

Reinforced Concrete Design I ENCE 335

Doubly Reinforced beams

Dr. Khalil M. Qatu

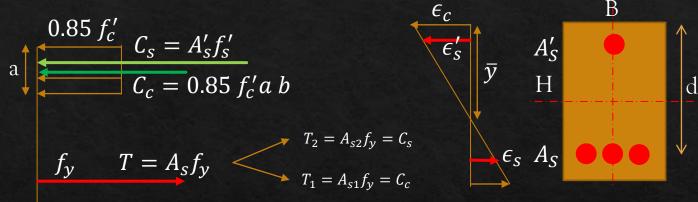
- ♦ What to do IF the reinforcement ratio exceeds the maximum allowed by ACI code ??
 - ♦ Increase Dimensions, Which one is more effective??
 - ♦ If dimensions are limited?

- ♦ Add compression steel to ensure concrete doesn't fail
 - ♦ Develop an extra compression force to balance the required tension force without compression failure.

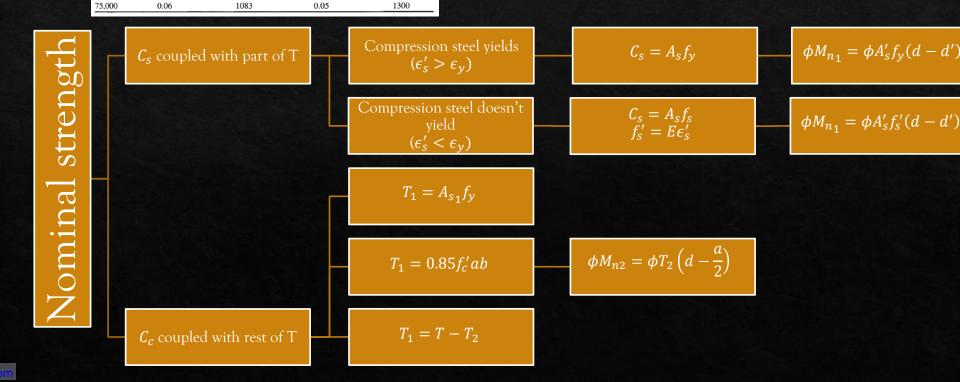
♦ Nominal strength:

 f_y , psi

60,000

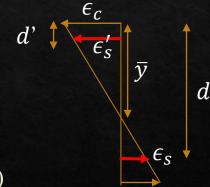

d'/d

0.13


Minimum beam depths for compression reinforcement to yield Minimum d Minimum d Maximum for d' = 65 mmfor d' = 65 mmMaximum

d'/d

0.12



 $\overline{\phi M_{n_1}} = \overline{\phi A_s' f_y} (d - \underline{d'})$

- Tension Reinforcement limits
 - ♦ Minimum reinforcement remains the same
 - \diamond Maximum reinforcement allowed by ACI code still maintains a tension strain in steel $\epsilon_t \geq 0.004$
 - ♦ We can calculate and compare the strain in the tension steel with the limit from the strain distribution

$$\epsilon_{\scriptscriptstyle S} = \epsilon_u \frac{d - \bar{y}}{\bar{y}} \ge 0.004$$

♦ Or we can use this formula (derived from strain distribution and section equilibrium)

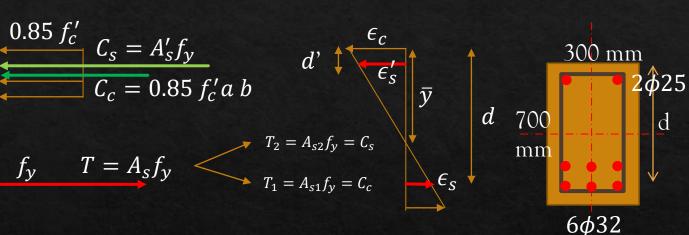
$$\bar{\rho}_{0.004} = \rho_{0.004} + \rho' \, \frac{f_s'}{f_y}$$

♦ Example: Moment Capacity

$$f_y = 420 MPa$$
 , $f_c' = 35 MPa$

Check: $\rho = \frac{A_s}{hd} = 0.027 > \rho_{max} \rightarrow This\ section\ was\ designed\ as\ doubly\ reinforced$

check: yielding of compression steel $\rightarrow \frac{d'}{d} = 0.104 < 0.13 \rightarrow comp.$ steel yields


we need to find location of N.A

$$T = C$$

$$A_s f_v = A_s' f_v + 0.85 f_c' a b \rightarrow a = 183.24 mm \rightarrow \bar{y} = 229 mm$$

 $A_s f_y = A'_s f_y + 0.85 f'_c a b \rightarrow a = 183.24 mm \rightarrow \bar{y} = 229 mm$ Check strain in tension and comp. steel : $\epsilon_s' = 2.18 * 10^{-3} > \epsilon_y \rightarrow comp. Steel \ yields \dots \dots \epsilon_s = 4.88 * 10^{-3} > 0.004 \rightarrow tension \ controlled$ $\epsilon_c = 4.88 * 10^{-3} < 0.005 \rightarrow \phi \neq 0.9 \rightarrow \phi = 0.89$

$$\phi M_n = \phi M_{n_1} + \phi M_{n_2} = 0.89 * A_s' f_y (d - d') + 0.89 * \left(A_s f_y - A_s' f_y \right) \left(d - \frac{a}{2} \right) = 206.5 + 743 = 949.5 \text{ kN.m}$$

