
1

Chapter 1 (4th Edition)

OR

Chapter 4 (3ed Edition)  

Measuring & Reporting  

Performance

STUDENTS-HUB.com

https://students-hub.com


2

Review: Computer System Components

SDRAM

PC100/PC133

100-133MHZ

64-128 bits wide

2-way inteleaved

~ 900 MBYTES/SEC )64bit)

Double Date

Rate  (DDR) SDRAM

PC3200

200 MHZ  DDR

64-128 bits wide

4-way interleaved

~3.2  GBYTES/SEC 

(one 64bit channel)

~6.4  GBYTES/SEC

(two 64bit channels)

RAMbus DRAM (RDRAM)

400MHZ DDR

16 bits wide (32 banks)

~ 1.6 GBYTES/SEC

CPU

Caches

Front Side Bus (FSB)

I/O Devices:

Memory

Controllers

adapters

Disks

Displays

Keyboards
Networks

NICs

I/O BusesMemory

Controller Example:  PCI,  33-66MHz

32-64 bits wide

133-528 MBYTES/SEC

PCI-X 133MHz 64 bit

1024 MBYTES/SEC

CPU Core

1 GHz - 3.8 GHz

4-way Superscaler

RISC or RISC-core (x86):
Deep Instruction Pipelines 

Dynamic scheduling

Multiple FP, integer FUs

Dynamic branch prediction

Hardware speculation

L1

L2

L3

Memory Bus

All   Non-blocking caches

L1     16-128K       1-2 way set associative (on chip), separate or unified

L2    256K- 2M   4-32 way set associative  (on chip) unified

L3    2-16M          8-32  way set associative  (off  or on chip) unified

Examples:  Alpha, AMD K7:  EV6,  200-400 MHz

Intel  PII, PIII:  GTL+    133 MHz

Intel P4                         800 MHz

North

Bridge

South

Bridge

Chipset

Off or On-chip

Current Standard 

I/O Subsystem

STUDENTS-HUB.com

https://students-hub.com


3

Review: What is Computer Architecture?

Technology

Applications
Computer 

Architect

Interfaces

Machine Organization

Measurement &

Evaluation

IS
A

A
P

I

L
in

k

I/
O

 C
h
a
n

Regs

IR

STUDENTS-HUB.com

https://students-hub.com


4

The Architecture Process

New concepts 

created

Estimate

Cost & 

Performance

Sort

Good 

ideasMediocre 

ideas
Bad ideas

STUDENTS-HUB.com

https://students-hub.com


5

Performance

• What is performance?

– Measuring performance

– Performance metrics

– Performance evaluation

– Why does some hardware perform better

• With different programs?

– What performance factors are related to hardware?

STUDENTS-HUB.com

https://students-hub.com


6

Measuring performance

• We need measures

– Comparison of machine properties

– Comparison of software properties (compilers)

• Purpose

– Making purchase decisions

– Development of new architectures

• Is a single measure sufficient?

– A machine with 600 MHz clock cycle is faster than 500 MHz 

clock cycle!?

– Why do we still have mainframes?

STUDENTS-HUB.com

https://students-hub.com


7

Performance Measurement and Evaluation

• Many dimensions to 
computer performance
– CPU execution time

• by instruction or sequence
– floating point

– integer

– branch performance

– Cache bandwidth

– Main memory bandwidth

– I/O performance
• bandwidth

• seeks

• pixels or polygons per 
second

• Relative importance 
depends on applications

P

C

M

STUDENTS-HUB.com

https://students-hub.com


8

Evaluation Tools

• Benchmarks, traces, & mixes
– macrobenchmarks & suites

• application execution time

– microbenchmarks

• measure one aspect of 
performance

– traces

• replay recorded accesses 

– cache, branch, register

• Simulation at many levels
– ISA, cycle accurate, RTL, gate, 

circuit

• trade fidelity for simulation rate

• Area and delay estimation

• Analysis
– e.g., queuing theory

– Fundamentals Laws

MOVE 39%

BR 20%

LOAD 20%

STORE 10%

ALU 11%

STUDENTS-HUB.com

https://students-hub.com


9

Metrics of Computer Performance

Compiler

Programming 

Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

(millions) of Instructions per second: MIPS

(millions) of (FP) operations per second: MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Answers per month

Operations per second

Each metric has a purpose, and each can be misused.

STUDENTS-HUB.com

https://students-hub.com


Some definitions are:

• It is a test that measures the performance 

of a system or subsystem on a well-

defined task or set of task.

• A method of comparing the performance 

of different computer architecture.

• Or a method of comparing the 

performance of different software

Benchmarks and Benchmarking

STUDENTS-HUB.com

https://students-hub.com


11

Some Warnings about Benchmarks

• Benchmarks measure the 
whole system
– application

– compiler

– operating system

– architecture

– implementation

• Popular benchmarks 
typically reflect yesterday’s 
programs
– computers need to be 

designed for tomorrow’s 
programs

• Benchmark timings often 
very sensitive to
– alignment in cache

– location of data on disk

– values of data

• Benchmarks can lead to 
inbreeding or positive 
feedback
– if you make an operation 

fast (slow) it will be used 
more (less) often

• so you make it faster 
(slower)

– and it gets used even 
more (less)

» and so on…

STUDENTS-HUB.com

https://students-hub.com


12

Choosing Programs To Evaluate 

Performance

Levels of programs or benchmarks that could be used to 
evaluate performance:
– Actual Target Workload: Full applications that run on the target 

machine.

– Real Full Program-based Benchmarks:

• Select a specific mix or suite of programs that are typical of targeted 
applications or workload (e.g SPEC95, SPEC CPU2000).

– Small “Kernel” Benchmarks:

• Key computationally-intensive pieces extracted from real programs.

