2a;_ 2
. Lein = p; ‘pzaz-v-pk g ",

distinct primes

Qag_2b1+3 25 2543 .
Hgrort 2+3--~q1 " be the factorization of a powerful number. Then

ap gz a by by

"=(P1 Py P d g,
Suppose that p? || m and p? || n. Thenm = p®Q and n = pPR, where both O and R are products
of primes other than p. Hence, mn = (p* Q}(p?R) = p*** QR Tt follows that p®t? || mn since
p does not divide OR.

.. qf’)z(qlqz cee q,)3 is a product of a square and a cube.

Suppose that p® | m and p® || n with a # b, Then m = p°Q and n = pPR, where both Q and

R are products of primes other than p. Suppose, without loss of generality, that @ = min{a, b).

Thenm +n = p?Q -+ p*R = p""@)(g + pb~2R). Then p [ (Q + p® *R) because p } Q but
p | PP R. Tt follows that prinaB) oy g,

218.38.50.72.41.13. 1719

300, 301, 302, 303, 304

We compute «f = (ac — 5bd) + (ad -+ be)/=35. Thus N(x8) = (ac ~— 5bd)? + 5(ad + bc)? =
a?c? — 10achd + 25b*d® + Sa%d® -+ 10adbc + 5b%c? = a2(c* + 5d%) + 56%(5d% + ¢2) =

(@ + 562 (c? + 5d%) = N(@)N(B).

Suppose 3 = . Then from Exercise 19 we know that 9 = N(3) = N{a)N(8). Then N (x) == |,
3,0r 9. Letw = a + b/~5. Then we must have a2 - 5b2 = 1,3, 0r9 Soeitherb=0anda ==+1
or +3, or b= 41 and g = £2. Since a = %1, b = 0 is excluded, and since a = £3 forces § = +1,
we must have b = 1. That is, @ = £2 == /=35, But then N(&) =9, and hence N(8) = 1, which
forces 8 = +1.

Note that 21 =3 - 7= (1 + 2/—5)(1 — 2./=5). We know that 3 is prime from Exercise 21.
Similarly, if we seek o = @ + b+/—5 such that N{@) = a® + 552 == 7, then we find there are no
solutions. Indeed, b = 0 implies a? = 7, |b| = 1 implies a? = 2, and [b| > 1implies a2 < 0, and in
each case there is no such a. Hence, if ¢ff =7, then N (af) = N(e)N(8) = N(7) = 49. So one
of N{c) and N{8) must be equal to 49 and the other equal to 1. Hence, 7 is also prime, We have
shown that there are no numbers of the form a + b+/—3 with norm 3 or 7. So in a similar fashion to
the argument above, if @f = 13 24/=5, then N{pB) = N(a)N(B) = N({1+24/—5) = 21. Since
there are no numbers with norm 3 or 7, one of & and § has norm 21 and the other has norm 1.
Hence, 14 2+/—5 is also prime,

The product of 4k + land 4/ + Lis (dk + DA + D= 16k + 4k +-4 L 1=4@ki+k+D + 1=
4m + 1, where m = 4kl + k +- 1. Hence, the product of two integers of the form 4k + 1is also of
this form,

We proceed by mathemuatical induction on the elements of H. The first Hilbert number greater
than 1, 5, is a Hilbert prime because it is an integer prime. This completes the basis step. For the
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inductive step, we assume that all numbers in B less than or equal to 1 can be factored into Hilbert
primes. The next greatest number inHisn+4.fntdisa Hilbert prime, then we are done.
Otherwise, h = hk, where k and k are less than r and in H. By the inductive hypothesis, hand k
can be factored into Hilbert primes. Thus 7 -+ 4 can be written as the product of Hilbert primes.

1,2,3,4,6,8,12,24
a 77 h36 150 d.33633 e 605605 £ 277200

2. 2P, HST b.12-3.5-7-11-13-17-19.23.29 e.2.5.15,2%.3-57.7-111.13
d. 1015000, 41“471[79[1183]11101!00!

the year 2121

feta=p]py - pg and b= pipst .- py, where each p; is a prime and r; and 5; are

nonnegative. Then (a,b) = pliﬂiﬂ("i.-n) L. p:ﬂn(rnﬁk) and [a, bl = pflﬂﬁx(f;rsl) . pzﬂax(rnﬁx)_ So

[a, b] = {a, b) , pllnax(l'lrs'l)—rnin(rl.f[) . pkma-‘i(rk-sk)—mi“(rkyfﬂ_ Since max(r,-, Si) _ min(ri,s,-) is
clearly nonnegative, we ROw see that {a, #) | {a, b}. Cleatly, {a, b) = [a, b} if and only if each

r; = §;, which means @ = b.

If [a, b] | ¢, then since a | {a, b], we have a | ¢. Similarly, b]c. Conversely, suppose that
a=p‘;‘pg2 e pat, b:pi"pg2 . pﬁ”, and ¢ = pi‘p? copm Ifalcand blc, then
max(a;, b;) < ¢; for i=1,2,...,n Hence [a, b1l c.

Assume that p | a" = £la| - laj - - - |a|. Then by Lemma 3.5, p|lal and so p | a.

a. Suppose that (e, 5) = land p | (a", &%), where p is a prime. It follows that p{a® and p | B
By Exercise 43, p | a and p | b. But then p | {a,b) =1, whichisa contradiction.

b. Suppose that a does not divide b, but &" | b*. Then there is some prime power, say p', that
divides a but does not divide b (else a | b by the fundamental theorem of arithmetic). Thus

a = p'Q, where O is an integer. Now " = {p" Q) =p™(Q", s0 p™ 1 a® and it follows that
p™| b Thend" =m p™, from which it follows thai each of the # b’s must by symmetry contain
at least ¢ p's. But thisis a contradiction.

Let x = /2 4 +/3. Then x? =12 +242S343=5+ 2/6. Hence, x* — 5= 2./6. It follows
that ¥* — 10x2 + 25 = 24. Consequently, < _ 10x% + 1 = 0. From Theorem 3.18 it follows that
J2 4+ /3 1s imational, since it is not an integer (we can see this since 3 < N2 43 <4

Suppose that m/n = log, b. This implies that p"/* = b, from which it follows that p™ =b".
Since b is not a power of p, there must be another prime, say g, such that g | b. But then
g|b'=p"=p-p-pP By Lemma 3.5, ¢ | P, which is impossible since pis a prime number.

Let p be a prime. Define 5 and t by p* |l a and p b saya= xp*and b= yp', where p f x.
Without loss of generality, suppose that s <7. Then a + b= p'(x + p7), s0 pla+b
Also, pm 0 || [a, b). But max(s, 1) =t,so p' |l [a, b). Therefore pminGsd || (a + b, [a, b]). But
p““i“(s'r || (a, b), so the same power of p divides both sides of the equation, Since this holds for
each p, the two sides must be equal,

it suffices to prove this “one prime at a ime”; to this end, let r, s, and ¢ be the exponenis on
the prime p in the prime factorizations of a, b, and ¢, respectively. We know that the exponent
on pin [a,b]is max(r, 5), and so the exponent on p in ([a, b}, ) is min{z, max(r, s)). We also
know that the exponent on p in {a,¢) is min(r, t) and the exponent on p in (b, ¢} is min{s, 1),
so the exponent on g in [{a, ), (b, €)1 is max(min(r, 1), min(s, 1)) But it is not hard to see that
min{r, max(r, s)) and max(min{r, £), min(s, 1)} always represent the same value. It follows that
the exponent on p in the prime factorizations of ([a, b}, ¢) and Ela. ¢}, (b, c)] are the same for each
prime p, and we conclude therefore that ({a, Bl, ¢} = [{a,c), (b,c)l. Ina similar manner, we find
that [(e2, B), c1= ({a, cl. tb, cD-
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Lete={ay,...,a,)d=llay....aq,_|La,lande=[ay,...,a, (] If c | m, then all a;’s divide
m; hence e | m and a,, | m, so d | m. Conversely, if d | m, then e | m and a,, | m, so all 4;’s divide
m; thus ¢ | m. Since ¢ and  divide all the same numbers, they must be equal.

a, There are six cases, all handled the same way. So without loss of generality, suppose that
a = b < c. Then max{a, b, ¢) = ¢, min(a, b) = a, min(a, ¢) = q, min{b, ¢} = b, and min(a, b, ¢} =
a. Hence ¢ =max(a, b, ¢) = a + b + ¢ — min(a, ) — minfa, ¢} — min(b, c) +- min{a, b, ¢) =
a+bt+c—a—a—b+ta

b. The exponent on a prime p that oceurs in the prime factorization of [a, b, ¢] is max(x, v, z),
where x, y, and z are the exponents on this prime in the factorizations of a, b, and ¢, respectively.
Also x + ¥ + z is the exponent on p in abe, min(x, y, z) is the exponent an p in (a, b, c),
min{x, ) is the exponent on p in (a, b), min{x, z) is the exponent on p in (a, ), min(y, z}
is the exponent on p in (b, ), and min(x, v, z) is the exponent on p in (a, &, ¢). It follows
that x 4 y + z + min{x, y, z) - min(x, ¥} — min(x, z} — min(y, z) is the exponent on p in
abe(a, b, c)/((a, b)(a, €){b, ¢}). Hence from part (a), [, b, c]=abela, b, ¢}/ ((a, bY(a, c)(b, &)).

Leta=pl'p?- - pi, b= pps - pi", and ¢ = p;‘péz . -p;‘", with p; prime and r;, 5;, and &

nonnegative. Then ' % || abe, but p™™" ) {| (2, b, c) and prsHrmnGStd y 1ap ae, abl,
min{ry,s ) rebspty-min(rsat) _ ribsity
d p. - p; =p .

and p; i

It suffices to prove this “one prime at a time”; to this end, let r, s, and ¢ be the exponents on
the prime p in the prime factorizations of a, b, and ¢, respectively. Then, using the facts that the
exponent on p in (@, b, ¢) is min(r, 5, ), and the exponent on p in [a, b, ¢] is max(r, s, 1), we see
that the exponent on p in ([a, b], [a, c], b, ]} is min(max{r, s}, max(r, £}, max(s, £)), whereas the
exponent on p in [(a, b), (a, ¢), (b, ¢)] is max(min(r, s), min(r, t), mins, £)). But these two are
equal (examine the six orderingsr =5 >1¢,.. ).

First note that there are arbitrarily fong sequences of composites in the integers. For example,
(2142, (0 +2)I14+3,. .., (e + 2} 4+ (2 + 2) is a sequence of # consecutive composites,
To find a sequence of » composites in the sequence o, a + b,a + 25, . . ., look at the integers
ina,a+b,a+2b,... with absolute values between (n& + 2)1+ 2 and (nb + 2D+ (nb 3+ 2).
There are clearly n or n 4 1 such integers, and all are composite.

103
701

Leta=J}_, pf“' and b= H.;] pf’. The condition {a, b) = 1is equivalent to min(x;, ;) = 0 for
all i, and the condition ab == ¢” is equivalent to » | ¢; + 5; for all i. Hence n | &; and B; = 0, or
1| B; and or; = 0. Let d be the product of p:.x"/ " over all { of the first kind, and let ¢ be the product
of pf" over all i of the second kind. Then d* = g and " = b.

Partition the set of integers §={1,2,3,...,2n} into n subsets in the following way, Let
S1={12,4,8,..}nS8; let § ={3,6,12,24,...3NS; let §;={5, 10,20,40,...} N S: and
g0 on, with the last set being S, = {2n — 1}. In other words, 5; is the set of elements in § whose
“odd part” (the number with all factors of 2 divided out)is 2i — 1, fori = 1,2, ..., n. By the
pigeonhole principle, at least two of the 7 + 1 given numbers must lie in the same S, and clearly
the smaller of the two will divide the larger,

m=nor{m,n}=12 4}

For j # 1, p; | Q. since it is one of the factors. So p; must divide § — 2w 2i=0i=
P1°" " Pi-1Pi41 " * - Pr, but by the fundamental theorem of arithmetic, p; must be equal to one of
these last factors, a contradiction.
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Let p be the largest prime less than or equal to . i 2p < n, then Bertrand’s postulate guarantees
another prime g such that p <g <2p <n, contradicting the choice of p. Therefore, we know that
n < 2p. Therefore, in the prime factorization of the product ! = 1.2.3...n, only one muitiple
of p appears.

a. Uniqueness foliows from the fundmental theorem of arithmetic. Because &; = 0, we have
€ _ o I3 2 _
le—Psz"‘P?EP]lPZZ-" = m.

L:f

b. Because pj < p; <m= Q= p. taking logarithms it follows that g; log py = n1og p,.
Dividing by log p, gives the first inequality. If L <m < ¢, thenm has a prime-power factorization
of the form in part (a), so the r-tuples of exponents count the namber of integers in the range
l<m=<Q.

¢. To bound the number of r-tuples, by part (b) there are at most C(n -+ 1) r-tuples. By part (b)
we have p? < (Cn + D= @(C+ YY) 2a"C+ n.

d. Taking logarithms of both sides of the inequality in part (c), we obtain 7 < r(log 1 + iog{C +
1))/ log p,. but because n grows ruch faster than log 1, the left-hand side must be larger than the
right-hand side for lasge values of n.

S(40) = 5, (41) = 41, $(43) =43
an)=1,2,3,4,5,9,7,32,27,25, 1L,...

By Exercise 80, we have S(p) = p whenever p is prime. If m < p and m | S(p)!=p), then
m | (p — 1)} so S(p) must be the first time that S(n) takes on the value p.

Let n be square-free. Then no prime can appear to a power greater than one in the prime-
power factorization of #n. Son=p1py - Pr for some distinct primes p;, which implics that
rad(n) = ppa - + + pr = nt. Conversely, if i is not square-free, then d% | n for some integer d with
d > 2, and some prime factor p| of d appeats to an even poswer in the prime-power factorization
ofn. Son = p%’fpi'z’2 . pfr. This implies that rad() = pyP2 - Pr #a.

Since every prime occurring in the prime-power factorization of mn occurs in either the
factorization of m or n, every factor in tad(mn) occurs at least once in the produact rad{nyrad(n),
yielding the inequality. Ifm= P‘;l ceeplr and n = qfl" S qf‘ are relatively prime, then
rad(mun) = py- -+ Do G5 = rad(m)radin).

First note that if p | zj’l‘), then p < 2n. This is true because every factor of the numerator of

(3} = (2n)}/(n)? is less than or equal to 2n. Let () = p'py - pit be the factorization of
(",:') into distinct prime powers. By the definition of the function 7 (x), we have k = w{(2n). By

Exercise 88, p? < 2n. It now follows that (21':) = p{' p? e p;" < (2m)(2n) - - - @n) < 2n)" (2m},

Note that (2: < Zi’;o (l’a') = (14 D* =22*, Then from Exercise 90, pFEn—ni (2:) < 72,
Taking logarithms gives (x (2n) — a(m))logn < log(22*) = n log 4. Now divide by log n.

Note that 2t =[1}_, 2 < [T, +a)/a= (*"). Then by Exercise 89, 2" = (2r)y* ™. Taking
logarithms gives 7 (2i) = n log 2/ (log 2n). Hence for a real namber x we have m(x) =
[x/2]log 2/ log[x] > cyx/ log x. For the other half, Exercise 91 gives w(x) — 7 (x/2) < ax/logx,
where a is a constant. Then log(x/2™)m(x j2m - log(x/Z’"H):rr(x J2EYy < ax /2™ for every
positive integer m. Thus (log x)7r (x) = ¥, (log(x/2™ymix/2") — loglx Jam (2 f2mth) <

ax 30 o 1/2" < cpx, where v is the largest integer such that 2v+l <y Then r(x) < cx/ log x.

Section 3.6

L a3.58.73.13-101 b 1P.13-19.641 e 13-17.19-47-71-97

A ld3=12—1=(124D(12-H=13-11

b, 2279 = 482 — 52 = (48 4 5)(48 — 5) =53 43
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c. 43 is prime.
d. 11413 = 1072 - &? = {107+ 6)(107 — 6) = 113 - 101

. Note that (50 + 2)2 == 2500 + 100n# 3+ 2% and (50 — n)?* = 2500 — 1001 + n2. The first equation

shows that the possible final two digits of squares can be found by examining the squares of
the integers 0, 1, . . ., 49, and the second equation shows that these final two digits can be found
by examining the squares of the integers 0,1,...,25 We find that 02 = 0, 12 = 1,22 == 4, 32 =
9,47 = 16,57 =25,6° = 36,72 = 49,82 = 64,92 = 81, 102 = 100, 1 12 = 121, 122 == 144, 13?
169, 147 = 196, 15% = 225, 16% = 256, 17% = 289, 187 = 324, 19? = 361, 20 == 400, 212 =
441,222 = 484,23 = 529,24 = 576,25% = 625, It follows that the [ast two digits of a square
are 00, el, 4, 25, 06, €9, where e represents an even digit and o represents an odd digit.

2

. Suppose that x> — » is a perfect square with x > (n + pA/(2p), say 6% Now, a> =x2 —n »

(@ + /2P0 — n=((n — pY/(2p))2. 1t follows that a > (n + p2)/(2p). From these
inequalities for x and a, we see that x +a = n/p, or # < p(x +a). Also, a® = x2 — u tells
us that (x — a)(x +a) =n. Now, (x —a)(x +a) =n < p(x + a). Canceling, we find that

X —a < p.Batsince x — a is a divisor of » less than p, the smallest prime divisor of n, it follows
that x —a = L. In this case, x = (n + 1)/2.

. From the identity in Exercise 8, it is clear that if n =, is a multiple of 2k + 1, then so

11.

13

i5

17.

19.

is ny, since it is the difference of two multiples of 2k + 1. If 2k - 1| ny, then 2k + L[ 7,
and it follows from ry < 2k + 1 that rp = 0. Thus g = (2k -+ Dg,. Continuing, we see that
n=n-+2n, — 202k + g = (2k + Da + 2(ny, — kn) — 2(2k + Dq,. It follows from Exercise 8
thatn =2k + Dn — 202k + 1) Zf‘;ll 9~ 202k + g =QRk+Dn —-202k+ 1) Zf:; g;. Using
Exercise 8 again, we conclude that n = (2k + D{n — 2 E:‘Zl q¢) = 2k + Dnigyy.

To see that ur is even, note that g — ¢ is the difference of odd numbers and that » — 4 is the
difference of even numbers. Thus @ — ¢ and b — d are even, and i must be as well. That
(r.s) =1 follows trivially from Theorem 3.6. To continue, a* 4 b% = ¢? + d? implies that

(@ +c}a —c) = {d — b)(d + b). Dividing both sides of this equation by u, we find that
r{a +¢) = s(d + b). From this it is clear that s [ 7 (¢ + ¢). Butsince (r,s) = I, we have s | a +¢.

To factor n, observe that ((1/2)% + W/ 2H0+5Y) = %(uzr2 + 1252 4 v2r?  ¥25?). Substitut-
inga —¢,d — b, a +¢,and d + b for ru, su, sv, and rv, respectively, will allow everything to be
simplified down to n. As # and v are both even, both of the factors are integers.

We have 272 4 1=4(2") 4 1= (222" 1 2.27 4 1)(2. 22" — 2.2 4 1). Using this identity
we have the factorization 28 + 1=402% 4+ 1= (2. 28 +2. 29+ D222 —2. 22+ 1 =
(2% 4+ 25 4+ (2% — 25 4 1) = 545 - 481.

We can prove that the last digit in the decimal expansion of F,, is 7 for n = 2 by proving that the
tast digit in the decimal expansion of 22" is 6 for n > 2. This can be done using mathematical
induction, We have 22° = 16 so the result is true for # = 2, Now assume that the fast decimal digit
of 2% is 6, i.e., 22" = 6 (mod 10). It follows that 22" = (22")2'*'-2" = 62"*'~2" = 6 (mod 10).
This completes the proof.

Since every prime factor of F5 = 27 + 1=4,294 967,297 is of the form 27k + 1 = 128k + 1,
we attempt to factor F5 by trial division by primes of this form. We find that 128. 14 1= 129
is not prime, 128 -2 4+ 1 =257 is prime but does not divide 4,294,967,297, 128 . 3 4+ 1= 385
is not prime, 128 - 4 4 1 =513 is not prime, and 1285+ 1 =641 is prime and does divide
4,294,967,297, with 4,294,967,297 = 641 - 6,700,417, Every factor of 6,700,417 is also a factor
of 4,294,967,297. We attempt to factor 6,700,417 by trial division by primes of the form 128k + 1
beginning with 641, We first note that 641 does not divide 6,700,417. Among the other integers
of the form 128k + 11ess than /6700417, namely the integers 769, 897, 1025, 1153, 1281, 1409,
1537, 1665, 1793, 1921, 2049, 2177, 2305, 2433, and 2561, only 769, 1153, and 1409 are prime,
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and none of them divides 6,700,417, Hence 6,700,417 is prime and the prime factorization of I's
is 641 6,700,417,

2% logg 2

See Exercise 21 of Section 3.2.

Section 3.7

,ax=33-5,y=—11+%

b, x = —300+ 13,y =400 — 17t

c. X :21—2t,y=—»21+31‘

d. no solutions

e. v = 889 — 1960f, y = —633 4 1402t

. 39 US$ and 94 Can$, or 95 US$ and 33 Can$

. Solving 111e 4 169p = 11798 yields e = 53, p=35.
. 17 apples and 23 oranges

. a. (1, 16), (4, 14), (7,12),. .., (22,2), (25,0)

b. no solutions

c. (0,37, (3,35, (6,33),.... (51, ). 54, D)
a,x=-5+3—-2t,y=5~-2s,2=t

b. no solutions
ex=—14+102s+£,y=1—101s - 2t,z=1

(9,9,0), (19,8,0, . .., (99,0,0); (4,7, D, (14,6, ), ... (74,0, D; 0,4,2), (19,3.2), ...,
(49,0,2); (4,2,3), (14, 1,3), (24,0,3)

a.x=924+6t,y=8-Thz=1t
b. no solutions
cx=50—ty=—10043rz= 150 -3, w=¢

9,19,41

The quadrilateral with vertices (b, 03, (0, @), (b — 1, 1), and (—1,a — 1) has areaa + b, Pick’s
theorem, from elementary geometry, states that the area of a simple polygon whose vertices are
lattice points {points with integer coordinates) is given by %x + y — 1, where x is the number
of Iattice points on the boundary and y is the number of lattice points inside the polygon. Since
(a,b)=1, we have x = 4, and therefore by Pick’s theorem the quadrilateral contains o + b — 1
lattice points. Every point corresponds to a different value of n in the range ab — a —b <n < ab.
Therefore, every n in the range must get hit, so the equation is solvable.

(See the solution for Exercise 19.) The Yine ax + by = ab —a — b bisects the rectangle with
vertices (—1,a — 1), (=1, -1), (& — l,a — 1), and (b - 1,—1) but contains no lattice points.
Hence half the interior points are below the line and half are above. The half below correspond to
1 < ab —a — b, and there are (a — Db —~ 1}/2 of them.

(0, 25,75), (4, 18,78}, (8, 11, 81), (12,4, 84}

Section 4.1

Laz2{(13-h=12 bh5|122-T)=13 e 13](91-0)=91 d.7|69—-62)=17

63| (-2—D=-3 ELI1|{(-3-30)=-33 g40}(lll-(9=120
h. 37 | (666 — 0) = 666

a1,2,11,22 5.1,3,9,27,37,111,333,99% ¢ 1,111,121, 1331
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Suppose that @ is odd. Then a = 2k + [ for some integer k. Then a® = (2k + 1)? =42 +- 4k + 1=
4k{k+ 1) + 1. If k is even, then k = 21, where [ is an integer. Then a2 = 8(2/ + 1) + L. Hence,
a*=1(mod 8).If k is odd, then & = 2/ + 1 when  is an integer. Then a? = 4(2/ + 1)(2] +2) + 1 =
8(21 + (! + 1). Again, a® =1 (mod 8).

al bS5 9 dI3

9. Since a = b (mod m), there exists an integer k such that @ = b + km. Thus ac = b+ km)e=

11.

13

15
17.
19.

21
23

25

27,

29

be + k(nc). By Theorem 4.1, ac = be (med mic).

a. We proceed by induction on n. It is clearly true for # = I, For the inductive step, we
a1

assume that ZL[ a; = Z?:} b; (mod m) and that a,,, = b, (mod m). Now 2hap=

(7o) + @ngr = (o b)) +byyy = Y1 b; (mod i) by Theorem 4.5(3).
b. We use induction on n. For n = 1, the identity clearly holds. For the inductive step, we assume

that [T}, a; =TT}, b; (mod m) and &, = b, 4; (mod mr). Then [T aj=a,.4([ [}, a)) =

j=1
byl b)) = ]_[j:} b; (mod m) by Theorem 4.5(iii).

0-0=00-1=50-2=4,0-3=30-4=2,0-5=L1-0=1,1-1=0,1—-2=35,
1-3=4,1-4=3,1-5=2;2-0=2,2-1=1,2-2=0,2-3=52—-4=42—5=3
3-0=33-1=23-2=13-3=0,3-4=53-5=44-0=4,4—-1=3,4—-2=2,
4—3=1,4-4=0,4-5=55-0=55-1=4,5-2=35-3=2,5-4=1,5-5=0

a.4o'clock b.6o'clock e 40'clock
a==b(mod p)

Notethat I+2+3 4«4 (n —~ 1} =(n — Ln/2. if nis odd, then (n — 1) is even, so (1 — D/2is
aninteger. Hence,n |14+ 243+ .-+ (n— Difniscdd, andso 1 +24+3+---+ (n — D=0
(mod n). ¥ r is even, then n = 2k, where & is an integer. Then (n — Dn /2=(n— Dk. We
can easily see that n does not divide (n — 1)k since (1,7 — 1) = I and k < ». It follows that
24 4+ (n—1)Z0 (modn) if n is even.

those n relatively prime to 6

Ifn=1,then5=5"= 1+ 4(1) (mod 16), so the basis step holds. For the inductive step, we assume
that 5" = ! + 4n (mod 16). Now 57! = 5"S = (1 4 41)5 (mod 16} by Theorem 4.3(iii). Further,
(1+4n)5=5+20n =5+ 4n (med 16). Finally, 54 dn =1+ 4(n + 1). Thus 5 H = 1+ 4(n + 1)
(mod 16). .

Note that if x = 0 (mod 4) then xZ =0 (mod 4), if x = | (mod 4) then x2 = 1 (mod 4), if x =2
(mod 4) then x% =4 = 0 (mod 4), and if x =3 (mod 4) then x% =9 = | (mod 4). Hence, x2 =
or 1 (mod 4) whenever x is an integer. It follows that x2 + y2 =0, 1, or 2 (mod 4) whenever x
and y are integers. Therefore, n is not the sum of two squares when # = 3 (mod 4).

By Theorem 4.1, ap® = x? — x = x(x — 1) for some integer a. By the fundamental theorem of
arithmetic, p* is a factor of x(x — 1). Since p cannot divide both x and x — 1, we know that p* | x
or 7 | x — 1. Thus x =0 or x = | {mod 7).

First note that there are m1; possibilities for a;, m, possibilities for a,, and in general m; possibifities
for a;. Thus there are mmy - - - my expressions of the form Ma) + Mya, + - - - + Myay, where
@y, €y, . . ., d run through complete systems of residues modulo my, m, . . . , my, respectively.
Since this is exactly the size of a complete system of residues modulo M, the result will follow if we
can show that each of these expressions is distinct modulo M. Suppose, by way of conteadiction,
that Mla; -+ A‘Izaz + -4+ Mkak = 11/_(1(1; + A’IQ(I; LR + A’Ikﬂ:( (m(}d M), Then A{[lal = Mia'i
(mod my), and therefore a; = a; {(mod m) since (M, m) = 1. Similarly, a; = alf (mod m;). Thus
a{f is in the same congruence class medulo m; as ga;, for all i,
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a.let/n=a+r wherea is an integer, and 0 < r < 1. Wenow consider two cases: when 0 <r <
1 and when § < r < 1. For the first case, T =[/n+3il=aamdsor= T2 = n = —(2ar +r°).
Thus |f] = 2ar + < Za(%) + (%)2 =a+ % Since both T and n are integers, ! is also an
integer. It follows that || <la + ,—1] — q = T. For the second case, when % < r < 1, we find that
T:[ﬁ+%]za+laudt=2a(lﬂr)+(1—r2).Since % <r<lwehave0<l—v7 5%
and 0 < 1 — r% < L It follows that 7 < 2&(%) 4 (1= r%). Because is an integer, we can say that
t<la+(l-rHl=a=<T.

b. By the division algorithm, if we divide x by 7 weget x=al + b, where 0 <b<T.If

@ were negative, then x = al + b < (—DT + & < 0; but we assumed x to be nonnegative.
This shows that 0 < a. Suppose now that @ > T. Then x = a7 + b= (T+ DT = T2 4T =
(Jn— %)2 + (- %) =p-- ‘—11 and, as x and n arc integers, ¥ = . This is a contradiction,
which shows that < T. Similarly, 0 ¢ = Tand0<d<T.

coxy = (aT +b}cT +d) —acT? + (ad + b)T +bd =ac(T* —n) +zT + bd =act + 2T +
bd (mod n)

d. Use part (¢), substifuting eT + f forac.

e, The first half is identical to part {b); the second half follows by substituting g7 + hforz +et
and noting that 72 = 1 (mod n).

f. Certainly ft and gt canbe computed since all three numbers are less than 7', which is less than
Jr+1.So(f +gHis Iess than 2r < w. Similarly, we can conpute j + bd without exceeding
the word size, Using the same arguments, we can compute hT + k without exceeding the word
size.

al bl ot dt e Fermat's little theorem (Section 6.1)

Since f,_g + fu_1 = fy (modm }, if two consecutive numbers recur in the same order, then the
sequence raust be repeating both as n increases and as it decreases. But there are onty m residues
and therefore only m? ordered seguence of two residues. As the sequence is infinite, some two
elements of the sequence must recur by the pigeonhole principle. Thus the sequence of least
positive residues of the Fibonacci numbers repeats. It follows that if m divides some Fibonacci
number, that is, if £, =0 (mod m), ther m divides infinitely many Fibonacci nurmbers. To see that
m does divide some Fibonacci number, note that fo=0.

fet o and b be positive infegers less than m. Then they have G(logm) digits (bits). Therefore by
Theorem 2.4 we can muitiply them using O (log? m) operations. Pivision by m takes O(log2 m)
operations by Theorem 2.7, Thus in all we have O flog? m) operations.

