Uploaded By: anonymous

Uploaded By: anonymous

(2)Thursday, June 17, 2021 10:21 PM + for a brake with two symmetrical shoes: $\left(\frac{M_{N}}{P_{\alpha}}\right)_{Leff} = \left(\frac{M_{U}}{P_{\alpha}}\right)_{Right}$ 100 $\left(\frac{Me}{Pa}\right)_{Leff} = \left(\frac{Me}{Pa}\right)_{R:shf}$ * Find (Pa) Left by substituting (MN) Left & (MF) left in equation [16.7] offer finding the force (F) from the right shee. + The braking capacity = total torque = TR + TL 16.3: Externel Shoe drun brake: + Here, CW rotation produce de-energizing Notation. + Same as previous section in the internal shoe for de-energi'zing rotation 8 $MF = \frac{f \rho_a b c}{Sin \rho_a} \left[(-\Gamma (G_s \Theta) \Big|_{\Theta_1}^{\Theta_2} - A (\frac{1}{2} Sin^2 \Theta) \Big|_{\Theta_1}^{\Theta_2} \right]$ [16.9] $M_{N} = \frac{p_{a} b r_{a}}{Sin \Theta a} \left(\frac{\Theta}{2} - \frac{1}{4} Sin 20 \right)_{\Theta_{1}}^{\Theta_{2}} \begin{bmatrix} 16.10 \end{bmatrix}$ $F = \frac{M_N + M_f}{c} \qquad \boxed{16.11}$

Uploaded By: anonymous

Thursday, June 17, 2021 10:42 PM

(3)

+ The reaching are :

$$R_{x} = \frac{p_{a}br}{\sin \theta_{a}}(A + fB) - F_{x}$$

$$R_{y} = \frac{p_{a}br}{\sin \theta_{a}}(fA - B) + F_{y}$$

$$= The CCW relation produces a self energizing relation thus :
$$F = M_{w} - M_{f}$$

$$[16.13]$$$$

+ The reaching are:

$$R_x = \frac{p_a br}{\sin \theta_a} (A - fB) - F_x$$

$$R_y = \frac{p_a br}{\sin \theta_a} (-fA - B) + F_y$$
[(6.(45])

* Special Gase 3 Symmetrical external drun shee

$$\Rightarrow$$
 Privot is localed so that $\sum Mp = 0$
 \Rightarrow Distance (a) is Chosen by finding where
 $\sum Mp = 0$
* Symmetry means \Rightarrow $\Theta_0 = \Theta_2$
 \Rightarrow The distance (a) is \Rightarrow
 $a = \frac{4r \sin \theta_2}{2\theta_2 + \sin 2\theta_2}$ [16.15] where \Rightarrow $A > r$

STUDENTS-HUB.com

Uploaded By: anonymous

Thursday, June 17, 2021 10:58 PM

(4)

+ The reactions on the pin when it is located at a distance
(Q) are:

$$R_{X} = \frac{p_{a}br}{2}(2\theta_{2} + \sin 2\theta_{2})$$
[16.16]

$$R_{y} = \frac{p_{a}brf}{2}(2\theta_{2} + \sin 2\theta_{2})$$
[16.17]

$$# The lorque is: T = a f N$$
[16.18]
where: $R_{X} = N$
 $R_{y} = fN$
16.14: Read type clutches & brakes:

$$P_{2} = actualing \text{ force}$$

$$P_{1} = pin \text{ reaction}$$

$$# Because of Friction & P_{1} = e^{f\phi}$$
[16.19]

$$# The lorque is: T = (P_{1} - P_{2})\frac{D}{2}$$
[16.20]

$$# The pressure on the element of area: $p = \frac{P}{br} = \frac{2P}{bD}$
[16.21]

$$# The max. pressure will occur at: $p_{a} = \frac{2P_{1}}{bD}$
[16.22]$$$$

STUDENTS-HUB.com

Uploaded By: anonymous

Thursday, June 17, 2021 11:18 PM

(5)

16.5: Disk Clutch (Frichand Conhad axial clutch)
(D) Uniform Wear:
+ The max: pressure (Pa) occurs when
(C) is minimum?