– Examples: Matrix factorization, FFT, tree search, etc.

• Best used to test specific aspects of the machine.

– Microbenchmarks:

• Small, specially written programs to isolate a specific aspect  of 
performance characteristics:  Processing:  integer, floating point,  
local memory, input/output, etc.

STUDENTS-HUB.com

https://students-hub.com


13

Types of Benchmarks

Actual Target Workload

Full Application Benchmarks

Small “Kernel” 

Benchmarks

Microbenchmarks

Pros Cons

• Representative

• Very specific.

• Non-portable.

• Complex: Difficult 

to run, or measure.

• Portable.

• Widely used.

• Measurements 

useful in reality.

• Easy to run, early in 

the design cycle.

• Identify peak 

performance and 

potential bottlenecks.

• Less representative 

than actual workload.

• Easy to “fool” by 

designing hardware 

to run them well.

• Peak performance 

results may be a long 

way from real application 

performance
STUDENTS-HUB.com

https://students-hub.com


14

SPEC: System Performance Evaluation 

Cooperative

The most popular and industry-standard set of CPU 
benchmarks.

• SPECmarks, 1989:
– 10 programs yielding a single number (“SPECmarks”).

• SPEC92, 1992:
– SPECInt92 (6 integer programs) and SPECfp92  (14 floating point 

programs).

• SPEC95, 1995:
– SPECint95 (8 integer programs):

• go, m88ksim, gcc, compress, li, ijpeg, perl, vortex
– SPECfp95 (10 floating-point intensive programs):

• tomcatv, swim, su2cor, hydro2d, mgrid, applu, turb3d, apsi, fppp, wave5
– Performance relative to a Sun SuperSpark I (50 MHz) which is given a score 

of SPECint95 = SPECfp95 = 1

• SPEC CPU2000, 1999:
– CINT2000 (11 integer programs). CFP2000 (14 floating-point intensive 

programs)

– Performance relative to  a Sun Ultra5_10 (300 MHz) which is given a score 
of SPECint2000  =  SPECfp2000 = 100

STUDENTS-HUB.com

https://students-hub.com


15

SPEC95 Programs

Benchmark Description

go Artificial intelligence; plays the game of Go

m88ksim Motorola 88k chip simulator; runs test program

gcc The Gnu C compiler generating SPARC code

compress Compresses and decompresses file in memory

li Lisp interpreter

ijpeg Graphic compression and decompression

perl Manipulates strings and prime numbers in the special-purpose programming language Perl

vortex A database program

tomcatv A mesh generation program

swim Shallow water model with 513 x 513 grid

su2cor quantum physics; Monte Carlo simulation

hydro2d Astrophysics; Hydrodynamic Naiver Stokes equations

mgrid Multigrid solver in 3-D potential field

applu Parabolic/elliptic partial differential equations

trub3d Simulates isotropic, homogeneous turbulence in a cube

apsi Solves problems regarding temperature, wind velocity, and distribution of pollutant

fpppp Quantum chemistry

wave5 Plasma physics; electromagnetic particle simulation

Integer

Floating

Point

Programs application domain: Engineering and scientific computation

STUDENTS-HUB.com

https://students-hub.com


16

Sample SPECint95 (Integer) Results

STUDENTS-HUB.com

https://students-hub.com


17

Sample SPECfp95 (Floating Point) Results

STUDENTS-HUB.com

https://students-hub.com


The SPEC CPU2000 Benchmarks

12 Integer benchmarks (C and C++) 14 FP benchmarks (Fortran 77, 90, and C)

Name Description Name Description

gzip Compression wupwise Quantum chromodynamics

vpr FPGA placement and routing swim Shallow water model

gcc GNU C compiler mgrid Multigrid solver in 3D potential field

mcf Combinatorial optimization applu Partial differential equation

crafty Chess program mesa Three-dimensional graphics library

parser Word processing program galgel Computational fluid dynamics

eon Computer visualization art Neural networks image recognition

perlbmk Perl application equake Seismic wave propagation simulation

gap Group theory, interpreter facerec Image recognition of faces

vortex Object-oriented database ammp Computational chemistry

bzip2 Compression lucas Primality testing

twolf Place and route simulator fma3d Crash simulation using finite elements

sixtrack High-energy nuclear physics

apsi Meteorology: pollutant distribution

Wall clock time is used as metric

 Benchmarks measure CPU time, because of little I/O

STUDENTS-HUB.com

https://students-hub.com


SPEC 2000 Ratings (Pentium III & 4)
S

P
E

C
 r

a
ti
o
 =

 E
x
e
c
u
ti
o
n
 t

im
e
 i
s
 n

o
rm

a
liz

e
d

re
la

ti
v
e
 t

o
 S

u
n
 U

lt
ra

 5
 (

3
0
0
 M

H
z
)

S
P

E
C

 r
a

ti
n
g
 =

 G
e
o
m

e
tr

ic
 m

e
a
n
 o

f 
S

P
E

C
 r

a
ti
o
s

Clock rate in MHz

500 1000 1500 30002000 2500 3500

0

200

400

600

800

1000

1200

1400

Pe ntium III CINT2000

Pentium 4 CINT2000

Pentium III CFP2000

Pentium 4 CFP2000

Note the relative positions of 

the CINT and CFP 2000 

curves for the Pentium III & 4

Pentium III does better at 

the integer benchmarks, 

while Pentium 4 does better 

at the floating-point 

benchmarks due to its 

advanced SSE2 instructions

STUDENTS-HUB.com

https://students-hub.com


20

Common Benchmarking Mistakes

• Only average behavior 

represented in test 

workload

• Skewness of device 

demands ignored

• Loading level controlled 

inappropriately

• Caching effects ignored

• Buffer sizes not 

appropriate

• Inaccuracies due to 

sampling ignored

• Ignoring monitoring 
overhead

• Not validating 
measurements

• Not ensuring same initial 
conditions

• Not measuring transient 
(cold start) performance

• Using device utilizations 
for performance 
comparisons

• Collecting too much data 
but doing too little 
analysis

STUDENTS-HUB.com

https://students-hub.com


21

Architectural Performance Laws and Rules 

of Thumb

• Measurement and Evaluation
– Architecture is an iterative process:

• Searching the space of possible designs

• Make selections

• Evaluate the selections made

– Good measurement tools are required to accurately evaluate the 
selection.