Example: Design

$$f_{y} = 420 \ MPa$$
 , $f_{c}' = 28 \ MPa$, $M_{u} = 290 \ kN$. m

Assume the section is to be designed and singly reinforced section

Assume $\phi = 0.9$

Assume
$$\phi = 0.9$$

$$R = \frac{M_u}{\phi b d^2} = 7.39 \rightarrow Table \ A5 \rightarrow doesn't \ exist \rightarrow \rho_{req} > \rho_{max}$$

$$f_y \qquad T = A_s f_y$$

$$T_1 = A_{s1} f_y = C_c$$

The section should be designed as doubly reinforced section

assume 2 layers of steel in botton $d = 417 \, mm \, \dots \, d' = 60 \, mm$

$$PART \ 1: C_c \ coupled \ with \ T_{S_1} \to Take \ \rho = \rho_{0.005} \to R = 6.36 \ MPa \ \to \phi M_{n1} = 248.8 \ kN.m \ A_{S1} = \rho bd = 1887 \ mm^2$$

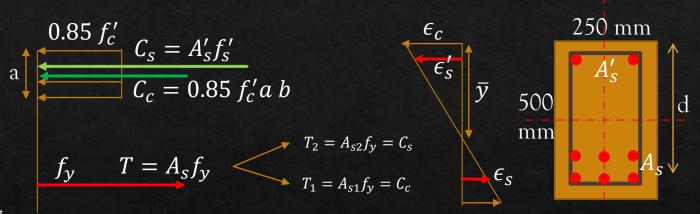
$$T_1 = C_c \rightarrow a = 133.2 \ mm \rightarrow \bar{y} = 156.7 \ mm$$

Remaining Moment to be carried by coupling between comp. steel and tension steel

$$\phi M_{n2} = M_u - \phi M_{n_1} = 290 - 248.8 = 41.2 \text{ kN. m}$$

Example: Design

 $PART 2: \phi M_{n2} = 41.2 \ kN.m$

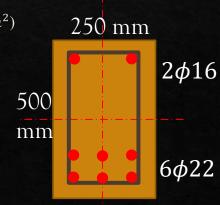

Check yielding in Comp. steel $\rightarrow \bar{y} = 156.7 \ mm \rightarrow \epsilon_s' = 1.85 * 10^{-3}$

$$\epsilon_s' < \epsilon_v \rightarrow f_s' = 370 MPa$$

$$\phi M_{n2} = 41.2 \text{ kN.} m = \phi A'_s f'_s (d - d') \rightarrow A'_s = 346.6 \text{ mm}^2$$

We need to add an equivalent steel to the tension side to be coupled with it

$$C_S = T_2 \rightarrow A_S' f_S' = A_{S2} f_V \rightarrow A_{S2} = 304.8 \ mm^2 \rightarrow A_S = A_{S1} + A_{S2} = 2191 \ mm^2$$



assume 2 layers of steel in bottom $d = 417 \text{ mm } \dots d' = 60 \text{ mm}$

Go to Tables A2 and A7 to choose the most suitable compression steel bars $(A'_s = 346.6 \ mm^2)$ and tension steel bars $(A_s = 2191 \ mm^2)$

Let's choose $2\phi 16$ ($A'_s = 398 \ mm^2$) for comp. bars and $6\phi 22$ ($A_s = 2322 \ mm^2$) for tension bars

NOW we need to check our initial assumptions and the moment capacity of the chosen cross-section

♦ Example: Design

Let's choose $2\phi 16$ ($A_s' = 398 \ mm^2$) for comp. bars and $6\phi 22$ ($A_s = 2322 \ mm^2$) for tension bars

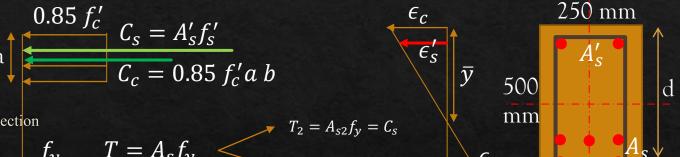
check our initial assumptions and the moment capacity of the chosen cross-section

 \diamond Check comp. steel : Location of N.A. $\rightarrow T = C$

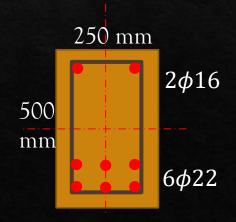
$$A_s f_y = A'_s f'_s + 0.85 f'_c a b$$
 (two unknowns f'_s & a)

itr1: assume
$$f'_s = 370 \, MPa \rightarrow a = 139.16 \, mm \rightarrow \bar{y} = 163.71 \, mm$$

check
$$f_s' \to \epsilon_s' = 1.94 * 10^{-3} \to f_s' = 387.42 MPa$$


itr 2: assume $f_s' = 387 \ MPa \rightarrow a = 138.02 \ mm \rightarrow \bar{y} = 162.14 \ mm$

check
$$f'_s \to \epsilon'_s = 1.93 * 10^{-3} \to f'_s = 385.7 \, MPa \dots 0K$$


 \Leftrightarrow Check tension steel $\epsilon_s = 4.68 * 10^{-3} > 0.004 \rightarrow tension controlled ... OK$

$$\epsilon_s = 4.68 * 10^{-3} < 0.005 \rightarrow \phi \neq 0.9 \rightarrow \phi = 0.873$$

$$\phi M_n = \phi M_{n_1} + \phi M_{n_2} = 0.873 * A_s' f_s' (d - d') + 0.873 * \left(A_s f_y - A_s' f_s' \right) \left(d - \frac{a}{2} \right) = 47.9 + 248.6 = 296.5 \ kN. \ m > M_u \dots \text{OK}$$

2 layers of steel in bottom $d = 415.5 \text{ mm} \dots d' = 58 \text{ mm}$