Let N; be the number of coconuts the ith man leaves for the next man, with Ng = N. At each
stage, the ith man finds N; coconuls, gives k coconuts to the monkeys, takes (}/m){(N;—1 — k)
coconuts for himself, and leaves the rest for the next man, This yields the recursive formula
Ny = (Nj_qg—- k- 1)/n. For convenience, Tet w = (n — D/n. I we iterate this formula a few
times, we get Ny = (N — kyw, Ny = (N, —kw = (N — Kyw — kyw = Now? — kw? — kw,
Ny = Now — kw’ - kw? —kw, .. ..The general patiern N; = Now' — kw —kwh—- -
kw = Ngw' — kw(w! — 1)/(w — 1ymaybe proved by induction. When the men rise in the morning
they find N, = Now" - kw(w” — B/ (w — 1) coconuts, and we must have N, = k (mod n), that
is, N, = Now" — kw(w" — B/ (w — 1) =k -+ tn for some integer ¢. Substituting w = (n — L/n
back in for w, solving for Np, and stmplifying yields N = Ny = 2 B — B —kn S k.
For N to be an integer, since (n, 7 — t} = 1, we must have +kyn— 1)? an integer. Since we
seelk the smallest positive value for N, we taket + k=1{n— Dt sor={n— 1" — k. Substituting
this value back into the formula for N yields N = pttl—kn + k.

a Let filx) = Y gax', fold) =20 bixt, gy(0) = 7y epx’, and gy(x) = Y il
wherse the leading coefficients may be zero to keep the Hmits of summation the same for alt
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polynomials. Then a; = ¢; (mod #) and b; = d; (mod n). Therefore, a; + by = ¢+ d; (mod a) for
i=0,1,...,n Because (f| + f)(x) = 27, {a; + by)x’ and (g; + g,)(x) = 32 e +dpxi,
showing the sums of the polynomials are congruent modulo »,

b. The coefficient of x* in (F1fad(x) is aphy +agby_y + - - - + apby, and the corresponding
coefficient in (g;g7)(x) is cody -+ €dy_y + -+ » + cyddg. Because 4; = ¢; (mod 1) and by =4
{mod r) for all i, the two expressions are congruent modulo 1, and so, therefore, are the
polynomials.

The basis step for induction on k is Exercise 42. Assume that f(x} = »(x) {mod p) and
fx)y=(x—ap) -+ (x — a_i(x). Substituting a, for x in this equation makes both sides
0, and none of the factors a; — a; can be congruent to & modulo p, so we must have h(a,) = 0
(mod p). Apply Exercise 42 to h(x) and a, to get h(x) = (x — a;}g(x) {mad p) and substitute
this in the congruence for f(x).

Section 4.2

ax=6(mod7} b.x=2 5 or8(mod% c.x=10(mod40} d.x=720(mod?25)
e.x =111 (mod 999) f.x =75+ 80k (mod 1600), where £ is an integer

. x = 1074 4 3157k (mod 28,927,591)

. 19 hours

. 77 solutions when ¢ is a multiple of 77
413 b7 o3 dl16

a1, 7,11, 13, 17, 19, 23, 29

b. 1, 11, 19, and 29 are their own inverses; 7 and 13 are inverses of each other, as are 23 and 17

. If ax + by = ¢ (mod m), then there exists an integer k such that ax + by — mk = ¢. Because

d={a,b,m)|ax + by — mk, it follows that d | ¢, which shows that there are no solutions
when d [ . So suppose that d | c. Let a = da’, b=db', c = d¢’, and m = dnt’, so that
(a’,b',m’y = 1. When we divide both sides of the original congruence by 4, we obtain

a'x + b’y =c (mod m’), or @’ =¢' — by (mod m’). This congruence has solutions if and
only if g = (a’,m’) | ¢ — by, or equivalently, if and only if b’y = ¢’ (mod £) has solutions,
Because (&', b, m’) =1, and (a’, m’) = g, it follows that (%', g) = 1. This means that the
last congruence has only one incongruent solution y; modulo g. But the m'/g solutions,

Yo- Yo+ & Yo+ 28, ..., ¥+ (m'/g + Dg are incongruent modulo #’. Each of these yields g
incongruent values of x in the congruence a’x = ¢’ — b’y (mod m’). Therefore, there are g (m’/g) =
m' incongruent solutions of a’x = ¢’ — b'y (mod m’). Now let (x,, y;) be one solution of the original
congruence. Then the d values xp, x; +m',x +2m', . .., x; + {(d — Lym’ are congruent maodulo
m’ but incongruent modulo m. Likewise, the d values yy, y; +m’, y, + 2m’, ..., y, + (d — D’
are congruent modulo 1’ but ircongruent modulo m. Se for each solution of a'x = ¢’ — b’y
{mod #t"), there are 42 solutions of the original congruence. This means that there are d%m’ = dm
solutions to the original congruence,

Suppose that x? == 1 (mod p*), where p is an odd prime and & is a positive integer, Then
x%— 1= (x4 Dx ~ ) =0 (mod %), Hence 5| (v + B(x — 1). Since x+Dh—-(x—-DH=2
and p is an odd prime, p divides at most one of x — 1 and x + 1. Tt follows that either PFlx+1
or p¥ | x — 1, s0 p = +1 (mod P,

To find the inverse of @ modulo m, we must solve the diophantine equation ax + my = I, which
can be done using the Euclidean algorithm. Using Corolary 3.13.1 we can find the greatest
common divisor in O (log® m) bit operations. The back substitution to find x and v will take
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no more than O (log m) multiplications, each taking O(log2 m) operations. Therefore, the total
rumber of operations is O(log® m) + O(log m)O(}ogz m) = 0og? m).

Section 4.3
x = 1{mod 6)
32 + 60k

. x = 1523 (mod 2310}

204
1023
2101

We can construct a sequence of k consecutive integers each divisible by = square as follows. Con-
sider the system of congruences x =0 (mod pf), x =-—1{mod p%), x=-—2 (mod p%), .
—k -+ 1 {mod p%), where py is the kth prime. By the Chinese remainder theorem there is a solu-
tion to this simultaneous system of congruences since the moduli are relatively prime. It follows
that there is a positive integer N that satisfies each of these congruences. Each of the k integers
N,N +1,..., N +k — 1is divisible by a square since p?dividesN +j—lforj=12,....k

Suppose that x is a solution to the system of congruences. Then, x == a; (mod m,), so
that x = a, + km, for some integer k. Substituting this into the second congruence gives
ay + kmy = ay (mod my) or kmy = {ay — @) (mod r5), which has a solution in k if and only if

(my, my) | (ay, az). Now assume such a solution kp exists, Then all incongruent solutions are given

by k = kg + mat / (21, t2), Where ! is an integer. Then x =a(+kmy=a;+ (ko -+ (n—f:%’—)) mp=

ay+ kg + gzt Note that m g/ (my, i) = {in, my), so that if we set x; = ay -+ ko, We
have x = xq + [y, mylt = xy (mod [my, #,]), and so the sotution is unique modulo fury, ml

a. ¥ =430 42100F b.ox =9102 4 10,010;

The basis step » = 2 is given by Exercise 5. Suppose that the system of the first k congruences
has & unigue solution A module M =[n,. .. ,my] and (m,-,m]—) fa; —a; forl<i<j<k
Consider the system x = A (mod M), x = a,;; (mod m, 1), First suppose that it has a solution
B modulo [[my, 1, . . . ), Mgy ). Then by Bxercise 15, (g, ma, . . mlimes) | B — @y
Since m; | [my, mg, . .. ;g for 1 <7 <k, we have (m;, my ) | B — gy That s, there
exists an integer n; such that (my, ey = B — apn. If we reduce this equation modulo
m;, for 1<i <k, then (O, g W = Ryt =0 — g} (mod m;). If we reduce modulo mig .
then (m;, O)ng.= myn; =0 (mod myyy). In either case, we have that (n;,m;) | a; — a; for
1<i < j<k-+ 1 Conversely, suppose that (me;, m ) fa;—a for 1<i<j<k+4 L Then
as we have just shown, (g, my, . .., mlomg) [ A — Gy Therefore by Exercise 15 there is a
unique solution B to the first £ 4+ 1 congruences. This completes the induction step.

2101

73800 grams

0000, 0001, 0625, 9376

none

every 85008 quarter-days, starting at 0

If the set of distinct corgruences cover the integers modulo the Ieast cormumon multiple of the
moduli, then that set will cover all integers. Examine the integers modulo 210, the Lem. of the
moduli in this set of congruences. The first four congruences take care of all numbers containing
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a prime divisor of 2, 3, 5, or 7. The remaining numbers can be examined one at a time, and each
can be seen to satisfy one (or more) of the congruences,

most likely 318 inches

x = 225a; + 1000a, + 576a; + 1800k, where k is an integer and a1 i3 3 01 7, 45 is 2 or 7, and as
is 14 or 18

Section 4.4
l.a.lorZ(mod7) b.8or37(moed49) c. 106 or 233 (imod 343)
3. 785 or 1615 (mod 2401)
5. 184, 373, 562, 751, 940, 1129, or 1318 (mod 1323)
7. 279 or 3404 (mod 4375)
9. two
11. Since (@, p) = 1, we know that @ has an inverse » modulo p.Let fix)=agx — 1. Thenx =5
(mod p) is the unique solution to f{x) =0 (mod p). Since F(x) = a #£0 (mod p), we know
that r = b lifts uniquely to solutions modulo p* for all natural numbers k. By Corollary 4.14.1,
p=ry_1— f(rk__[)f’(b) =rp_1— (ark,i haet l)ﬁ':rkul - ((U‘k_l — l)b = rk_;(l - Hb) + b. This
gives a recursive formula for lifting & to a solution modulo p* for every k.
13, There are 1,3, 3, 9, and 18 solutions forn = 1,2, 3,4, and n > 5, respectively.
Section 4.5
1. a.x=2{(mod 5) and y = 2 (mod 5)
b. no soluetions
¢.x =3(mod 5) and y = 0 (mod 5); x =4 (mod 5) and y=Il(mod5);x =0(mod3)and y =2
{mod 5); x = 1{mod 5) and y = 3 (mod 5); x =2 (mod 5) and ¥ =4 (mod 5)
30,1 p,or p?

5. ‘The basis step, where & = 1, is clear by assumption. For the inductive hypothesis assume that

11.
13.

15.

4 4 3 2 0 6
.a. 14 3 4 b.j2 1 4 c.
3 4 4 340

A =1 (mod m) and A* = B* (mod m). Then using Theorem 4.10 we have Ak 1 — A . Ak =
A .B*=B.B" =B (mod m).

. false; takemm =8and A = [3 0}

0 1

ot th o n
o
Wholh Beota
th th th B

a3 b5 o5 dl

In Gaussian climination, the chief operation is to subtract a mulkiiple of one equation or row from
another, in order to put a O in a desirable place. Given that an entry a must be changed to 0
by subtracting a multiple of b, we proceed as follows: Let & be the inverse of b (mod k). Then
a — (ab)b = 0 (mod k), and elimination proceeds as for real numbers. If b doesn’t exist, and one
cannot swap rows to get an invertible b, then the system is underdetermined.

Consider summing the ith row. Let k = xn + y, where 0 < y < . Then x and ¥ must satisfy the
diophantine equation { = a + ¢y + ex (mod n), if & is in the i/th row. Then ¥ — cf and ¥+ et
is also a solution for every integer 1. By Exercise 14 there must be n positive solutions, which
yield  numbers k between 0 and n2. Let s, 5 + 1,...,5 + 1 — 1 be the values of ¢ that give these
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solutions. Then the sum of the ith row is Ef;é(n(x —els+rN+ytels+rH=nt D,
which is independent of i.

Section 4.6

I 2.7-19 129.41 ¢.41-47 d.47-173 e 131-277 £.29-1663

W oM W

19.

21.
23.
25,

-REES B BT

11.

13,

, Numbers generated by linear functions where a > 1 will not be random in the sense that

Xpp — Xp=aXg, + b — (ax, o+ by =ale 1 — x,_y) is a multiple of @ for ali 5. Ha = 1
then x,, — X; = Xy -+ sb. In this case, if xy # 0, then we will not notice if a factor of b that is not
a factor of xq is a divisor of .

Section 5.1

La.28=25% B2t=16 ¢299=1024 d.2'=2

, a.by3butnotby9 b.byboth3and9 ¢ byboth3 and9 . by neither 3 nor 9
a2l=2 h20=1 e26=64 d.2°=1

.a.noc b.no cyes doyes

. & byneither 3nor5 b.byboth3and5 c.by neither 3nor 5 d.by Sbutnotby 3

, if and only if the number of digits is a multiple of 3 (respectively, 9)
13.
15.
17.

if and only if the number of digits is a multiple of 6 in each case
if and only if the number of digits is a multiple of &, where d | b—1

A palindromic integer with 2k digits has the form (aga_y. .. iy - - ap)qo. Using the test for
divisibility by 11 developed in this section, we find that ay — agy+--- gy FataF---
—ap =0, and 50 (apag_y . .. Gy - - - Q1o 18 divisible by 11.

an integer azag_; . . . @ydp is divisible by 37 if and only if agaya; + aydsas + agagag + - - - 18
37 ) 443,692; 371 11,092,785

a.no b.bySbutnotby2 ¢ byneither Snor13 d.yes
6
no
Section 5.2
. answer is person-dependent
. once
L W=k +[2.6m —02]—2C + ¥ + [Y/4] + [C/4] — [N/4000] (mod 7)
. answer is person-dependent
., 2500
If the 13th falls on the same day of the week on two consecutive months, then the number of

days in the first month is congrueat to 0 modulo 7, and the only such month is February during a
nonleap year, If February 13th is a Friday, then January 1st is a Thursday.

Let W = 5 and & = 13 in the formula for the day of the week to obtain 5= 134+ [2.6m —0.2] —
2C + Y + [¥ /4] + [C /4] (mod 7). This implies that [2.6m—02]=6+2C-—Y —[Y/4} - [C/4]
{mad 7). For every pair of vatues of C and Y, there is anm satisfying this congmence because
[2.6m — 0.2] takes on all possible remainders modulo 7 as the month varies from March to
December and m takes on the vatues from 0 to 10. ’
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Months with 31 days are March, May, July, August, October, December, and January (considered
to be in the previous year); the corresponding values of m are 1,3, 5, 6, 8, 10, and 11, respectively.
Given ¥ and C, let k = 31 to obtain W =31+ {2.6m — 0.2] - 2C + Y + [Y/4) + [C/4] =
3+ [26m—02]-2C+Y + [Y/4]+1C/4] (mod 7). To determine the days of the week the 31st
falls on, first let m equal 1, 3, 5, 6, 8, 10, and reduce modulo 7. Finally, decrease the year by one
and find the new values of ¥ and C, and let m = 11 and reduce modulo 7, The values of W we
find tell us the days of the week on which the 31st falls.

Section 5.3

. & Teams 1 and j are paired in round & if and only if § 4+ j = k (mod 7), with team { drawing

a bye if 2i =k (mod 7). Round 1: 1-7, 2-6, 3-5, 4-bye; round 2: 2-7, 3-6, 4-5, 1-bye; round 3:
1-2,3-7, 4-6, 5-bye; round 4: 1-3, 4-7, 5-6, 2-bye; round 5: 1-4, 2-3, 5-7, 6-bye; round 6: 1-5, 2-4,
6-7, 3-bye; round 7: 1-6, 2-5, 3-4, 7-bye.

b. Teams { and j are paired in round & if and only if i + j =k (mod 7), {, j # 8; team ¢ plays
team 8 if 2 = k (mod 7).

¢. Teams { and j are paired in round & if and only if { + j = k (mod 9), with team i drawing a bye
if 2{ =k (mod 9).

d. Teams { and j are paired in round k if and only i § + j = k (mod 9), i, j # 10; team i plays
team 10 if 2 = k (mad 9).

a, home teams in round 1: 4 and 5; round 2: 2 and 3; round 3: 1 and 5; round 4: 3 and 4; round 5:
land 2

b. home teams in round 1: §, 6, and 7; round 2: 2, 3, and 4: round 3: 1, 6, and 7; round 4: 3, 4, and
5;round 5: 1, 2, and 7; round 6: 4, 5, and 6; round 7: 1, 2, and 3

¢. home teams in round 1: 6, 7, 8, and 9; round 2: 2, 3, 4, and 5; round 3: 1, 7, 8, and 9; round 4:
3,4,5,and 6; round 5: 1, 2, 8, and 9; round 6: 4, 5, 6, and 7; round 7: 1, 2, 3, and 9; round §: 5, 6,
7,and 8, round 9: 1, 2, 3, and 4

Section 5.4

Let k be the six-digit number on the license plate of a car. We can assign this car the space
numbered & (k) = k mod 101. When a car is assigned the same space as another car we can assign
it to the space (h(k} -+ g(k)) mod 101, where g(k) = (£ mod 99) -+ 1. When this space is occupied
we next try (h(k) + 2g(k)) meod 101, then (/(k) -+ 3g(k)) mod 101, and so on. All spaces are
examined since (g(k), 101} = L.

a. It is clear that i memory locations will be probed as j =0, 1,2,...,m — I To see that they
are all distinct, and hence that every memory location is probed, assume that &;(K) = h KD
(mod m). Then h(K) +ig = h(K) + jq {mod m). From this it follows that ig = jg (meod m1),
and, as (g, m) = 1, we have | = j {(mod m) by Corollary 4.4.1. Therefore i = j since 7 and j are
both less than m.

b, It is clear that m memory locations will be probed as j =0,1,2,...,m — 1. To see that they
are all distinct, and hence that every memeory location is probed, assume that h(Ky=h J(K)
{mod m). Then 2 (K} + iq = (K} + jq (mod ). From this it follows that ig = jg (mod m),
and, as (g, m) = 1, we have i = j (mod m) by Corollary 4.4.1. Therefore i = j since { and J are
both less than m.

. 558, 1002, 2174, 4035

Section 5.5
a0 b0 el d.1 e0 {1
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3 a0 bl c0O
5. a7 bl c4

7. Transposition means that adjacent digits are in the wrong order. Suppose, first, that the first two

digits, x; and x;, or, equivalently, the fourth and fifth digits, are exchanged, and the error is
not detected. Then x7 = 7x; + 3% + X3 + Txg + 3xs + X = Txo -+ 3xp + a3+ Txg -+ 3x5 + X6
(mod 10). Tt follows that Tx) 4 3xp = Txp + 3x; (mod 10) or 4x; =4x;y (mod 10), By Corollary
4.4.1, x, = X, (mod 5). This is equivalent to |x) — x} =3, as x and x, are distinet single digits.
Similarly, if the second and third (or fifth and sixth) digits are transposed, then 2 == 2x; (mod 10),
which again reduces to x = xy (mod 5) by Corollary 4.4.1. Also, if the third and fourth digits
are transposed, then 6x3 = 6x4 (mod 10) and x3 = x, (mod 5), similarly as before. The reverse
argument will complete the proof.

9. a0 b3 ecd4 dX
11. a.valid  b.not valid e valid d.valid e not valid
13. 0-07-289905-0
15. a.no b.yes cyes d.no
17, It can.
19. a.yes b.no
21. a.94
b. If x; is misentered as ¥;, then if the congruence defining xo holds, we see that ax; = ayy
{mad 11) by setting the two definitions of x1g congruent. From this, it follows from Corollary
4.4.1 that x; = y; (mod 11}, and so x; = y;. If the last digit, xy1, is misentered as yy;, then the
congruence defining x;; wilk hold if and only if xy = yii.
¢. Suppose that x; is misentered as y; and x; is misentered as y;, withi < j < 10. Suppose that both
of the congruences defining x1g and x{; hold. Then by setting the two versions of each congruence
congruent to each other we obtain ax; + bx; =ay; + by; (mod 11) and cx; +dx; =cy; + dy;
(mod 11), wherea #bandc #d. Ifad — be # 0 (mod 11), then the coefficient matrix is invertible
and we can multiply both sides of this system of congruences by the inverse to obtain x; = y; and
x; =y, Indeed, after (tediously) checking each possible choice of a, b, ¢, and d, we find that all
the matrices are invertible modulo 11
23, a1l bl et
25. Errors involving a difference of 7 cannot be detected: O for 7, 1 for 8, 2 for 9, or vice versa. All
others can be detected.
27.a.1 bX 2 4.8
29, Yes. Assume not and compare the expressions modulo 11, to get 2 congruence of the form
ad; +-bd;=ad; + bd; (mod 11), which reduces to (@ — Byd; = (a — b)d; (mod 11). Because
0 <a— b < 11and 11 is prime, it follows that d; = d; (mod 11). Because these are digits between
0 and X, they must be equal.
Section 6.1
1. Wehave 101 £ 1 =12 . 6)3-H)(5- N7 - H10+1=1.12-12-45-56. i0+1=1-1-1-1-
1. (=1} + 1 =0 (mod 11). Therefore, 1[ divides 10t + 1.
3.9
56
7. 436
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2
6 ;

(=214 =1 =1(nod 113
ax=9(mod 17) b.x =17 (med 19)

Suppose that p is an odd prime. Then Wilson's theorem tells us that (p — 1)1 = ~1 (mod p). Since
P-M=(p-DHp-Dp—-D=p-I-D(-=2.(p — ! (mod p), this implies that
2-(p—3)=—1(mod p).

Since (@,35) = 1, we have (a0, T} = {(a,5) = 1, so we may apply Fermat’s little theorem to get
al? —1=(@%? - 1=12-1=0(mod 7),and a'? — 1= (a3 — 1= 13— 1 =0 (mod 5). Both 5
and 7 divide a2 — 1, so 35 must also divide it

When 7 is even, so is n”, and when 2 is odd, so is #”. It follows that i’ = n (mod 2). Similarly,
since #°% = n (mod 3, itfollows thatn’ =32 . n=n? -n=nt=n {mod 3). We also know by
Fermat’s little theorem that n” = n (mod 7). Since 42 = 2. 3 7, it follows that n” = n (mod 42),

By Fermat’s little theorem, Zf::_ll kPl f;ll l=p—1=-1(modp).

By Fermat’s little theorem, a = a” = b# = b (mod p); hence b = a + kp for some integer k. Then
by the binomial theorem, b = (a + kp)? = a? + ({}aP~kp + p*N, where N is some integer.
Then b? = a? + p?aP~ %k + p?N =a” (mod p?).

641 (atk =8)

Suppose that p is prime. Then by Fermat's little theorem, a? = a (mod p) for every integer a.
Also, by Wilson’s theorem, (p — [)!= —1 (med p), so alp — ) = —a (med 2). It follows that
af + (p— NMa=a+ (—a) =0 (mod p). Consequently, p | a? + (p — Dla.

Stce p—li=~L p—-2=-2, ..., (p+ /2= —(p — 1)/2 (mod p), we have
(p—1/2P=—(p—D!=1(mod ). (Because p =3 (mod 4) the minus signs work out,) If
x?=1(mod p), then p | x? — L= (x — 1)(x + 1), 50 x = =1 (mod p).

Suppose that p=1(mod4). Let y =((p — 1)/2). Then y? =((p — )/l =

(p—~ D/DH=DP 2= (1.2 3 (p— D/2({~(p ~ D/D) --- (=3} - (=2) - (=1))
=1-2-3 - (p=-D/2-(p+1/2--(p=3)p ~2)p — )=(p — M= —1(mod p), where
we have used Wilson’s theorem. Now suppose that x% = —1I {mad p). Then 2% = y* (mod p).
Hence (x2 — y%y = (x — y)(x + y)=0(mod p). It follows that p |x —yor p[x + ¥, 80 x
=ty (mod p).

If n is composite and r # 4, then Exercise 16 shows that (n — 1)/ is an integer, so

[ = DI+ D/n—[n — DYnfl=[n - DiYn+1/n—(@—-DlYnl=[/n]l=0.Ifn=4,
then the same expression is also equal to (). But if » is prime, then by Wilson's theorem, (n — D)1=
Kn —1 for some integer K. So [((n — DI+ D/n — [{n — DYnll=WKn — 1+ )/n —
[(Kn—D/n]l=[K — (K — I})] = 1. Therefore, the sum increases by 1 exactly when » is prime,
s0 it equals w{n).

Suppose that # and » + 2 are twin primes, Then by Wilson’s theorem, (n — 1)! = —1 (mod ).
Hence, 4{(n — DI+ D +n=4.0+n=0(modn). Also, since n +2 is prime it follows from
Wilson's theorem that (n + D)!=—1(modn +2),s0 (n + Hn - (1 — D= (—D{—D(n ~— D! =
2n—-Y=—t(medn+2). Hence 4((n ~ D'+ D+n=22 -t~ DY +44+n=2-(—-D +
4+n=n+2=0(modn +2). Since {n,n + 2) = 1 it follows that 4((n — DI+ D +n=0
(mod n(r + 2)).

Note that 1-2.-- (p—D=(p+ D(p+2)---(2Zp — 1) (mod p). Each factor is rela-
tively prime to p, so l=(p+ D(p+2)-- - 2p— D/(1-2--- (p — 1)) (mod p). Thus 2=
(P+U(p+2)-- @p—1D2p/(1-2--(p - Dp) = () (mod p).
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We first note that 17 = 1 (mod p). Now suppose that aP = a (mod p). Then by Exercise 40
we see that (2 + DF = aP + 1 (mod p). But by the inductive hypothesis af =a (mod p), so
aP + 1=a+ 1 (mod p). Hence, (a + 1)? =a + 1 (mod p).

a. If ¢ < 26, then ¢ extra cards are put into the deck above the card, so it ends up in
the {2c)th position; 2¢ < 52, s0 b ="2c. If ¢ > 26, then ¢ — 26 — 1 extra cards are put
into the deck above the card, but 76 cards are taken away above it, s0 it ends up in the
b={c—26—1+ec—26)=(2c— 53)h place. Then b =2¢ — 53 = 2¢ (mod 53).

b.52

There are two cases, Assume first thata; = 0 (mod p)and b; = 0 (mod p), where k£ j. Then two
of the products a;b; = 0 (mod p), and this would contradict Wilson’s theorem if the a;b; formed
a complete system, since the product of all but onc of therm must be —1 (mod p), not 0. For
the second case, assume without loss of generality thata, = b, = 0 (mmod p). Then by Wilson’s
theorem, @y -+ Gyt = biby - =< bp1=—1 (mod p). Then ab ++ - @ptbp 1= (= DE=1
(mod p). If the set were a complete system, the last product would have been = —1{mod p).

The basis step for induction is Wilson's theorem. Assume (p — 1) 1P = —1 (mod pk). Then
(p— 1)1Pk ={p—1 !Pk_‘)P = (—1-|—mp")f’ =-1+ (-‘;’)mpk 4 - mpFyP = —1 (mod pk'H),
where we have used the fact that p | (f) for j £ 0or p.

If 1 is prime, then n divides the binomial coefficient (1), r = 1 2,...,n — 1. Tt follows that {x -- a)”
and x* — g" are congruent modulo n as polynomials because the coefficient of x7 in (x —a}"’ is
congruent to 0 modulo n forr=12,...,0 — 1.By Fermat's little theorem, it follows that a'=a
{mod n), so that {x — a)" and x" — a are congruent modulo n as polynomials. Now suppose that
1 is a composite integer with n > 1. We know that r: has a prime divisor g. Suppose that g* is the
greatest power of g dividing n. A short argument shows that g% f (g) =nn-1---(n—q+D/g!
and (g%, a""2) = |, Tt follows that the coefficient of x7 in (x — a)" is not congruent to 0 module
p, but the coefficient of x" — a is 0. It follows that {x — a)" and x" — a are not congruent as
polynomials modulo 2.

Section 6.2
390 = | (mod 91), but 91 =7 - 13

. Either computation by hand or a computational program shows that 2161938 =2 (mod 161038).
Lo =-at=—@h=—a= (n - &) (mod n)

. Raise the congruence 22"; =; —1 (mod Fy,) to the (22" ~™th power, to obtain

22" =+ 1 (mod 2%"; +; 1), which says that 9Fa=1= { (mod F).

. Suppose that 2 is & pseudoprime to the bases a and b, Then " = b (mod n) and a" =4 (mod n).

Tt follows that (ab)* = a"b" = ab {mod r). Hence, nis a pseudoprime to the base ab.

a. If u is a pseudoprime to the base ab, then (aby*~l=1(modn),so 1= aprl=1
{maod 1), which implies that » is a psendoprime to the base b, a contradiction.

b.Letay, a;. . . ., a, be the bases to which # is a pseudoprime and for which {a;, n) = 1 for each
i. Then by part (2} we know that, for each i, n is not a pseudoprime to the base ba;. Thus we have
7 different elements refatively prime to r. Then by the definition of ¢ (r), we have r < ¢(n)/2.

A computation shows that 21387 = 2 (mod 1387), s0 1387 is a pseudoprime. But 1387 — 1=2- 693
and 2693 = 512 (mod 1387), which is all that must be checked, since 5 = 1. Thus 1387 fails Miller’s
test and hence is not a strong pseudoprime.
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Note that 25,326,001 — 1= 2% . 1,582,875 = 25. With this value of t, we see with the help
of computational software that 2! = —1(mod 25,326,001), 3' = —1 (mod 25,326,001), and
5 = 1 (mod 25,326,001).

Suppose that ¢ = 7 - 23 - ¢, with ¢ an odd prime, is a Carmichael number, Then by Theorem 6.7 we
musthave 7~ 1| c— 1, s0c="7-23- g = 1 (mod 6). Solving this yields ¢ = 5 (nod 6). Simiarly,
23~ 1]e—~1,507-23-g=1(mod 22). Solving this yields g = 19 (mod 22). If we apply the
Chinese remainder theorem to these two congruences, we obtain g = 41 (mod 66), that is, g =
41+ 66k for some k. Then we musthave g — 1| c — 1, whichis 40 3 66k | 7-23- (41 4 66&) — 1.
So there is an integer m such that m (40 -+ 66k) = 6600 + 10626k = 160 + 6440 + 10626k =
160 + 161(40 + 66%). Therefore, 160 must be a multiple of 40 - 66k, which happens enly when
k = 0. Therefore, ¢ = 41 is the only such prime.

