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FOREWORD

CoLLECTIONS of problems are useful both for faculty use in the evaluation of the state of a
student’s knowledge and for the student himself to use in self-evaluation. This collection of
problems is at the level of the present state of knowledge expected of a student candidate
for certification in optics and many of these problems are, in fact, drawn from certification
examinations.

Physical optics is a traditional subject and a very large choice of problems is available in
this area. An attempt has been made here to provide a broad selection of modern material
using some of the newer experimental and theoretical results and, in addition, those areas
of electromagnetic theory relevant to optics.

Quantum optics, which involves the elements of wave mechanics and its applications to
atomic and molecular spectroscopy and, thus, to the propagation of electromagnetic
radiation in material media, has only recently been introduced into optics courses. As a
result of the relatively short experience in the presentation of these techniques, the problems
in this area are generally presented at a somewhat lower level than the classical problems
in spite of their significance in modern optical work.

An attempt has been made here to find a balance between extreme detail in solution and
sufficient detail as to be of use. In general, whenever detail is not presented in the solution,
reference is made to the general principle used. References are often given in the form
§ 8.3 (chapter &, section 3) or § B.3 (Appendix B, section 3) and are keyed to the comple-
mentary volume Optics: Part 1, Electromagnetic Optics; Part 2, Quantum Optics, which
forms part of this series. References to Appendices A and B of this volume are given in
the form Appendix A (or B) and references to Problems (or parts thereof) as Problem 1 (or
Problem 1, II. 1, etc.).

Many thanks are due our colleagues who provided us with a selection of problems, thus
enhancing our coverage. To these individuals, MM. Boiteaux, Fert, Frangon, Jacquinot,
Kahane, Nikitine, Rouard, Rousset, Servant, Vienot, goes our gratitude. The solutions,
however, are ours, and thus any error in detail or omission must remain with us.

We are also grateful to Professor J. W. Blaker for the accurate translation from the

French.
M.R, J.P. M.

vii

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



PRINCIPAL PHYSICAL CONSTANTS

Avogadro’s number

Volume of one kilomole of an ideal gas

at standard conditions
Ideal gas constant
Boltzmann constant
Permittivity of free-space
Permeability of free-space
Faraday’s constant
Electron charge
Rest mass of the electron
Mass of the proton
Specific charge of the electron
Planck’s constant
Speed of light in vacuum
Rydberg constant for H
Ground state radius of H
Bohr magneton

Compton wavelength for the electron

Energy conversion factors:

( MKS A rationalized units)

M = 6.025X 10%® molecules/kilomole

vV, =2240md

R = 8.3169X10? joules/kilomole-°’K
k = R/F{ = 1.380X 1072 joule/°K
g0 = 8.834X 10712 farads/m

po = 4xX1077 = 1.257X10~® henrys/m
(F = 96.522x10° coul/kilomole

e = 1.602X10"* coul

m, = 9.1083X1073 kg

My = 1.6724X107% kg

e/m, = 1.759X 10" coul/kg

h = 6.6252X 1073 joule-sec

c = 2.99793X10° m/s

Ry = 10,967,758 m™!

ro =0.5292X1071m

pg = ehldmm, = 9.27X1072* A-m?

A, = 2hjmc = 4.8524X1072 m

(4

1 calorie = 4.185 joules

1 electron-volt = 1.602X 10~ joules

Unless otherwise indicated, these constants will be used for the calculations which follow.

STUDENTS-HUB.com
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INTERFERENCE

PROBLEM 1

Visibility of Young’s Fringes

In all of these problems assume that the source is monochromatic and radiates at a wave-
length A = 0.55 p.

I

1. A point source Sy illuminates two narrow, parallel slits, F; and Fs, ruled vertically in
an opaque screen. The slits are separated by 2 mm. One observes the interference pattern
in a plane & parallel to and at a distance of 1 m from the screen. A point M in the plane z is
assigned the coordinates X and Y (¥ parallel to the slits). Determine the expression govern-
ing the distribution of the illumination over the plane z.

2. How is the image modified when S is replaced by a narrow slit Fy parallel to F; and
F,? Calculate the interference pattern.

3. The observation of the fringes is made using a Fresnel eyepiece similar to a thin lens of
focal length f = 2 cm. What are the advantages of observation with an eyepiece in compari-
son to observation with the naked eye? Indicate the positions of the eyepiece and the eye
with respect to plane & for which the observation of the fringes is made under the best
conditions.

11

Cover the slit F; with an absorbing screen (which introduces no phase-shift) of optical
density A = 2.

. S incident intensit
(The optical density is defined by: A = logie maicent intensty )

transmitted intensity -
Find the visibility, V, of the fringes defined by:

Imax_Imin
y =R _omin
Imax+1min

where I, and I represent the maximum and minimum intensities respectively.

1
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2 PROBLEMS IN OPTICS [PROBLEM 1

I
Here a large incoherent source is used.

