
Network Security:
TLS 1.3 handshake

Uploaded By: anonymousSTUDENTS-HUB.com

Handshake and session protocol

Network security protocols have two parts:

 Handshake = authenticated key exchange that creates
symmetric session keys

 Session protocol = encryption and authentication of the session
data with the session keys

 Handshake needs a root of trust: PKI (CAs), pre-distributed
public keys, or shared master key

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Client Server

ClientHello

+ key_share*

+ signature_algorithms*

+ supported_groups*

+ server_name*

+ certificate_authorities* -------------> ServerHello

<-------------

+ key_share*

{EncryptedExtensions}

{CertificateRequest*}

{Certificate*}

{CertificateVerify*}

{Finished}

[ApplicationData*]

{Certificate*}

{CertificateVerify*}

{Finished} ------------->

[Application data] <------------> [Application data]

TLS 1.3 full handshake

2. DHE or ECDHE
key exchange

3. Server
authentication4. Client

authentication
(typically omitted)

5. Key
confirmation

1. Parameter
negotiation

6. Protected session data

{encrypted}
[encrypted]
+ extension
* Optional

The slides from CS-E4300 - Network Security at Aalto University
Uploaded By: anonymousSTUDENTS-HUB.com

TLS 1.3 full handshake
1. C → S: NC , supported_versions, supported_groups, signature_algorithms,

cipher_suites, server_name, certificate_authorities, gx

2. S → C: NS , version, cipher_suite, gy

EncryptedExtensions

CertS , SignS(TH)
HMACKfks(TH)

3. C → S: CertC , SignC(TH)
HMACKfkc(TH)

NC , NS = client and server random = nonces
CertC , CertS = certificate chains
TH = transcript hash, i.e., hash of all previous messages
Exchange keys Kchts, Kshts, Kfkc, Kfks and session keys Kcats, Ksats are derived from gxy and TH

encrypted with Kshts

encrypted with Kchts

Kchts: client_handshake_traffic_secret

Kshts : server_handshake_traffic_secret

Kcats: client_application_traffic_secret_N
The slides from CS-E4300 - Network Security at Aalto University Uploaded By: anonymousSTUDENTS-HUB.com

TLS 1.3 algorithms

 Small number of modern cipher suites

 AEAD ciphers: encryption and authentication always together

 Perfect forward secrecy required

– Only ephemeral key exchanges: DHE or ECDHE

– Old RSA handshake is not supported

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Client Server

ClientHello

+ key_share*

+ signature_algorithms*

+ supported_groups*

+ server_name*

+ certificate_authorities* -------------> ServerHello

<-------------

+ key_share*

{EncryptedExtensions}

{CertificateRequest*}

{Certificate*}

{CertificateVerify*}

{Finished}

[ApplicationData*]

{Certificate*}

{CertificateVerify*}

{Finished} ------------->

[Application data] <------------> [Application data]

1-RTT handshake
Client does not know which

groups the server supports but
makes a guess

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

1-RTT handshake

 TLS 1.3 handshake causes only one round-trip delay

– Client can send HTTP request (application data) right after client Finished

– TLS 1.2 and most other key-exchange protocols require two RTT

– Important for page load times in web browsing

 However, TCP + TLS 1.3 together cause 2-RTT latency

– QUIC avoids this because it runs over UDP

 Sometimes TLS 1.3 handshake takes two RTT:

– If server does not support the group of key_share in ClientHello,
server sends HelloRetryRequest to ask for a different curve

– DTLS server under DoS attack can send a Cookie in HelloRetryRequest
The slides from CS-E4300 - Network Security at Aalto

University
Uploaded By: anonymousSTUDENTS-HUB.com

Key derivation
Inputs to key derivation:

1. PSK (external PSK or resumption PSK)
2. DHE/ECDHE secret

3. Transcript of handshake messages, up to the point where the key is derived

Keys:
 client_early_traffic_secret used to derive AEAD keys for early data in 0-RTT (…)

 client/server_handshake_traffic_secret used to derive AEAD keys for handshake
messages {…} and Finished HMAC keys

 client/server_application_traffic_secret_N used to derive AEAD encryption keys for
post-handshake application data and messages […]

 resumption_master_secret and ticket_nonce derive resumption PSK
 exporter_master_secret used to create keys for the application layer

one or both, as available

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

References

 TLS 1.3, RFC 8446

 The New Illustrated TLS Connection, https://tls13.ulfheim.net/

 A Readable Specification of TLS 1.3
https://www.davidwong.fr/tls13/

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

https://tools.ietf.org/html/rfc8446
https://tls13.ulfheim.net/
https://www.davidwong.fr/tls13/