We have 32,111,197,185 — 1= 321,197,184 = 4 - 80,299,296 = 18 - 17,844,288 ==
22-14,599,872 =28 11,471,328 =36 8,922,144 = 136 - 2,361,744, 50 p — 1| 321,197,185 — 1
for every prime p that divides 321,197,185, Therefore, by Theorem 5.7, 321,197,185 is a
Carmichael number.

We can assume that & < . Then  has fewer than log, n bits. Also, t < i, so ¢ has fewer than log, n
bits. It takes at most log, » multiplications to calculate 52, so it takes O{log, n) multiplications to

caleulate B2 = b*. Bach multiplication is of two (log, n)-bit numbers and so takes O ((log, #)%)
operations. In all, we have O((log, m3 operations.

Section 6.3

.a (1,5} b.{1,2,4,578 «¢(1,379 d{13591113

e {1,3,5,7,9,11,13,15} 1.{1,2,3,4,5,6,7,8,9,10, 11,12, 13, 14, 15, 16}

+ If (@, m) = 1, then (—a, m) = I, 50 —c; must appear among the c;. Also ¢ # —c¢; (mod m), else

2¢; = 0 (mod m) and so {¢;, m) # 1. Hence, the elements in the sum can be paired so that each
pair sums to 0 {mod m}, and thus the entire sum is 0 {mod m).

i

. 11

. Since a? = 1 (mod 8) whenever ¢ is odd, g!2 = {a>)% = 1 (mod 8) whenever (a, 32,7600 = 1.

Euler’s theorem tells us that a®® = a® = 1 (mod 9) whenever (a,9) =1, so a2 = (@52 =1
(mod 9) whenever (a, 32,760) = 1. Furthermore, Fermat’s little theorem tells us that a* =
{mod 5y whenever (a, 5) = 1, 4% = I (mod 7) whenever (¢, 7) = 1, and a2 = 1 (mod 13) whenever
fa, 13) = LItfollowsthata!? = (@*)* = [ (mod 5), a2 = (a5)2 = | (mod 7y, and &' = 1 (mod 13)
whenever (a4, 32,760) = 1. Since 32,760 =2%.3%. 5. 7. 13 and the moduli 8, 9, 5, 7, and 13 are
pairwise relatively prime, we see that a'2 = 1 (mod 32,760).

a.x=9%(mod 14) b.x=13(mod 15) e¢.x=7(mod16)

a.x=37(mod 187) b.x=23(med 30} c.x=6(mod210) d.x=150,999 (mod 554,268)
i

¢(13) =12, ¢(14) =6, ¢(15) =8, ¢(16) =8, p(17) = 16, ${18) =6, ¢(19) = 18, ¢ (20) =8

If (a.5) =1 and (@, b — ) =1, then a | (5**@ _ 1y/(h — 1), which is a base b repunit.
If (a,b—1)=d=>1 then d divides every repunit of length k(b -~ 1) and
(ajd) | (b*@/9 1)/ (b — 1), and these sets intersect infinitely often,
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Section 7.1
1. a. f is completely multiplicative since for all positive integers m and », fmm)=0=0-0=
fm)- fn).
b. f is not completely multiplicative since f(6) =2, but Ff@-f3=2-2= 4.
¢. f is not completely multiplicative since f(6) =3, but £(2)- f(3) = 2.3=3.
d. f is not completely maltiplicative since f(4) = log(4) > 1, but
F(2)- f2) =Tlog(2) -log(2) < L.
e. f is completely multiplicative since for every positive integer m and 2, f(mn) = (mn)? =
min? = f(m) - f(n).
f. f is not completely multiplicative since f(4) =4l= 24, but f(2) - f(2)=212= 4.
g. f is not completely multiplicative since f(6) =7, but f @ fB=3-4=12
h. f is not completely multiplicative since f(4) = 4% — 256, but f(2) - f(2) =222% =16.
i, f is completely multiplicative since for every positive integer m and n, f (rmn) = J/mn =
Jmfi = f(m) - £,
3. We have the following prime factorizations of 5186, 5187, and 5188: 5186 = 22593,
5187 =13-7-13. 19, and 5188 = 221297. Hence, H(5186) = ¢ ()9 (2593) =1-2592 = 2592,
P (5187 = (RPN (1DP(19) =2 6-12 .18 =12592, and $(5188) = H(2Hp (1297 =
3. 1296 = 2592. It follows that ¢(5186) = ¢(5187) = #(5188).
5. 7,9, 14,18
7. 35,39, 45, 52, 56, 70,72, 78, 84, 90
9. The nth term of this sequence is ¢(2n).
11. multiples of 3
13. powers of 2 greater than 1
15. If 1 is odd, then (2,7) = 1 and ¢{(2n) = (DPin) = 1-p(n) = (). If » is even, say n = 2%t
with £ odd, then ¢ (2n) = @) = ¢ () =2'¢(N = 22"l ()) = 2(p (2N (1)) =
2P (2°1)y =2 ().
17. n=2%pp; - -+ p,, Where cach p; is a distinct Fermat prime
19, Letn = pf‘ «+» pir be the prime-power factorization for n. If n = 2¢(n), then p?‘ s plr=

21.

23.

25.

2114 pf;"fl(pj — 1), This implies that py - - - p, =2} (py — - Wany p; is an odd prime,
then the factor (p; — 1) is even and must divide the product on the left-hand side. But there can
be at most one factor of 2 on the left-hand side and it is accounted for by the factor of 2 in front
of the product on the right-hand side. Therefore, no odd primes appear in the product, That is,
n = 24 for some j.

Since {m,n) = p, p divides one of the terms, s;ay n, exactly once, so n = kp with {mk)=1=
(n, k). Then ¢ () = ¢ (kp} = ke (p) =¢E)p — D and ¢ (mp) = pd(m) by the formula in
Example 7.7. Consequently, $(mn) = ¢p(mkp) =9 (mp)g (k) = (p(m))(¢ )/ (p— D).

Let pp. . - - » Py be those primes dividing a but not b. Let g5, . . . , g be those primes dividing b bat
nota.letry,...,r, bethose primes dividing a andb. Let P =[]0 —({/p)), Q= TT(L— (1/g),
and R = [](1 — (1/r;)). Then ¢ (ab) = abPOR=aPREQR/R=¢(a)9 (b)/R.But¢{(a, b)) =
(a,B)R, 50 R = ¢ ((a, b))/ (a, b) and we have ¢ (ab) = d(@)p(b)/R = (a, D) (@) (b) /o ({a, b)),
as desired. The final conclusion now follows immediately from the obvious fact that ¢ ({e, 8)) <
(a, b)) when (a,b) > 1.

Assume that there are only finitely many primes, 2,3,.. ., p. LetN=2.3-5--.p.Therngp(N) =1
since there is exactly one positive integer less than N that is relatively prime to N, namely 1, because
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every prime is a facior of N. However, ¢ (V) =023 (5)---p(M=1-2-4.. . (p— D=1
This contradiction shows that there must be infinitely many primes.

From the formula for the ¢ function, we see that if p | n, then P — 1{@@m). Since ¢(n) is finite,
there are only finitely many possibilities for prime divisors of 7. Further, if p is prime and p* | n,
then p®~L| ¢ (n). Hence, a < iogp ¢ (r) + 1. Therefore, each of the finitely many primes that might
divide » may appear to only finitely many exponents. This gives only finitely many possibilities
for i,

As suggested, we take ¥ = 2 - 3%+ with j > 1 and suppose that ¢ (1) = k. From the formula for
¢(n) we see that ¢(n) has a factor of p — 1, which is even, for every odd prime that divides n.
Since there is only one factor of 2 in k, there is at most one odd prime divisor of n, Further,
since 2 || k and n > 4, we know that 4 } n, Since k is not & power of 2, we know that an
odd prime p must divide x. So » is of the form p® or 2p®. Recall that ¢ (p%) = ¢ (2p%).

It remains to discover the values of p and a. If @ = 1, then ¢(p?) = p—1=2.30+]
But then p=2-35+1 4 1= 6. 3%/ 4 L= (~1)(1)/ + 1 =0 (mod 7). Hence, p =7. But
¢(7)=6=2.3% " implies that j = 0, contrary to hypothesis, so this is not a solution. Therefore,
a > 1 and we have ¢(p®) = (p — Dp®1 =2. 3/+L from which we conclude that p =3 and
a = 6f + 2. Therefore, the only solutions are n = 36742 and 5 = 2 . 36742

Ifn=p"m,where p } m,then(p™m) = (p" — P hem)| p'n — 1 hence, p| lorr =1, Sonis

square-free. Ifn = pg, then ¢ (pg) = (p ~ D{g — 1) | pg ~ L Then p— 1| (pg — ) — (p — g =
q — L. Similarly, g — 1| p — 1, a contradiction.

Let n == p{"pj? .. pi¥. Let F; be the property that an integer is divisible by p;. Let §

be the set {1,2,...,n — 1}. To compute ¢(n) we need to count the elements of S with
none of the properlies Py, Py, ..., P, Let w(Py, Py, P, ) be the number of elements
of § with all of properties P;, P s By Then n(Py, ..., P, } =n/(pypi, - p; ). By
the principle of inclusion—exclusion, we have ¢(n) =n — (n/ prtnfpytecotufpy+
(n/(p1p2) +1f(p1p3) + - -+ 1/ (Pr1p)) = -+ (=D nf(py- - pY=n(l - 2w VPt
ijlpi:liu Y (pi,pi,) — Zp[lplzpilpr V(pipiypi) + -+ (=D* - n/(p; - - - p)). On the other
hand, notice that each term in the expansion of (I — py(d—1/py) -« - (1 — 1/p,) is obtained
by choosing either | or —1/p; from each factor and multiplying the choices together. This gives
each term the form (—1)™ [P pey - p;, ). Note that each term can occur in only one way.
Thus n(t = 1/p)(t = 1/py) -+ (1 = Y/ pp) =n(1 - 2o Voi+ Xpilp,.zp, Vipypi)—- +
(=DFn/(py -+ p)) = (n).

Note that [ < ¢(m) <m — 1 for m = 1. Hence, if n > 2, then n > >y > .- > 1, where
ny=¢{n) and n; =¢{m;_¢) for i > 1. Since n;, i =1,2,3,...,is a decreasing sequence of
positive integers, there must be a positive integer r such that n, = 1.

Note that the definition of f % g can also be expressed as (f = gYmy =73, fladg(h). Then
the fact that f % g = g » f is evident.

a. If either m > 1 or n > 1, then mn > 1 and one of ((m) or t(r) is equal to 0. Then
tnn) =0={m)i(n). Otherwise,m =n = landwehave(mn) =1=1. 1= t(m)e(n). Therefore,
¢(n) is multiplicative,

b. 0% f¥n}= Edlﬂ ) fln/d) =11} f(n/1) = f(n) since 1(d) =0 except when 4 =

L (f =) = (% fin) = f (1) by Exercise 37

Leth = f g and let (m,n) = 1. Then h(mmn) = Zcﬂmu fld)g(mn/d). Since (m,n) = 1, each
divisor d of mn can be expressed in exactly one way as d = ab, where a | m and b | n. Then (a, b) =
Land m/a, n/b) = 1. Thus there is a one-to-one comrespondence between the divisors d of mn
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and the pairs of products ab, wherea |mand & | n. Then k() = Zalm. bln Flabyg(mn/ (ab)) =
Faimpp F@f B gmja)gn/by= Y g Fla@)glm/a)- S FD)8(D) = h(m)h(n).

a—-1 b—1 ei &1 e—l f.—-1 gl

let f(m)= de A(d). Then by Theorem 7.8, fis multiplicative. Now fipHy=rL+ Mpy+
M) 4o b APy =1+ 1 (=D =0if ¢ s odd and =1 if t is even. Then
ey ps - Py = T1 FipiH =0if any g; is odd (n is not a square) and = 1if all 4; are even
(r: is a square).

If f and g are completely multiplicative and m and r are positive integers, then (fg){mn) =

FGnn) - glnn) = f(m) - fn)- glm) - g(ny = flm) - glm)- f(n)- g(n) = (fg)(m) - (f8}),

so fg is also completely mutiplicative.
Flmn)=logmn= logm +logn= Flm) -+ fln)
a2 b3 ol d4 ed f.15

Let (m, n) = L Then by the additivity of f we have funy= f(m) + F). Thus glmn) =
o flmn) = 2f(m)+f(n) — Qf(m)zf(n) — g(m)g(n).

Section 7.2

. a.43 b.399 ¢ 2340 42100 -1 e6812 T 13,404,592 g. 15,334,088

h. 13,891,399,238,731,734,720

3. perfect squares
5 a6 11 b10,17 e 14,15,23 d.33,35,47 e.none f.44,65,83

7. Note that {pF~") = k whenever p is prime and k is an integer greater than 1. Hence the equation

15.
17.

19.
21.
23,

25.
27,

(n} = k has infinitely many solutions.

. squares of primes
il.
13,

"r(u)/l

a. The nth term is o(2nr).

. The nth term is o () — 7).

¢. The nih term is the least positive integer m with T{m) =n.

d. The nth term is the number of solutions o the equation o (x) = L.
2,4,6,12,24,30

Let @ be the largest highly composite integer less than or equal to n. Note that 24 is less than or
equal to 2n and has more divisors than o, and hence 7(2a) > 7 (a). By Exercise 16 there must be a
highly camposite integer bwitha <b <2a. M b <n,this contradicts the choice of a. Therefore,
n < b < 2n. Tt follows that there must be a highly composite integer kwith2™ <k < gmtl for

every nonnegative integer . Therefore, there are at least m highly composite integers less than
or equal to 27, Thus the mth highly composite integer is less than or equal to 27,

1,2,4,6,12,24,36,48

1+ p*

Suppose that @ and b are positive integers with (a,b) = L Then ¥ giap 4° = Laja, dzlb(dle)k =
> odiia d¥ - Lage dk = a(a)or(b)-

prime numbers

Letn= p‘f‘pgl <o plr, and let x and y be integers such that [x, yl=n.Then x |#n and y | 1,

sox = p! pgl .o phrand y = piips -+ - per, where b; and ¢; are petween O and a;. Since
[x, y]=n, we must have max(b;, ¢;) = a; for each i. Then one of b; and ¢; must be equal to
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a; atd the other can range over 0, 1,2,. . ., 4;. Therefore, we have 24a; + 1 ways to choose the
pair {b;, ¢;} for each i. Thus in total we can choose the exponents bbb e, .., 0000
Qa1+ DQay+ 1) - - - 2a, + 1) = (n?) ways.

Suppose that 7t is composite. Then r = ab, where a and b are integers with 1 < a =b<nlt
follows that either a > /n or b = /n. Consequenily, o(n) > L +a4-b+n > 1+ N R
n -+ /n. Conversely, suppose that # is prime, Then o (2) = 1 + I, s0 o(n) <n + /n. Hence,
o (n) > n + +/n implies that » is composite.

Forn = 1, the statement is true. Suppose that E’;;: (j)=2 ZB,.:" i‘”{{n — D/j1—[vn — 12 For

the induction step, if » is not a perfect square, it suffices to show that t{n)=12 25; ;"H([n fil—

[n—D/ih=23" j=ivn—T} jjn 1» Which is true by the definition of r(n), since there is one
factor less than /i for every factor greater than /. Note that if n is a perfect square,
we must add the term 2/n — (2411 — 1) = 1 to the last two sums. For n = 100, we have
TS vy =232 [100/j]— 100 =482,

Leta =[] p?f and b= H p?" » and let ¢; = min{a;, b;) for each i. We first prove that the product
I, Z?:o ptf'o(pfi+bf_2’) = Y itap 40 (ab/d?). To see this, let d be any divisor of (a, b}, say

d=T] pf’ . Then d; < ¢; for each i, so each of the terms pf‘o(pf‘+b‘_2df) appears in exactly

one of the sums in the product. Therefore, if we expand the product, we will find, exactly
a;+b—2d;

once, the term [y, pi'o (™) = do (TT,, p™* ") = da (T, o/ p2e0 1) =
do ((a/d)(b/d)). This proves the first identity. Next, consider the sum Z;zo(p““”f +
potemi=l4 ...t pf), where ¢ = min(a, b). The term p* appears in this sum once each time
that k =a + b — j, which happens exactly whena +b — ¢ <k <a + b, that is, ¢ + | times. On
the other hand, in the expansion of the product (p? + p~ + ... ¢ D(p? + pt=l+... 4 1) =
a{p®)o (pP), the same term pt appears whenever k = {@ — m) + (b — 1), where 0 <m < q and
0 = n < b. Bach of m and n determines the other, so p¥ appears exactlymin(a + L, b4+ D =c+ 1
times. Given this identity, we have o (a)o (b) = le_(p?' + pf"_] 4 1)(pf‘ + pf’ﬁl +o 4+
H=Tl, Z;":O(p?#biﬁ + P?ﬁb"ﬂ Tt p}), which is the right side of the identity, as we
proved above.

From Exercises 52 and 53 in Section 7.1, we know that the arithmetic function (1) = 20 i
multiplicative. Therefore, the Dirichlet product h(r) = Yodn 299 = f = g(n), where g(n) = 1,
is also multiplicative (see Exercise 41 in Section 7.1). Since 7(n) and n? are multiplicative, so is
t(n?). Therefore, it is sufficient to prove the identity for # equal to a prime power, p?. We have

7(p?@} = 2a + 1. On the other hand, Yot 29 = Y0 020 = 14 Y =20 4 1.

p(Dd@) - o)

If p and p + 2 are prime, then ¢ (p + 2) = p + 1= o (p). If 27 — 1 is prime, then ¢ (271} =
2P =g (2P — 1),

Section 7.3

. 6,238,496, 8128, 33,550,336, 8,589,869,056
a3l boI27 e 127

12, 18,20, 24,30, 36

Suppose that n = p¥, where p is prime and & is a positive integer. Then o (p*) = (pF+! — 1)/ (p —
1). Note that 2p* — 1 < p**1since p = 2.1t follows that P 1< 2(phtt = pRry=2pk(p — 1),
so (Pt — /(p — 1) < 2p* = 2n. It follows that n = P is deficient.
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. Suppose that n is abundant or perfect. Then o (1) = 2n. Suppose that m = nk for some integer

& > 1. The divisors of m include the integers kd whenever d | n, as well as the number 1. Hence,
a(m) = 1+ g kd = 1+k Yand=1+ka(m = 1+ 20k > 2kn = 2m.Hence, nt is abundant.

if p is any prime, then a(py=p+1l<lpsop is deficient; and we know that there are infinitely
hany primes.

{See Exercises 6 and 9.) For a positive integer a, let n = 72 . 5.7, and compute o) =
o3¢ 5T = (3" - /G- mE+HI+D= e+l — 1)24 = 98124 — 24 =
2.3436) - 24 =2" 3935y +2- 3 —24= 2 4+ 2 - 3% — 24, which will be greater than 2n
whenever a > 3. This demonstrates infnitely many odd abundant integers.

a. The prime factorizations of 290 and 284 are 220 =22 5- 11 and 284 = 22 . 71. Hence,
5(220) = 0 (2D (a1 =7-6- 12 = 504 and o (284) = o (2o (T =7~ 72 = 504. Since
o (220) =0 (284) = 220 4 284 = 504, it follows that 220 and 284 form an amicable pair.

b. The prime factorizations of 1184 and 1210 are 1184 = 25.37 and 1210=2-5"- 112, Hence,
o (1184) =0 (275 (3T) =63 - 38 = 2394 and ¢ (1210) = oo (Se(11?)=3-6-133= 2394,
Since o (1184) = o (1210) = 1184 4+ 1210 == 2394, 1184 and 1210 form an amicable pair.

c. The prime factorizations of 79,750 and 88,730 are 79,750 = 2.53.11.29 and 88,730 =
2.5.19.467. Hence, o(79,750) = (D (e (1) (29) =3-156-12- 30 = 168,480 and
similarly o(88,730) = 0 ()0 (5} (19)0 (467) =3 - 6 - 20 - 468 = 168,480, Since o (79,750) =
o (88,730) = 79,750 + 88,730 = 168,480, it follows that 79,750 and 88,730 form an amicable
pair.

o(120) =0 (2 3-5) =0 Mo (3o (5) = 15-4-6=360 =3-120

o(27.3.5.7- 1117 19y =081 - H/2-G+0-0+ H-aB-1n/10- 07+
(19 + 1) =255-121 - 6-8-133- 18- 20 = 70,912,195,200=5- 14,182,439,040

Suppose that n is 3-perfect and 3 does not divide #. Then an)=c@o@)= 4.3 =1n=
4 - 3. Hence, 3n is 4-perfect.

908,107,200

sle(le)) =3 = 32=12-16

Certainly if r and s arc integers greater than 1, theno(rsyzrs+ 5+ 1. Suppose 1 = 291 is
superperfect with ¢ odd and 7 > 1. Then 2n =29t = o (o)) =0 (e = 1) o)) =
(29 — Do) +o )+ 1= 20t (r) = 2771 (r + 1). Then £ >/ 4 1, a contradiction. Therefore,
we must have n = 24, in which case we have p=2t=g (c(2I) =0 {22+ )=o(2n—1-
Therefore, 2n — 1= 29+t — 1 is prime.

a.yes b.no C.yes d. no

a. Note that M, (M, +2) = @@ -2+ Y= 920 _ 1, 1f 21 + 1is pome, then p(2Zn + D= 2n
and 22" = 1 (mod 2z + 1). Thus 21 4 11 o2 _ | = M, (M, + 2). Therefore, 2n +1 | M, ot
In 1| M, +2.

b. 23 J 2049, s0 23 | 2047 = M3 47 J 8,388,609 s0 471 8,388,607 = My

Since m is odd, m?=1(mod 8),s0n= p"m2 = p* (mod 8). By Exercise 32(a), a =1 (mod 4),
so p® = p**p = p (mod 8), since p*% is an odd square. Therefore, n = p (mod B).

First suppose that n = p*, where p is an odd prime and a is a positive integer. Then
cmy=@t-b/p-D=< petif(p — D=np/(p— D =n/(1= /p)) sn/(3) =3/,
so o(n) # 2 and # is not perfect. Next suppose that n = p“g”, where p and g are primes and a
and b are positive integers. Then o (1) = (P -n/p-BH- (gt = Bflg - < pitightly

(p — Dig — D) =npg/{(p - D@~ 1)) =n/((1 — (/PN = (/DD <n/(3 $y=15m/8<
2n. Hence, o(n) # 2n and n is not perfect.
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integers of the form p3 and p?q, where p and q are primes

Suppose that M,, =2" — } =a¥, withn and k integers greater than 1. Then a must be odd. Ifk = 2 I
then 2" — 1 = (a/)%. Since n > 1 and the square of an odd integer is congruent to 1 modulo 4,
reduction of the last equation modulo 4 yields the contradiction —1= 1 (mod 4}. Therefore, k must
beodd Then 2" =a* + 1= (a4 D{a* 1 —afF2 4. ..+ ). So g + I =27 for some integer m,
Then 27 — 1= (2% — Dk = 2k _ ppmik—h 5 gmlk—D 5 92m 6y > 2 Then reduction modulo
2am gives —1= k2" — | (mod 2%"), or, since k is odd, 2™ =0 {mod 22™), a contradiction.

Section 7.4

l.al0 bl -1 d0 e—-1 £1 g0
3. 0,-1,-1,-1,0,~1,1,-1,0, -1, —1, respectively
5. 1,6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 63, 69, 74, 77, 82, 85, 86, 87,

91,93,94,95

. L0,-1,—1, =2, -1, =2, -2, -2, —1, respectively

9. Since pi(n) is O for non-square-free », is 1 for # a product of an even number of distinct primes,

11
13.

15.

17

19.
21.
23.

25,

27.
29,

M.

and is --1 for n a praduct of an odd number of distinct primes, the sum M(2) = i i) s
unaffected by the non-square-free numbers, but counts 1 for every even product and -1 for every
odd product. Thus M (i) counts how many more even products than odd products there are.

For any nonnegative integer k, the numbers n = 36k 4+ 8 and n + 1 = 36% -+ 9 are consecutive and
divisible by 4 = 22 and 9 = 3%, respectively. Therefore, £ (36k + 8) + w36k +9)=04+0=0.
3

Let i1(n) = n be the identity function. Then from Theorem 7.7 we have h(n) =n = Edm @ ().
Then by the Mobius inversion formula ¢ (n) = dex pldh(n/dy = Zd[n pldy(njdy =

1 3y 1A/

Since g and f are multiplicative, so is their product pf, by Exercise 46 of Section 7.1.
The summatory function Zdln n{d) f(d) is also multiplicative by Theorem 7.17. Therefore,
it suffices to prove the proposition for # a prime power. We compute p po ) fd) =

1(p®) f(p?) + w(PT NPT + -+ w(p) F(p) 4 1) F(1). But for exponents j greater
than 1, u(p’/} =0, so this sum equals u(p) f(p) + (BN =—F(p) + L

dn)/n

DI, i

Since both sides of the equation are known to be multiplicative (see the solution to Exercise 35 in
Section 7.2, Exercise 46 in Section 7.1, Theorem 7.17, and Theorem 7.14), it suffices to prove the
identity for n = p*, a prime power. On one hand, 34, u*(d) = p%(p} + p?(I) = 1+ 1=2.On
the other hand, @ (p®) = 1, so the right side is 2f == 2,

Let ), play the role of f in the identity of Exercise 17. Then the left side equals ]_[1;25(1 = A(ps)) =
[Tjoy(1— (=) =28 =2009,

By Theorem 7.15, pt # v(n) = Za‘pz widyvin/d) = Zdln wld) = t{n).

Since v(n) is identically 1, we have F(n) = ):d!" fid) = de Fldywln/d)y= f=v(m). If we
Dirichlet multiply both sides on the right by g, then F s i = f s vsepr= fxr= f.

From the M&bius inversion formula, Exercise 30, and Theorem 7.15, A(n) = ¥ din (@) log(nfd) =
2odn (@ ogn —log d) = 3y, p2(d) log(n) — P 1ld) log(d) =logn Xy, pld) —~
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pI p(d) logl(d) = (log myv(n} — Zdhx pi{d) logld) = — D p(d) logld), since v) =0
ifn#landlogn=0ifn= 1

Section 8.1

, DWWDF NDWGD ZQ
. IEXXK FZKXC UUKZC STKIW

READ MY LIPS
12

. AN IDEA IS LIKE A CHILD NONE IS BETTER THAN YOUR OWN FROM CHINESE

FORTUNE COOKIE

9,12

THIS MESSAGE WAS ENCIPHERED USING AN AFFINE TRANSFORMATION
C =7P + 16 {mod 26)

Section 8.2

1. VSPFXH HIPKLB KIPMIE GTG
3. TJEVT EESPZ TIIAN IARAB GSHWQ HASBU BIGAQ XYACF XPHML AWVMO XANLB

11.

13.
15.
17.
19.

21.

GABMS HNEIA TIEZV VWNQF TLEZF HIWPB WKEAG AENOF UACIH LATPR RDADR
GKTIR XIDWA XXENB KA

. Let n be the key length, and suppose that kj, kg, ... ok, are the numerical equivalents of the

letters of the keyword. If p; = p; are two plaintext characters separated by a multiple of the
key length, when we break the plaintext into blocks of length n, p; and p; will be in the same
position in their respective blocks, say the mth position. Se when we encrypt them, we get
gepithky=pitha=c (mod 26}.

. The key is YES, and the plaintext is MISTA KESAR EAPAR TOFBE INGHU MANAP PRECI

ATEYO URMIS TAKES FORWH ATTHE YAREP RECIO USLIF ELESS ONSTH ATCAN
ONLYB ELEAR NEDTH EHARD WAYUN LESSI TISAF ATALM ISTAK EWHIC HATLE
ASTOT HERSC ANLEA RNFRO M.

. Thekey is BIRD, and the plaintext is IONCE HADAS PARRO WALIG HTUPONMYSHOULDE

RFORA MOMEN TWHIL EIWAS HOEIN GINAV ILLAG EGARD ENAND IFELT THATI
WASMO REDIS TINGU ISHED BYTHA TCIRC UMSTA NCETH ATISH OULDH AVEBE
ENBYA NYEPA ULETI COULD HAVEW ORN.

The key is SAGAN, and the plaintext is BUTTH EFACT THATS OMEGE NIUSE SWERE
LAUGH EDATD OESNG TIMPL YTHAT ALLWH OAREL AUGHE DATAR EGENI USEST
HEYLA UGHED ATCOL UMBUS THEYL AUGHE DATFU LTONTHEYLA UGHED ATTHE
WRIGH TBROT HERSB UTTHE YALSO LAUGH EDATB OZOTH ECLOW N,

RL OQ NZ OF XM CQ KG QI VD AZ
TO SLEEP PERCHANCE TO DREAM
3,24,24,25

C = AP (mod 26). Multiplying both sides on the left by A gives AC= AZP =1P = P (mod 26).
The congruence A2 =1 (mod 26) follows since A is involutory. It follows that A is also a
decrypting matrix.

11 6
C=[ 5 13]P(mod%)
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23, If the plaintext is grouped into blocks of size m, we may take [m, r])/m of these blocks to form a

25

27

29

31.

33

35
37
39

&

.

super-block of size m, n], If A is the m x m encrypting matrix, form the [m, n] x [m, n] matrix
B with {m, n]/m copies of A on the diagonal and zeros elsewhere. Then B will encrypt [m, n)/m
blocks of size m at once. Similarly, if C is the » x n encrypting matrix, form the corresponding
[m,n] x [, n] matrix D. Then by Exercise 22, BD is an [m, #] x [, n] encrypting matrix which
does everything at once.

Multiplication of {0 ... 0 1 0 ... 0], withthe I in the ith place, by [P} P, ...
P, yields the I x | matrix [ P; ] (T denotes transpose), If the jth row of a matrix A is
[0 ... 010 ... 0LtenA[P, P, ... P, =[C, € ... C,]gives

C; =-F;. Soif every row of A has its 1 in a different column, then each C ; is equal to a different
F;. Hence, A is a “permutation” matrix.