$$\Rightarrow C = d$$
 thus?
 $p = Pa d$ (a)
 $\Rightarrow The lotal normal force is:
 $F = \frac{\pi p_a d}{2} (D - d)$ E16.25] force for the selected max.
pressure (Pa).
 $\pm This equation holds for any number of Frichion surfaces.$
 $\pm The torque is: $T = \frac{\pi f p_a d}{8} (D^2 - d^2)$ E16.24]
 $\pm This equation for longues is: $T = \frac{Ff}{4} (D + d)$ E16.25]
 $\pm This equation gives the horque is $T = \frac{Ff}{4} (D + d)$ E16.25]
 $\pm This equation gives the horque capacity for only a single friction surface.
 $\hline B$ Uniform Pressure
 $\pm When uniform pressure (Pa) Can be assured over the area of
the disk, the actuality force is:
 $F = \frac{\pi p_a}{4} (D^2 - d^2)$ E16.26] is for a single
 $F = \frac{\pi p_a}{4} (D^2 - d^2)$ E16.26] is for a single
 $F = \frac{\pi p_a}{4} (D^2 - d^2)$ E16.26] is for a single
 $F = \frac{\pi p_a}{12} (D^3 - d^3)$ E16.27] OF
 $T = \frac{Ff}{3} \frac{D^3 - d^3}{D^2 - d^2}$ E16.28]$$$$$$

STUDENTS-HUB.com

Brakes and Clutches Page 6

Uploaded By: anonymous

Thursday, June 17, 2021 11:38 PM

(6)

16.6: Disk Brake + (F) locates the line of a chin of force (F) Hat intersects He y-axis. (1) Uniform Wear * The actuality force is: $F = (\theta_2 - \theta_1)p_a r_i(r_o - r_i) \begin{bmatrix} 16.33 \end{bmatrix}$ + The friction forgue is: $T = \frac{1}{2}(\theta_2 - \theta_1)fp_a r_i(r_o^2 - r_i^2)$ [16.34] a le radius of an equivalent shoe is or $C = \frac{r_o + r_i}{2}$ [16.35] * The locating coordinate (F) is: $\bar{r} = \frac{\cos \theta_1 - \cos \theta_2}{\theta_2 - \theta_1} \frac{r_o + r_i}{2} [16.36]$ @ Uniforn Pressure * The actuality force is: $F = \frac{1}{2}(\theta_2 - \theta_1)p_a(r_o^2 - r_i^2) \qquad [16.37]$ * The friction forque is: $T = \frac{1}{3}(\theta_2 - \theta_1)fp_a(r_o^3 - r_i^3)$ [16.38] \neq The radius of an equivelent shoe is: $re = \frac{2}{3} \frac{r_o^3 - r_i^3}{r_o^2 - r_i^2}$ [16.39] * The locating coordinate (F) is: $\overline{\Gamma} = \frac{2}{3} \frac{r_o^3 - r_i^3}{r_o^2 - r_i^2} \frac{\cos \theta_1 - \cos \theta_2}{\theta_2 - \theta_1}$ E16.40]

STUDENTS-HUB.com

Uploaded By: anonymous

(7)Thursday, June 17, 2021 11:54 PM 16.7: Cone Clutches and Brakes 1) Uniform Wear +The pressure relation is 8 $p = p_a \frac{d}{2r}$ (a) + The operating force is : $F = \frac{\pi p_a d}{2} (D - d) \qquad [16.44]$ + The forgue is : $\left(\frac{\pi f p_a d}{8 \sin \alpha} \left(D^2 - d^2\right) \right) \left[16.45 \right] \cong \left(T = \frac{Ff}{4 \sin \alpha} \left(D + d\right) \right) \left[16.46 \right]$ 2) Uniform Pressure (p=pa) + The achieve force is: $F = \frac{\pi p_a}{4} (D^2 - d^2)$ [16.47] + The lorgue is: $T = \frac{\pi f p_a}{12 \sin \alpha} (D^3 - d^3)$ [16.48] or $T = \frac{Ff}{3\sin\alpha} \frac{D^3 - d^3}{D^2 - d^2} \int \mathcal{L}[6.493]$

