EI Uniform Probability Distribution "continued"
EI Uniform Probability Distribution "continued"
Poisson Prob. Distribution
Poisson Prob. Distribution
Prob. density function

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \leq x \leq b \\ 0 & \text{elsewhere} \end{cases}$$

The expected value and variance for the uniform continuous
prob. distribution are:
 $E(x) = \frac{a+b}{2}$ and $Var(x) = \frac{(b-a)^2}{12}$
The prob. of any single point is zero.
Example (Q2 page 229) The rondom variable x is known to be
Uniformly distributed between 10 and 20.
STUDENTS-HUB.com
 $f(x) = \begin{cases} \frac{1}{10} & \text{for } 10 \leq x \leq 20 \\ 0 & \text{elsewhere} \end{cases}$
Uploaded By: Jibreel Bornat
 $f(x) = \begin{cases} \frac{1}{10} & \text{for } 10 \leq x \leq 20 \\ 0 & \text{elsewhere} \end{cases}$

(i) What is the expected time to arrive New York? (i)

$$E(x) = \frac{a+b}{2} = \frac{120+140}{2} = 130$$
 minutes
 $F(x) = \frac{a+b}{2} = \frac{120+140}{2} = 130$ minutes?
 $F(x) = \frac{a+b}{2} = \frac{120+140}{2} = 130$ minutes?
 $Vau(x) = \frac{(b-a)^2}{12} = \frac{(140-170)^2}{12} = \frac{120}{12} = 33.33$ minute
 $Vau(x) = \frac{(b-a)^2}{12} = \frac{(140-170)^2}{12} = \frac{120}{12} = 33.33$ minute
 $F(x) = \frac{(b-a)^2}{12} = \frac{(140-170)^2}{12} = \frac{120}{12} = 33.33$ minute
 $F(x) = \frac{(b-a)^2}{12} = \frac{(140-170)^2}{12} = \frac{120}{12} = 33.33$ minute
 $F(x) = \frac{(b-a)^2}{12} = \frac{(140-170)^2}{12} = \frac{120}{12} = 33.33$ minute
 $F(x) = \frac{(b-a)^2}{12} = \frac{(140-170)^2}{12} = \frac{120}{12} = \frac{1000}{12} = 33.33$ minute
 $F(x) = \frac{(b-a)^2}{12} = \frac{(140-170)^2}{12} = \frac{120}{12} = \frac{1000}{12} = 33.33$ minute
 $F(x) = \frac{(b-a)^2}{12} = \frac{(140-170)^2}{12} = \frac{120}{12} = \frac{1000}{12} = 33.33$ minute
 $F(x) = \frac{(b-a)^2}{12} = \frac{(140-170)^2}{12} = \frac{120}{12} = \frac{1000}{12} = 33.33$ minute
 $F(x) = \frac{(b-a)^2}{12} = \frac{(140-170)^2}{12} = \frac{120}{12} = \frac{1000}{12} = 33.33$ minute
 $F(x) = \frac{(b-a)^2}{12} = \frac{(140-170)^2}{12} = \frac{120}{12} = \frac{1000}{12} = 33.33$ minute
 $F(x) = \frac{(b-a)^2}{12} = \frac{(140-170)^2}{12} = \frac{120}{12} = \frac{1000}{12} = 33.33$ minute
 $F(x) = \frac{1000}{12} = \frac{120}{12} = \frac{1000}{12} = \frac{1000}{12} = \frac{1000}{12} = 0$
 $F(x) = 135$ minutes
 $F(x) = 135$ minutes
 $F(x) = \frac{100}{12} = \frac{1000}{12} = \frac{1000}{12} = \frac{1000}{12} = \frac{1000}{12} = 0$
 $F(x) = 100$ minutes
 $F(x) = \frac{1000}{12} = \frac{1000}{12} = 0$
 $F(x) = \frac{1000}{12} = \frac{1000}{12} = 0$
 $F(x) = \frac{1000}{12} = \frac{1000}{12} = 0$
 $F(x) = \frac{1000}{12} = \frac{1000}{12} = \frac{1000}{12} = 0$
 $F(x) = \frac{1000}{12} = \frac{1000}{12} = \frac{1000}{12} = 0$
 $F(x) = \frac{10$

STUDENTS-HUB.com

Uploaded By: Jibreel Bornat