• Measurement Tools
– Benchmarks, Traces, Mixes

– Cost, delay, area, power estimation

– Simulation  (many  levels)
• ISA, RTL, Gate, Circuit

– Queuing Theory

– Rules of Thumb

– Fundamental Laws

STUDENTS-HUB.com

https://students-hub.com


22

Measuring and Reporting Performance

• What do we mean by one Computer is faster than 
another?
– program runs less time

• Response time or execution time
– time that users see the output

• Elapsed time
– A latency to complete a task including disk accesses, memory accesses, 

I/O activities, operating system overhead

• Throughput 
– total amount of work done in a given time

• Performance
– “Increasing and decreasing” ?????

– We use the term “improve performance” or “ improve execution time” When we 
mean increase performance and decrease execution  time .

• improve performance = increase performance 

• improve execution time = decrease execution  time

STUDENTS-HUB.com

https://students-hub.com


23

What is time?

• Elapsed Time
– counts everything (disk and memory accesses, I/O, etc.)
– a useful number, but often not good for comparison purposes

• CPU time
– time the CPU is computing

– doesn't count I/O or time spent running other programs 

– User CPU time
• CPU time spent in the program 

– System CPU time
• CPU time spent in the operating system performing task requested by the 

program decrease execution  time 

– CPU time = User CPU time + System CPU time

• Our focus: user CPU time
– time spent executing the lines of code that are "in" our 

program

STUDENTS-HUB.com

https://students-hub.com


24

Performance

• System Performance
– elapsed time on unloaded system

• CPU performance
– user CPU time on an unloaded system

• Two notions of “performance
– Response Time (latency)

• Time to do the task
– How long does it take for my job to run?

– How long does it take to execute a job?

– How long must I wait for the database query?

– Throughput (bandwidth)
• Tasks per day, hour, week, sec, ns. ..

– How many jobs can the machine run at once?

– What is the average execution rate?

– How much work is getting done?

• Response time and throughput often are in opposition

STUDENTS-HUB.com

https://students-hub.com


25

CPU Performance Evaluation
• Most computers run synchronously utilizing a CPU clock running at    

a constant clock rate:

where:     Clock rate  =  1 / clock cycle

• The CPU clock rate depends on the specific CPU organization 

(design) and hardware implementation technology (VLSI) used

• A computer machine (ISA) instruction is comprised of a number of 

elementary or micro operations which vary in number and complexity 

depending on the instruction and the exact CPU organization 

(Design)

– A micro operation is an elementary hardware operation that can be performed 

during one CPU clock cycle.

– This corresponds to one micro-instruction in microprogrammed CPUs.

– Examples:  register operations: shift, load, clear, increment, ALU operations: add , 

subtract, etc.

• Thus a single machine instruction may take one or more CPU cycles 

to complete termed as the Cycles Per Instruction (CPI).

– Average CPI of a program:  The average CPI of all instructions executed in the 

program on a given CPU design.

Clock cycle

cycle 1 cycle 2 cycle 3

Cycles/sec = Hertz = Hz

STUDENTS-HUB.com

https://students-hub.com


26

Generic CPU Machine Instruction Execution 

Steps

STUDENTS-HUB.com

https://students-hub.com


27

• For a specific program compiled to run on a specific 

machine (CPU) “A”, has the following parameters: 
– The total executed instruction count of the program.

– The average number of cycles per instruction (average CPI).

– Clock cycle of machine “A”

• How can one measure the performance of this machine 

(CPU) running this program?

– Intuitively the machine (or CPU) is said to be faster or has 

better performance running this program if the total execution 

time is shorter. 

– Thus the inverse of the total measured program execution 

time is  a possible performance measure or metric:

PerformanceA =   1  /   Execution TimeA

How to compare performance of different machines?

What factors affect performance?  How to improve 

performance?

Computer Performance Measures:      
Program Execution Time

CPI

I

C

STUDENTS-HUB.com

https://students-hub.com


28

Comparing Computer Performance Using 

Execution Time
• To compare the performance of two machines (or CPUs)  “A”, “B” running a 

given specific program:

PerformanceA =   1  /   Execution TimeA

PerformanceB =   1  /   Execution TimeB

• Machine A is  n times faster than machine B means  (or slower? if n < 1) 

• Example:  

For a given program:

Execution time on machine A:    ExecutionA =  1  second

Execution time on machine B:   ExecutionB =  10  seconds

PerformanceA /  PerformanceB   =  Execution TimeB /  Execution TimeA

=  10 / 1 = 10

The performance of machine A  is 10 times the performance of   

machine B when running this program, or:  Machine A is said to be 10 

times faster than machine B when running this program. 

Speedup = n =                               =
PerformanceA

PerformanceB

Execution TimeB

Execution TimeA

Speedup=

(i.e Speedup is ratio of performance, no units) 

STUDENTS-HUB.com

https://students-hub.com


29

CPU Execution Time: The CPU Equation

• A program is comprised of a number of instructions 

executed ,  I

– Measured in: instructions/program

• The average instruction executed takes a number of cycles 
per instruction (CPI) to be completed.   