17 4 22
P:—_[ ' 7]C+[15:|(mod26)
TOXIC WASTE

Make a frequency count of the trigraphs and use a published English language count of frequencies
of trigraphs. Then proceed as in Exercise 30. There are 12 variables to determine, so four guesses
are needed.

yes

01 1101 1010

RENDEZVOUZ

Let pypy -+ py and g1g7 - - - gy, be two different plaintext bit streams. Let &y, &5, . . . , &, be the
keystream by which these two plaintexts are encrypted. Note that fori = 1,2,...,m, E % (P +
E lg) =k + p; + & +q =2k + p; +g; = p; + q; (mod 2). Therefore, by adding corre-
sponding bits of the ciphertext streams, we get the sums of the corresponding bits of the plaintext
streams. This partial information may lead to successful cryptanalysis of encrypted messages.

Section 8.3
14171727 H1 1765760776 14

3. BEAMME UP

&

5. We encrypt messages using the transformation C = P! {mod 31). The decrypting exponent

is the inverse of 11 modulo 30 since ¢{31) = 30. But 11 is its own inverse modulo 30 since
11-11= 121 = [ (mod 30). It follows that 11 is both the encrypting and decrypting exponent.

Section 8.4

1. 151,97
. Since a block of ciphertext p is less than », we must have (p, n} = p or q. Therefore, the

cryptanalyst has a factor of n.
1215 1224 1471 0023 0116

7. GREETINGS
9. 2145 0672 0724 1404 1630
11.

No. This is the same as using the RSA cryptosystem with encryption key (ege,, #). It is no easier,
or mere difficult, to discover the inverse of e = g(e; than it is to discover the inverse of either of
the factors modulo ¢(n).

STUDENTS-HUB.com

Uploaded By: anonymous



658

13.

15.

Answers to Odd-Numbered Exercises

Suppose that P is a plaintext message and the two encrypting exponents are £; and e;. Let
a = (ey, &) Then there exist integers x and y such that e;x +e;y =4. Let ¢y = P (mod n)
and C, = P (mod n) be the two ciphertexts. Since Cpr Cp, €1, and ¢, are known to the
decipherer, and since x and y are relatively easy to compute, it is also easy to compute
CICy = POF POy = peisHey = P4 (mod n). If @ = 1, then P has been recovered. If a is fairly
small, then it may not be too difficult to compute ath roots of P% and thereby recover F.

Encryption works the same as for the two-prime case. For decryption, we rust compule an inverse
d for e modulo $ () = (p — Dig — Br — 1D, where n = pqr the product of three primes. Then
we proceed as in the case with two primes.

Section 8.5

.a.yes bmno c¢yes d.no

. Proceed by induction. Certainly, aj < 2ay < dy- Suppose Z';;{ a; < a,. Then Y=

-1 _
Zj:1 ajt+a; <day + a, =24, < apy1-

5. (17,51,85,7,14,45,73)

7. NUTS

1L
13.

9, Tfthe multipliers and moduli are (wy, M), (Wa, 12), 4 +» {w,,m, ), thenthe inverses Wij, Wy, - « -+ Wy

can be computed with respect to their corresponding moduli. Then we multiply and reduce
successively by (@, 1), (0,1, By (B HEY)- “The result will be the plaintext sequence
of casy knapsack problems.

8-21-05
Fori=1,2,3,...,n, we have b4 = a; (mod m). Then b¥ = P = (b")Y"1{b*2)2 . - - (B Y =

pevittenta (mod m). Then S =oyxg + - + a,x, (mod ¢(m)). Since § + k¢{m) is alsoa
fogarithm of P to the base b, we may take the congruence to be an equation. Since each x; is O

or 1, this becomes an additive knapsack problem on the sequence €0rps gy« v - s G-
Section 8.6
1. 90
3, 476
5, Letky, kg, ...k, bethe private keys for parties i through n, respectively. There are n steps in this

protocot. The first step is for each party i to compute the least positive residue of ki (mod p) and

send this value y; to the {i + Dth party. (The nth party sends his value to the first party.) Now the
ith party has the value y;.1 (where we take yg to be y,). The second step is for each party i to
compute the feast positive residue of yf"_l {mod p) and send this value to the (i + Dyth party. Now
the ith party has the least positive residue of #ki-rHki—2 (mod p). This process is continued for a
total of # steps. However, at the nth step, the computed value is not sent on to the next party. Then
the ith party will have the least positive residue of pli-rtkiyt-thekktka et (mod p),
which is exactly the value of K desired.

. a, 0371 0354 0858 0858 0087 1369 0354 0000 D087 1543 1797 0535

b. 0833 0475 0074 0323 0621 0105 0621 0865 0421 0000 0746 0803 0105 0621 0421

. a. If n; < nj, the block sizes are chosen small enough so that each block is unique modulo

n;. Since n; < nj, each block will be unique modulo 7 ; after applying the transformation Dy,
Therefore, we can apply Ey; 10 Dy (P) and retain uniqueness of blocks. The argument is similar
when n; > 1.
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b. If rj < n;, individual j receives E, (D, (P)) and knows an inverse for e ; moctulo ¢ (). Sohe
can apply Dy, (B4 (D, (P))) = Dy, (P). Since he also knows ¢, he can apply Er (D (P))=F
and discover the plaintext P. If n; > n j» individual f receives Dy, (Ekj (£)). Since he knows ¢; he
can apply Ep (Dy, (B, (PY) = E (). Since he also knows e; he can apply Dy (Ey (P)} =P
and discover the plaintext P.

e. Since only individual  knows g;, only he can apply the transfomation Dy and thereby make
Ep (D, (P)) intelligible. '

d, We have n; = 2867 > n; = 2537, so we compufe Dy, (Ey (P)). Both n; and n; are greater
thar 2525, so we use blocks of 4. REGARDS FRED becomes 1704 0600 1703 1805 1704
0323 (adding an X to fill out the last block). Now ¢; = 11 and P (n;) = 2760, so e; = 251. We
apply Ekf_(P) = P = P (mod 2537) to each block and get 1943 0279 0847 0171 1943 0088,
Then we apply Dy, (E) = E»! (mod 2867) and get 0479 2564 0518 1571 0479 1064. Now
since ny < n; individual j must send Ek[(ij(P)), e; =13, ${(2537) = 2436, and £; = 937,
Then Dy (P) = P** (mod 2537) and Ey (D) = D! (mod 2867). The ciphertext for REGARDS

ZELDA is 1609 1802 0790 2508 1949 0267,
ky=4 (mod8), k3 =5 (mod 9), k3 =2 (mod 11)

The three shadows from Exercise 11 are k{ =4, k; = 5, and &3 = 2. We solve the system Ko=4
{mod 8}, Ky =15 (mod 9), and Ky =2 (mod 11}, where the modufi are the n;'s. The Chinese
remainder theorem yields K = 68 (mod 8- 9. 11). Then K = Ko—tp=068—13-5=3,

Section 9.1

l.ad4 b4 c6 d4

. a. p(6) =2, and 52 = 1 (mod 6)

b.p(11)=10,and 2? =4, 2= 1,20 = } (mod 11)

- Only 1, 5,7, 11 are relatively prime to 12, Each one squared is congruent o 1, but ¢(12) = 4.

11.
13.

15.

17,

19.

7. There are 2: 3 and 5.

9. That ord,, a = ord,, @ follows from the fact that o’ = 1 (mod n) if and only if @ = I (mod n). To

see this, suppose that a’ = 1 {(mod 1). Then@ =@"a’a’ = (@'a’)a’ = (g@)'a’ =1 - 1=1 (mod n).
The converse is shown in a similar manner,

[r,5}/ (r.5) <ord, ab < [r,s], where r = ord, g and s = ord,, b

Letr = ord,; a'. Then o' = 1 (mod m); hence, fr > t5 and » > 5. Since 1= ¢*' = (a')® (mod m),
we have 5 >,

Suppose that r is a primitive root module the odd prime p. Then -7~ 1/4 | (mod p) for all prime
divisors q of p -~ I since no smaller power than the (p — 1)th of r is congruent to 1 modualo p.

Conversely, suppose that rP~1/7 2 | (mod p) for all prime divisors of p — 1. Suppose that 7 is not
aprimitive rootof p. Then there is an integer f such that 7! = 1 (mod p) withs < p — 1. Since fmust
divide p — I, we have p — 1 = st for some positive integer s greater than 1. Then (p — B/s=t.
Let g be a prime divisor of 5. Then (p — 1)/q =ts/q, so r# =04 = 5/ = (+'y7/7 = | (mod p).
This contradicts the original assumption, so r is a primitive root modulo p.

Since 2% + 1= 0 (mod F,), we have 22" = —1 (mod F,,). Squaring gives (2212 =222 = |
(mod F,}. Thus ordy 2 <27 -2=2"%1,

Note that o' < m =a” — 1 whenever 1 < ¢ < n, Hence, @' cannot be congruent to | modulo m
when 1 is a positive integer less than #. However, a™ = 1 (mod m) since m =a® — 1| a” — L. It
foltows that ord,, a = n. Since ord,; a | ¢ (m), we see that a1 | ¢ (n).
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First suppose that pg is a pseudoprime to the base 2. By Fermat’s little theorem, 2P =32 {mud p),
<o there exists an integer k such that 2P — 2 = kp. Then aMp=t _1.=22"—2 1 =72 — 1. Thislast
expression is divisible by 27 — 1= M, by Lemma 6.1, Hence, 24,1 = 1 (mod M), or 2Mp 22
(mod M) Since pg is a pseudoprime to the base 2, we have 2P7 = 2 (mod pq), 50 2P0 =72
(mod p). But 272 = (2F)1 = 24 (mod p). Therefore, 27 =2 (mod p). Thus there exists an integer
1 such that M, — 1=29 —2=1p. Then 2"s~1 — 1= 2%-2.=0lp — 1,50 2F — 1 = M), divides
9M;=1 __ { Therefore, 29 =2 (mod M ). Then we have MMy = (MM =2Me = 2 (mod M ).
Similarly, 2¥7*s = 2 (mod M,). By the Chinese remainder theorem, noting that M, and M, are
relatively prime, we have 28pMy =2 2 (mod MpM,)- Therefore, M, M, is a pseudopeime to the
base 2. Conversely, suppose that M, M is a pseudoprime to the base 2. From the reasoning in the
proof of Theorem 6.6, 235 =2 (mod p). Therefore, 227Ms == (M= DA+ = 2My = 2 (mod p).
But since M, = 2P — 1=0 (mod Mp), the order of 2 modulo M, is p. Therefore, p | M, — L.In
other words, 29 =2 (mod p). Then 287 =29 = 2 (mod p). Similarly, 2P7 =2 {mod g). Therefore,
by the Chinese remainder theorem, 2P2 = 2 (mod pg). Since pg is composite, it is a pseudoprime
to the base 2.

Let j =ordyy . Then ¢/ = 1 (mod ¢(n)). Since ord,, P | §(n), we have ef = 1 (mod ord, P).

Then by Theorem 9.2, p¢’ = P (mod n), so e = (P‘-’)EH = P = P (mod n) and c =
P? = C (mod n).

Section 9.2

a2 b2 3 &0

2.2 b4 8 d6 el2 22
2,6,7,11

2,3,10,13,14,15

By Lagrange’s theorem there are at most two solutions to x2 = 1 (med p), and we know that
+ = 41 are the two solutions, Since p = 1 (mod 4), we have 4| p — 1= ¢{p), so by Theorem 9.8
there is an element x of order 4 modulo p. Then x4 = (x%)? =1 (mod p), so x> = 1 (mad p). If

x2=1(mod p), then x does not have order 4. Therefore, x2=—1(mod p).

a, Let f(xy=a,x" -+ @y %"t -+ ag, and let k be the largest integer such that p does not
divide a;. Let g(x) = agx® -+ apx* 1+ -+ ag. Then f(x) = g(x) (mod p) for every value
of x. In particular, g{x} has the same set of roots modulo p as f(x). Since the nuraber of roots is
greater than 2 > k, this contradicts Lagrange’s theorem, Therefore, no such k exists, and p must
divide every coefficient of f{x}.

b. Note that the degree of f(x)is p —2 (the 7! térms cancel). By Fermat’s little theorem
we have that Pl 1=0(mod p)yforx=1,2,...,p— 1. Further, each x in the same range
is patently a zero for (x — Dix =2 ---x—p-+ D Therefore, each such x is a root of f(x).
Since f(x) has degree p — 2 and p — 1roots, part (a) tells us that all the coefficients of f(x) are
divisible by p.

¢, From part (b) we know that the ¢onstant term of f(x) is divisible by p. The constant term
is £(0). Thus f{0)=(-D(=2)---(=p+ D+ = (-DP i p - DI+ 1=(p-DI+1=0
(mod p), which is Wilson’s theorem.

a. Since q? | ¢(p) = p — 1, by Theorem 9.8 there exist qb(qlfi) elements of order q:" for each

i=1,2,...,r. Leta; be a fixed element of this order.
b. Using mathematical induction and Exercise 10 of Section 9.1, we have ord p(a) =
ordy{ay -+ d4,) = ordp(ag -+ a,_p-ordyla) == ord,(ap) - - - ord,(4,) since
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lordy(ay), . .., ord(a,)} = {g;l, -+ gk} are pairwise relatively prime.
c I8
H'n is odd, composite, and not a power of 3, then the product in Exercise 14 is ]’[;=1(:z -1,

Pi— D= —1L3-Dn—-1,5-D>2.2=4, Therefore, there must be two bases other than
—1and +1.

a. Suppose that f{x} is a polynomial of degree » — 1 with integer coefficients. Suppose
that xy, xo, ..., x, are incongruent modalo p, where p is pime. Consider the polynomial
glx) = f(x) — X;le(f(xj) . ]-L-#j(.r = X){x; — x)). Note that xX;, J=1L2...,n isaroot
of this polynomial modulo p since its value at xpds fl) =040+ + Flep ]_[,.#j(xj -
g —=x) 4+ 0= Fxpy— f(x;)- 1=0 (mod p). Since g(x) has n iRrcongruent roots
modulo p and since it is of degree n — 1 or less, we can easily use Lagrange’s theorem to see that

g(x) =0 (mod p) for every integer x.

h. 10

By Exercise 23 of Section 9.1, j | ordy, e. Here ¢(n) = d(pq) = 4pq’, so Jlo@p'gy=
2(p" — D{g’ — 1). Choose e to be a primitive root modulo P Then p' —~ 1=¢(p") | ¢ (d{n)),
sop'—1| ordy,y €. The decrypter needs ¢/ = 1 (mod 1}, but this choice of e forces j = p’ — 1,
which will take quite some time to find.

Section 9,3

4, 10,22

2.2 b2 eS5 d2
22 b2 ¢2 43
a3 b3 ¢3 4.3
. 7,13,17, 19

. 3,13,15,21,29,33

. Suppose that r is a primitive root of m and suppose further that x% = 1 (mod m). Let v = r*

(mod m), where 0 <t < p — 1. Then r? = | (mod nt}. Singe r is a primitive root, ¢ (m) | 21, so
2t = kep(m) and £ = kg (m)/2 for some integer k. Then x = r! = pF9Im)/2 _ L(@0m/Dk = (- =
+1 {mod m). Conversely, suppose that s has no primitive root. Then m is not of one of the forms 2,
4, p%, or 2p”®, with p an odd prime. So either two distinct cdd primes divide m, or m = 2% p* with
panoddprime and b = 1, or m = 2% with b > 2, Let p be an odd prime dividing m, say p® || m.
Then the solution to the system x = I (mod p%), x = —1 (mod m /p®) cannot be congruent to +1
(mod m). But x2 =1 (mod p%) and x2 = 1 (mod m/p™), so by the Chinese remainder theorem
x%== 1 (mod m). If no odd prime divides m, then m = 2° with b = 3. From Theorem 9.12, we
know there are at least three solutions y,, y,, and ¥3to y? = 1 (mod 2%). So in each case, there is
at least one sotution that is not congruent to +1 (mod m).

By Theorem 9.12 we know that ordye 5 = ¢(25)/2 = 252, Hence, the 252 integers 5/,
J=0,1,...,252 _ I, are incongruent modulo 2. Similarly, the 28-2 integers —5/,
F=0,1,...,2%2 — 1, are incongruent modulo 2*. Note that 5/ camnot be congruent to
—5' modulo 2* since 5/ = 1 (mod 4) but —5 = 3 (mod 4). It follows that the integers
L5, 5870 1, s, 5 e ok incongruent integers modulo 2%, Since
$(2%) =251 and every integer of the form (—1)#5 is relatively prime to 2%, it follows that
every odd integer is congruent to an integer of this form with o = O or 1and 0 < g < 252 — |,
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Section 9.4

The values of indsi, i = 1,2,...,22,are 22,2, 16,4, 1, 18, 19, 6, 10, 3,9, 20, 14,21, 17, 8,7, i2,
15,5, 13, 11, respectively.

a.7,18  b.none

8, 9, 20, 21, 29 {mad 29)

. All positive integers x = 01,12, 23,24, 45,46, 47, 67, 69, 70, 78, 89, 91, 92, 93, 100, 111, 115,

116, 133, 137, 138, 139, 144, 155, 161, 162, 177, 183, 184, 185, 188, 199, 207, 208, 210, 221,
229, 230, 231, 232, 243, 253, 254, 265, 275, 276, 277, 287, 299, 300, 309, 321, 322, 323, 33L
345, 346, 353, 367, 368, 369, 375, 386, 391, 392, 397, 413, 414, 415, 419, 430, 437, 438, 441,
459, 460, 461, 463, 483, 484, 485, 496, or 505 (mod 5006)

. Let r be a primitive root of p. Suppose that +*=_1(mod p), and let y = ind, x. Then —x is also

11.

a solution, and by Exercise 8, ind, (—x) =ind (—1) + ind, {(x)=(p—D/2+Yy (med p— D).
So without loss of generality we may take D<y<(p—Dj2,or0<dy< 2(p — 1). Taking
indices of both sides of the congruence yields dy=ind {(—-})=(p— 1)/2 (mod p — 1), again
using Bxercise 8. So 4y =(p — /2 + m(p — 1) for some m. But 4y < 2(p — 1), so either

dy=(p—-1D/2andsop= 8y + 1, ordy =3(p — 1)/2. In the latter case, 3 must divide ¥,

so we have p = 8(y/3) + L. In either case, p is of the desired form. Conversely, suppose that
p =8k + 1, and let r be a primitive root of p. Take ¥ = 5. Then x* = r# = rP~D2 = 1

{mod p) by Exercise 8. So this x is a solution.

(1,2): (6,2)

13, x =29 (mod 32); x =4 (mod 8)

15

17.

19.

21.

23

(0,0,1,1); (0,0, 1,49
x = 17 {mod 60)

We seek a solution to x* == a (med 2°), We take indices as described before Exercise 11. Suppose
that a = (—1)%5P and x = (—1)¥5°. Then the index system of ¥ is (ky, k), and the index system
of a is (¢, B), 50 ky = ¢ (mod 2) and k8§ = A (mod 2=y, Since k is odd, both congruences are
solvable for y and §, which determine x.

First we show that ordye 5 = 2°72. Indeed, ¢ (2%) = 2¢=1 5o it suffices to show that the highest
power of 2 dividing 52°7% _ 1 is 2¢. We proceed by induction. The basis step is the case e = 2,
which is true. Note that 527 — 1=(5¥" = 1) (58 4 1). The first factor is exactly divisible by
2¢=! by the induction hypothesis. The second factor differs from the first by 2, so it is exactly
divisible by 2; therefore, 52" __{ s exactly divisible by 2°, as desired. Hence if k is odd, then the
numbers (£, (5%, ..., (£5)% % are 2¢! incongruent kth power residues, which is the
number given by the formula. If 2" exactly divides k, then 5% = (—5)* (mod 27}, so the formuta
must be divided by 2, hence the factor (k, 2} in the denominator. Further, 52" has order 26 2/2™
if m < e — 2 and order 1if m > ¢ — 2, so the list must repeat modulo 2¢ every ords: 5" terms,
whence the other factor in the denominator.

a. From the first inequality in the proof, if n is not square-free, then the probability is strictly
Jess than 2n/9, which is substantially smaller than (o — 1)/4 for large n. If n s square-free, the
argument following (9.6) shows that if n has 4 or more factors, then the probability is less than
1/8. The next inequality shows that the worst case for n = pyp, is when s) =8 and s, is as small
as possible, which is the case stated in the exercise.

b. 0.24999249 . ..
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Section 9.5

- Wehave2* =4 (mod 101),2 = 32 (mod 101), 2!% = (25 = 322 = 14 (mod 101), 20 = (2!%2 =

142 =95 (mod 101), 22 = (25 =325= (3212 .32 =2 1024? - 32 = 142. 32 = 196 . 32 =
—6-32 = —192 = 10 (mod 101), 2°° = (2%)2 = 10? = 100 = —1 (mod 101), 2100 == (250)2 =
(—1)* = 1 (mod 101). Since 2'9-1/¢ = § (mod 101) for every proper divisor g of 100 but
21001 = | (mod 101), it follows that 101 is prime.

3. 233 - 1=2%.29, 36 = | (mod 233), 3% = 37 £ | (mod 233)
5. The first condition implies that x*=! = 1 (mod F,,). The only prime dividing ¥, — 1= 22" is 2,

1

13

and (F, - 1}/2 =271, 5o the second condition implies that 2%=/2 £ 1 (mod F,). Then by
Theorem 9.18, F, is prime.

7. See [Le80L
9. Sincen — 1=9928 =27 1773, we take F = 23. 17 = 136 and R =73, noting that F > R. We

apply Pocklington’s test with a = 3. We check (using a calculator or computational software) that
3928 = 1 (mod 9929) and that (37252 — 1,9929) = 1 and (3%928/17 _ 1, 9920} = 1, since 2 and
17 are the only primes dividing . Therefore, n passes Pocklington’s test and sg is prime.,

Note that 3329 =28 . 13+ 1 and 13 < 25, so it is of the form that can be tested by Proth's test.
With the help of computational software, we compute 383229-1/2 = _§ (med 3329), which shows
that 3329 is prime.

We apply Pocklington’s test to this situation. Note thatn — 1 = kg%, sowelet F =gt and R = h
and ebserve that by hypothesis # > R. Since g is the only prime dividing F, we need only check
that there is an integer a such that "1 = 1 (mod ») and (a®@—»/7 — §, n} = 1, But both of these
conditions are hypotheses,

Section 9.6

1.a.20 b 12 36 d.48 e 180 [ 388080 g 8640 h.125411,328,000

3. 65,520

5. Suppose that m =20p{' -+ py. Then A(m) = [M29), $(p), ..., $(p%)). Furthermore,

i1

¢ (n) = g (2M)¢ (p?) v qﬁ(p;‘). Since A(2'0) = 1, 2, or 22 when fy= 1,2, or g > 3, respectively,
we have A(210) | ¢(2%) == 2%, Since the least common multiple of a set of numbers divides the
product of these numbers, or their multiples, we see that A(n) ! ¢ (m).

. Forany integer x with {x,n) == (x,m) = 1 we have x* = ! (mod ) and x* = 1 {med m). Then the

Chinese remainder theorem gives us x® = 1 (mod [n, m]). But since r is the largest integer with
this property, we must have [#, m}=n, som | n.

Suppose that ax = b (mod n). Multiplying both sides of this congruence by a*® 1 gives
a*y = gy (mod m). Since a* = | (mod m), it follows that x = g ~1p (mod m).
Conversely, let xg = a*™~1p (mod m). Then axy = aa*™~1p = a*p = b (mod m), so g is a
solution.

a. First, suppose that m = p°. Then x(x°~! — 1) = 0 (mod p%). Let r be a primitive root for
p*. Then the solutions to x*~! = 1 (mod p®) are the powers ¥ with (c — Dk = I (mod ¢(p%)):
there are (¢ — 1, ¢(p®)) of these, Since 0 is a solution, there are 1 -+ (¢ — 1, ¢ (p*)) solutions. If
m = pf' “e pf’, the result follows by the Chinese remainder theorem since there is a one-to-one
correspondence between solutions modulo 1 and the set of #-tuples of solutions to the system of
congruences madulo each of the prime powers.

b. If {c — 1, ¢ (m)) = 2, then ¢ — 11s even. Since ¢(p?) is even for all prime powers, except 2,
{c— 1,¢( p?" ) =2 for each I. By (a) the number of solutions is 3", If 2! is a prime-power factor,
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then ¢{m) = ¢ (m/2), and since %€ and x have the same parity, x is & solution modulo m if and
only if it is & solution modulo 1 /2, so the result still holds.

Let n = 3pg, with p < ¢ odd primes, be a Carmichael number. Then by Theorem 9.23,
p— Y| 3pg— 1=3p—g+3g~1 50 p~1[3q —} say (p—Na=3g -1 Since

g > p, we must have a > 4. Similarly, there is an integer & such that (g — Db =3p—1L
Solving these two equations for p and ¢ yields g = (2a +ab—3f(ab—9) and p=

(2b +ab—3)/(ab—9 = 14 (2b + 6)/(ab — 9). Then since p is an odd prime greater than 3,
we must have 4(ab — 9) = 2b - 6, which reduces to b(2a — 1) <21 Since a = 4, this implies
that b < 3. Then4(ab — 9) <256+ 6<12,50ab <21/4,50a < 5. Therefore,a =4 or 5. b =3,
then the denominator in the expression for g isa mulfiple of 3, so the numerator must be a multiple
of 3, but that is impossible since there is no choice for a that is divisible by 3. Thus b = 1or 2.The
denominator of g must be positive, so ab > 9, which eliminates all remaining possibilities except
a =75, b=2,in which case p = 11 and g = 17. So the only Carmichael number of this form is
561=3-11-17.

Assume that g < r. By Theorem 9.23, g — 1lpgr—1=(g~Dpr+pr— 1. Therefore,
qg—1|pr—Lsayalg — 1) = pr — 1. Similarly, b(r — 1y = pg — 1. Since g < r, we must have
a > b. Solving these two equations for g and 7 yieldsr =(pla—D + a(b— D)/ (ab— p*randg =
(p(b— 1) + bla— D)/ {ab — pPy=1+ (p% + pb — p — b)/ab — p*). Since this last fraction
must be an integer, ab — p? < p? + pb — p — b, which reduces to a(b — 1) < 2p% 4+ plb—1
ora— 1< (2p*/b) + (p(b — 1)/b) = 2p* + p. So there are only finitely many values for a.
Likewise, the same incquality gives us b(a — ) = 2p2+ pb—porbl@a—1-p)= 297 —p.
Since a > b and the denominator of the expression for g must be positive,a = p + I.Ha=p+1
then (p+ Vg -=pg—p+4d— 1 = pr — 1, which implies that p | g, a contradiction.
Therefore, a > p+ L, andsoa—1—p is a positive integer. The last inequality gives us

b < bla — 1 - p) <2p* — p. Therefore, there are only finitely many values for b. Since a
and b determine g and 7, there can be only finitety many Carmichael rumbers of this form.

We have g, (ab) = ((ab)*® — D/n = (aMpAaY ) M ] 4 A 4 A~ 2) /i =
(@® — DE® — e+ (@ - D+ B — DY/n = g,(a) + g,(b) (mod n). At the last
step, we use the fact that n? must divide (@@ — (P — 1), since A(n) s the universal exponent.

Section 10.1

. 69,76,77,92, 46, 11, 12, 14, 19, 36,29, 84, 05, 02,00, 00,00, ...

10

Caa=1(mod20) b.a=1(mod30,030) c.a=1(mod 11111 d.a=1(mod2* -1
_a.31 b.715827,882 <31 d.195225786 e 1,073,741,823 £1,073,741,823

. 8 64, 15,71, 36,64,15,71,36, ...

. First we find that ord,; 8 is 10 so that t = land s = 5. Since ords 2 = 4, the period tength is 4.

. Using the notation of Theorem 10.4, we have ¢ (77) = 60, so ordy7 xg is a divisor of 60 =22-3-5.

Thus the only possible values for s are the odd divisors of 60, which are 3, 5, and 15. Butord; 2 =12,
ords 2 =4, and ords 2 = 4. Hence, by Theorem 10.4 the maximum period length is 4.

24,25, 18, 12, 30, 11, 10, 21

Check that 7 has maximal order 1800 modulo 225 _ 1. To make a large enough multiplier, raise 7
to a power relatively prime to ¢ (225 — 1) = 32,400,000, for example, to the 1 Ith power.

665
a.8,2,8,2,82, ... b9126138, 18,2, 4, 16, 3,9, 12,6,13,8,18,2, 4, 16,3, ...
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Section 10.2

- We select k = 1234 for our randem integer. Converting the plaintext into numerical equivalents
results in 0700 1515 2401 0817 1907 0300 2423, where we filled out the Tast block with an X_
With the help of a computational program, we find y = rk = 6123 = 517 (mod 255 I}. Then for
each block £ we compute § = P - 5% = P . 3312% = P 651 (mod 2551). The resulting blocks are
0700 - 651 == 1622 (mod 2551), 1515 - 651 = 1579 (mod 2551), 2401 - 651 = 1839 (mod 2551),
0817 - 651 = 1259 {mod 2551), 1907 - 651 = 1671 (mod 2551), 0300 - 651 = 1424 (med 2551),
and 2423 - 65! = 855 (mod 2551). Therefore, the ciphertext is (317, 1622), (517,1579),
(517, 183%), (517, 1259), (517, 1671, (517, 1424), (517,855). To decrypt this ciphertext, we
compute =@ = 5173511713 . 5192537 = 337 (mod 2551). Then for each block of the
ciphertext we compute P = 337 . § (mod 2551). For the first block we have 337 - 1622 = 0700
(mod 2551), which was the first block of the plaintext; and so0 on.

3. RABBIT

« (¥, 5) = (2022, 833); to verify this signature, we use a computational program to find that
V)= 20228 8017022 = 1014 = 338 = V, (mod 2657)

« Let §; = Pip* and & = Pob* in the ElGamal cryptosystem. If Py is known, then it is easy to
compute an inverse for P; modulo p.Then M= £y (mod p). Then it is also easy to compute an
inverse for b* (mod p). Then Py = b8, (mod p). Hence the plaintext P; is recovered.

Section 10.3

La8 b5 2 d6 e30 20

« & At each stage of the splicing, the kth wire of one section is connected to the §{k)th wire, where
S{k) is the least positive residue of 3k — 2 (mod 50).

b. At each stage of the splicing, the kth wire of one section is connected to the S(k)th wire, where
S(k} is the least positive residue of 21k + 56 (mad 76).