1. The source slit has a height & (fixed) and a width a (variable). This is situated at a
distance d = 1 m behind the plane of the slits F1 and F2. Under these conditions, what is the
expression for the illumination at a point M in the plane #? How does the visibility of the
fringes, ¥, vary as a function of a? Use this expression to describe the phenomenon observed
when one progressively opens the source slit Fo. Determine the maximum width of the slit
so that the loss in contrast does not exceed 10%;.

2. To increase the luminosity of the image an incoherently illuminated grating is used as a
source (slits parallel to F; and F3). Determine the width a of the transparent intervals and
the grating step p so that the visibility retains its preceding value.

v

1. Assume that the source slit F is sufficiently narrow that it can be considered as a line
and replace the Fresnel eyepiece observing apparatus by a photocell. Place the slit of the cell
in the plane = parallel to the fringes. The height of the slit is fixed; its width is variable. As-
sume that the intensity of the photocurrent is proportional to the luminous flux falling on
the cell. Give the law for the variation of the current as a function of the abscissa X of the
slit. Describe what happens when the slit is opened.

2. What is the expression for the intensity of the current assuming that the source slit is
not vanishingly fine but has width a? Determine the visibility factor.

\4

1. Take the width of the source slit as @ = 0.01 mm and the width of the slit of the
detector as b = 0.02 mm. Find the visibility.

This theoretical visibility ¥, is greater than the experimental visibility ¥, which has a
value ¥, = 0.5. Show that this can be explained by taking into account the parasitic current
Jo (dark current) found in the absence of all luminous flux. Calculate the ratio, §p/Spax
of the dark current to the maximum signal intensity.

2. The width of the slit of the detector is fixed by its construction at a value b = 0.02 mm,
while, on the other hand, the width a of the source slit can be altered.

Calculate V, and present graphically its variation as a function of a. For what value of a
will ¥, be maximum? What can be concluded from this investigation ?
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PROBLEM 1] INTERFERENCE 3

SOLUTION
1. Coherent illumination
1. Point source

Designate by x and y the coordinates in the plane of the pupil and by X and Y the co-
ordinates of a point M in the image plane (Fig. 1.1). The infinitely thin slits diffract uniformly
in the plane perpendicular to Oy.

I g
!’f
s d 0 7 0
0
;
Fic. 1.1
Only the line Ox is illuminated with a light distribution
I = 4 cos? (stus) n
where
sini i X1
ST RITDT @

One gets this result from the fact that, for coherent illumination, the distribution of the
amplitude in the image is equal to the Fourier transform of the amplitude distribution in the

pupil (see Appendix A).
The amplitude in the exit pupil is
s s
fx)= 6(x+5)+6(x—5). 3)
The amplitude in the image plane is
F@u) = FTIf()] @)
F(u) = A(u) [eims - e—inus] )
with
A(w) = FT.[6(x)] = 1 (6)
from which
F(u) = 2 cosnus -~ period 2/s.
and

IKu) = |F(u)|2 = 4 cos? mus — period 1/s. ®

2. Linear source

Here one observes no interference along the lines parallel to Oy. Each point on the source
slit gives a light distribution centred on the geometric image and parallel to Ox. One then
has fringes parallel to F; and Fo.
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4 PROBLEMS IN OPTICS [PROBLEM 1

The period of these fringes is such that:

Au = 1/s )
giving a linear fringe spacing: ' '
AX =1 ?. (10
Iw)
1
0 l)s u
Fic. 1.2
Numerically:
10-3

3. Observation of the fringes

Naked eye. A normal eye working at its near point (25 cm) has difficulty in resolving the
image. In effect the fringe spacing is seen at an angle:

0.275
E =

=~ 10-3 .
50 103 rad

This value is only slightly larger than the angular limit of resolution of the eye which is of
the order of 1 minute or 3XX 1074 rad.

Eyepiece+eye. To avoid fatigue it is preferable that the eye does not accommodate. For
this reason one uses an eyepiece whose focal plane coincides with the plane 7; the image is
then formed at infinity. This image is easily resolvable since the angular fringe spacing

becomes
0.275
€ = -*“26— = 0.0135 rad-
The magnification of the eyepiece is
4 angle at which the image is seen

G=—= - < .
¢  angle of the object when at the near point

Note. In principle the slits diffract through an angle of 180° so that, even with large
aperture, the eyepiece cannot collect all of the rays. The observer, in order to collect the
maximum light, must place his pupil in the plane F;, F, conjugate to the plane F,, F,
(Fig. 1.3).
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PROBLEM 1] INTERFERENCE 5

-n

’

(n)‘ ]‘L J
Fl ‘ |

(4

~mNM

Tem | am

Fic. 1.3

The slits are at a distance & from the lens, their images are at a distance £, such that:

1 11
T ETf
1 1 1 52
T 0047 T F T 102
& =1.965cm ~ 2 cm.
The magnification is equal to

n_&_1
n & 52°
The image has dimension
=2
=355 =% 0.04 mm.