– Measured in:    cycles/instruction,  CPI

• CPU has a fixed clock cycle time  C  = 1/clock rate

– Measured in: seconds/cycle 

• CPU execution time is the product of the above three 

parameters as follows:

CPU time =  Seconds = Instructions  x  Cycles       x   Seconds

Program Program          Instruction       Cycle

T   =                     I   x      CPI    x     C
Execution Time

per program in seconds

Number of 

instructions executed

Average CPI for program CPU Clock Cycle

(This equation is commonly known as the CPU performance equation)

Or  Instructions Per Cycle (IPC):

IPC= 1/CPI

Executed

STUDENTS-HUB.com

https://students-hub.com


30

CPU Average CPI/Execution Time

For a given program executed on a given machine (CPU):

CPI =  Total program execution cycles / Instructions count

 CPU clock cycles  =   Instruction count  x  CPI

CPU execution time  =

=  CPU clock cycles x   Clock cycle

= Instruction count   x   CPI x  Clock cycle

T       =              I               x  CPI   x       C

(average)

execution Time

per program in seconds

Number of 

instructions executed

Average CPI

for program

CPU Clock Cycle

(This equation is commonly known as the CPU performance equation)

STUDENTS-HUB.com

https://students-hub.com


31

Improving the performance

• Increase the clock frequency =

– reduce the clock period

• Reduce the number of cycles for the program

• Reduce the number of instructions

CPU time =  Seconds = Instructions  x  Cycles       x   Seconds

Program Program          Instruction       Cycle

STUDENTS-HUB.com

https://students-hub.com


32

Instruction = cycle?
• Is the number of cycles identical with the number of 

instructions?

– No!

• The number of cycles depends on the implementation of the 

operations in hardware

– The number differs for each processor

– Why?

• Operations take different time

– Multiplication takes longer than addition

– Floating point operations take longer than integer operations

• The access time to a register is much shorter than to memory 

location

STUDENTS-HUB.com

https://students-hub.com


33

Aspects of CPU Execution Time

CPU Time = Instruction count  x  CPI x  Clock cycle 

Instruction Count   I

Clock
Cycle
C

CPI

Depends on:

CPU Organization

Technology (VLSI)

Depends on:

Program Used

Compiler

ISA

CPU Organization

Depends on:

Program Used

Compiler

ISA

(executed)

(Average

CPI)

T =  I  x  CPI   x C

STUDENTS-HUB.com

https://students-hub.com


34

Factors Affecting CPU Performance

CPU time =  Seconds = Instructions  x  Cycles       x   Seconds

Program Program          Instruction       Cycle

CPI Clock Cycle C
Instruction

Count I

Program

Compiler

Organization
(CPU Design)

Technology
(VLSI)

Instruction Set

Architecture (ISA)

X 

X 

X 

X 

X 

X 

X X 

X 

STUDENTS-HUB.com

https://students-hub.com


35

CPU Execution Time: Example

• A Program is running on a specific machine (CPU) with the 

following parameters:

– Total executed instruction count:   10,000,000  instructions

– Average CPI for the program:   2.5  cycles/instruction.

– CPU clock rate:  200 MHz.  (clock cycle = 5x10-9 seconds)

• What is the execution time for this program:

CPU time =  Instruction count  x  CPI x  Clock cycle

=     10,000,000          x   2.5  x   1 / clock rate 

=     10,000,000          x   2.5  x    5x10-9

=     .125  seconds

CPU time =  Seconds = Instructions  x  Cycles       x   Seconds

Program Program          Instruction       Cycle

T =  I  x  CPI   x C

STUDENTS-HUB.com

https://students-hub.com


36

Performance Comparison: Example
• From the previous example:  A Program is running on a specific 

machine (CPU) with the following parameters:

– Total executed instruction count, I:     10,000,000 instructions

– Average CPI for the program:   2.5  cycles/instruction.

– CPU clock rate:  200 MHz.

• Using the same program with these changes: 

– A new compiler used:  New executed instruction count, I:  9,500,000     

New CPI:  3.0

– Faster CPU implementation:  New clock rate = 300 MHz

• What is the speedup with the changes?

Speedup  =     (10,000,000  x   2.5  x  5x10-9) / (9,500,000  x 3  x  3.33x10-9 )

=     .125 /  .095 = 1.32

or 32 % faster after changes.

Speedup =   Old Execution Time = Iold x      CPIold x   Clock cycleold

New Execution Time Inew x    CPInew x   Clock Cyclenew

Clock Cycle = 1/ Clock Rate T =  I  x  CPI   x C

STUDENTS-HUB.com

https://students-hub.com


37

Instruction Types & CPI   

• Given a program with  n types or classes of instructions 

executed on         a given CPU with the following 

characteristics:

Ci =   Count of instructions of typei executed

CPIi =  Cycles per instruction for typei

Then:

CPI  =   CPU Clock Cycles  /  Instruction Count  I

Where:  

Executed Instruction Count  I  =   S Ci

 



n

i
ii CCPIcyclesclockCPU

1

i = 1, 2, …. n

STUDENTS-HUB.com

https://students-hub.com


38

Instruction Types & CPI: An Example

• An instruction set has three instruction classes:

• Two code sequences have the following instruction counts:

• CPU cycles for sequence 1 = 2 x 1 + 1 x 2 + 2 x 3 = 10 cycles

CPI for sequence 1  =  clock cycles / instruction count

= 10 /5 = 2

• CPU cycles for sequence 2 = 4 x 1 + 1 x 2 + 1 x 3 = 9 cycles

CPI for sequence 2 = 9 / 6 = 1.5

Instruction class     CPI

A 1

B 2

C 3 

Instruction counts for instruction class

Code Sequence                      A                 B           C

1                                      2                  1            2

2                                      4                  1            1

 CPU clock cycles
i i

i

n

CPI C 



1

CPI = CPU Cycles / I

For a specific 

CPU design

STUDENTS-HUB.com

https://students-hub.com


39

Instruction Frequency & CPI   

• Given a program with  n types or classes of instructions with 

the following characteristics:

Ci =   Count of instructions of typei

CPIi =  Average cycles per instruction of typei

Fi =  Frequency or fraction of instruction typei  executed  

=  Ci/ total executed instruction count = Ci/ I

Then:

 



n

i
ii FCPICPI

1

Fraction of total execution time for instructions of type  i  =       
CPIi x Fi

CPI

i = 1, 2, …. n

STUDENTS-HUB.com

https://students-hub.com


40

Instruction Type Frequency & CPI:  

A RISC Example

Typical Mix

Base Machine (Reg / Reg)

Op                  Freq, Fi CPIi CPIi x Fi % Time

ALU 50% 1 .5 23% =  .5/2.2

Load 20% 5 1.0 45% =  1/2.2

Store 10% 3 .3 14% =  .3/2.2

Branch 20% 2 .4 18% =  .4/2.2

CPI   =  .5 x 1 +  .2 x 5  + .1 x 3 +  .2 x 2  = 2.2

=    .5     +       1    +    .3     +    .4

 



n

i
ii FCPICPI

1

CPIi x Fi

CPI

Sum = 2.2

Program Profile or Executed Instructions Mix

Given

STUDENTS-HUB.com

https://students-hub.com


41

Computer Performance Measures : 
MIPS (Million Instructions Per Second) Rating 

• For a specific program running on a specific CPU the MIPS rating is a 

measure of how many millions of instructions are executed per 

second:

MIPS  Rating =  Instruction count  /  (Execution Time x 106)

=   Instruction count  /  (CPU clocks x Cycle time x 106)

=  (Instruction count  x  Clock rate)  /  (Instruction count  x  CPI x 106) 

=   Clock rate  /  (CPI x 106)

• Major problem with MIPS rating: As shown above the MIPS rating 

does not account for the count of instructions executed (I). 

– A higher MIPS rating in many cases may not mean higher performance or 

better execution time.  i.e. due to compiler design variations.

• In addition the MIPS rating:

– Does not account for the instruction set architecture (ISA) used.

• Thus it cannot be used to compare computers/CPUs with different instruction 

sets.

– Easy to abuse: Program used to get the MIPS rating is often omitted.

• Often the Peak MIPS rating is provided for a given CPU which is obtained 

using a program comprised entirely of  instructions with the lowest CPI for the 

given CPU design which does not represent real programs.

STUDENTS-HUB.com

https://students-hub.com


42

• Under what conditions can the MIPS rating be used to 

compare performance of different CPUs?

• The MIPS rating is only valid to compare the performance of 

different CPUs  provided that the following conditions are 

satisfied:

1 The same program is used

(actually this applies to all performance metrics)

2 The same ISA is used

3 The same compiler is used

 (Thus the resulting programs used to run on the CPUs 

and obtain the MIPS rating are identical at the machine 

code    level including the same instruction count)

Computer Performance Measures : 
MIPS (Million Instructions Per Second) Rating

STUDENTS-HUB.com

https://students-hub.com


43

Wrong!!!

• 3 significant problems with using MIPS:

– Problem 1:

• MIPS is instruction set dependent.

• (And different computer brands usually have different instruction 

sets)

– Problem 2:

• MIPS varies between programs on the same computer

– Problem 3:

• MIPS can vary inversely to performance!

• Let’s look at an examples of why MIPS doesn’t work…

STUDENTS-HUB.com

https://students-hub.com


44

Compiler Variations, MIPS & Performance: 

An Example
• For a machine (CPU) with instruction classes:

• For a given high-level language program, two compilers 

produced the following executed instruction counts:

• The machine is assumed to run at a clock rate of 100 MHz.

Instruction class     CPI

A 1

B 2

C 3 

Instruction counts (in millions) 

for each  instruction class

Code  from:                 A                 B           C

Compiler 1                  5                 1            1

Compiler 2                10                 1            1

STUDENTS-HUB.com

https://students-hub.com


45

Compiler Variations, MIPS & Performance: 

An Example (Continued)
MIPS =   Clock rate  /  (CPI x 106)  =  100 MHz / (CPI x 106)

CPI = CPU execution cycles / Instructions count

CPU time = Instruction count x CPI / Clock rate

• For compiler 1:

– CPI1 = (5 x 1 + 1 x 2 + 1 x 3) / (5 + 1 + 1) = 10 / 7 = 1.43

– MIPS Rating1 = 100 / (1.428 x 106)  = 70.0 MIPS

– CPU time1 =  ((5 + 1 + 1) x 106 x 1.43) / (100 x 106)  =  0.10 seconds

• For compiler 2:

– CPI2 = (10 x 1 + 1 x 2 + 1 x 3) / (10 + 1 + 1) = 15 / 12 = 1.25

– MIPS Rating2 = 100 / (1.25 x 106)  = 80.0 MIPS

– CPU time2 =  ((10 + 1 + 1) x 106 x 1.25) / (100 x 106)  = 0.15 seconds

 CPU clock cycles
i i

i

n

CPI C 



1

MIPS rating indicates that compiler 2 is better

while in reality the code produced by compiler 1 is faster

STUDENTS-HUB.com

https://students-hub.com


46

MIPS (The ISA not the metric) Loop 

Performance Example
For the loop:

for (i=0; i<1000; i=i+1){

x[i] = x[i] + s; }

MIPS assembly code is given by:
lw     $3,  8($1)       ; load s in $3

addi   $6,  $2,  4000   ; $6 = address of last element + 4

loop:   lw     $4,  0($2)       ; load x[i] in $4

add    $5,  $4, $3      ; $5 has x[i] + s      

sw     $5,  0($2)       ; store computed x[i]

addi   $2,  $2,  4      ; increment $2 to point to next x[ ] element  

bne    $6,  $2,  loop   ; last loop iteration reached?