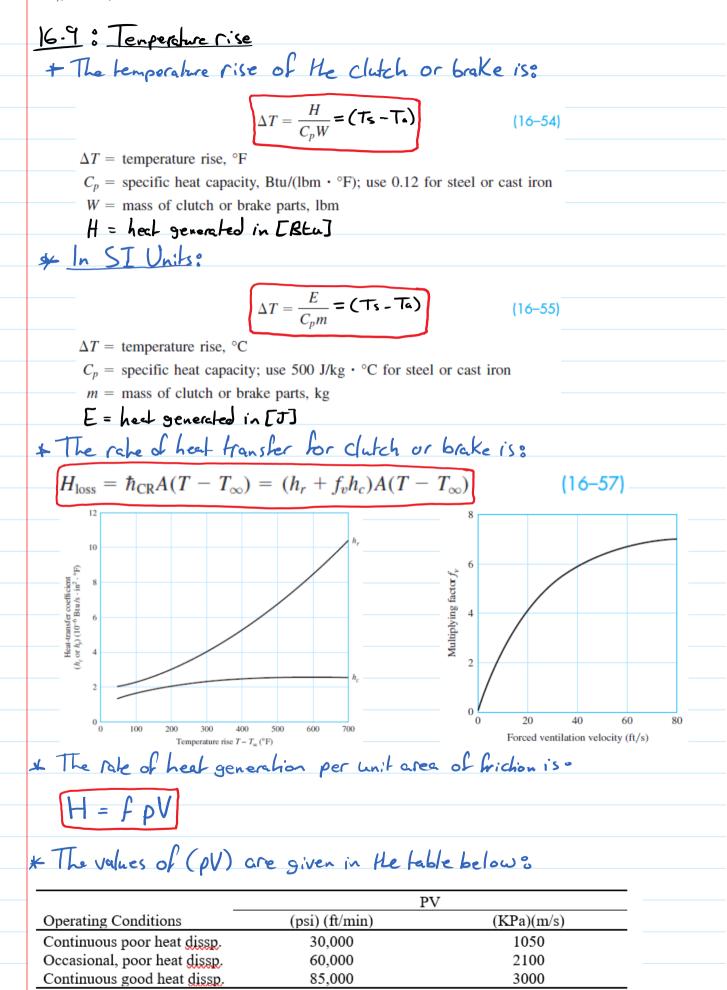
Uploaded By: anonymous

 $\frac{dr}{\sin \alpha}$

(b)

(8) Friday, June 18, 2021 12:47 AM 16.88 Energy Considerations * Referring to this system as a clutch, during operation, the angular velocities change and eventually become equal. (w, = w) + Assume T= Constant. $I_{i}\delta_{i}=-T$ (a) In Ön = T (b) * We can determine On & On after any time using: $\dot{\theta}_1 = -\frac{T}{I_1}t + \omega_1$ (c) Where: $\vec{\Theta}_1 = \omega_1$ at $\underline{t} = 0$ $\vec{\Theta}_2 = \omega_2$ $\dot{\theta}_2 = \frac{T}{I_2}t + \omega_2$ (3) + The relative velocity is: + Clutching operation $\boldsymbol{\Delta}\boldsymbol{\tilde{\mathcal{O}}} = \boldsymbol{\tilde{\mathcal{O}}}_{1} - \boldsymbol{\tilde{\mathcal{O}}}_{2} = \boldsymbol{\omega}_{1} - \boldsymbol{\omega}_{2} - T\left(\frac{I_{1}+I_{2}}{I_{1}I_{2}}\right)t \quad \boldsymbol{\boldsymbol{\boldsymbol{\boldsymbol{\mathcal{I}}}}} \quad \boldsymbol{\boldsymbol{\boldsymbol{\mathcal{I}}}} \quad \boldsymbol{\boldsymbol{\mathcal{I}}} \quad \boldsymbol{\boldsymbol{\boldsymbol{\mathcal{I}}}} \quad \boldsymbol{\boldsymbol{\mathcal{I}}} \quad \boldsymbol{\mathcal{I}} \quad \boldsymbol{\boldsymbol{\mathcal{I}}} \quad \boldsymbol{\mathcal{I}} \quad \boldsymbol{\boldsymbol{\mathcal{I}}} \quad \boldsymbol{\mathcal{I$ is completed at He instant ÖI = Öz + Let the time for the entire operation be (E1) at A8=0 : $t_1 = \frac{I_1 I_2(\omega_1 - \omega_2)}{T(I_1 + I_2)} \begin{bmatrix} 16.5 \end{bmatrix}$ + The rate of energy dissipation (work) during clutching is a $\mathcal{L} = T \left[\omega_1 - \omega_2 - T \left(\frac{I_1 + I_2}{I_1 I_2} \right) t \right]$ (e) $E = \frac{I_1 I_2 (\omega_1 - \omega_2)^2}{2(I_1 + I_2)}$ + The total energy dissipation during clutching or braking 15 -