¢. Ateach stage of the splicing, the kth wire of one section is connected to the ${(k)th wire, where
S(k) is the least positive residue of 2k — 1 (mod 125),

Section 11.1

Lal bl4 ¢1,34,91012 d. 1,4,5,6,7,9,11,16, 17

L=, —1,1

. a (1—71) =7 =7=492.7=52.7=3.7= 1 (mod 11)

b. (7,14,21,28,35) = (7, 3, 10, 6, 2) (mod 11) and three of these are greater than %, S0
(3)=cm

. We have (:Pg) = ("71) (%) by Theorem 11.4. Using Theorems 11.5 and 11.6, we have: If p = 1
(mod 8), then (-72) = (1) = 1; if p=3(mod8), then (—?2) = (D= =1 if p=—1
(mod 8), then (-?2) = (~D(l) = — 1 if p = —3 (mod 8), then (%2) =1)(~I) = ~1.

- Sincep —l=—-Lp—-2=-2 ..., (p+1)/2=(p— 1)/2 (mod p), we have ((p - 1)/2)E =
—{p — Di=1(mod p) by Wilson's theorem (since P =3 (mod 4) the minus signs cancel}. By

Euler’s criterion ((p — 1)/2)1(7~ /2 = (g)( ... (L"—;ﬂﬁ) = (—1)" (mod p), by definition of
the Legendre symbol. Since ((p — 1)/2)= +1 (mod p)and (p — 1)/2 is odd, we have the result.
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It p = 1 (mod 4), then (—7) = (:pl) (3) —1.1= LIt p="3 (mod 4), then (:;) = (?)(g):
(1 1=—1L

arxr=4or2(mod7?) b.x=1 {mod7) ¢ no solutions

Suppose that pisa prime greater than 6. At least one of the three incongruent integers 2, 3, and 6
is a quadratic residue of p, because if neither 2 nor 3 is a quadratic residue of p, then2-3=61s
a quadratic residue of p. If 2 is a quadratic residue, then 9 and 4 are quadratic residues that differ
by 2; if 3 is a quadratic residue, then 1 and 3 are quadratic residues that differ by 2; while if 6 isa
quadratic residue, then 4 and & are quadratic residues that differ by 2.

a. Since p=4n -+ 3, we have 2n +2=(p + 1)/2. Then x% = (Ea™th)2 =g = alPthl =
2P~D/%q = 1.q = a (mod p) using the fact that 2P=1D/2 = 1 (mod p) since a is a quadratic
residue of p. By Lemma (1.1, there are only these two solutions.

b. By Lemma 11.1, there are exactly two solutions to y2 = 1 {mod p), namely y = +1 (med p).
Since p =5 (mod 8), we know that —1 is a quadratic residue of p and 2 is a quadratic
nonresidue of p. Since p = 8r + 5, we have dn4+2=(p—1f2and 2n+2= (p+3/4
Then {ian+1)2 = a{p+3)/4 (mod ) and {:Ezzl-?-lan-l-l)?, == 2(p-1}/2a(p+3)/4 = _a(p+3)/-$ (mod p)
by Euler’s critetion. We must show that one of P or (P34 is congruent to a (mod p).
Now a is 2 quadratic residue of p, s0 2(P~12 = 1 (mod p), and therefore aP=V/4 solves x2 = 1
(mod p). But then aP~D/* = %1 (mod p), that is, aP1)/4 = La (mod p) or Lot =g
{mod p), as desired.

x=1, 4, 11, or 14 (mod 15)
41, 96, 135, 278, 723, 866, 905, 954 (mod 1001)

If x5 = a (mod peTh, then x} = a (mod p¥). Conversely, if x2 = a (mod p°), then x2=a+bp*

for some integer b, We can solve the linear congruence 2xgy = —b (mod p), say ¥ = Yo-

Let x; = xg -+ yop®. Then x% = xg + 2xgyept =a -+ pib + 2xy o) = a (mod peth) since

p i 2xgyo + b. This is the induction step in showing that +? = a (mod p®) has solutions if and
o faY_

only If(p) =1

a4 bBE 0 416

Suppose that py, P, . - - » Pp Ar8 the only primes of the form 4k + LLet N =4{pspy- -~ p,,)2 + L
Let g be an odd prime factor of N. Then g # p; fori = 1,2,...,7,but N=0 {mod g), so

4(pypa - - - p)? = — 1 {mod q). Therefore (—T‘) = 1,50 g == 1 (mod 4) by Theorem 11.5.

Let by, by, b, and b, be the four modular square roots of 2 modulo pg. Then each b; is a solution to
exactly one of the four systems of congruences given in the text. For convenience let the subscripts
correspond to the lowercase Roman numerals of the systems. Suppose that two of the b;’s were
quadratic residues moduto pg. Without loss of generality, say by = y% {mod pg) and by = y%
(mod pq). Then from systems (i) and (ii) we have that y} = by = x, (mod ¢) and yi=by=—x
(mod gq). Therefore, both xp and —x, are quadratic residues modulo g, but this is impossible since
g =3 (mod 4}. The other cases are identical,

Let » be a primitive root for p, and let @ ==7° (mod p) and b = r! (mod p)with 1 <5, = p— L
I a=b(mod p), then s =1, and so 5 and ¢ have the same parity; by Theorem 11.2, we have

part {i). Further, ab = #5% (mod p). Thus the right-hand side of (i) is T exactly when s and t have
the same parity, which is exactly when the left-hand side is 1. ‘This proves part (ii). Finally, since

a? = r® (mod p) and 2s is even, a® must be 2 quadratic residue modulo p, proving part (ii).

If r is a primitive root of ¢, then the set of all primitive roots is given by (| (k, pl@)) =, 2p) =
1}. Thus the p — 1 numbers (r¥ [k isodd, k# p, 1= k < 2p] are all the primitive roots of 4.
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On the other hand, ¢ has (g — 1)/2 = p quadratic residues, which are given by {r2, 14, ..., r¥%}.
This set has no intersection with the first one.

First suppose that p = 22" + 1 is a Fermat prime, and let r be a primitive root for p. Then
$(p) = 2%". An integer a is a nonresidue if and only if & = r* with k odd, Byt then (k,p(p)) =1,
50 a is also a primitive root. Conversely, suppose that p is an odd prime and every quadratic
nonresidue of p is also a primitive root of p. Let r be a particular primitive root of p. Then r* isa
quadratic nonresidue and hence a primitive root for p if and only i k is odd. But this implies that
every odd number is relatively prime to ¢{p), so ¢(p) must be a power of 2. thus p =25 4. 1 for
somte b. If b had a nontrivial odd divisor, then we could factor P contradicting the primality of p.
Therefore, b is a power of 2, and so p is a Fermat prime,

a.Wehaveq=2p+1=2k+ N+ 1=8+7,50 (g) = 1by Theorem 11.6. Then by Euler's

criterion, 24072 = 28 = | (mod g). Therefore, g | 27 — 1,
b. 11=4(2) + 3 and 23=2(11) + 1, s0 23| 2" — 1= A1, ,, by part (a); 23=4(5) + 3 and
47=2(23) + 1, 50 47| My3; 251 = 4(62) + 3 and 503 = 2(251) + 1, s0 503 | Mo,

Let g =2k + 1. Since ¢ does not divide 22 + 1, we must have, by Exercise 38, that £ = 0 or 3
{mod 4). Thatis, k=0,3,4,0r7 (mod 8). Theng =2-(0, 3, 4, or 7+ 1=%1(mod 8).

. 20t T = _ .
Note that ("—%*ﬂ) = (’—%JU—)) = (11;1) since j2 is a perfect square. Then Z'}’ZIZ (LJ;U) =

f;lz (l:;r—l) = Zf;zl (}%) = Zf__fll (i—) - 1= —1. Here we have used the method in the
solution to Exercise 10 to evaluate the last sum, and the fact that as J muns through the values |
through p — 2, so does 7,

Let r be a primitive root of p. Then the congruence x% = ¢ {mod p) has a solution in x if and only
if the congruence 2 - ind,x = ind,a (mod p — 1) has a solution in ind,x. Since p — 1 is even, the
last congruence is solvable if and only if ind, « is even, which happens whena =r2,4,. .. rP—),
ie., (p — 1)/2 times,

Wehave g = 2@k + 1D+ 1=8k+3,s0 2isa quadratic nonresidue of g. By Exercise 33, Zis a
primitive root,

Check that g =3 (mod 4), so —1is a quadratic nonresidue of gq. Since 4 = 22, we have

(:i) = (:1) (2?2) = (=1)(1) = - 1. Therefore, —4 is a nonresidue of ¢. By Exercise 33, —4 is

q q
a primitive root,

a. By adding (26) o both sides, we complete the square. a
b. There are four solutions to ¥2 = C + a (mod Pq)- From each, subtract 25.
¢. DETOUR

-1 b.-1 e&-1 d-1 el £t
1,34

Section 11.2
a-1 bl ¢l d1 el f1
If p == 1 (mod 6, then there are two cases: i p=1(mod 4), then (‘?1 =1and (%) = (%) =

()=t () =1 =S (3) -1 5)=(8).50 () -
(—D(=D=1LI p=—1(mod6) and p = 1 (mod 4), then —?3):(71 %)

(3) =-v1tr =m0t (2) = (2)(3) =0 (5) = (8)- () 1.

|
S’
e
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. p=1,3,9, 19, 25, or 27 (mod 28)
. a. F; =22 4+ 1="5. We find that 3(F1-1/2 = 36-1/2 = 32 = 9 = [ (mod Fy). Hence, by Pepin’s

test, F; = 5 is prime.

b, Fy— 22 + 1= 257. We find that 307~1/2 = 3057-0/2 = 3128 = (3816 == 13616 = (136%)* =
64% = (64%)2 = 2412 =256 = —1 (mod 257).

c. 332,?63 = 3255'128 . 3128 = 94128 . 3[28 = -1 (mod F4)

. ‘The laltice points in the rectangle are the points (i, j), where 0 < i < p/2 and 0 < j < q/2. These

are the lattice points (7, jy withi =1,2,...,(p—D/2and j=1,2,. ..., (g — 1)/2. Consequently,
there are ({(p — 1)/2){(g — 1)/2) such [attice points.

b. The points on the diagonal connecting O and C are the points (x, ¥}, where y = (g/p)x.
Suppose that x and y are integers with y = (g/p)x. Then py = qx. Since {p, g} = 1, it follows
that p | x, which is impessible if 0 < x < p/2. Hence, there are no lattice points on this diagonal.
¢, The number of lattice points in the triangle with vertices 0, A, and C is the number of lattice
points (¢, fywithi = 1,2,...,(p — 1)/2and 1 < j < ig/p. For a fixed value of i in the indicated
range, there are {ig/ p] lattice points (i, ) in the triangle. Hence, the total number of lattice points
in the triangle is EEZID/Z fig/p].

d. The number of lattice points in the triangle with vertices O, B, and C is the number of lattice
points (7, ) with j = 1,2,...,{g — )/2and I = < jp/q. Forafixed value of j in the indicated
range, there are [ jp/q]lattice points (7, f) in the trangle. Tence, the total number of lattice points
in the triangle is qu;u/? Lir/al

e. Since there are ((p — 1)/2)((g — 1}/2) lattice points in the rectangle and no points

on the diagonal OC, the sum of the numbers of lattice points in the triangles OBC and

OAC is ((p — 1/2)((g — 1)/2). From parts (b) and {c), it follows that 32 "[jq/p]+

T4 p/q1= ((p — 1/2)((q — D/2). From Lemma 113, it follows that (2)=(-pree

B2, . —1)/2,
and (%) = (—T@P}, where T(p,q) = Z;’;[D/z[;p/q] and T(g, p) = fo:[ V2t iq 1 pl. We
conclude that (f;—) (%) = (= 1HP-D/BUe=D/2} This is the law of quadratic reciprocity.

First suppose that @ = 2. Then p = *q (mod 8), and so (%) = (%) by Theorem 11.6.
Now suppose that a is an odd prime. If p=g (mod4da), then p=¢q (mod @), and so
(L) = (£). Since p = q (mod 4), we have (p — 1)/2 = (g — 1)/2 (mod 2). Then by Theo-
rem 117, (%) = (B (— 1= /2a=0/2) — (2) (—DHa=D/2a—1/D = (%) Butif p=-¢

a

{mod 4a), then p == —g (mod a), and so (:ai) = (E) Since p = —q (mod4), we have
(p ~ 1)/2=({q — 1/2) -+ 1 (mod 2). Then by Theorem 11.7, (;) = (2} (= DUr=b/A@1/2) =

(:;l) (—Dla=H/HNla—D/2) - (_;_1) (—Dle-bs2 (g) = (%) The general case follows from
the multiplicativity of the Legendre symbol,

a. Recall that & = 1 if and only if x is a multiple of 2. First we compute (e@ri/mkyn —
e@mifmimk — (p2niyk . 1k = |, 50 ¢@7U/ME i5 an nth root of unity. Now if (k,n) =1, then
((2ri /n)k)a ts 2 multiple of 27/ if and only if » | a. Therefore, a =n is the least positive
integer for which (e/271/m%)a — | Therefore, ¢**/"* is a primitive nth root of unity. Conversely,
suppose that (k,n) = d > 1. Then (e{%/Wky/d = nik/d — 1, since k/d is an integer, and so in
this case, e27/"M¥ is not a primitive nth root of unity.

b. Let m == + kn, where k is an integer. Then ™ = ¢/ = ¢¢%" = ¢! Now suppose that ¢ is
a primitive n2th root of unity and that ™ = ¢!, and without loss of generality, assume that m >/,
Trom the first part of this exercise, we may take 0 <! <m < n. Then ¢ =¢" — fl=clgm-t—1).
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Hence, ¢~ = 1, Since n is the least positive integer such that " = 1, we must have m — / = 0.
¢, First, fz+1) = eZn’i_(z+1) — e 2mi(zkl) etriz dii e 2miz g Aml _ emiz 1 _ e~ miz § —
F(@). Next, f(—g) = ¢ 21z — g2z o _(g27ic — €”2"2) = _ f(z). Finally, suppose that
f(2) =0, Then 0 = e27% — ¢~ 2712 . g=Tmiz(pdniz _ 1) oo o4miz o | Therefore, 4miz = 2min
for some integer 1, and so z =n/2.
d. Fix y, and consider g(x) = x" — y™ and h(x) = (x — y)(¢x — Ty en LDy
as polynontials in x. Both polynomials have degree n. The leading coefficient in h(x) is
gHRbrt =D o e nO=D/2 = (emy®=1/2 — | since 1 — 1 is even. So both polynomials are
monic. Further, note that g(¢ " %y) = ) W=y =y =0fork=0,1,2,...,n— 1
Also #(¢ %y} has ghe—2y _ rky = chy — ¢y =0 as one of its factors. So gand & are
monic polynomials sharing these # distinct zeros (since —2k runs through a complete set of
residues modulo n). By the fundamental theorem of algebra, g and # are identical.
e. Let x = 2"/ and y = ¢~27/2 in the identity from part (d). Then the right-hand side becomes
I‘Iz;é gkebrrz _ é—fke—'Zm'z) — ]‘];:;é (8271'1(z+k/n) _ e—2rri(z+k/n)) - 'kl;é Fz +k/n) =
£z - ng;lm fa+kin- H:;ln—!-i)/z S (@ +k/n). From part (c), this last product is
- —1 -

equal 1o [TiZ¢ o £ @+ kM) = [T £ Gt (o =R/ =TI £ a4 1=k /) =
}_[i":_ln/z f {z—&/n). So the product above is equal o f(z) - Hg:ll)/z J @+ k/n)-
P2 fa—tkm = £ - Mee™ f @rk/my - f @ - k/m). Then noting that the left
side of the identity in part (d) is (£27/¢)" — (e iy = g2minz _ p—2winz _ Jf(nz) finishes the
proof.
f.Fori=1,2,...,(p— 1)/2, let k; be the least positive residue of /g modulo p, Then

2 £ tajpy = TEPT £ (ky/p) by the periodicity of f established in part {c). We
break this product into two pieces: [T, 5 f (ki/p) - Tlgspp £ (a/p) = Miyeppa £ kit p) -

—1/2 »

Mo pre =f kil P) =Tl £ (472) - Thispa = f (0 = )/ D) = T1E7Y 7 1/ 2y (-1,
where N is the number of k; exceeding p/2. But by Gauss’s lemma, (—1)¥ = (%) This estab-
lishes the identity.
g let z=1/p and n =g in the identities in parts (e} and (f). Then we have (%) =

22 ey 18 @ioy =TIV TIES Y £ Ufp 4 ki) - F U/ —kjg) =

Ly TS P £ g +1/p) - £ (Kjg —1/p) - (~D)® D212 where we have used
the fact that f(--z) = — f(z) and the fact that there are exactly ((p— 1/2) - ((g ~ 1)/2) factors in
the double product. But by symmetry, this is exactly the expression for (%) (—1lp=Di2k(lg -1

Since p = 1 (mod 4), we have (%) = (g) And since p = 1 (mod ¢) for all primes g < 23, we

have (5) = (gl) = L Ifais an infeger with 0 < a < 29 and prime factorization a = PiP2 P

theneach p; < 29and {2 ) ={£) ... {2} = ¥ — |, So there are no quadratic nonresidues
Py p P ? q

medulo p less than 29. Further, since a quadratic residue must be an even power of any primitive
root r, we know that r = r! cannot be less than 29,

alfae?, thena=gkforsomek=1,2,...(p - }/2.Sol<a< g{p—D/2 = {(pg—1)/2.
Furthermore, (p, k) = 1 because & < (p — 1)/2, and p is prime. Because (g, p) = I, it follows
that (a, p) = (gk, p) = 1, so that @ € , and hence, T C 5. Now suppose a € § — T. Then
1<a=<(pg—1/2and (a, p) = 1. Because a ¢ T, it follows that g # gk for any k. We conclude
that (a, g} = 1, which means that (e, pg)=1, and so @ € R. Thus S — T C R. Conversely, if
as R, thenl<a < (pg— /2 and (a, pa) = 1. This implies that (@, g) = 1, and so a is not a
multiple of 4. Hence, a ¢ T, sothata € § — T It follows that R C § — 7. Therefore, R = § — T.
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b. By part (a), R =8 — T, so that by Buler’s critedion, [[ a= [1 a |1 a=Alg s2g -

aes acR aeT
((p — D/2)a) = AgPV2(p - /D)1= A (£) ((p — D/D! (mod p). Notethat (pg — /2=
plg — 1)/2 + (p — 1)/2, so that we can evaluate [Ta=Wp— ppe-D2((p — /2 =

acs

(=@ V2((p — D/2)! {mod p) by Wilson's theorein. When we set these two expressions
congruent to each other modulo p and simplify, we obtain A = (—1)@~ /2 (%) (mod p) as
desired.
¢. Because the roles of p and g are identical in the hypotheses and in parts (a) and (b), the result
follows by symmetry.
d. Assame that (—1@D/2 (?5) = (= Dip-D/2 (-;1). Then A == 41, so that A = £1 (mod pg).
Conversely, suppose that A =1 (mod pg). Then A= 1 fmod p) and A =1 (mod g). By parts (b)
and (c), we have (—D@ D72 (%) = A = (—Dip-bi2 (%) The same argument works if A= —1
(mod pq).
e.If g is anintegerin R, it satisties 1 <a < (pq — D /2. Therefore, its additive inverse modulo pg
isintherange (pg + /2 < —a = pq — 1 and in the set of reduced residue classes. By the Chinese
remainder theorem, the congruence a2 = 1 (mod pq) has exactly four solutions, I, —1, b, and —5
{mod pg) and the congruence a® = —1 (mod pg) has solutions if and onlyif p=g=1 (mod 4},
and in this case, it has exactly four solutions, i, —i, ib, and —ib (mod pg). For each element
acR,(a,pgt=1soahasa multiplicative inverse u. It follows that exactly one of i, —pt isin R.
et ={aeR| a? = +1 (mod pqg)}. Then when we compute A, all other elements will be paired

with an element that is either its inverse or the negative of its inverse. Thus, A= Ma=]la
aéR aelt/

(mod pg). Soif p=g=1 (mod pg), then A = Ha=xl-c-i- ic) =% =1 (mod pg).

<l
Conversely, in the other case, A = Il a=+Q -ac) # +1 (mod pg}, which completes the proof.
ael’

£, By pats (d) and (e), we have (— pya-h/2 (%) = (=])le-Di2 (‘3) ifand onlyif p=g=1
(mod 4). So if p =g = I (mod 4), we have (%) = (%) But if p = 1(mod 4) while g = 3
(mod 4}, then we must have — (%) # (1;3), which means we must change the sign, yield‘ing
(%) = (g). The case where p = 3 (mod 4) but g = 1 (mod 4) is identical. If p = ¢ =3 (mod 4),

then we have — (%) £ — (%) so that we have — (%) = («3) , which concludes the proof.

Section 11.3

.al bo~1 ¢l d1 e—1 f£1

. 1,7, 13, 17, 19, 29, 37, 49, 71, 3, 91, 101, 103, 107, 113, or 119 (mod 120}

. The pseudo-squares moduto 21 are 5, 17, and 20.

. The pseudo-squares moduto 143 are 1, 3, 4, 9, 12, 14, 16, 23, 25, 27, 36, 38, 42, 43, 49, 52, 56,

64, 69, 75, 81, 82, 92, 100, 103, 108, 113, 114, 126, and 133,

. Since n is odd and square-free, n has prime factorization n = pypy - -+ Py Let b be one of the

(p — 1)/2 quadratic nonresiducs of pj, so that (%) = —1. By the Chinese remainder theorem,
let @ be a solution to the system of linear congruences ¥ = b (mod pp) and x = 1 (mod py),

2 <i<r. Then (ﬁ) - (}{7_[) =1, (-g;) = (i) =1 ..., (-g—) = (7}_) — 1. Therefore,
(5)=(2)(8) - ()=co-rr=t
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11. a, Note that (a, b) = (b, rd=(rnr) = = {ry—1, ry) = 1, and, since the g; arc even,

13.

15

17.

19

. We have 20561-1/2 _ 2280 (210)28

the r; are odd. Since rq = b and a = &;r; (mod &), ( ) ( ) ( ( ): (:_OL)(:_CI')
(_1)((ro—l)/2)((rl-l)/2] by Theorem IL.11. If ¢, = 1, then (%) 22 (— Dlro= /(e - 1)/2)(101)
If €, = ~1, then ( a ) = (1 Co=1/2 and 5o we have (5) = (— 1)la— 1)/2)«r;+n/z)(;?)
(— 1) o=1/D-r— 1)/2)( ) = (= 1){Co—1/D((err,~ 1)/2)( 1) since (ry + /2 and

—{r; — 1)/2 have the same parity. Similarly, (r") = (— 1)((rﬁ1)/2j((qrrl)/2)(fx) so that ( ) =

(— D ro=D/2:{err— 1/ 23— 1)/ 2K (ear 2“1)/2}(—1) Proceed inductively until the last step, when

() = (75) =1

b. If either ;| = 1 (mod 4) or €r; =1 (mod4), then ({r,_, — D/2¥(er; — 1/2) is even.
Otherwise, that is, if r;_; = €r; =3 (mod 4), then {({r;_, — D/2Y({(e;r; — 1D/2) is odd. Then
(rut — D/2){e,r,, — 1)/2), the exponent in part {a), is even or odd as T is even or odd.

a—-1 b-1 ¢-1
Letn; = pf‘psz <o pirandny = qf‘q? e qf’ be the prime factorizations of #; and #,. Then
a a, b b,
by the definition of the Kronecker symbol, (nla'Tz) = (%) o ([%) (ql) L (ql) F =
r £

(2)Ge)

If @ = I (mod 4), then by Exercise 16, we have (f;) (;’I) This last is equivalent to

the Jacobi symbol, so by Theorem 11.10(i), we have (ial) ( ) (1) using Exercise

16 again. If ¢ = 0 (mod 4), say a = 2¢ with ¢ odd and § > 2, then Exercise 16 gives

a =D/ (0 —1) /23 = (te=0/2)-(bra—1)y2) (1
(#)=(2) O () and () = (B) -p 000 (1), since
1y =1y (mod (1)), we have (FFIL) = M) and since 4 | a, we have n; = n, (nod 4), and

2
s0 (=D DDAO=D/2) = (. yO=D/2:(2=0/2), I 5 =2, then certainly (1) = (,,l) If

5> 2, then 8| g and 1, = n,; (mod 8), and hence n3 =n2 (mod 8). So (—) = (=D

(—103=B/8 _ (%) Therefore, (,%) = (%)

Ifa =1 (mod 4), then |a| = I (mod 4) 1fa >0and Ja|=—1{mod4)ifa <0, so by Exercise 16,
() = (4 = (3) = 0™ = 1ifa > 0and = —1ifa<0. 1« = 0 (mod ), then

el

a = 2°t with ¢ odd and ¢ > 2, so by Exercise 16, (!ai 1) (Ia! 1) (— 1)_ lal— 1) Since

lrI

522, checkthat(ll ]) Hz (Indeed, a| —1=7 (mod 8) if 5 > 2 Also (-7 (K1) =
(-n'7F ( )_( B+ Z1if > Qand = —1ifr <0,

Section 11.4

=(— 98)28 = 98)2)14 — 6714 (672)'] 17 =1
(mod 561). Furthermore, we see that (%) = 1 since 561 = 1 (mod 8). But 561 =3 - 11- 17
is not prime.

STUDENTS-HUB.com

Uploaded By: anonymous



672

Answers to Odd-Numbered Exercises

. Suppose that 2 is an Euler pseudoprime to both the bases @ and b. Then @~ /2 = (%) (mod 1)

and p—0/2 = (%) (mod r). Tt follows that (aby~ /2 = (%) (%’) = (%) Hence, 2 is an Buler
pseudoprime to the base ab.

. Suppose thatn =5 {mod 8) and » is an Euler pseudoprime to the hase 2. Since n = 5 (mod 8) we

have (%) — 1. Since n is an Euler pseudoprime to the base 2, we have 2-D/2 = (%) =—1

(mod n). Write n — 1= 22¢, where ¢ is odd. Since 901-Df2 = 3% = —1 (mod ), n is a strong
pseudoprime to the base 2.

7. 1 =5 (mod 40}

11.

~1 o e

. 80

Section 11.5

. 1229

. Since p,q = 3 (mod 4), we know that —1is not a quadratic residue modulo p or g. If the four

square roots are found using the method in Fxample 11.19, then only one of each possibility for
choosing + or -- can yield a quadratic residue in each congruence, so there is only one system
that results in a square.

. If Paula chooses ¢ = 13, then v = 713, which is a quadratic residoe of 1411, and which has

square root u = 837 (mod 1411). Her random number is 822, so she computes x = 8222 = 1226
(mod 1411) and y = vXx =713 961 = 858 (mod 1411). She sends x = 1226, y = 838 to Vince.
Vince checks that xy = 1226 - 858 = 713 (mod 1411) and then sends the bith = 1to Paula, so she
computes 7 = 827 = 1193 (mod 1411) and then ur = 937 . 1193 = 964 (mod 1411}, which she
sends to Vince. Since Vince sent b= 1, he computes 964% = 858 (mod 1411) and notes that it is
indeed equal to y. !

. The prover sends ¥ = 14032 = 1968409 = 519 (mod 2491). The verifier sends {1, 3}. The prover

sends y = 1425. The verifier computes y2 .5 85 = 14257 - 197 - 494 == 519 = x {mod 2491).

. a. 959, 1730, 2895, 441,2900, 2684  b. 1074 . 107429591730 - 4412684 =336 = 403%

(mod 3953)

If Paula sends back a to Vince, then a? = w? (mod »), with a # w (mod n). Then a? — w? =
(a—wia-+wy=0 (mod 1), By computing (a — w,n)and {a +w. ), Vince can produce a
nontrivial factor of n.

Section 12.1

a4 b AIG ¢ 533076 .53 e 009 F.000999
. 2,3/25 b.11/90 ¢ 4/33
. b =257, with r, s, t, and i positive integers

. a. pre-period 1, period 0 b. pre-petiod 2, period 0 c. pre-period 1, period 4

d. pre-period 2, period 0 e. pre-period 11, period 1 £ pre-period 2, period 4

Ca3 b1l 37 d.101 e41,271 K713
11.

Using the construction from Theorem 12.2 and Example 12.1, we show by mathematical
induction that ¢g =k — 1 and ¥ = (kb —k+DjF - 132, The inductive step is as fol-
lows: cgyy = [bye) = [(kE® — Bk + )/ (b —~ 1?] = [(k(b —~ D2+ b+ 1) =R/ — 1] =
[k + bk + 1D —k)/b— DY) =k, and =k + Db - K, ifk#b—2.Ifk=>b—2, then
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€p—2 = b, 50 we have determined b — 1 consecutive digits of the expansion. From the bino-
mial theorem, (x + 1)? = ax + 1 (mod x2), so ordy,_jy2 b = b — 1, which is the pericd length.
Therefore, we have determined the entire expansion,

The base b expansion is (.100100001. . .},, which is nonrepeating and therefore, by Theorem 12.4,
represents an irrational munber,

Let ¥ be a real number. Set ¢y =[yjand ¥y =v — ¢y Then 0 <y <1 and ¥ = o+ v
From the condition that ¢, < & for k=1,2,3,..., we must have ¢, = 0. Let c; =[2y} and
Y2 = 2y — 3. Then yy == (63 + ¥23/2, 80 ¥ = g + ¢/ 11+ €3/21 + 14/21. Now let c3 = [3pn]
and y3 =3yy — c3. Then yy = (e5 + ¥3)/3 and 50 y = g + 1/ 11+ /21 + ca/31 4+ y3/31L
Continuing in this fashion, for each k =2,3, ..., define ¢; = [ky;_ ] and y, = kyp_; —
Then y = cp + ¢1/ 1+ e /2t + ¢3/31+ - - - + e /kt + ¥,/ kL Since cach ¥, < 1, we know that
Hmy ;o0 ¥4/ k! =0, s0 we conclude that y = e+ o/ 11+ e/21 +eq/3 4+ - + Skt

In the proof of Theorem 12.2, the numbers py, are the remainders of 5" upon division by p. The
Process Tecurs as soon as some y; repeats & value. Since 1/p = {cje;. . . c¢p_1) has period length
P — 1, we have, by Theorem 12.4, that ord, b = p — 1, so there is an integer k such that Fr=m
(mod p). So the remainders of mb" upon division by p are the same as the remainders of b*p"
upon division by p. Hence, the nth digit of the expansion of m /p is determined by the remainder
of b+ ypon division by p. Therefore, it will be the same as the (k + n)th digit of I/p.