The MIPS code is executed on a specific CPU that runs at 500 MHz (clock cycle = 2ns = 

2x10-9 seconds) with following instruction type CPIs :

Instruction type    CPI

ALU        4

Load       5

Store      7

Branch     3

First element to 

compute

X[999]

X[998]

X[0]

$2  initially

points here

$6 points here

Last element to 

compute

High Memory

Low Memory

.

.

.

.

For this MIPS code running on this CPU find:

1- Fraction of total instructions executed for each instruction type

2- Total number of CPU cycles

3- Average CPI

4- Fraction of total execution time for each  instructions type

5- Execution time

6- MIPS rating , peak MIPS rating for this CPU

X[  ]   array of words in memory,  base address in $2 ,  

s   a  constant word value in memory, address in $1
STUDENTS-HUB.com

https://students-hub.com


47

• The code has 2 instructions before the loop and 5 instructions in the body of the loop which iterates 

1000 times,

• Thus:    Total instructions executed, I = 5x1000 + 2 = 5002 instructions

1 Number of instructions executed/fraction Fi for each instruction type:

– ALU instructions = 1 + 2x1000 = 2001      CPIALU = 4        FractionALU  = FALU = 2001/5002 = 0.4 = 40%

– Load instructions = 1 + 1x1000 = 1001     CPILoad =  5      FractionLoad  = FLoad = 1001/5002= 0.2   = 20%

– Store instructions = 1000                          CPIStore = 7     FractionStore    = FStore = 1000/5002 = 0.2 = 20%

– Branch instructions = 1000                       CPIBranch =  3  FractionBranch= FBranch = 1000/5002= 0.2 = 20%

2

=  2001x4 + 1001x5 + 1000x7 + 1000x3 = 23009 cycles

3 Average CPI = CPU clock cycles / I  =  23009/5002 =   4.6

4 Fraction of execution time for each instruction type:

– Fraction of time for ALU instructions = CPIALU x FALU / CPI= 4x0.4/4.6  = 0.348 = 34.8%

– Fraction of time for load instructions = CPIload x Fload / CPI= 5x0.2/4.6  = 0.217 = 21.7%

– Fraction of time for store instructions = CPIstore x Fstore / CPI= 7x0.2/4.6  = 0.304 = 30.4%

– Fraction of time for branch instructions = CPIbranch x Fbranch / CPI= 3x0.2/4.6  = 0.13 = 13%

5 Execution time = I x CPI x C =  CPU cycles x C = 23009 x 2x10-9 =

=   4.6x 10-5 seconds = 0.046 msec = 46 usec

6 MIPS rating = Clock rate  /  (CPI x 106)  = 500 / 4.6 = 108.7 MIPS

– The CPU achieves its peak MIPS rating when executing a program that only has instructions of the type with 

the lowest CPI.   In this case branches with CPIBranch =  3 

– Peak MIPS rating = Clock rate  /  (CPIBranch x 106) =  500/3 =  166.67 MIPS

MIPS (The ISA) Loop Performance 

Example (continued)

 CPU clock cycles
i i

i

n

CPI C 



1

Instruction type      CPI

ALU        4

Load       5

Store      7

Branch     3 

STUDENTS-HUB.com

https://students-hub.com


48

Computer Performance Measures :MFLOPS

• A floating-point operation is an addition, subtraction, 
multiplication, or division operation applied to numbers 
represented by a single or a double precision floating-point 
representation.

• MFLOPS, for a specific program running on a specific 
computer, is  a measure of millions of floating point-operation 
(megaflops) per second:

MFLOPS = 

Number of floating-point operations  /  (Execution time  x 106 )

• MFLOPS rating is a better comparison measure between 
different machines (applies even if ISAs are different) than the 
MIPS rating.

– Applicable even if ISAs are different 

STUDENTS-HUB.com

https://students-hub.com


49

Computer Performance Measures :MFLOPS

• Program-dependent:   Different programs have different 

percentages of floating-point operations present.   i.e 

compilers have no floating- point operations and yield a 

MFLOPS rating of zero.

• Dependent on the type of floating-point operations 

present in the program.

– Peak MFLOPS rating for a CPU: Obtained using a program 

comprised entirely of the simplest floating point 

instructions (with the lowest CPI) for the given CPU design 

which does not represent real floating point programs.

STUDENTS-HUB.com

https://students-hub.com


50

Quantitative Principles of Computer Design

• Amdahl’s Law:

– The performance gain from improving some portion  of  

a computer is calculated by:

Speedup =  Performance for entire task using the enhancement

Performance for the entire task without using the enhancement

or  Speedup =  Execution time without the enhancement

Execution time for entire task using the enhancement

STUDENTS-HUB.com

https://students-hub.com


51

Performance Enhancement Calculations:

Amdahl's Law
• The performance enhancement possible due to a given design 

improvement is limited by the amount that the improved feature is 

used 

• Amdahl’s Law:

– Performance improvement or speedup due to enhancement E:

Execution Time without E         Performance with E
Speedup(E) =   ------------------------------------ =   ------------------------------

Execution Time with E              Performance without E

– Suppose that enhancement E accelerates a fraction F of the execution 
time  by a factor S and the remainder of the time is unaffected then:

Execution Time with E  =   ((1-F) + F/S) X  Execution Time without E

Hence speedup is given by:

Execution Time without E                                1
Speedup(E) =  --------------------------------------------------------- =   -----------------

((1 - F) + F/S) X  Execution Time without E       (1 - F)  +  F/S

F (Fraction of execution time enhanced) refers 

to original execution time before the enhancement is applied

STUDENTS-HUB.com

https://students-hub.com


52

Pictorial Depiction of Amdahl’s Law 

Before: 

Execution Time without enhancement E:  (Before enhancement is applied)

After: 

Execution Time with enhancement E:

Enhancement E  accelerates fraction F of original execution time by a factor of S

Unaffected fraction: (1- F) Affected fraction: F

Unaffected fraction: (1- F) F/S

Unchanged

Execution Time without enhancement E                  1
Speedup(E) =  ------------------------------------------------------ =   ------------------

Execution Time with enhancement E           (1 - F)  +  F/S

• shown normalized to 1 = (1-F) + F =1

STUDENTS-HUB.com

https://students-hub.com


53

Example of Amdahl’s Law

• Floating point instructions improved to run 2X; 
but only 10% of actual instructions are FP

Speedupoverall =
1

0.95
= 1.053

ExTimenew = ExTimeold x  (0.9 +  .1/2) = 0.95 x ExTimeold

STUDENTS-HUB.com

https://students-hub.com


54

Performance Enhancement Example
• For the RISC machine with the following instruction mix given 

earlier:

Op Freq Cycles CPI(i) % Time

ALU 50% 1 .5 23%

Load 20% 5 1.0 45%

Store 10% 3 .3 14%

Branch 20% 2 .4 18%

• If a CPU design enhancement improves the CPI of load instructions 
from 5 to 2,  what is the resulting performance improvement from 
this enhancement:

Fraction enhanced =  F =  45%  or  .45

Unaffected fraction = 1- F = 100% - 45% =  55%   or  .55

Factor of enhancement = S =  5/2 =  2.5

Using Amdahl’s Law:

1                              1
Speedup(E) =   ------------------ =   --------------------- =    1.37

(1 - F)  +  F/S          .55  +  .45/2.5

CPI = 2.2

STUDENTS-HUB.com

https://students-hub.com


55

An Alternative Solution Using CPU Equation
Op Freq Cycles CPI(i) % Time

ALU 50% 1 .5 23%

Load 20% 5 1.0 45%

Store 10% 3 .3 14%

Branch 20% 2 .4 18%

• If a CPU design enhancement improves the CPI of load instructions 
from 5 to 2,  what is the resulting performance improvement from 
this enhancement:

Old CPI = 2.2

New CPI =  .5 x 1 + .2 x 2 +  .1 x 3 + .2 x 2  =  1.6

Original Execution Time          Instruction count   x   old CPI   x  clock cycle
Speedup(E) =   ----------------------------------- =  ----------------------------------------------------------------

New Execution Time                Instruction count  x  new CPI  x  clock cycle

old CPI            2.2
=   ------------ =    --------- =  1.37

new CPI            1.6

Which is the same speedup obtained from Amdahl’s Law in the 
first solution.

CPI = 2.2

STUDENTS-HUB.com

https://students-hub.com


56

Performance Enhancement Example
•A program runs in 100 seconds on a machine with multiply 
operations responsible for 80 seconds of this time.    By how much 
must the speed of multiplication be improved to make the program 
four times faster?

100
Desired speedup =  4  =    -----------------------------------------------------

Execution Time with enhancement

   Execution time with enhancement  =  100/4 =  25 seconds                                                         

25 seconds = (100 - 80 seconds)  +  80 seconds / S 

25 seconds =      20 seconds          +  80 seconds  / S

            5  =  80 seconds  / S

 S  =   80/5 =  16

Alternatively, it can also be solved by finding  enhanced fraction of 
execution time:                                       

F =  80/100 = .8   

and then solving Amdahl’s speedup equation for desired enhancement factor  
S Hence multiplication should be 16 times  faster to get an overall speedup 
of 4.

1                                 1                        1
Speedup(E) =  ------------------ = 4  =    ----------------- =   ---------------

(1 - F)  +  F/S               (1 - .8) + .8/S        .2  +  .8/s

Solving for S gives S= 16

STUDENTS-HUB.com

https://students-hub.com


57

Performance Enhancement Example

• For the previous example with a program running in 100 seconds on 
a machine with multiply operations responsible for 80 seconds of 
this time.    By how much must the speed of multiplication be 
improved to make the program five times faster?

100
Desired speedup =  5 =    -----------------------------------------------------

Execution Time with enhancement

   Execution time with enhancement =  100/5 = 20 seconds 

20 seconds = (100 - 80 seconds)  +  80 seconds / s 

20 seconds =      20 seconds          +  80 seconds  / s

            0  =  80 seconds  / s

No amount of multiplication speed improvement can achieve this.

STUDENTS-HUB.com

https://students-hub.com


58

Extending Amdahl's Law To Multiple 

Enhancements

• Suppose that enhancement  Ei accelerates a fraction  Fi of the 
original execution time  by a factor  Si and the remainder of the time 
is unaffected then:

 



i i

i

i

i
X

S
F

F

Speedup

Time Execution   Original)1

Time  Execution   Original

)((

 



i i

i

i

i

S
F

F

Speedup

)( )1

1

(

Note:  All fractions Fi refer to original execution time before the

enhancements are applied.

Unaffected fraction

STUDENTS-HUB.com

https://students-hub.com


59

Amdahl's Law With Multiple Enhancements: 

Example

• Three CPU performance enhancements are proposed with the following 
speedups and percentage of the code execution time affected:

Speedup1 = S1 =  10 Percentage1 = F1 =  20%

Speedup2 = S2 =  15 Percentage1 = F2 =  15%

Speedup3 = S3 =  30 Percentage1 = F3 =  10%

• While all three enhancements are in place in the new design,  each 
enhancement affects a different portion of the code and only one 
enhancement can be used at a time.