Uploaded By: anonymous


[9]
Friday, June 18, 2021 10.37 AM
+ If Is & Ir are in [16f. in. 5²] Hen the energy absorbed by
dutch in [in. 16f] is:

$$H = \frac{E}{9336} [16.53]$$
+ In SI unite, Is & Ir are in [Kg.m²] and the energy is in [J].
+ For braking?
-> Assume that the brake is applied at $t = t_1$
 $U = U_1$
 $U = U_1$
 $V = V_1$
-> During time ($t = t_1$), the values are reduced to $U = U_2$
 $V = V_2$
-> $U = V_1$
 $U = V_1$
 $U = V_2$
 $U = \Sigma = \Sigma m (V_1^2 - V_2^2) + \Sigma U(h_1 - h_2)$
 $U = \Sigma = \Sigma m (V_1^2 - V_2^2) + \Sigma U(h_1 - h_2)$
 $U = \Sigma = Constant \rightarrow a = Const. \rightarrow K = Const.$
 $\pm The angular velocity & displacement are :
 $U = U_1 - K (t_2 - t_1)$
 $V = V_1 + (U_1 + U_2) (t_2 - t_1) = V_1 + U_1(t_2 - t_1) - K_2 (t_2 - t_1)^2$$

Uploaded By: anonymous

Friday, June 18, 2021 10:47 AM

(9)

STUDENTS-HUB.com

Brakes and Clutches Page 11

Uploaded By: anonymous

(10)

Friday, June 18, 2021 11:22 AM

Table 16-3

Characteristics of Friction Materials for Brakes and Clutches *Sources:* Ferodo Ltd., Chapel-en-le-frith, England; Scan-pac, Mequon, Wisc.; Raybestos, New York, N.Y. and Stratford, Conn.; Gatke Corp., Chicago, III.; General Metals Powder Co., Akron, Ohio; D. A. B. Industries, Troy, Mich.; Friction Products Co., Medina, Ohio.

	Friction	Maximum	Maximum Temperature		Maximum	
Material	Coefficient f	Pressure P _{max} , psi	Instantaneous, °F	Continuous, °F	Velocity V _{max} , ft/min	Applications
Cermet	0.32	150	1500	750		Brakes and clutches
Sintered metal (dry)	0.29-0.33	300-400	930-1020	570-660	3600	Clutches and caliper disk brakes
Sintered metal (wet)	0.06-0.08	500	930	570	3600	Clutches
Rigid molded asbestos (dry)	0.35-0.41	100	660-750	350	3600	Drum brakes and clutches
Rigid molded asbestos (wet)	0.06	300	660	350	3600	Industrial clutches
Rigid molded asbestos pads	0.31-0.49	750	930-1380	440-660	4800	Disk brakes
Rigid molded nonasbestos	0.33-0.63	100-150		500-750	4800-7500	Clutches and brakes
Semirigid molded asbestos	0.37-0.41	100	660	300	3600	Clutches and brakes
Flexible molded asbestos	0.39-0.45	100	660-750	300-350	3600	Clutches and brakes
Wound asbestos yarn and wire	0.38	100	660	300	3600	Vehicle clutches
Woven asbestos yarn and wire	0.38	100	500	260	3600	Industrial clutches and brakes
Woven cotton	0.47	100	230	170	3600	Industrial clutches and brakes
Resilient paper (wet)	0.09-0.15	400	300		<i>PV</i> < 500 000 psi • ft/min	Clutches and transmission — bands

Table 16-5

Friction Materials for Clutches

	Friction Coefficient		Max. Temperature		Max. Pressure	
Material	Wet	Dry	°F	°C	psi	kPa
Cast iron on cast iron	0.05	0.15-0.20	600	320	150-250	1000-1750
Powdered metal* on cast iron	0.05-0.1	0.1-0.4	1000	540	150	1000
Powdered metal* on hard steel	0.05-0.1	0.1-0.3	1000	540	300	2100
Wood on steel or cast iron	0.16	0.2-0.35	300	150	60-90	400-620
Leather on steel or cast iron	0.12	0.3-0.5	200	100	10-40	70-280
Cork on steel or cast iron	0.15-0.25	0.3-0.5	200	100	8-14	50-100
Felt on steel or cast iron	0.18	0.22	280	140	5-10	35-70
Woven asbestos* on steel or cast iron	0.1-0.2	0.3-0.6	350-500	175–260	50-100	350-700
Molded asbestos* on steel or cast iron	0.08-0.12	0.2–0.5	500	260	50-150	350-1000
Impregnated asbestos* on steel or cast iron	0.12	0.32	500-750	260-400	150	1000
Carbon graphite on steel	0.05-0.1	0.25	700–1000	370–540	300	2100

*The friction coefficient can be maintained with ±5 percent for specific materials in this group.

STUDENTS-HUB.com

Uploaded By: anonymous