» must be prime with 2 a primitive root.

Let yb/~!=a + ¢, where @ is an integer and 0 < € < 1. Then [yb/] — byt " N=[{a+ed]—
bla+ e]l=ab + [¢h] - ab = [¢b]. Since 0 < ¢ < 1, this last expression is an integer between
0 and b — 1. Therefore, 0 < fyb/]— b[yb/~1] = b — 1. Now consider the sum Z?;l([ybf] -
blybd '] /bi. Factor out 1/b¥ to clear fractions and this becomes (1/6) PR 2T
b=y /1]y, This sum telescopes to (¥ ¥+ [yb¥1)/bY = [yb¥]/6N since [y]= 0. But
[yp¥1/eN = (vb™ — ybV 4 1yb¥]) 6" = ¥ — (pbY — [ybV]) /Y. But 6 < yb¥ — [yp¥] < 1,
so taking limits as N' — oo of both sides of this equation yietds y = Ty b~ bly b~ /0.
By the uniqueness of the base b expansion given in Theorem 12.1, we must have ¢ ;=
[¥5/1— blybI 1 for each ;.

Let o =30 (~D%/10¢ and py/ge = ¥ j_(~1)%/107. Then |o — pp/gs| =

|Z§’Z 1 (CDA/10U < 307 1/10% As in the proof of Corollary 12.5.1, it follows that

loe = pr/ae! <2/10%+D" which shows that there can be no real number C, as in Theorem 12.5.
Hence, o must be transcendental,

Suppose that e = k/k. Then kl{e — 1 — 1/1! — 1/2! . .. — 1/k!) is an integer. But this is equal
to k(1/ G+ DI+ R+ )= 1k + D+ Lk + DEF2D)+- - < 1k + D+
Vk+ D2+ = I/k <1 Butklle —1—1/11~ 1/21 — . .. — 1/k}l) is positive, and therefore

cannot be an integer, a contradiction.

Section 12,2

a.15/7 b.10/7 e 6/31 d.355/113 e2 £3/2 £5/3 h.8/5
- e [52,1L,1,2] bILLE72] e f29] d.0%7,1,1,1,1,2] ef-1;13,1,1,2,1,1,2,2]

f£.[0,9,1,3,6,2,4,1,2]

a0l 3/2,4/3,7/5, 18/13 b, 1, 2, 15/8, 32/17 .2, 19/9

d. 3, 22/7, 25/8, 47/15, 72/23, 119/38, 310/99
e. —1, ~12/13, —13/14, —25/27, —63/68, —88/95, —151/163, —300/421, —931/1005
£.0, 1/9, 1/10, 4/39, 25/244, 54/527, 241/2352, 295/2879, 831/8110
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La32>T7/5amdl<4/3 < 18/13 1.2 32/17 and 1< 15/8 c. vacuous

d.22/7 > 47/15 > 119/38 and 3 < 25/8 < 72/23 < 310/99

e —12/13 > - 25/27 > —88/95 > ~390/421 and —1< —13/14 < —63/68 < —151/163 <
—931/1005

£.1/9 > 4/39 > 54/527 > 295/2879 and 0 < 1/10 < 25/244 < 241/2352 < 831/8110

. Let & = r/s. The Euclidean algorithm for Ija =s/r < lgivess = O(r) -+ 5, 7 = agls) + aw and

continues just as for r/s.

Proceed by induction. The basis case is trivial. Assume that g; > f; for j <k Then gy =
Qe + G2 Z G St + fe2 Z S T fioa = fr as desired.

By Exercise 10, we have pu/Pa—t = [0t Qu-1s - <+ Lapl=lagiag - - - iyl = Pufdn =I5 if the
continued fraction is symmetric. Then g, = Pp-1 = § and p, = r, so by Theorem 12.10, we have
Dutn—t — @aPa—1 =191~ st= (—l)nﬁi- Then rg,—| = st ("'DH—I» and sor | 524 (- l)n—ll
Conversely, if r | s2 + (="~ then (—Dn — f = Puln_1— QuPu1= Q1" Pa15 Therefore,
r 1 py1s + (— 1"}, and hence, 7 | 2+ (—D"H — (puss T (1" Y = s(s — pu—y)- Since

8y Py_1 <7 and (r, 5} = 1, we have § = p,y_1. Then {a53 dp—ps - - agl = ppf P11 = rfs =
[ags @ys « - o )

Note that the notation [ag; @y, . . - » 6] Makes sense, even if the a; are not integers. Use induction.
Assume that the statement is true for % odd and prove it for k + 2. Define a;. = [ap; @10 g2l
and check that ay < [ag; @y Fes2 x]=aj, +x'. Then [ap;ay- . - agyol =lagian - - apl>
lag:ap. ..o +x1=lap a2 02 + x]. Proceed similarty for k even.

Section 12.3 j

Lal;2,2,2,..) b ;1,2,142,...] ¢ [2;4,4,4,...]1 d.[L;L 1,1,...]
. 312689/99532
LI ey L, let A=lagay, - . Then {ag;ay, .. J+[-a0 — 131, — Loagay .. J=at

1/(ay + 1/A) + (~ag — 1+ /(1 + (a — 1+ 1/A))) = 0. Similarly if a;= L.

. I a = [ag; ap, 0z, - - ) then e = Ylagsay, azs . J=0+1/(ag+ Vla + - ) = [0; ag. 41, 92,

...]. Then the kth convergent of 1/a is [0; ag, ap, az, - - - cap_t] = Vlagiapaz, - - - , @_.il, which
is the reciprocal of the (k — ik convergent of o.

. By Theorem 12.19, such a p/q is a convergent of &. Now (v3+ 1)/2=[1;1, 1,...5Ls0G,=fa

(Fibonacei) and py = gy p1- Then 1My oo a—1/0n = Hm, oo Gnt/ Puo1 = 2/ (5 + D =
(/5 — 1)/2. Therefore, lim, , oo((+/3 + /2 + da—1/4n) = (V5+ /2 + (5 - Df2=+5.80
(/5 -+ 1)/2 + g1/, > ¢ only finitely often, whence Y(((V/S+ D2+ q,,,_l,/q,,)q,%) <1/ (cqf,).
The following identity finishes the proof, Mote that o, = & for atl #. Then |oz — Pn /qn[ =
\(an+lpn + pa )/ epdn + Gu-t) — PnIIin = l"(p:ﬂn—l - pn—lqil)/(qu(QQH + QMﬁl))] =
1/(‘]3(0‘ + %71/%))-

If B is equivalent to o, then g = (aw+b)/(ca+ d). Solving foro gives o = (—df +b)/ (B —a)
so & is equivalent to B.

By symmetry and transitivity (Exercises 11 and 12), it suffices to show that every rational
number o == m/n {which we can assume is in lowest terms) is equivalent to L By the Euclidean
algorithm, we can find @ and b such that ma -+ nb =1 Let d—=m+band c=a~—n. Then
{ac + bYf(ca +d)=1

Note that py gr—1 — ks Pie—t = (Pr-18x-1~ Qi 1Pe—) HProade 1~ Pr-1dk-2) = 1. Thus
pi and gy, are relatively prime.
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17. See, for example, the classic work by O. Perron, Die Lehre von den Kettenbriichen, Leipzig,
Teubner (1929).

19. 179/57

21, Note first that if b < d, then [a/b — ¢/d| < 1/247 implies that fad — be| < bf2d < 1/2. Because
b #d, lad — bl is a positive integer, and so is greater than 1/2. Thus b > d. Now assume
that c/d is not a convergent of the continued fraction for a/b. Since (he denominatars of the
convergents inciease to b, there must be two successive convergents p,, /g, and p,;1/g,; such

that g, < d < g,1. Next, by the triangle inequality, 55 > ¢ — §| = |§ _ gr | -z - _;1‘ >
g — % — Z”—: - gﬂ , because the (1 - st convergent is on the other side of a/b from the
n - n

atth convergent, Because the numerator of the first difference is a nonzero integer, applying

Corollary 12.10.2 to the second difference shows that the last expression is greater than or equal

to 1/dg, — 1/g,114,- If we multiply through by 42, we obtzin 4 > & (1 - L) >1---4

Zn Gntl Gt
because d/q, > 1. We deduce that 1/2 < d/g,..;.

The convergents p,. /g, and p,11/g, 1 divide the line into three regions. As ¢/d could be in
any of these, there are three cases.

Case 1: If ¢/d is between the convergents, then ﬁ =< |§, — §ﬂ|, because the numerator of the
i3 L
fraction is & positive integer and the denominators on both sides of the inequality are the same.

This last term is less than or equal to ’M — Pay— L because the n + st convergent is
o+l 4n Gnt1Ta

further from the nth convergent than c¢/d, where we have applied Corollary 12.10.2. But this
implies that d > g,, 4, a contradiction.

Case 2: If ¢/d is closer to p,/g,, then we also have # |5 - 'gﬂ
a £

on the other side of the nth convergent from ¢/d. Bui this last term is less than 1/242, and if we
multiply through by d we have 1/q, < 1/24, which implies that g, > d, 2 contradiction.
Case 3: If ¢/d is closer to p,.,/q,.1, then with the same reasoning as in Case 2, we have

1 Pa 2 fod st
T = & Fé;i! < l% — di[ < 1/24*. But this implies that d/g,; < 1/2, contradicting the

inequality established above. Having exhausted all the cases, we must conclude that ¢/d must he
a convergent of the continued fraction for a/b.

< [‘b—’ - §| because a/b is

Section 12.4

a (211,44 b.(3;3,6] (41,318 d.1671,51, 12 e[7;1,272 [ 14]

£9,1,2,3,1,1,5,1,8,1,5,1,1,3,2, 1, 18]

a.[22] b[152,22,L121 «[0;1,1,2,3710,3

Ca (234429710 b (=143V5/2 e 8+ +/82)/6

a0 b7 e 26 d3T

.a Webave ap=vd2 — 1, aqg=d — 1, Py=0, Qg=1, Pi=d —1, Q| =2d — 2, &) =
1+ 3 /A D@ =D, ay=1, Bp=d—1, Or=1,p=d— L+ ~/d2— 1, ay=2d — 2,
Poi=d—1=P,03=2d -2=Qs0oa=[d— 1;1,2{(d — D]
b. We have oy = +/d% — d,ay=d — 1since (d — 1)? <d? —d <d% Then Py=0, Oy =1, P, =
dﬁ'l, Q1=d—1,cx;»—-1+\fd/(d—I),a1:2,P2=d~—I, Q2=1,0!2=(d_‘1)+'vd2‘_d,
a;=2d — D, Py= P, 03= 0. Therefore, vd? —d =[d — 1;2,2(d — D].
e [9; 1,18 [16; 2, 20], [16; 2, 32], [24; 2, 48]

11, a. Note that d < vVd?+4 <d + L. Then oy = /d2 +4, qg=d, Py=0, Qg=1, P,=d,

Q=4 o= (d+~d>+4)/4, ay=[2d/4} = (d — 1)/2, since d is odd. Also, Py =d — 2,

-

=R BT ) B Y]
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Oy=d ay=(d—2+
Py=2, Oy=d, =02+
(d—2+d)f4=(d—1)/2<ot4<

b. Note that d — 1 < vd?

— 4 < d. Then o=
JAZ =& 2d -3, (d-1d - D/2d
(d—1+d)/Q2d -3 and d > 3,50 4

d—1 Q=24 -5 ay=d—1+

ay = (d — 3/,
Qy=h ag=(d—2+

13.
ceding Example 12.15.
1/y)={(2acy +c+ ¥}/ (2ay + -
(2ac +
— a4+ 2a/(ac + (ac)* + 2ac
visor of 2a. Conversely, let o =

P2 =4,
which has pericd length two.

15. a.no  b.yes c.yes d.no

17. Leta={a+ JB)/c. Then -1/’ = —cfla—
By Exercise 16,0 < a <«/Eand«/1_7—a “e<

2

/be? and St —ca<ct =
JB + A < 24/B. Multiply /b
Multiply ¢ < vB+a by vB
all the inequalities in Exercise

19, Start with gg = ,/_D.k 4+ 3% 4 1 (this will have

by an integer) and use induction. Apply the
1223 fori=12...
\/ITk+3k 4 1=oyp. Since &; #

ay = /Dy 3 - 2-F
fori=1,2,...,k—1andag =

Section 12.5

1. Note that 192 — 22 = (19— (19 +2}
(19 +2,119) = (21, 11%) =7 are

3, 3119 - 4261

JEFHjd, (d -2 +d)fd
’\v'd2+4)/d,(l3=1, P4:‘—(i
d -
d4 B+ A as=2d, Pg=d =P, Q

Py=d—2,Q3=d -2
JE B4 ay=1d =% Pp=d — 4
44 JE B2~ as=1 Pe=d
P7=d—1:=P;, Q'I:‘_?d—S-’;Ql.ThUSQ

e. yes

VB + ca < 24/bct. Thatis, 0 < A < +/B and
—a <cby\/5+atogetc =b
—a to get VB A=
16 and therefore is reduced.

Answers to Odd-Numbered Exercises

oy <(d—2+d+D/ds0oam=1
-2, Q4=4,a4:((i—2+,.fd2+4)/4’

2+d+1)/4,50a4'—:(df—1)/2, Ps:d, Q5=~‘1,Ol5:

i - 1)/2, Ps=¢é, 5= 05
c=d=0, Thusa=[d:d - D/ 11, (d — D/2,2d),

JE & ay=d 1, Pp=0, Q=1 A=
— 5y <oy <
=1, Pp=d—4 01=4 ay = (d — 4+ ~dT = D/4,
=(d—2+m)j(d—2),03:2,P4=d_2,
Q5:2d—‘5, a5=(d—‘
1, Qe=lagmd it V- h g =20k
-1, =25 E@ 2124 -2

Suppose that /4 has period length two. Then d = [a;m] from the discussion pre-
Then ~/d = [a; y} with y = [EE} =fe;2a.¥]=c+ 1/(2a +
Then 2ay? — 2acy —¢ =
J(2ac)? + 42a)c)/(4a) = (ac +
Jat+2aje,

JaZ+ band b|2a,say kb = 2a.Thenap = [Va® -+ bl=a, since
at<a*+b<la+t 1)2. Then Po=0, Qo=1 P
Qr=1, wy=a+val b a=2a P=a=

0, and since y is positive, ¥ =

J@e)? + 2ac)/(2a). Then Jid=[ayl=a+ 1y

sod =a®+2a/c,andb=2a/cisan integral di-

=a,Q1=h o=@ +~/a? +b)/b£4k,
P, Qs=b= Qpsoa= {a; 4k, 24},

Ll
f. no

JB)y = (ca+~bA b —a)=(A+ JBY/C,say.
JE+a< 2./B. Multiplying by ¢ gives0 < ca <
JB—A <t <
—a2<\/ga_?§+ca::A+\/§.

Vb2 —ac <b—a*=C.Se, —1/o’ satisfies

the same period since it differs from /Dy
continued fraction algorithm to show that

SO 3 -2/2-3)
fori < 6k, the period is 6k.

s k, but 3y =

0 (mod 119). Then (19 — 2,119 = (17,119 = 17 and

factors of 119.

5. We have 17% = 289 = 3 (mod 143) and {02 = 361 = 3 - 52 (mod 143). Combining these, we

have (17 - 19)? = 375” (mod 143). Hence,

(323 — 15)(323 + 15) = 0 (mod 143).
(308, 143) = 11 and (323 + 15,143) =

1 7. 3001 - 4001

STUDENTS-HUB.com

1932 &= 15% (mod 143). It follows that 1932 — 15 =
This produces the two factors (323 — 15,143) =
(338, 143) = 13 of 143.
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Section 13.1

1. a. (3,4, 5), (5,12,13), (15,8, 17), (7, 24, 25), (21, 20,29, (35, 12,37)
b. those in part (a) and (6, 8, 10), (9, 12, 15), (12, 16, 20), (15, 20, 25), (18, 24, 30), (21, 28, 35),
(24, 32, 403, (10, 24, 26), (15, 36, 39), (30, 16, 34)

3. By Lemma 13.1, 5 divides at most one of x, y, and z. If 5 f x or y, then x? = +1 (mod 5) and
y?2==+1(mod 5). Then 22=0, 2, or —2 (mod 5). But £2 is not a quadratic residue modulo 5, so
z% =2 0 (mod 5), whence 5 Yz

5. Letk be aninteger > 3. If & = 2n + 1, let m = n + 1. Then m and n have opposite parity, m > n
and m® —n® =2n -+ 1=k, so m and n define the desired triple. If & has an odd divisor d > |,
then use the construction above for d and multiply the result by k/d. If k has no odd divisors, then
k =2/ for some integer j > 1. Letm =2/"Yand n = 1. Then k = 2mn, m > n, and m and n have
opposite parity, so m and »n define the desired triple.

7. Substituting y = x + 1 into the Pythagorean equation gives us 2x2 4 2x -+ 1 = z2, which is
equivalent to m? — 2z% = —1, where m = 2x + 1. Dividing by z? yields m?/z2 — 2 = —1/72.
Note that m/z > Tand 1/22 =2 —m%/2 = (/2 + mfoHNZ —mfz) <22 — ni/z). So by
Theorem 12.19, m/z must be a convergent of the continued fraction expansion of V2. Further,
by the preof of Theorem 12.13, it must be one of even-subscripted convergents. Therefore, each
solution is given by the recurtence m, | = 3m, + 2z,,, 2,1 = 2m, + 3m,,. (See, for example,
Theorem 13.11.) Substituting x back in vields the recurrences of Exercise 6.

e

see Exercise 15 with p =3

11. (9,12,15), (35,12,37), (5,12,13), (12, 16,20)

B.oy=2m,y=m?>~Lz=m?*+Lm>1

15. primitive solutions given by x = (m? — pu®)f2, v = mn, 7 = (m? + pn?)/2, where m > Jon
17. Substituting f;, = foyz — furr a0d foys = fupn + frug ito (£, 54307 + @fp1fura)
yields (foyo = far 0wz + ooV H 402 fl = Uty — PR 42 P = i —

2 2 4 2 4 .
Qfmflfnﬂ Il A = Fha F 27 fla + Fha = (FRo + £2,.)% proving the
result,

Section 13.2

Assume without loss of generality that x < y. Then x" 4+ y" = xZx"2 4 y2y*~2 <

(.1‘2 + yZ)ykfz — ZZyu-Z < Z2zn—2 =z",

3. a.If p|x, y, or z, then certainly p | xyz. If not, then by Fermat's little theorem xP~!= yr-t =
77 1= 1 (mod ). Hence 14- I =1 (mod p), which is impossible.

b. We know that af = a (mod p) for every integer a. Then x? -+ y? = z7 (mod p) implies
x+y=z(modp),soplx+y—z.

5. Let x and y be the lengths of the legs and z be the hypotenuse, Then x2 + y? = 2%, If the
area is a perfect square, we have A = 1xy = r% Then if x = m? — 2 end y = 2mn, we have
r? = mam? — n?). All of these factors are relatively prime, som = a2, n=>5h%and m? — n? = c?,

say. Then a* — b* = ¢%, which contradicts Exercise 4.

=

7. We use the method of infinite descent. Assume that there is a nonzero solution where |x] is
minimal. Then (x, y) = L. Also, x and z cannot both be even, because then y would be odd
and then z? = 8 (mod 16), but 8 is not a quadratic residue modulo 16. Therefore x and z
are both odd, since 8y* is even. From here it is easy to check that (x, z) = 1. We may also
assume (by negating if necessary) that x = 1 (mod 4) and z = 3 {mod 4). Clearly x? > [z}. We
have 8yt =a? — 2= (x? — (x? + 7). Since z =3 {mod 4), we have x? — z =2 (mod 4}, so
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m=(x?—z)/2isodd, andn = {(xZ 4 z)/4 is an integer. Since no odd prime can divide both m

and 1, we have gn,n) = L, m,n >0, and mnr = y4, whencem = r*andn = st with (r,5) = 1. 8o
now rd 4 25% = m + 2n = x2. This implies {x,r) = 1, since no odd prime divides r and x butnot s,
and r and x are both odd. Also, x| > r? > 0. Now consider 254 = (62 = rHy = (x - rDx + 1)
Then s must be even since a difference of sguares is not congruent to 2 (mod 4), s0 5 = 2t and

324 = (x — r2)(x -+ r?). Recalling that x = 1 (mod 4) and 7 is odd, we know that U = (x + 1%)/2
is odd and V == (x — r2)/16 is an integer. Again (U, V) =l and UV = t*, but we don’t know the
sign of x. So U = 4t and V = 0%, depending on the sign of x. Now =it - 3v4). But

since u is odd, the sign can't be - (or else r2 =7 (mod 8)). So the sign is + (hence x is positive),
and u? — 8% = r2. Finally, |} > 0 because |x + r2| = ©, so we have not reduced to a trivial case,
Thenu* = U < |x 4+ r?|/2 < x,s0jul < x, and so |x| was not minimal. This contradiction shows
that there are no nontrivial solutions.

9. Suppese that x = a/b, where a and b are relatively prime integers with & 5 0. Then y? =
(a* + b*)/b*, from which we can deduce that y = z/ b? for some integer z. Then 22 = a* + &,
which has no nonzero solutions by Theorem 3.3, Because b £ 0, it follows that z # 0. Therefore,
a =0, and hence x = 0, and consequently y = 1. These are the only solutions.

11. If x were even, then ¥y = x3 423 =3 (mod 4), which is impossible, so x must be odd, making
y even, say y = 2v. If x = 3 (mod 4), then y2 =3* 423 =2 (mod 4), which is also impossible,
50 x = 1 (mod 4). Next, add 4 to both sides of the equation to get 2 4=4v?+4= P 12T=
(x +3)(.1‘2 —3x —|—9).Tlu:nz=x2 — 3 +9=1-3+9=3 {mod 4}, so & prime p=3 (mod 4)
must divide z. Then 4v? + 4 =0 (mod p) or v* = —I (mod p). But this shows that a prife
congruent to 3 modulo 4 has — 1 as a quadratic residue, which contradicts Theorem 11.5. Therefore,
the equation has no solutions.

13. This follows from Exercise 4 and Theorem 13.2.

15. Assume that # f xyz and (¢, y,7) = L Now {(—x)" == y" + =+ =y
71, and these factors are relatively prime, so they are nth powers, say ¥ +z= a™ and y™ ! —
¥y 2z 4o+ 2" =", whence —x =aa. Similarly, z +x =b", 2" — M2y X =
g1 —y=bg,x+y=c"x"— 2y y?~t=p and —z = ey Sincex" + Vgt =0
(mod p), we have p | xyz, say p | x. Then y" —xrl oy 2y eyt Th= y* T (mod p).
Also 2x = b" + ¢! + (—a)" = 0 {mod p), so by the condition on p, we have p |abe. I pih,
then y == —bf =0 (mod p), but then p | x and y, a contradiction. Similarly, p cannot divide c.
Therefore, p | a, so y = —z (mod p), and so &® = yl oyl =y t=ny"
(mod p). Let g be the inverse of y modulo p; then {ag)" =n (mod p), which contradicts the
condition that there is no solution to w™ = n (mod p).

17. 3,4,5,6
19, If m > 3, then modulo 8 we have 3" = —1 (mod 8), which is impossible, so m = or 2. Ifm=1,
then 3" == 2 — | == 1, which implies that n = 0, which is not a positive integer, s0 that we have no

solutions in this case. If m == 2, then 3" = 22 _ 9 =3, which implies that n = 1, and this is the
only sclution.

21. a.Substituting the expressions into the left-hand side of the equation yieldsa? + b + (3ab — €)=
a? + b2 + 9a2b? — 6abe + ¢ = (@ + b? + c2) + 9a®b? — Gabe. Since (a, b, c) is a solution
to Markov’'s equation, we substitute a2 + b2 4 ¢% = 3abc to get the last expression equal to
2abe 4 9a? 4 b? — 6abe = 9a%b? — 3abe = 3ab(3ab — ), which is the rght-hand side of
Markov’s equation evatuated at these expressions.

b. Case 1: If x = y = z, then Markov’s equation becomes 342 = 3xyz so that 1 = yz. Then

- =z = 1 and then x = 1, so the only solution in this case is (1, 1, D).

Case 2:1fx = y # 2, then 2x> + 2% = 3¢z, which implies that £% | 22 or x | z, say dx = z. Then
%2 4 d?x? = 3dx? or 2 + d% = 3dx or 2 = d(3x — d}. S0 d | 2, but because x # z, we must have
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d =2, Then3x — d = I sothat x = I = y and z = 2. Tt follows that the only solution in this case
is (1,1,2). ]

Case 3: Assume that x < y < z, From z2 — 3xyz + x2 = y% + z2 we apply the quadratic formula to
get 2z = 3xy & /9x2y? — 4(32 + ¥2). Note that 8x2y2 — 4x? — 432 = dx2(y? — D) + 493 (x2 ~
D) = 0, so in the “minus” case of the quadratic formula, we have 2z < 3xy — /0x2y2 — 8x2y2 =
3xy — xy =2xy, or z < xy. But 3xyz = x* 4+ »? + 27 < 372 50 that xy < z, & contradiction,
therefore we must have the case corresponding to the plus sign in the quadratic formula and
27 = 3xy + /9x2y2 — 4(x2 + ¥2) > 3xy, so that z > 3xy — z. This last expression is the formula
for the generation of z in part (a). Therefore, by successive use of the formula in part (a), we will
reduce the value of x + y + z until it is one of the solutions in Case 1 and Case 2.

23. Lete > 0 be given. Then the abc conjecture implies that max([a/, |b], le|) < K (¢)rad(abe)* for
integers {a,b) = land a + b =c. Set M =log K/ log 2 + (3 + 3¢). Suppose x, y, z,a, b, ¢ are
positive integers with (x, ¥} = 1 and x¥ + ¥ = ¢%, so that we have a solution to Beal's equation.
Assume min(a, b, ¢) > M. From the abc conjecture we have max(x?, %, z%) < K {(e)rad(xyz)*¢ <
K(e)(xyz)te, I max(x, y, 2) = x, then we would have x* < K ()x3(+€), Taking algorithms of
both sides yields @ <log K/ logx 4 (3 + 3¢} < log K/ log 2 + (3 4+ 3¢) = M, a contradiction.
A similar argument applies if the maximum is y or z. Therefore, if the abe conjecture is tiue, then
there are no solutions to the Beal conjecture for sufficiently large exponents.

25, a. If 1 is a congruent number, then there exist rational numbers #, s, and ¢ such that
r? 452 =12 and rs/2 =1 Let r =a/d, s = b/d, and 1 = c/d, where a, b, c, and d are
integers and 4 is the least common denominator of the rational numbers », 5, and #. Then
a® + 0% = (rd)? + (sd)? = d%? = 2, so that (a, b, ¢) is a Pythagorean triple, consisting of
the lengths of the sides of a right triangle with area ab/2 = (rdM{sd}/2 = (@) (rs/2)} == d?, a
perfect square. Conversely, if there is a right triangle with area a perfect square, d2, then its side
lengths form a Pythagorean triple (a, &, €), and a® + b* + ¢2. We can divide through by 4 to get
(a/d)? + (b/d)* = (c/d)? and so this represents a right trfangle with sides {a/d, b/d, ¢/d) and
area 1/2{a/d)(b/d) = (ab/2)(1/d*) = d*/d* = 1.
b. Suppose that 1 is a congruent number. Then, by part (a), there exist integers a, b, ¢, and 4, such
that 2% + 5% = ¢* and ab/2 = d°. If we add and subtract 4 times the second equation from the
firstwegeta? +2ab+8 =(a + b2 =2+ 2d) and a? — 2ab + b2 = (a — b2 = 2 — (2d)2.
Since the right-hand sides of both equations are squares, then so is their product, and we have
(c® + 2 (c? — 2d)?) =c¢* — 2d)* = (a + b)%(a — b)?, but this is a solution to x* — y* =72,
which coniradicts Exercise 4. Therefore | is not a congruent number.

Section 13.3

1. a.19+4 b2 4112 e372+92 1372492

a4 b9P43 alP+P A2P247 e 13324637 £ 448 43522

5.2, 2412 4+1%2 b.onotpossible e 3 +124+1 d3+32+0% e notpossible F not
possible

7. Letn = x? 4 y2 + 22 = 4" (8% + 7). If m == 0, then see Exercise 6. If nr = 1, then # is even, so
zero or two of x, y, z are odd. If two are odd, then x4 y2 + 72 =2 or 6 (mod §), but then 4 fa,
a contradiction, so all of x, v, z are even. Then 4™ 1(8k + 7) = (x/2)2 + (v/2)% + (z/2)? is the
sum of three squares. Repeat until i = 0 and use Exercise 6 to get a contradiction.

9. a1+ P02 +22 522?442+ 124+3 142142412058 dseP+ 122172+ 12

11 Letm = n — 169. Then m is the sum of four squares: m = x2 + y2 + 22 + w?, I, say, x, ¥, z are
0, then n = w? + 169 = w? + 102 + 82 + 22 + 12 If, say, x, y are 0, then nn = 22 + w? 4+ 169 =
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22 4wl o+ 122 + 42 1 31, say, x is O, thenn = y? + 22 + w? + 160 = y% + 22 + w? + 122 + 52
If none are 0, then n = x% + y2 + 22 + w? + 13,

3. If k is odd, then 2% is not the sum of four positive squares. Suppose that k >3 and 28 =
22 + 2 4 22 4 w?. Modulo § we have 0= x2 4 y2 4 7% + w?, and since an odd square is
congruent to 1 (mod 8), the only possibility is to have x, y, Z, W all even. But then we can divide
by 4 to get 2672 = (x/2) + (/2 + (2/2)* + (w/2)?. Bither k — 2 > 3 and we can repeat the
argument, or k — 2 = 1, in which case we have 2 equal to the sum of four positive squares, a
contradiction.