• What is the resulting overall speedup?

• Speedup =  1 /  [(1 - .2 - .15  - .1)   +   .2/10   +  .15/15  +  .1/30)]

=   1 /  [         .55                 +          .0333                         ]  

= 1 /  .5833  =    1.71

 



i i

i

i

i

S
F

F

Speedup

)( )1

1

(

STUDENTS-HUB.com

https://students-hub.com


60

Pictorial Depiction of Example

Before: 

Execution Time with no enhancements: 1

After: 

Execution Time with enhancements:  .55 + .02 + .01 + .00333  = .5833

Speedup =  1 / .5833 =  1.71 

Note:  All fractions refer to original execution time.

Unaffected, fraction:  .55

Unchanged

Unaffected, fraction:   .55 F1 = .2 F2 = .15 F3 = .1

S1 =  10 S2 =  15 S3 =  30

/ 10 / 30/ 15

STUDENTS-HUB.com

https://students-hub.com


Performance and Power
• Power is a key limitation

– Battery capacity has improved only slightly over time 

• Need to design power-efficient processors

• Reduce power by

– Reducing frequency

– Reducing voltage

– Putting components to sleep

• Energy efficiency

– Important metric for power-limited applications

– Defined as performance divided by power consumption

STUDENTS-HUB.com

https://students-hub.com


Dynamic Energy and Power

• Dynamic energy
– Transistor switch from 0 -> 1 or 1 -> 0

– ½ x Capacitive load x Voltage2

• Dynamic power
– ½ x Capacitive load x Voltage2 x Frequency switched

• Reducing clock rate reduces power, not energy

STUDENTS-HUB.com

https://students-hub.com


Power & Clock Rate

STUDENTS-HUB.com

https://students-hub.com


Performance and Power
R

e
la

ti
v
e

 P
e

rf
o

rm
a

n
c
e

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

1 .4

1 .6

SPEC INT2000 SPECFP2000 SPEC INT2000 SPECFP2000 SPEC IN T2000 SPEC FP2000

Pe ntium M @ 1 .6 /0 .6 G H z

Pe ntium 4 -M @ 2 .4 /1 .2 G H z

Pe ntium III-M @ 1 .2 /0 .8 G H z

Always on / maximum clock Laptop mode / adaptive clock Minimum power / min clock

Benchmark and Power Mode

STUDENTS-HUB.com

https://students-hub.com


Energy Efficiency

Energy efficiency of the Pentium M is 

highest for the SPEC2000 benchmarks

R
e

la
ti
v
e

 E
n

e
rg

y
 E

ff
ic

ie
n

c
y

Always on / maximum clock Laptop mode / adaptive clock Minimum power / min clock

Benchmark and power mode

SPECINT 2000 SPECFP 2000 SPECINT 2000 SPECFP 2000 SPECINT 2000 SPECFP 2000

Pentium M @ 1.6/0.6 GHz

Pentium 4-M @ 2.4/1.2 GHz

Pentium III-M @ 1.2/0.8 GHz

STUDENTS-HUB.com

https://students-hub.com


Chip Manufacturing Process
Silicon ingot

Slicer

Blank wafers

Hundreds of Steps

30 cm 

diameter
1 mm thick

Patterned wafer

Dicer

Individual dies

Die

Tester

Tested dies

Bond die to

package

Packaged dies

Part

Tester

Tested Packaged 

dies

Ship to

Customers

STUDENTS-HUB.com

https://students-hub.com


Effect of Die Size on Yield

Dramatic decrease in yield with larger dies

Yield = (Number of Good Dies) / (Total Number of Dies)

Defective Die

Good Die

120 dies, 109 good 26 dies, 15 good 

(1 + (Defect per area  Die area / 2))2

1
Yield =

Die Cost = (Wafer Cost) / (Dies per Wafer  Yield)

STUDENTS-HUB.com

https://students-hub.com


Integrated Circuit Cost

• Integrated circuit

Yield = (Number of Good Dies) / (Total Number of Dies)

(1 + (Defect per area  Die area / 2))2

1
Yield =

STUDENTS-HUB.com

https://students-hub.com


• Performance is specific to a particular program
– Any measure of performance should reflect execution time

– Total execution time is a consistent summary of 
performance

• For a given ISA, performance improvements come 
from
– Increases in clock rate (without increasing the CPI)

– Improvements in processor organization that lower CPI

– Compiler enhancements that lower CPI and/or instruction 
count

– Algorithm/Language choices that affect instruction count

• Pitfalls (things you should avoid)
– Using a subset of the performance equation as a metric

– Expecting improvement of one aspect of a computer to 
increase performance proportional to the size of 
improvement

Things to Remember

STUDENTS-HUB.com

https://students-hub.com


You are going to enhance a machine and there are two

types of possible improvements: either (i) make multiply

instructions run 4 times faster, or (ii) make memory access

instructions run two times faster than before. You repeatedly

run a program that takes 100 seconds to execute (on the

original machine) and find that of this time 25% is used for

multiplication, 50% for memory access instructions, and

25% for other tasks.

1. What will the speedup be if you improve both multiplication and 

memory access?

2. Assume the program you run has 10 billions instructions and runs on 

the machine that has a clock rate of 1GHz. Calculate the CPI for this 

machine. Assume further that the CPI for multiplication instructions is 

20 cycles and the CPI for memory access instructions is 6 cycles. 

Compute the CPI for all other instructions.

3. What is the CPI for the improved machine when improvements on both 

multiplication and memory access instructions are made?

STUDENTS-HUB.com

https://students-hub.com