Exercises
 Use a network sniffer (e.g., tcpdump, Wireshark) to look at TLS handshakes. Can you spot a full

handshake and session resumption? Can you see the plaintext server name indication (SNI)?
 Compare TLS 1.3 and TLS 1.2 handshakes in network trace: Can you see the difference is round-trips,

identity protection?
 How would you modify the TLS 1.3 handshake to improve identity protection? Learn about Protected

Extensible Authentication Protocol (PEAP). How does PEAP protect the client identity?
 Consider removing different message fields from the handshake. How does each message field

contribute to security?
 Why have the supported and mandatory-to-implement cipher suites in TLS changed over time?
 Why did most web servers for a long time prefer the RSA handshake?
 One reason why the RSA handshake it is no longer supported in TLS 1.3 is that it does not provide

PFS. Is it possible to implement PFS without Diffie-Hellman?
 Finds applications that could benefit significantly from the 0-RTT handshake. Is there any cost to

deploying it?
 What problems arise if you want to set up multiple secure (HTTPS) web sites behind a NAT or on

virtual servers that share one IP address? How to TLS 1.3 and TLS 1.2 solve this issue?
 If an online service (e.g., webmail) uses TLS with server-only authentication to protect passwords, is

the system vulnerable to offline password cracking?

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

TLS 1.3 full handshake
1. C → S: NC , supported_versions, supported_groups, signature_algorithms,

cipher_suites, server_name, certificate_authorities, gx

2. S → C: NS , version, cipher_suite, gy

EncryptedExtensions

CertS , SignS(TH)
HMACKfks(TH)

3. C → S: CertC , SignC(TH)
HMACKfkc(TH)

CertC , CertS = certificate chain
TH = transcript hash i.e. hash of all previous messagas
Exchange keys Kchts, Kshts, Kfkc, Kfks session keys Kcats, Ksats derived from gxy and TH

encrypted with Kshts

encrypted with Kchts

Which security properties?
• Secret, fresh session key
• Mutual or one-way authentication
• Entity authentication, key confirmation
• Perfect forward secrecy (PFS)
• Contributory key exchange
• Downgrading protection
• Identity protection
• Non-repudiation
• Plausible deniability
• DoS resistance

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Identity protection?

 Client sends server name indication (SNI) and CAs in plaintext

– SNI needed to have multiple server names at one IP address

 Server certificates are encrypted against passive sniffing

– However, anyone can get them from server by connecting to it and
sending the right SNI

 Client certificates (if used) are encrypted

– Protected also against server impersonation

Summary: server identity leaked; client identity well protected

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Network Security:
TLS 1.3 PSK and session resumption

Uploaded By: anonymousSTUDENTS-HUB.com

Outline

 Recall TLS 1.3 full handshake

 Pre-shared key (PSK) mode

 Session resumption

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Client Server

ClientHello

+ key_share*

+ signature_algorithms*

+ supported_groups*

+ server_name*

+ certificate_authorities* -------------> ServerHello

<-------------

+ key_share*

{EncryptedExtensions}

{CertificateRequest*}

{Certificate*}

{CertificateVerify*}

{Finished}

[ApplicationData*]

{Certificate*}

{CertificateVerify*}

{Finished} ------------->

[Application data] <------------> [Application data]

TLS 1.3 full handshake

2. DHE or ECDHE
key exchange

3. Server
authentication4. Client

authentication
(typically omitted)

5. Key
confirmation

1. Parameter
negotiation

6. Protected session data

{encrypted}
[encrypted]
+ extension
* Optional

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Client Server

ClientHello

+ key_share*

+ pre_shared_key

(Application Data*) ------------->

<-------------

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

{Finished}

[ApplicationData*]

(EndOfEarlyData)

{Finished} ------------->

[Application data] <------------- [Application data]

Pre-shared key (PSK) mode

Client identities

Selected client identity

Recommended:
DHE or ECDHE for PFS

Authentication
based on PSK

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Pre-shared key (PSK) mode

1. C → S: NC , gx, ClientIdentity

2. S → C: NS , gy, HMACKfks(TH),
early data

3. C → S: HMACKfkc(TH)

 Mutual authentication based on a pre-established identity and
session key (external PSK)

– PSK = pre-established shared key between C and S

– HMAC keys Kfks and Kfkc in for the Finished message are derived
from PSK, gxy and TH; and so are the session keys