15. If p =2, the theorem is obvious. Otherwise, p = 4k + 1, whence —1is a guadratic residue
modulo p, say a* = 1 (mod p). Let x and y be as in Thue's lemma. Then epandy?<p

and —x% = (ax)? = y? (mod p). Thus p |24+ y* <2p,sop= x2 4+ ¥, as desired.

17. The left sum runs over all pairs of integers i < j for 1<i <j = 4, so there are six terms.
Each integer subscript 1, 2, 3, and 4 appears in exactly three pairs, 80 )y el T3 J,-)"‘ +

4
(= )% = Dierejes @3+ 120007 + 2eh) = 3 6% + Ligicjza 122225 =
2
4 2
] (Ek:l xk) "
19. If m is positive, then m = EL} x2 for some x;’s. Then 6m = 6 Z::s xl== Ei:l 6x2. Bach term

of the last sum is the sum of 12 fourth powers by Exercise 18. Therefore 6m is the sum of 48
fourth powers. ’

21

Forn=1,2,...,50 wehaven =} | 1% Forn =51,52,...,8, wehaven —48=n —302% =
Z’[‘_‘m Hson=2"+24+24+ E’l"‘m 1* is the sum of n — 45 fourth powers, and n — 45 =
36 < 50. This result, coupled with the result from Exercise 20, shows that all positive integers can
be written as the sum of 50 or fewer fourth powers. That is, g4 = 50.

23, The only quartic residues modulo 16 are 0 and 1. Therefore, the sum of fewer than 15 fourth
powers must have a least nonnegative residue between ( and 14 (mod 16), which excludes any
integer congruent to 15 {mod 16).

Section 13.4
1, a. (£2,0), (£1,+1) Db.oone ¢ (1, +2)
3. a.yes b.ne c.yes d.yes e yes f. no
5. (73, 12), (10,657, 1752), (1,555,849, 255,780)
7. (6,239,765,965,720,528,801, 798,920,165,762,32;0,040)

9, Reduce modulo p to get x2 = —1 (mod p). Since —1isa quadratic nonresidue modulo p if

p =4k + 3, thereis no solution.
11

Tet po =0, p1=3, P =2Pk—t + 2Pk do = b @1= L and g = 2qx—1 + G-2- Then the legs
are x = p? + 2pyqy and y = 2pyap + 245

13. Suppose that (x, y) is a solution of x* — 2y% = —1. Note that x must be odd. Furthermore, note that
2412 =xt 252+ =2y + 2% and (2% — 02 = x* — 2x% + 1 =2y — 2x%. Multiplying
these equations together yields (x* — 1)* = 4(y* — x%) so that ((x* — 1)/2)? = y* — x*. Since
(x* — 1)/2 is an integer, this contradicts Exercise 4 in Section 13.2.

STUDENTS-HUB.com Uploaded By: anonymous



Answers to Odd-Numbered Exercises 681

Section 14.1

L a5+15 b —46—9 - ¢.—26—18

3. a.yes b.yes c¢no d. yes

5. (4a — 3b) 4 (3a + 4b)i, where a and b are rational integers (see the Student Solutions Manual

11

13.
15,

17.

19,
21.
23

25,
27.

29

i

for the display of such integers)

+ Because a|f and By, there are Gaussian integers ;¢ and v with po == 8 and v = y, and hence,

¥ = = v, Because the product of Gaussian integers is a Gaussian integer, vy is also a
Gaussian integer. It follows that «fy.

. Note that x% = x if and only if x° — x = x(x — )(x + D{x — i)(x &) = 0, The solutions of this

last equation are @, 1, —1, {, and —i. These are the four Gaussian integers that are units, together
with 0.

Since a|f and B|e, there are Gaussian integers p and v such that ¢ = 8 and Sv = a. It follows
that ¢ = rpev. By Theorem 14.1, this implies that N («) = N{erpv) = N(e)N (). This means
that N{u)N (v) =1, and because the norm of a Gaussian integer is 2 nonnegative rational integer,
N(p) = N(v) = L Consequently p and v are units, and hence, « and B are associates.

The pairw =2 + 7, f = I + 2{ is a counterexample,

We first whow that such an associate exists. If & > 0 and & > 0, the desired inequalities are met; if
a<Qand b > 0, multiply by —i to get —ie =b — ai =c +di;ifa < 0and b < 0, multiply by —1
toget—o=—a —bi =c+di;andifa = Qand b < 0, multiply by / to getioo = —b 4 ai =c + di.
In all cases, ¢ > 0 and d > 0. To prove uniqueness, note that when we multiply ¢ + i with ¢ = 0
and 4 > 0 by a unit other than 1, we obtain —c¢ — di, which has —¢ < 0, —d + ¢i, which has
—d <0, ord — ci, which has —¢ < Q.
ay=3-5p=-3Np=F+0=9<NB)=32+32=18
bhy=5—i,p=—1-2[, N(p)=5<N{By=25
Ciy=—1+4+8,p=-5-3L,Np=51+F=34<NB=112+2"=125
ay=2~5,p=3 by=4—ip=242 ¢.y=-2+8,p=6—-50

1,2, and 4,

When a and b are both even, 2}a + ib because a +ib = 2((aj2) + i{(b/2)), and (a/2) + i (b/2)
is a Gaussian integer. Because 1 4 /|2, we conclude that 1 + i[a 4 {b. When @ and b are both odd,
note that e + bi = (1 + i) + (@ — 1) + (b — 1){, where a — L and b — 1 are both even, Because
I+ and (@ — 1) + (b — 1)i are both multiples of 1+ 7, so is their sum. On the other hand, if g is
odd and & is even, then (@ — 1) + bi is a multiple of 1 4-i. Hence, if @ + bi is a multiple of a + bi,
then (@ -+ bi) — (@ — 1 + bi) = 1is a muitiple of ¥ + i, a contradiction, A similar argument shows
that if @ is even and & is odd, then I + 7 does not divide a + b,

+1£2

Suppose that 7 = (g -+ bi}(c + di), where a + bi and ¢ + di are not units. Taking norms of both
sides yields 49 = (@ + bH (2 + d?). Because neither a + bi norc +df isa unit, both factors on
the right-hand side must equal 7. However, 7 is not the sum of 2 squares.

Because o is neither a unit nor a prime, there exist nonunit Gaussian integers « and § with

a = By, where neither 8 nor y is a unit, so that N{w) = N(BIN(), N(8) > Land N(y) > L If
N(B) > «/N{a), then N(y) = N (&) /N (8) < N{«)//N () = /N{x). Consequently, either §
or y divides « and has norm not exceeding /N ().

The Gaussian primes with norm less than 100 are 3,7, L 4+7, L+ 2, 14 4i, 1 + 6,2 + 3i, 2 + 5,
247,348,445, 4 491, 5+ 6i, and 5+ 8i, together with their associates and conjugates.
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13, a. Note that o — o = 0=0 u, 50 that e — o Thus, o =« (mod ).
b. Because o = 8 (mod ), pele — B. Hence, there is a Gaussian integer y with py =« — B.This
means that p{—y) = § — a, so that 4| — o Therefore, f =« (mod ).
¢. Because o = § (mod py and =¥ (mod p), there are Gaussian integers & and € such that
uB:aﬁ,Band,ue:,B_y.Itfollowsthatot—y:a—ﬁ+ﬁ—y=u3+ue:u(6+e).
Therefore, o = y (mod ).

35, Letw =a; + ib[, ﬂ =a, + ibz, and (_(11 4+ b])(ﬂz + bz) =R+ Si. We have R = iy — blbi and
S = ayby + a,by. We compute my = by(ag + b)), my = azlay — by, and m3 = by{ay — by) using
a total of three multiplications. We use these three products to find R and § using the equations
R=my+myand §=nt}+n3

37, a.i, 1+, 1428, 243,345,535+ 8
b. Using the definition of Gy and the recursive definition of the Fibonacci sequence, we have Gy =
Fotifinr= i1+ i) + i+ fimpi = Uit D + (fea+ i) = Gr—y + Gra-

We proceed by induction. For the basis step, note that G,Gy — G4Gg = (1 + 201+ i)—

(2 + 3i)(i) = 2 + i. Now assume the identity holds for values less than #. Using the identity in
Exercise 37(), we see that G 2G4 — GuyaGy = (G + Gu)Cnp1 — (Gpya +Gp)Gn =
Gﬁ.{.l = Gp2ln= Gﬁ+1 -Gyt GG, = Gi.}.[ - G,zl = Gpp1Gp = Gt G Guy1—
G, — GuyiGn = Goya2Gau-t — Gyy1Gp=—(— 1)"—1(2 +i)y=(-b*2+i) which completes
the induction step.

3

41. Suppose that r 4 si, where r and s £ 0 are rational, is a root of the monic quadratic polynomial
72 + az + b, where a and b are integers. The other root of the quadratic polynomial must be
7 — si; the polynomial must be (z — r+siNz—(r—si))= Z—2rz+ri+ s2. Hence, the
coefficients a = 2r and b == r2 4 52 are integers. Solving for r and s, we see that r = a/2 and
2 = (4b — r2)/4. This implies that s = ¢/2 for some integer . Multiplying by 4, we find that
a® + ¢? = 0 (mod 4). This implies that both a and ¢ are even. Hence, r and s are integers and
r -+ si is a Gaussian integer.

43, By the proof of the division algorithm in the text, given a Gaussian integer o, there are Gaussian
integers y and p such that o = y{1+ 2i) + p such that Nipy = N(1L+2i)/2=5/2 Therefore,
the only possible vatues of p are 142 are 0, 1, {, 1 +i and their associates. Observing that
= {1420y +(1+D= (A+20p+bH+1+DH —(+2p=0+2)y+D -1, by
modifying the quotient if necessary, all Gaussian integers can be written as a multiple of 1+ 27 .
plus a remainder equatto 0,1, —1L. i, or _i. Now consider dividing each of the Gaussian primes
Tis e e . Mg, DY 1420 IE two of these can be wrilten as a multiple of 1+ 2i plus the same
rernainder, then § + 2 divides thelr difference. But these differences are either 2 or 1 & i, which
are not divisible by 14~ 2i. Furthermore, none of these remainders are () because each of these four
numbers is prime. Therefore, we may rule out 0 as a possible remainder, Now divide the Gaussian
integer a + bi by 14 2i so that {he remainder is one of 0, 1, —1, i, or —i; let the remainder be p.
1 this remainder is not 0, one of . .., My leaves the same remainder when divided by 14 24,
where the quotient is selected so that the remainder is one of 0,1, —1, i, or —i, say mj. It follows
that 1 + 27 divides m, — {a + bi), which is impossible because this difference equals 1, —L, i,
or —1. Therefore, p =0, so that 1 4 2i [a -+ bi. A similar argument shows that 1 - 2i |a + bi.
Therefore, the product of these primes (t —2i)(L+2i) = 5 also divides a + bi, which implies
that 5| a and 5 | b. Note that b cannot be 0; if it were, a — 1, 4, and @ -+ 1 would all be prime,
which is impossible and @ cannol be zero. If a = 0 and if b is odd, then (b — )i and (b + 1)i are
both divisible by 2, while if ¢ =0 and b is even, either b — 1or b + 1is congruent to 1 modulo 4.
This implies that either b — Lor b + 1is not a Gaussian prime, and consequently, either (b — bi
or (b + i is not a Gaussian prime.
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Because afy = 1, N (@fy) = N(@)N(B)N(y} = L This implies that N (&) = N(8Y = N(y) = |,
which shows that o, 8, and y are all units in the Gaussian integers. This means that the only
possible values for these three values are 1, —1, i, and —i. Check all possible values for these three
variables in the equation & + § + y == 1, show that the possible solutions, up to permutation are
(1,1,—1) and (1, i, —7), but the first solution does not satisfy o8y = 1. This shows that (1,7, —)
and its permutations are the only six solutions.

Section 14.2

. Certainly, 1{ ) and 1|5, Suppose that § | 7y and & | 5. Because ) and i, are Gaussian primes,

& must be either a unit or an associate of both primes. But because 7y and r; are not associates, no
Gaussian integer can be an assaciate of both, so that § must be a unit if § | 1. Therefore, 1 satisfies
the definition of a greatest common divisor for 7 and r,.

Because y is & greatest common divisor of & and g, y | & and ¥ | B. Hence, there exist Gaussian
integers je and v such that gty = or and vy = 8. ¥t follows thatZy = - =2 andv¥ =7.y = §,
which implies that ¥ is a common divisor of & and B. Furthermore, if § |& and 8 | B, then § | o

and & | B. Consequently, 8 | by the definition of greatest commeon divisor. But this implies that
8 =& | ¥, which shows that ¥ is a greatest common divisor for & and £.

- Let ey, where € is a unit, be an associate of y. Because y | «, there is a Gaussian integer p such

that iy = ov. Because ¢ is a unit, 1/¢ is alse a Gaussian integer. Then {1/€)p{ey) = wv, so that
€y | o Simitatly, ey | 8. 1f § |x and § | §, then § | by the definition of greatest common divisor,
Consequently, there exists a Gaussian integer v such that vs = y., This implies that evd = ey, and
because v is a Gaussian integer, we have 8 | ¢y, Thus, ¢y satisfies the definition of a greatest
comrnon divisor.

Take 3 — 2/ and 3 + 2i, for example.

9. Because a and & are relatively prime rational integers, there exist rational integers s and » such

that am + br = 1. Let & be a greatest common divisor of the Gaussian integers a and b. Then &
divides am + bn = 1. Therefore, 8 is a unit in the Gaussian integers, Hence, @ and b are relatively
prime Gaussian integers.

a. We have 44 + 18/ = (12 — 16111 + 2¢) + 10i; 12 — 16§ = (10i}(—2 — Y+ 2+ 48

10i = (2 +4i)(2 -+ i) + 0. The last nonzero remainder, 2 + 4i , is a greatest common divisor.
b.Bypart(a), 2+ 4 = (12~ 16/} — (10i}(~2 —{) = (12 — 161) — ({dd + 18f) — (12 — 166} (1 +
N2 -0 =@+ D44+ 18 + (1 1+ 2i) (-2 — inlz —i6iy = 2+ D44 + 181y +
(I—-350)(12 - 16i). Take g =24 iand v =1 — 5i.

We proceed by induction. We have Gy =i and G = 1+ i. Because Gy is a unit, Gy and Gy are
relatively prime, completing the basis step, For the induction step, assume that G, and G;._; are
relatively prime. Suppose that § | G, and § | Gy Then § | (Gry1~ Gl =(Gp + G4 — Gy =
G_1, so that § is a common divisor of Gy, and G_,, which are relatively prime. Hence, & | 1.
Hence, 1 is a greatest common divisor of Gy, and Gy.

Because the norm of the remainder in each step of the Euclidean al gorithm for Gaussian integers
based on the division algorithm described in the text does not exceed half of the norm of the
divisor and the norm of the remainder is a positive integer, the maximum nember of steps used to
find a greatest common divisor of o and 8 is the largest number of times we can divide N () by 2
and obtain a positive integer. It follows that there cannot be more than [log, N (r}] + 1 divisions.
This means that the number of steps is at most O{log, N{a)).

a{(=D-2)(1-4) b (-DA+DHE+8) o (=D(l+n*7
d.i(1+ 531+ 2021 — 20)?
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19, a.48 b 120 c 1792 4.2592

21. Assume that # and a -+ bi are relatively prime. Then, there exist Gaussian integers j and v such
that pn + via + bi) =1L Taking conjugates of both sides, and recalling that the conjugate of a
rational integer is itself, we have zn + v(a — biy = 1. This implies that » is also relatively prime
t0a — bi. Since a — bi = —i(b -+ ai} is an associate of b + ai, n and b + ai are relatively prime.
The converse follows by symmetry.

23. Suppose that my, 79, ..., 7T aTC all the Gaussian primes. Form the Gaussian integer
O =17y . . . T+ L By Theorem 14.10, @ has a unique factorization into Gaussian primes, and
hence, is divisible by some Gaussian prime p. Because we have assumed that 7y, . . ., 7y, are all
the Gaussian primes, p must be somewhere in this list. It follows that ¢ | @ and p L 7mymry . . - ke
which implies that p divides 1= @ —m 7y ... 7, 2 contradiction. It follows that my, 73, . - - Tk
cannot be a list of all the Gaussian primes. Consequently, there must be infinitely many Gaussian
primes.

25, -2

27. Because o and p. are relatively prime, there exist Gaussian integers o and 7 such thatoa +tit = 1.
When we muitiply both sides of this equation by 8, we obtain foa + pru =P, sothata(fo)= B
(mod ). Thus, x = o (med p) is the solution.

29, a. x =5 —4i (mod 13) box=1+i (mod4+1i) ¢ x =3i (mod 2 +30).

31, Chinese Remainder Theorem for the Gaussian Integers. Let pLy, fa, - - o [y be pairwise relatively
prime Gaussian integers and let oy, €0y, - - . » @, e Ganssian integers. Then the system of
congruences x = o (mod ), 1 = 1,...,r has a unique solution modulo M = ity - - Bes
Proof: To construct a solution, for each k=1,....r, let My = M/u; Then My and p; are
relatively prime, because j is relatively prime to the factors of M. By Exercise 24, M) has an
inverse A, modulo i, so that Mphy = 1 (mod gz). Now let x = o My 4 - - T o MeA,. We
show that x is the solution to the system. Because i | M; whenever j ok, we have o j MMy = 0
(mod p) whenever j # k. Therefore, x = o Mk (mod jeg). Also, because )y is an inverse
for M modulo 1, we have ¥ =y (mod 1) for every k, as desired. Now suppose there is
another solution y to the system. Then x = o =7y {mod pip) and so pplx — ¥ for every k.
Because the g are pairwise relatively prime, no Gaussian prime appears in more than one of
their prime factorizations. Therefore, if a Gaussian prime power 7% | x — y, It divides exactly one
{43 Therefore, the product M also divides x — y. Hence, x =y (mod M), which proves that x is
unique modulo M.

33, ¥ =9+ 23 (mod 26 4+ 7i)
35, a. {0, 1} b. {0, 1,1, 14} c.{O,1,—1,1',21',31',—1',-2:',——31',I+i,1+2i,l—i,r~1+i}

7. Let o = q + bi and d = ged(a, b). We assert that theset S=({p+gil0=p=< N{)/d -1,
0<q <d —1}is acomplete residue system. This set consists of lattice points inside a rectangle
in the plane. To see this, first note that N(e)/d = a(@/d) isa real number and is also a multiple
of &. Second, note that there exist rational integers r and 5 such that ra + sb = d. All multipies
of @ are givenby v = (s +irJe = (s 4 ir)a + bi)y={as — br) + di, where s and r are integers.
Any Gaussian integer is congruent modulo o to an integer in the rectangle S, because we can add
or subtract multiples of v until the imaginary part is between 0 and d — 1, and we can add and
subtract multiples of N (a}/d until the real part is between 0 and N{«) /d — 1. It remains to show
that the elements of § are incongruent to each other modulo &. Suppose that 8 and y are in § and
congruent modulo «. Then the imaginary part of f - y is divisibie by d, but since § and y must
lie in the interval from 0 to d — 1, they are equal. Therefore the difference between B and y is
real and divisible by @, and hence, by @, and hence, by ww/d = N{a)/d, proving they are equal.
Since S has N (&) elements, we are done.
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39, a{li,244,3) b4,3,1,1424,244,2+431,3,34 21} e {i,1,3,44+i,6+i,7,84.9}

41. By the properties of the horm of Gaussian integers and Exercise 37, there are N(7®) = N(7)°
residue classes modulo 7%, Let st = r + 5i, and d = ged(r, s). Also, by Exercise 37, a complete
residue system modulo 7€ is given by the lattice points S = {p + ¢i [0 < p < N{r®)/d -1,0<
g <d — 1}, while a complete residue system modulo 7 is given by the set of lattice points
T={p+qi|0<p<N{myd—1,0=<gqg <d—1}. Note that in T there is exactly one element
not relatively prime to sr, and that there are ¥ ()¢~} copies of T, congruent modulo 7, inside of
S. Therefore, there are exactly N (7)€ ~!elements in S not relatively prime to 77, Thus there are
N(r)® - NGy ! elements in a reduced residue system modulo 74,

43. a. Fiist note that because r + 54/—3 is & root of 2 monic polynomial with integer coefficients,
the other root must be r — s+/—5 and the polynomial is (x — (r + sv/=3)){x — {r — s/—5)) =
x2—2rx 4+ (P2 4+ 557 = ¥ — ax + b, where ¢ and b are rational integers. Then r = a/2 and
552 = (4b — a?) /4, so that 5 = ¢/2 for some integer c. {Note that 5 cannot appear in the denom-
inator of s, else when we square it, the single factor of 5 in the expression leaves a remaining
factor in the denominator, which does not appear on the right side of the equation.) Substituting
these expressions for r and 5, we have (a/2)% + 5(c/2)? = b2, or, upon multiplication by 4,
a® + 5¢? = 4b = 0 mod 4, which has solations only when a and ¢ are even, Thercfore, r and s
are rational integers,

b. Let @ =a + bv/=5 and B =c + d/=5, where a, b, ¢, and 4 are rational integers.
Then (@ +bv/=5) + (¢ +d/=5) = (a+ ) + (b + V=3, (a + b/=5) — {c + d/—5) =
{(a—c)+ (b—d)v/=5, and @+ bv/=5)(c + dv/=5) = ac + be /=5 + ad V=3 — 5bd =
{ac - 5bd) + (be + ad)/—5. Each of these results is again of desired form.

€. ¥es, no

d. Let @ =a + by/~5 and g =c + d/=5. Then N(@)N(B) = (a* + 5b2)(c? + 5d%) =
a’c? + 5a%d® + 5b%c? 4 256%d%. On the other hand, B = (ac — Sbd) + (ad -+ bc)v/=3,

so that N{af) = N((ac — 5bd) + (ad + bc)vV=3) = (ac — Shd)? + 5(ad + be)* = a2c? —
10achd + 25b%d? + 5(a’d® + 2adbe + b2c?) = a%c? + Sa’d? + 5b%? + 25b%d2. It follows that
N(ef) = N@)N(B).

e If € is a unit in Z[+/=3), then there exists an 5 such that e = 1. From part (d), we have
N{en) = N(e)N(m = N{l} =1, so that N{(e) = 1. Now suppose that € = a + b~/—5. Then
N(€)} =a* + 5b% = 1, which implies that & = 0 and a = 1. Therefore, the only units are | and
-1

f. If an integer « in Z{~/—5] is not a unit and not prime, it must have two nonunit divisors of g
and y such that & = Sy. This implies that N(B)N(¥) = N{z). To see that 2 is prime, suppose
that § | 2, where f =a + b+/=5. It follows that N (8) = a® 4 5b% | N(2) = 4. This implies that
b = 0, and because $ is not a unit, we have a = £2. However, if @ = 42, then y is a unit, which
is a contradiction. Hence, 2 is prime. To see that 3 is prime, we seek divisors of N(3) = 9 among
integers of the form a? + 5b%, We sce that b can be only 0 or £1. I b = 41, then ¢ = 3. But
this implies that the remaining factor is a unit. If 5 = 0, then @ = £3, and so 3 is prime. To see
that 1 & /=5 is prime, note that its norm is 6. A divisor a + bi can have b = 0 or & = +1, else
its norm is too large. I b =0, then a? | 6, a contradiction, so b = 1. But then @ + 5 | 6, which
implies that @ = £ 1. But N(£1 £ +/—3) = 6 so the other divisor is a unit, and so 14+ /=5 is
also prime. Note then that 2 - 3 == 6 and (1 — +/=5}(1 + +/=5) = 6, s0 that we do not have unique
factorization into primes in Z[+/—3].

8- Suppose y and p exist, Note first that (7 — 2¢/=5) /(1 + +/—3) = —1/2 — 3/24/=5, 50 p £ 0.
Let y =a +by/—5 and p = ¢ + d+/=5. Then from 7 — 2/=5 = (1 + v/~3)(a + bv/—5) +
fc+dy/—S)=(a—5b+ecy+ (a+b+d)v/5, wepget7T=a ~5bh+cand 2=ag-+b+d.
If we subtract the second equation from the first, we have 9= —6b +c—dorc —d =66 + 9.
Therefore, 3[ ¢ —d, and since p # 0, c — d #0, s0 |¢ ~ d| = 3. We consider N (p) = c? + 542
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It d =0, then N(p) = ¢* = 3 > 6.1f d =1, then lc| = 2 and N(py=ct+5d°=4+5>6.1f
|d| = 2, then N(p} = 542 > 5.2 =20 > 6, so in every case the norn of p is greater than 6. So
no such y and p exist, and there is no analog for the division algorithm in Zi =51

h. Suppose g =a-+ by—5 and v=c+d /=5 is a solution to the equation. Then

3@ + bv—9) + O+ B +d/D)=0Batc— 5d) + (3b +c+d)/=3=1. So we
must have 3@ + ¢ — 5d = 1 and 3h + ¢ + d = 0. If we subtract the second eguation from the first,
we get3g —3b ~6d =1 which implies that 3|1, a contradiction. Therefore, no such solution
exists.

Section 14.3
1. a3 b8 8.8 d. 16

3, We first check that a greatesi comnon divisor § of @ and f divides v, otherwise no solution exists.
If & solution exists, use the Euclidean aigorithm and back substitution to express 8 as & linear
combination of o and B as oy -+ fv = 5. Because 8 | y, there is a Gaussian integer n such that
35 = y. When we multiply the equation s + pv = 1by 5, we have opun + Byn=38=y,s0We
may take Xp = (47 and yp=vnasa solution. The set of all sotutions is given by x = xp + Br/é,
y = yg — at/8, where T ranges over the Gaussian integers.

5. a, no solutions h.no solutions

7, Suppose X, ¥,z isa primitive Pythagorean triple with y even, so that x and z are odd, Then
22— 1 4y = (x + iv)(x — iy). If a rationat prime p divides x + iy, it divides both x and
y, contradicting the fact that the teiple is primitive. Therefore, the only Gaussian primes that
divide x + iy are of the form m +in with n # 0. Also, if 1+ |x+iy, then L—i{x— iy,
which implies that 2 = (1 — i}{(1+ 1) divides z2, which is odd, & contradiction. Therefore, we
conclude that 1+ i does not divide x + iy, and hence, neither does 2. Suppose § is a comron
divisor of x iy and x — iy. Then 8 divides the sum 2x and the difference 2iy. Because 2 is
not a common factor, § must divide both x and y, which are relatively prime. Hence, 8 isa
anit and x + iy and x — iy are also relatively prime. Every prime that divides x + iy is of the
form = u L+ iv, and so W =u — v divides x — iy, Because their product equals a square,
each factor is a square. Thus, x + iy == (m + inyt and x — iy = (m — in)? for some Gaussian
integer m + in. But then x +iy = m2 — n? + 2mni so x = m* — n? and y = 2mn. And if
2= (n + ni)2on — ni)? = (m?+n%)?,s0z= 2 + n2. Further, if m and n were both odd or
both even, we would have z even, 2 contradiction. It follows that and n have opposite parity.
Finally, having found # and 7, if m < n, we can multiply by { and reverse their roles to get m > 1.
The converse is exactly as shown in Section 13.1.

9, By Lemma 14.3, there is a unique rational prime p such that 77 | p. Lete =a +bi. We separately
consider three cases: p=2, p= 3 {mod 4), and p = 1 {mod 4).
Case 1: If p =2, ther 7 is an associate of 14+ i and N{w) — t = 1. Because there are only
two congruence classes modulo 1 + i and because o and 14 i are relatively prime, we have
oVl =g =1 (mod 14 ).
Case 2. p=3(mod 4}, then v = p and N{m) — 1= p2 _ 1. Also, i? = —i. By the binomial
theoreim, we can show that of = (a+biYy =af + (b =a? —ibP =a— bi = o (mod p),
using Fermat’s little theorem. Simitarly, @ = & (mod p), so that o’ =@* = a (mod p), and
because p = 7 and « and 7 are relatively prime, we have o™/ &)-l=1 (mod p).
Case 3:If p= 1{mod 4), then 77 = p, P =i and N(r)— 1=p— L Bythe hinomial theorem,
we can show that ¥ =(a + piYy =aP + (i) =a+ bi = ¢ (mod p), using Fermat's little
theoremn. This implies that ! = 1 (mod p), and because 7 | p, we have ¥~ =1 (mod 1),
concluding the proof.
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1. Let 7 be a Gaussian prime. If ¢ = 1 (mod &), then 7 o2 — 1= (o — D + 1), so that
either ¢ = 1 or @ = —1 (mod ). Therefore, only 1 or —1 can be its own inverse modulo 7.
Now let oy = 1,05, .. ., &t,_3, & = —1 be a reduced residue system modulo 7. For each oy,
k=2,3,...,r— 1, there is a multiplicative inverse modulo 7, oy, such that oo = 1 (mod xr).
If we group together the two numbers in all such pairs in the reduced residue system, then the
product is easy to evaluate: ooty . . . &, = Wenap) (e} . .. (o)) (e, _H—D=—1(mod x),
which proves the theorem.

Appendix A

Laab+cy=(b+cla=ba+eca=ab+ac
bola+bY?=(a+ba-+b)=ala+b)+bla+by=a’+ab+ba+b?=a?+ab-1+ab-
I+b*=a24ab -2+ b =a +2ab + »%.
catbto=at+lc+b=@+c)+b=(c+a)+b
dE-a)ytc-D+@-—cd=(—a+b+(~-btc)+(—c+a)=—a+G-B+(c—c)+
a=—a+0+0+4+a=—-at+a=0

3 0=0+-0=0

5. Let a be a positive integer. Since @ = a — 0 is positive, 7 > 0. Now let @ > 0. Then a — 0 = a is
positive.

7.a—ec=a+(—b+ b}~ c=(a—Db)+ (b — ), which is positive from our hypothesis and the
closure of the positive integers.

Appendix B
l.a.l b.50 ¢ 1140 d.462 e 120 F1

3. a.a® 4 5a*h + 10a28? + 104283 + 5ab* + B
b. 217 4 10x%y + d5x8y? + 12047y7 + 21025y 4 252255 + 210x%y5 + 1202%y7 + 45x%y8 +
10xy® + 10 )
e.m’ — Tmbn + 21mon? — 35mn3 +35m3n% — 203 +Tmnb — 7
d. 16a* + 96436 + 216a%b% + 216ab3 + 8154
e. 243x% - 1620xy + 4320x%y% — 5760x2y3 + 3840xy% — 10245
f. 390,625x% + 4,375,000x7 + 21,437,500 + 60,025,000x° 4 105,043,750x* +
117,649,000x% 4 82,354,300x2 -+ 32,041, 720x + 5,764,801

S. On the one hand, {1+ (—1))* =0" == (. On the other hand, by the binomial theorem,
(14 (=) = X o (= D).

(:) U«) = r!(r:ir)! : kr(rr;lk)! = k!(n—k}.’(;xll—(rri)—!(ljc'l)u!wkfnﬂ)! = ('::) (ﬁj)

9. We proceed using the second principle of mathematical induction on the variable n. The basis step
n =r = lis clear. For the inductive step, we assume that {7) + (rj'l) +-+ (0= C,'i{) is true
whenever r is an integer with [ < r =< n. We will now examine the formula with » + 1in the place

of n.Ifr < n+ 1, then {7} + (f'rH) +o (MY =ty "1 = ("+2) by Theorem A.2,

=

r r+1 r+1
s0 the formula holds in this case. If # = »n + 1, then (’;) RS ("‘r"l) = (;:ii) =l= (J’fﬁ)
: . X Xy x! xf _ __xYath xix—n)
11, Using Exercise 10, (n) + (n+1) = ey T BT o= = T T e =
XUx—n+n4l) _ fx+0)! _ (I+I)
w+Dx—r T (N z-—-n)! T Agrlf

13. Let S be aset of i copies of x + y. Consider the coefficient of x¥y" ¥ in the expansion of (x + y)".
Cheosing the x from each element of a k-element subset of §, we notice that the coefficient of

1k is the number of k-element subsets of S, l’)
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683 Answers to Odd-Numbered Exercises

15. By counting elements with exactly 0, 1, 2, and 3 propesties, we sce that only elements with 0
properties are counted in 2 — (r(P) + n(Py) +r(FD+ (n{Py, Py) + n(Py, P3) +nlly P3)) —
n(Py, Py, Py), and those only once.

17. A term of the sum is of the form ale"‘x;'l . -x,f;", where ky+ky 4ok, =nanda=
n!/(k;!kzl. e km!)‘

19. 56133000000
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Draim, 131
Euler, 132
Fermat, 126
of Fermat numbers, 128-130
Pollard p — 1, 219-220
Pollard rho, 184-186
prime-power, 109
speed of, 124-126
using continued fractions, 504--507
Failure of unique factorization, 110, 117
FAQs,
cryptography, 600
mathematics, 600
Farey, John, 96
Farey series, 96
Fermat, Pierre de, 96, 217, 516, 532, 541
Fermat-Catalan conjecture, 523
Fermat equation, 3, 516
Fermat factorization, 126
Fermat number, 128-131, 340, 414
factorization of, 128-130
Fermat prime, 128
Fermat quotient, 222
generalized, 377
Fermat’s last theorem, 101, 516522
history of, 516-520
proof forn = 3, 516
proof for n = 4, 520522
Fermat’s Last Theorem, the Mathematics of,
600
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Fermat's little theorem, 217
Gaussian integers, analogue for, 574-575
Lucas’s converse of, 366

Fiat-Sharnir method, 451

Fibonacei, 30

Fibonacci numbers, 30-36, 101-182, 340,

427, 476, 599

explicit formula for, 33

Gaussian, 558

generalized, 35

growth of, 32

with negative indices, 35

Fibonacci pseudorandom number generator,

387

Fibonacci Quarterly, 33

Fibonacci sequence, 30

Field’s medal, 79

Finding primes, 69

Findley, Josh, 263

Flaw in Pentium chip, 85

Flipping coins electronically, 411412

Floor fanction, 7

Formula,
for primes, 72
for sum of terms of a geometric series, 18
for terms of a sequence, 11

Fortune, R. F., 76

Four squares, sums of, 532-535

Fowls, 140

Fraction,
continued, 468-507, 616
Egyptian, 29
unit, 29

Fractionat part, 8, 455

Frauds, 259

Frénicle-de Bessy, 217

Frequencies,
of letters 282-284,
of digraphs, 293
of polygraphs, 206

Frequently Asked Questions
cryptography, 600
mathematics, 600

Friedman, William, 289

Frey, Gerhard, 518

Function,
absoluie vatue, 9
additive, 248
arithmetic, 240
ceiling, 7
completely additive, 248
completely multiplicative, 240
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Euler phi, 233, 240-243, 609-611
factorial, 20, 26
floor, 7
generating, 36
greatest integer, 7
hashing, 202
1, 247
Li, 80
Liouville’s, 247
Mangoldt, 275
Mertens, 273
Mbbius, 270
mod, 143
multiplicative, 240
number of divisors, 250
w, 248
w, 71,222
Mg, 89
rad, 122, 523
Riemann zeta, 78
Smarandache, 122
strongly multiplicative, 247
sum of divisors, 250
summatory, 243
zeta, 78
Fundamental theorem of arithmetic, 108

Gage, Paul, 262

Game,
of Buclid, 107
of nim, 50

Gaps, in distribution of primes, 82

Gauss, Karl Friedrich, 77, 82, 141, 142, 334,

549
Gauss® generalization of Wilson’s theorem,
222

Gauss’ lemma, 407

Gaussian integers, 547-575
associates, 551
Chinese remainder theorem for, 567
congruence of, 557
divisibility of, 550
division algorithm for, 553-555
Euclidean algorithm for, 56 1-562
Euler's theorem for, 575
Fermat’s little theorem fo, 374573
greatest common divisor of, 359
Maple, working with, 592
unique factorization for, 562-565
units of, 551
Wilson's theorem for, 575

Gaussian Fibonacci sequence, 558
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Gaussian moats, 559 Hensel’s lemuna, 170
Gaussian prime, 552 Heptadecagon, 142
Generalized Fermat quotient, 377 Heptagonal number, 21
Generalized Fibonacci number, 35 Hex, 46
Generalized Riemann hypothesis, 230 Hexadecimal notation, 4647
Generals, Chinese, 164 Hexagonal number, 21
Generating function, 36 Highly composite, 254
Genghis Khan, 159 Hilbert, David, 118
Geometric mean, 29 Hilbert prime, 118
Geometric progression, 10 Hill, Lester S., 292
sum of terms, 18 Hill cipher, 292-295
Geometric series, Home team, 202
sum of infinite, 456 House of Wisdom, 55
sum of terms of, 18 Horses, 28
Germain, Sophie, 73, 526 Hundred fowls problem, 140
Gerstenhaber, M., 418 Hurwitz, Alexander, 262
Qillies, Donald, 262 Hyperinflation, 519
GIMPS, 262-265, 600 Hypothesis, Riemann, 81
Goldbach, Christian, 84, 86
Goldbach’s conjecture, 84 IBM 360 computer, 262
Great Internet Mersenne Prime Search, IBM 7090 computer, 262
262-265, 600 Identity elements, 577
Greatest common divisor, 90 ILLIAC, 262
algorithms for, 97105, 106 Inclusion-exclusion, principle of, 75,
finding using prime factorizations, 111 586-587
as least positive linear combination, Incongruent, 142
91-92, 102-105, 106 Index arithmetic, 356-358
of Gaussian integers, 559 Index of an integer, 358, 612-626
of two integers, 90 Index of summation, 17
of more than two integers, 93 Index system, 364
using to break Vigénere ciphers, 289 Indices, 355, 612-626
Greatest integer function, 7 Induction, mathematical, 23-26
Greeks, ancient, 69, 257 Induction, strong, 25
Gregorian calendar, 196 Inductive step, 23
Gross, 59 Inequality, Bonse’s, 88
Gynecologist, 61 Infinite continued fraction, 478
Infinite descent, 520
Hadamard, Jacques, 77 Infinite simple continued fraction, 478
Hajratwala, Nayan, 265 Infinitude of primes, 68-69, 74, 76, 97, 121,
Hand, pointing (£5), ix 130
Haneot, tower of, 28 Initial term of a geometric progression, 10
Hardy, G. H., 2, 89, 255 Integer, 6
Harmonic series, 27 abundant, 266
Haros, C., 96 composite, 63
Hashing, 202 deficient, 266
double, 204 Etsenstein, 568
function, 202203 Gaussian, 549
quadratic, 416 ‘ k-abundant, 266
Hashing function, 202 k-perfect, 266
Hastad broadcast attack, 313, 315 order of, 354
Heliman, M. E., 318, 323 ' palindromic, 194
Hensel, Kurt, 170 powerful, 117
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Integer {continued)

rational, 549

sequences, 11

square-free, 117

superperfect, 267
Integers, 6

Gaussian, 549

most wanted, ten, 129
Intel, 84-85
Tnternational fixed calendar, 200
International Standard Book Number, 209
International Standard Seriat Number, 213
Internet, 262
Interpolation, Lagrange, 346
Tnverse, additive, 577
Inverse of an arithmetic function, 247
Inverse of a matrix module m, 178
Inverse modulo m, 155
Inversion, Mobius, 271-273
Involutory matrix, 182
Trrational number, 6, 115

quadratic, 491, 549
Trrationality of /2, 6-7, 115
ISBN, 209
Iterated knapsack cipher, 320-321

Jackpot, 205
TJacobi, Carl G. 1., 430, 568
Jacobi symbol, 430
reciprocity law for, 433-434
Jeans, 1. H., 224
Tigsaw puzzle, 28
Julian calendar, 196
JulHus Caesar, 196, 279
Jurca, Dan, 262

k-abundant number, 249
k-perfect number, 248
Kaprekar, 2. R., 51
Kaprekar constant, 51
Kasiski, F., 289
Kasiski test, 289
Kayal,N., 73
Key, 278
agreement protocol, 323
common, 278, 324
decryption, 273
encryption, 278
exchange, 324
for hashing, 202
master, 327
public, 308
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Keyspace, 278

Keystream, 297

Knapsack ciphers, 318-321
weakness in, 320

Knapsack problem, 316
multiplicative, 322

Knuth, Donald, 60, 62

Kocher, Paul, 314

Kronecker, Leopold, 438

Kronecker symbol, 437

kth power residue, 359

Kummer, Ernst, 438, 517-518

Lagarias, Jeffrey, 81
Lagrange, Joseph, 215, 216, 336, 346, 493,
532, 535, 541
Lagrange interpolation, 346
Lagrange’s theorem
on continued funcitons, 493494
on polynomial congruences, 346
Lamé, Gabriel, 101, 517
Lamé’s theorem, 101-102
Landau, Bdmund, 60, 61
Largest known primes, 7 1-72
Largest number naturally appearing, 82
Law,
associative, 577
cancellation, 577
commuiative, 577
distributive, 377
trichotomy, 578
Law of quadratic reciprocity, 417-425
Leap year, 196
Least commen multiple,
finding using prime factorizations, 112
of two integers, 112
of more than two integers, 120
Least nonnegative residue, 143
Least nonnegative residues, 144
Least positive residue, 143
Least primitive root for a prime, 344
Ieast-remainder algorithm, 166
Leblanc, M. (pseudonym of Sophie
Germain), 517
Legendre, Adrien-Marie, 77, 404, 516
Legendre symbol, 404
1 shmer, Derrick, 249, 260, 262, 506
Lehmer, Emma, 262
Lemma,
Gauss’s, 407
Hensel's, 170
Thue’s, 538
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Lemmermeyer, Franz, 418
Lenstra, Arjen, 129
Lenstra, H., 73
Letters, frequencies of, 282-284
Lifting solutions, 169
Linear combination, 91
greatest common divisor as a, 91-92,
102-105, 106
Linear congruence, 153
Linear congruences, systems of, 174
Linear congruential method, 381-382
Linear diophantine equation, 134
int more than two variables, 137
nonnegative solutions, 139
Linear homogeneous recurrence relation, 36
Liouville, Joseph, 247, 248, 463
Liouville's function, 247
Little theorem, Fermat’s, 217
Littlewood, J. E., 82, 89, 255
Lobsters, 138, 166
Logarithm, discrete, 355
Logarithmic integral, 77
Logarithms modulo p, 355
Lowest terms, 115
Lucas, Edouvard, 30, 34, 260, 261
Lucas converse of Fermat's little theorem,
366
Lucas numbers, 34
Lucas-Lehmer test, 260
Lucifer, 296
Lucky numbers, 75

MacTutor History of Mathematics Archives,
600
MAD Magazine, 62
Magic square, 183
Mahavira, 138
Mangoldt function, 275
Manhattan project, 15
Maple, 589-593
Gaussian integer package, 592
Markov’s equation, 527
Master key, 327, 346
Master Sun, 158
Mathematica, 593--597
Mathematical induction, 23-26
origins of, 24
second principle, 25
Mathematics, Prince of, 147
Matrices, congruent, 177
Matrix, involutory, 182
Matrix multiplication, 66
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Maurolico, Francesco, 24
Maximal +1-exponent, 395
Mayans, 44
Mean,
arithmetic, 29
geometric, 29
Merkle, R. C,, 318
Mersenne, Marin, 259, 261
Mersenne number, 258, 414
Mersenne prime, 72, 258, 369, 383, 414
search for, 261-265
Mertens, Franz, 273
Mertens conjecture, 275
Mertens function, 273, 275
Message expansion factor, 389
Method,
Monte Carlo, 184
Method of infinite descent, 520
Middle-square method, 330
Mihailescu, Preda, 523
Miller’s test, 227228
Mills, W. H,, 72
Milis formuta, 72
Minimal universal exponent, 372
Minims, order of the, 259
Minimum-disclosure proof, 448
MIPS-years, 126
Moats, Gaussian, 559
Mébius, A, F, 270
Mabius function, 270
Mobius inversion, 269-273
Mébius strip, 270
Modular arithmetic, 144
Modular exponentiation algorithm, 147148
complexity of, 148-149
Modular inverses, 155
Meodular square roots, 410411
Medulus, 142
Monkeys, 152, 164
Monks, 28
Monographic cipher, 279
Monte Carlo method, 15, 184
Morrison, M. A, 506
Most wanted integers, ten, 129130
Multiromial ¢coefficient, 587
Multiple, 37
Multiple precision, 53
Multiplication,
algorithm for, 56
complexity of, 62-64
matrix, 66
Multiplicative function, 240
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Multiplicative knapsack problem, 322
Mutually relatively prime, 94
Mysteries of the universe, 287

Namaigiri, 255
National Institute of Standards and
Technology, 206297

Nicely, Thomas, 84, 85
Nickel, Laura, 262
Nicomachus, 158
Nim, 50
Noll, Landon, 262
Nonresidue, quadratic, 402
Norm, 117

of complex number, 548
Notation,

Arabic, 54

big-0, 60

binary, 46

binary coded decimal, 50

decimal, 46

duodecimal, 59

hexadecimal, 46

octal, 46

one’s complement, 49

produci, 20

summation, 16-19

two's complement, 49
NOVA, 520, 600
NOVA Online—The Proof , 600
Nunber,

abundant, 266

algebraic, 7

Carmichael, 226, 375-377

composite, 68

congruent, 527

Cullen, 232

deficient, 266

even, 39 )

everything is, 510

Fermat, 128-131, 340, 414

Fibonacci, 30

generalized Fibonacci, 33

heptagonal, 21

hexagonal, 21

jrrational, 6

k-abandant, 266

k-perfect, 266

Lucas, 34

Tucky, 75

Mersenne, 258

most wanted, 129-130
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odd, 39

odd perfect, 265, 267

pentagonal, 21

perfect, 257

pseudorandom, 380-382

random, 380

rational, &

Sierpinski, 371

superperfect, 267

tetrahedrat, 22

transcendental, 7, 463—-464

triangular, 19, 21

Ulam, 15
Numbers,

lucky, 75

p-adic, 170

pseudorandom, 330-382

random, 380

ten most wanted, 115
Number of divisors function, 250, 609-611

multiplicativity of, 251-252
Number systemn, positional, 43
Number theory, definition of, 1

elementary, definition of, 3
Number Theory Web, 600
Numerals, Hindu-Arabic, 54

Octal notation, 46
0Odd number, 39
Odd perfect number, 265, 267
Odlyzko, Andrew, 81
One-to-one correspondence, 10
One-time pad, 298
One’s complement representation, 49
Qperation, bit, 60
Orange, Prince of, 541
Order of an integer, 334
Ordered set, 6, 578
Origin of,
mathematical induction, 24
the word “algebra”, 54
the word “algorithm”, 54
Origins of mathematical induction, 249

Pad, one-time, 298

p-adic numbers, 170

Pair, amicable, 266

Pairwise relatively prime, 94

Palindromic integer, 194

Parity check bit, 207

Partial key disclosure attack on RSA, 314
Partial remainder, 57
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Partial quotient, 469
Parts, aliquot, 267
Pascal, Blaise, 583
Pascal’s triangle, 583
Pell, John, 541
Pell’s equation, 541545
Pentagonal number, 21
Pentium, 84, 85, 263, 264
Pepin’s test, 425-426
Perfect number, 237, 265

even, 257

odd, 265, 267
Perfect square,

last two decimal digit, 131
Period,

Iength of a pseudorandom number

generator, 382

of a base b expansion, 460

of a continued fraction, 490
Periodic base b expansion, 459
Periodic cicada, 119
Periodic continued fraction, 490
Perpetual calendar, 195-199
Phyllotaxis, 31
7, 6,485
Pigeonhole principle 8,9
Pirates, 166
Plaintext, 278
Plouffe, Simon, 11
Pocklington, Henry, 368
Pocklington’s primality test, 368
Pointing hand (57}, ix
Poker, electronic, 325-327, 416
Pollard, J. M., 125, 184, 219
Pollard,

p — 1 factorization, 219

rho factorization, 184186
Polygon, regular, 131
Polygraphic cipher, 286, 293-294
Polynoinial congruences, solving,

168-173

Polynormial time algorithm, 73
Polynomials, congruence of, 152-153
Pomerance, Carl, 73-74, 125
Positional number system, 43
Potrzebie system, 62
Power, prime, 87
Power generator, 387
Power residue, 359
Powerful integer, 117
Powers, R. E., 506
Pre-period, 460
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Primality test, 69, 368369
Pocklington’s, 368
probabilistic, 229-230, 446
Proth’s, 369
Prime,
definition of, 68
Eisenstein, 569
Fermat, 128
Gaussian, 552
Hilbert, 118
in arithmetic progressions, 71
largest known, 71-72
Mersenne, 72, 258
power, 87
relatively, 90
size of the nth, 82
Sophie Germain, 73
Wilson, 223
Prime number theorem, 79
Prime Pages, The, 599
Prime power, 87
PrimeNet, 263, 265
Prime-power factorization, 109
using to find greatest common divisors,
11t
using to find least common multiples, 112
Primes,
distribution of, 77-86
finding, 69
formula for, 72
gaps, 82
in arthmetic progressions, 71
infinitude of, 69, 74, 76, 97, 121, 130
largest known, 71-72
primitive roots of, 341-343
PRIMES isin P, 8,9
Primitive Pythagorean triple, 519, 570
Primitive root, 336, 611
Primitive root,
of unity, 428
method for constructing, 345
modulo primes, 341-348, 611
modulo prime squares, 347-348
modulo powers of primes, 348-350
Prince of Orange, 541
Principle of inclusion-exclusion, 586-587
Principle of mathematical induction, 23-26
second, 25
Principle, pigeonhole, 8, 9
Private-key cryptosystem, 308
Prize,
for finding large primes, 265
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Prize {continted)
for proving the Riemann hypothesis, 81
Wolfskehl, 519
Probabilistic primality test, 229-230, 446
Solovay-Strassen, 446
Probing sequence, 204
Problem,
coconut, 152
discrete logarithm, 358-359
hurdred fowls, 140
knapsack, 316
mudtiplicative knapsack, 322
Waring’s, 536
Product, Dirichlet, 247
Product cipher, 285
Product notation, 20
Progression,
arithmetic, 10
geometric, 10, 18
Project,
Cunnigham, 129
Manhattan, 5
Proof,
minimum-disclosure, 448
primality, 72-74
zero-knowledge, 448
Property,
reflexive, 143
symmetric, 143
transitive, 143
well-ordering, 6, 578
Proth, E., 369
Proth's primality test, 369
Protocol,
cryptographic, 323
key agreement protocol, 323
Prover, in a zero-knowledge proof, 448
Pseudoconvergent, 439
Pseudoprime, 224
Euler, 440
strong, 228, 442
Pseudorandom nurnber generator, 378386
discrete exponential, 387
Fibonacct, 387
linear congruential, 381-382
mniddle-square, 380
1/ P, 467
power, 387
pure multiplicative, 382-383
quadratic congruential, 388
square, 384
Pseudorandom numbers, 378-386, 387 467
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Ptolemy L, 70
Public-key cipher, 308
Public-key cryptography, 308-309
Public-key cryptosystem, 308
Pulvizer, the, 97
Pure multiplicative congruential method,
382-383
Purely periodic continued fraction, 408
Puzzle,
jigsaw, 28
tower of Hanoi, 28
Pythagoras, 510
Pythagorean triple, 510
primitive, 517, 574
Pythagorean theorem, 510
Pythagoreans, 510

Quadratic character of —1, 406
Quadratic character of 2, 408-409
Quadratic congruential generator, 388
Quadratic hashing, 416
Quadratic irrational, 491, 549
reduced, 499
Quadratic nonresidue, 402
Quadatic reciprocity law, 417-425
different proofs of, 417-418
Fuler's version of, 418
Gauss’s proofs of, 418
history of, 418
proof of, 420425, 427429
Quadratic residue, 402
Quadratic residues and primitive roots, 403
Quadratic residues
chain of, 416
consecutive, 415
Quadratic sieve, 125
Queen of mathematics, 142
Quotient, 37
Fermat, 222
partial, 469

Rabbits, 30

Rabin, Michael, 314, 325

Rabin cryptosystem, 314, 415-416
Rabin’s probabilistic primality test, 229
rad function, 122, 523

Radix, 48

Ramanujan, Senivasa, 254, 255
Random numbers, 380

Ratig, common, 10

Rational integer, 549

Rational number, 6
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Rational numbers,
countability of, }1-12_
Real number, base b expansion of, 457
Real numbers, 464-465
equivalent, 489
uncountability, 464465
Reciprocity law,
for Jacobi symbols, 433434
quadratic, 417-425
Recurrence relation, linear homogencous,
36
Recursive definition, 26
Reduced quadratic irrational, 499
Reduced residue system, 233
Reducing modulo nr, 143
Reflexive property, 143
Regular polygon, constructability, 131
Relatively prime, 90
mutually, 94
pairwise, 94
Remainder, 37
Remainder, partial, 57
Representation,
one’s complement, 49
two’s complement, 49
Zeckendorf, 35
Repunit, 194
base b, 194
Residue,
cubic, 364
kth power, 359
least nonnegative, 143
quadratic, 402
system, reduced, 233
Residues,
absolute least, 144
complete system of, 144
reduced, 233
Riemann, George Friedrich, 230
Riemann hypothesis, 81
Riemann hypothesis, generalized, 230
Riesel, Hans, 262
Rijndael algorithm, 633
Rivest, Ronald, 310
Robinson, Raphael, 244
Root, primitive, 262
Root of a polynomial moduleo m, 341
Root of unity, 428
prinzitive, 428
Roman numerals, 43
Romans, 43
Round-robin tournament, 200--201
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RSA cryptosystem, 310-314, 340, 595, 600
attacks on implementations of, 313-314
cycling attack on, 340
Hastad broadcast attack on, 313, 315
partial key disclosure attack on, 314
security of, 312-313
Wiener's low encryption exponent attack,

486

RSA factoring challenge, 127

RSA Labs, 125, 127, 600
cryptography FAQ, 600

RSA-129, 125, 127

RSA-130, 125, 127

RSA-140, 125, 127

RSA-155, 125,127

RS8A-160, 125, 127

Rule for squaring an integer with final digit

5,59

Rumely, Robert, 73

Sarrus, 223
Saxena, N., 73
Scottish Cafe, 15
Second principle of mathematical induction,
25
Secret sharing, 327-328
Security of RSA, 312-313
Seed, 381
Selberg, A., 71,79
Sequence, 10
aliquot, 267
Fibonacct, 30
formula for terms, 10
integer, 11
probing, 204
spectrum, 15
super-increasing, 317
Series,
Farey, 96
harmonic, 27
Set,
countable, 11, 464465
ordered, 578
uncountable, 11, 464-465
well-ordered, 6
Shadows, 327
Shamir, Adi, 310, 320, 325, 450
Sharing, secret, 327-328
Shift transformation, 280
Shifting, 56
Shuffling cards, 222
Sierpinski nurnber, 371
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Sieve,
of Eratosthenes, 70
number field, 125
quadratic, 125
Signature, digital, 324-325, 329-339,
391-392
Signed message, 324
Simple continued fraction, 469
Shafer, Michael, 263
Sinning, 287
Skewes, 8., 82
Skewes’ constant, 82
Sloane, Neil, 11
Slowinski, D., 262
Sneakers, 310
Solovay-Strassen probabilistic primality test,
446
Solving
linear congruences, 154
linear diophantine equations, 134
polynomial congruences, 168--173
Splicing of telephone cables, 397-399
Spread of a splicing scheme, 398
Square,
diabolic, 183
magic, 183
Square-free integer, 117
Squnare pseudorandom number generator,
384
Square root, modular, 410-411
Squaring an integer with final digit 5, 59
Squares, sums of, 528-535
Stark, Harold, 260
Strauss, E., 29, 443
Step,
basis, 23
inductive, 23
Stream cipher, 297
Strip, Mobius, 270
Strong pseudoprime, 228, 442
Strongly multiplicative function, 247
Subexponential time, 125
Substitution cipher, 279
Subtraction, algorithm for, 54-44
Sublraction, complexity of, 62
Sum, telescoping, 19
Sum of divisors function, 2530, 609-611
multiplicativity of, 251-252
Summation,
index of, 17
notation, 16-17
terms of a geometric seres, 18
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Summations,

propetties of, 11
Summatory function, 243

of Mobius function, 271
Sums of cubes, 536
Sums of squares, 528535, 570-573
Sun-Tsu, 158
Super-increasing sequence, 317
Superperfect integer, 267
SWAC, 262
Symbol,

Jacobi, 430

Kronecker, 437

Legendre, 404
Symmetric cipher, 296
Symmetric property, 143
System, index, 364
System of congruences, 174181
System of linear congruences, 174-181
System of residues,

complete, 144

reduced, 233

Table,
factor, 602608
of arithmetic functions, 609-610
of continued fractions, 616
of indices, 612-615
of primitive roots, 611
Team,
away, 202
home, 202
Telephone cables, 397-399
Telescoping sum, 19
Ten mosi wanted integers, 126-130
Term, initial, of a geometric progression, 10
Terminate, 458
Terminating base b expansion, 458
Test,
divisibility, 189-193
Kasiski, 289
Lucas-L.ehmer, 260
Miller’s, 227-228
Pepin’s, 425426
primality, 69, 72-74, 229-230, 446
probabilistic primality, 229-230, 446
‘Tetrahedral number, 22
Theorem,
binomial, 583-584
Chinese remainder, 159
Dirichlet’s, 9, 71, 434
Euler’s, 235
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Fermat’s last, 516-522 Uzbekistan, 55
Fermat's little, 217-218
fundamental, of arithmetic, 108 Vatlé-Poussin, C, de la, 70
Gauss’s generalization of Wilson’s, 222 Variable, dummy, 10, 13
Lagrange’s (on continued fractions), 493 Vega, Jurij, 77
Lagrange’s (on polynomial congruences), Vegitarianism, 255
346 Verifier, in a zero-knowledge proof, 421
Lamé's, 101-102 Vernam, Gilbert, 298
prime number, 79 Vernam cipher, 298
Wilson's, 216 Vigenere, Blaise de 287
Threshold scheme, 327-328, 346 Vigenére cipher, 287, 298
Thue, Axel, 538 cryptanalysis of, 289-292
Thue’s lemma, 538 von Humboldt, Alexander, 421
Tijdeman, R, 523 von Neumann, John, 380
Tournament, round-robin, 201-202
Tower of Hanoi, 28 Wagstaff, Samuel, 129, 518
Transcendental number, 7, 463464 Wallis, John, 541
TFransformation, affine, 280-281, 303 Waring, Edward, 215, 535-536
Transformation, shift, 280 Waring’s problem, 535
Transitive property, 143 Web, Number Theory, 600
Transpesition cipher, 302-303 Web sites, 599-600
Trial division, 69, 124 Wedeniwski, Sebastian, 81
Triangle, Weights, 48
Pascal’s, 582583 Well-ordered set, 6, 578
Pythogrean, 510 ‘Well-ordering property, 6, 578
Triangular number, 19, 21 Welsh, Luke, 262
Trichotomy law, 578 Wiener, M., 313-314
Trivial zeros, 81 Wiles, Andrew, 518-520
Tuberculosis, 421 Wilson, John, 212
Tunrell, 1., 527 Wilson prime, 223
Tuckerman, Bryant, 262 Wilson’s theorem, 215, 216
Twin prime conjecture, 83-84 Gauss’ generalization of, 222
Twin primes, 83 Gaussian integers, analogue for, 575
asymptotic formula conjecture, 89 Winning move in game of Euclid, 107
application to hashing, 204 Winning position in nim, 50
Two squares, sums of, 528-534 Wisdom, House of, 55
Two’s complement representation, 49 Wolfskeh! prize, 519
Woltman, George, 262
Ujjain, astronomical observatory at, 542 ‘Word size, 53
Ulam, S. M., 15 World, end of, 28
Ulam number, 15
Uncountable set, [, 464—465 Year end day, 200
Unique factorization, 109 Year, leap, 196
of Gaussian integers, 563-565
Unique factorization, fatlure of, 110, 117, Zeckendorf representation, 35
118 Zeller, Christian Julius, 198
Unit, in the Gaussian integers, 551 Zero-knowledge proof, 448
Unit fraction, 29 Zeros, trivial, 81
Unity, primitive root of, 428 Zeta function, Riemann, 78, 81
Unity, root of, 402 ZetaGrid, 81
Universal exponent, 372 Ziegler's Giant Bar, 62
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