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Client Server

ClientHello

+ key_share*

+ signature_algorithms*

+ supported_groups*

+ server_name*

+ certificate_authorities* -------------> ServerHello

<-------------

+ key_share*

{EncryptedExtensions}

{CertificateRequest*}

{Certificate*}

{CertificateVerify*}

{Finished}

[ApplicationData*]

{Certificate*}

{CertificateVerify*}

{Finished} ------------->

<------------- [NewSessionTicket]

[Application data] <------------> [Application data]

TLS 1.3 session resumption (1)

Server packages the session state into an
encrypted data called session ticket and

sends it to the client

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Client Server

ClientHello

+ key_share*

+ pre_shared_key

(Application Data*) ------------->

<-------------

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

{Finished}

[ApplicationData*]

(EndOfEarlyData)

{Finished} ------------->

[Application data] <------------- [Application data]

TLS 1.3 session resumption (2)

Client identities =
one or more session tickets

Selected session ticket

Recommended:
DHE or ECDHE for PFS

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

TLS 1.3 session resumption timeline

Server resumes session
state and resumption PSK
from the ticket

Client Server

Full handshake

NewSessionTicket(ticket)

PSK mode

Client stores ticket,
knows resumption PSK

Server can be stateless

pre_shared_key(ticket)

Server packages session state
and resumption PSK
into a ticket

Ticket = opaque data that helps the
server recall the session. Typically
contains encrypted session state
and resumption PSK. Only the
server itself can decrypt the tickets
that has created

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

TLS 1.3 session resumption uses

 TLS 1.3 session resumption = PSK mode handshake
with ticket as client identity and resumption key as the PSK

– Currently the main purpose of the PSK mode

 When useful?

– Server does not want to store the TLS sessions over idle periods

– If client is authenticated with smartcard, avoids repeated user action

– Mobile clients keep changing their IP address and need frequent
reconnection

– Resume the session with a different server instance in the cloud

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Key derivation
Inputs to key derivation:

1. PSK (external PSK or resumption PSK)
2. DHE/ECDHE secret

3. Transcript of handshake messages, up to the point where the key is derived

Keys:
 client_early_traffic_secret used to derive AEAD keys for early data in 0-RTT (…)

 client/server_handshake_traffic_secret used to derive AEAD keys for handshake
messages {…} and Finished HMAC keys

 client/server_application_traffic_secret_N used to derive AEAD encryption keys for
post-handshake application data and messages […]

 resumption_master_secret and ticket_nonce derive resumption PSK
 exporter_master_secret used to create keys for the application layer

one or both, as available

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Client Server

ClientHello

+ key_share*

+ pre_shared_key

(Application Data*) ------------->

<-------------

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

{Finished}

[ApplicationData*]

(EndOfEarlyData)

{Finished} ------------->

<------------- [NewSessionTicket]

[Application data] <------------- [Application data]

TLS 1.3 session resumption and identity

Server can refresh the ticket for PFS
and for protecting client identity

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

“Selfie attack”
 Reflection attack against

external (out-of-band) PSK
– Trick the client to connect to

itself
– Assumes the same entity can

be both client and server

 PSK used mistakenly as a group
key for two parties
– Group key only authenticates

the group, not the individual

 Solution: Use different PSK for
each direction
– For each PSK, Alice is either the

client or server, never both for
the same PSK

[Nir Drucker & Shay Gueron, Selfie: reflections on TLS 1.3 with PSK, 2019]

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Network Security:
TLS 1.3 0-RTT handshake

Uploaded By: anonymousSTUDENTS-HUB.com

Client Server

ClientHello

+ key_share*

+ pre_shared_key

(Application Data*) ------------->

<-------------

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

{Finished}

[ApplicationData*]

(EndOfEarlyData)

{Finished} ------------->

[Application data] <------------- [Application data]

TLS 1.3 session resumption

Client identities =
one or more session tickets

Selected session ticket

Recommended:
DHE or ECDHE for PFS

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Client Server

ClientHello

+ key_share*

+ pre_shared_key

(Application Data*) ------------->

<-------------

ServerHello

+ pre_shared_key

+ key_share*

{EncryptedExtensions}

{Finished}

[ApplicationData*]

(EndOfEarlyData)

{Finished} ------------->

[Application data] <------------- [Application data]

0-RTT handshake

Client can send early data
right after the first message

(Application Data*)

(Application Data*) Server can respond in the
second message

Example: HTTP GET request

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Key derivation
Inputs to key derivation:

1. PSK (external PSK or resumption PSK)
2. DHE/ECDHE secret

3. Transcript of handshake messages, up to the point where the key is derived

Keys:
 client_early_traffic_secret used to derive AEAD keys for early data in 0-RTT (…)

 client/server_handshake_traffic_secret used to derive AEAD keys for handshake
messages {…} and Finished HMAC keys

 client/server_application_traffic_secret_N used to derive AEAD encryption keys for
post-handshake application data and messages […]

 resumption_master_secret and ticket_nonce derive resumption PSK
 exporter_master_secret used to create keys for the application layer

one or both, as available

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

0-RTT handshake
 With session resumption or PSK, client can send application data

(early data) right after ClientHello
– Lower latency for web browsing and APIs. However, TCP handshake in the

underlying transport layer still takes one RTT

 Serious security limitations:
– Early data is vulnerable to replay attacks (no fresh server nonce yet)
– No PFS for the early data

 Ok for idempotent requests (mainly HTTP GET) that do not require
long-term secrecy

 Application must explicitly enable 0-RTT
– TLS layer cannot decide when the lower security of 0-RTT is acceptable

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Network Security:
RSA handshake (TLS 1.2 and earlier)

Uploaded By: anonymousSTUDENTS-HUB.com

Public-key encryption of session key

 Public-key encryption of the session key:

1. A → B: A, B, PKA

2. B → A: A, B, EA(SK)

PKA = A’s public key

SK = session key

EA(…) = encryption with A’s public key

Note:
The protocol
is not secure
like this. Please
read further.

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Impersonation and MitM attacks

 Unauthenticated key exchange with public-key encryption
suffers from the same impersonation and man-in-the-middle
attacks as DH

 A has a shared secret, but with whom?

A, B, PKA

A E

A, B, EA(SK)
SK

SK := rand

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Impersonation and MitM attacks

 Impersonating A is similarly possible because B does not know
whether the public key really belongs to A:

 B has a shared secret, but with whom?

A, B, PKE

E B

A, B, EE(SK)
SK

SK := rand

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Authenticated key exchange

 Authenticated key exchange with public-key encryption:
1. A → B: A,B, NA, CertA

2. B → A: A,B, NB, EA(KM), SB(“Msg2”,A,B,NA,NB,EA(KM)), CertB,
MACSK(A, B, “Responder done.”)

3. A → B: A,B, MACSK(A, B, “Initiator done.”)

SK = h(NA, NB, KM)

KM = random key material (random bits) generated by B
CertA, EA(…) = A’s certificate and public-key encryption to A
CertB, SB(…) = B’s certificate and signature
MACSK(…) = MAC with the session key

Somewhat
realistic
protocol
(compare with
TLS_RSA)

Why nonces and not SK = KM?

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

Client Server

ClientHello ------------->

<-------------

ServerHello

Certificate*

CertificateRequest*

ServerHelloDone

Certificate*

ClientKeyExchange

CertificateVerify*

ChangeCipherSpec

Finished ------------->

<-------------

ChangeCipherSpec

Finished

[Application data] <------------> [Application data]

TLS_RSA handshake

3. RSA encryption of key material

5. Key confirmation

1. Parameter negotiation

2. Server certificate

6. Protected session data

4. Client authentication with
signature (typically omitted)

To match with the previous slide:
A = Server, B = Client

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

TLS_RSA handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertS,[Root CAs]

3. C → S: [CertC]
ES(pre_master_secret),
[SignC(all previous messages including)]
ChangeCipherSpec
MACSK (“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACSK("server finished“, all previous messages)

ES = RSA encryption (PKCS #1 v1.5) with S’s public key from CertS

pre_master_secret = random byte string chosen by C
master_secret = h(pre_master_secret, “master secret”, NC, NS)

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

TLS_RSA handshake
1. C → S: Versions, NC , SessionId, CipherSuites

2. S → C: Version, NS , SessionId, CipherSuite
CertS,[Root CAs]

3. C → S: [CertC]
ES(pre_master_secret),
[SignC(all previous messages including)]
ChangeCipherSpec
MACSK (“client finished”, all previous messages)

4. S → C: ChangeCipherSpec
MACSK("server finished“, all previous messages)

ES = RSA encryption (PKCS #1 v1.5) with S’s public key from CertS

pre_master_secret = random byte string chosen by C
master_secret = h(pre_master_secret, “master secret”, NC, NS)

Which security properties?
• Secret, fresh session key
• Mutual or one-way authentication
• Entity authentication, key confirmation
• Perfect forward secrecy (PFS)
• Contributory key exchange
• Downgrading protection
• Identity protection
• Non-repudiation
• Plausible deniability
• DoS resistance

The slides from CS-E4300 - Network Security at Aalto
University

Uploaded By: anonymousSTUDENTS-HUB.com