All of the rays which enter the eyepiece get to the eye since the value of 7’ is less than the
minimum diameter of the pupil of the eye.

I1. The vibrations passing through F and F, are in phase but
have different amplitudes

When the vibrations are out of phase by ¢, the intensity at point M is given by
I(M) = A3+ 43+24,4, cos ¢ = I,+1,+2+/1], cos ¢. (11)
The maximum and minimum intensities are respectively equal to
Inax = (VI + VL)
Lnin = (VL= VL),
the visibility is

2+ I,
y=VvV_r2, 12
Ii+1, (12)

Assuming that the optical density filter is placed in front of F; one has:

log1o % =2 where == 100,
1
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6 PROBLEMS IN OPTICS [PROBLEM 1

(AI+A2)22
(4,-4,)

0 U
0
2T 4T ¢
FiG. 1.4
from which V=02 (Fig. 1.4).

The positions of the maxima and minima are the same with or without the filter. On the
other hand the visibility, ¥, is not unity unless the amplitudes passing through the slits are
equal.

I111. Large source. Incoherent illumination (§ 6.7)
1. The source is a large slit

Allthe points lying on a line parallel to Oy give fringes parallel to Oy with period Au = 1/s.
Break the slit (width @) into an infinite number of vanishingly thin slits.
Let v be the reduced coordinate of a point in the source plane. The width of the slit can be
characterized by
v = afid. (13)

The intensity produced on M by an element of width dv is

dI = AXh{1+cos 2a[(u+ v)sl} dv. (14)

A = constant, Avs = path difference between the disturbances arriving from F; and Fs.
Each elementary slit of infinitesimal width gives a system of fringes with period Au = 1/s
and centred on the geometric image of the elementary slit.
Thus, the intensity transmitted to M by the slit source is

+vo/2
I= Ahf [1+4cos 2z(u+v)s] dv (15)
—‘0012
7= 10[1 4 SIS 2nus]. (16)
VoS
One finds:
_ s_i_n VoS
T mwes

The graph of ¥ is given in Fig. 1.5.
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PROBLEM 1]

INTERFERENCE 7

/~ \3/s

0

UZ/S ~— ¥

FiG. 1.5

Numerical application. One wants V = 0.9 so that

sin mves
Vs

From the definition of v¢ one gets

4s

1

2
d

sothat a=d — =10%%
4s

V=09

The fringes vanish for a = 275 p.

The Van Cittert—Zernike theorem (Appendix B) gives this result immediately. The degree
of coherence between the slits F; and F, is given by the Fourier transform of the intensity
distribution in the source plane. Since the problem is one-dimensional, it is sufficient to
assume that the source is a slit parallel to OY with a width a and that the pupil is formed by
two points, Py and P2, set in an opaque screen (P and Ps corresponding to the intersection
of the slits F; and F, with the line Ox are separated by a distance s). The intensity distribu-
tion in the source can be represented by a rectangular function (Fig. 1.6).

Iv) =0 for
Iv) =1

T
=O.9—>7wos=z—>vo=—.

2 R &M;PIO

STUDENTS-HUB.com

1
4s

A 0.55X1073
4X2

for a=~70 .

v<—v9/2 and v =>+vf2, amn

—v0/2 < v <+ vp/2.

4 9(x)

o

Vo 2, —36_

/
>

Fic. 1.7
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8 PROBLEMS IN OPTICS [PROBLEM 1

One finds

F.T.U()] = ¢(x) = film’i’;;‘x (Fig.1.7). (18)

Place each imaginary diffraction spot on the pupil so that its centre coincides with P;.
The fringe visibility is equal to the value of ¢(x) at point P, that is, at ¢(s) (Fig. 1.7). One
can see that the fringe contrast is still good for s = %vo.

2. The source is an incoherently illuminated grating

Call v, the reduced coordinate corresponding to the grating spacing p.

(a) Assume initially that the illuminated strips are infinitely thin.

The intensity distribution in the source is a Dirac series (Fig. 1.8). Its Fourier transform
is a Dirac series of period 1/v, (Fig. 1.9).

o(x)
1lv)
1
|
o e 2 X
4] 2 v L—-‘s :
|'4 v,
PP R R
Fic. 1.8 FiG. 1.9

As before, place the imaginary diffraction spot ¢(x) on the pupil so that ¢(0) coincides
with P1. The fringe visibility will be unity if

1/v,=s (Fig. 1.9)

that is, if
s = Ad/p,
so that
Ad 103
p= - _O.SSXT = 275 .

(b) The grating openings have a finite width a. I(v) is a unbounded series of rectangular
functions (Fig. 1.10) with period v, and width v,.

10.0C

Fic. 1.10

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



PROBLEM 1] INTERFERENCE 9

The Fourier transform is shown in Fig. 1.11.

o0
0,9 -y ~
~
~
.
A
A Y
\
\
\
\
\
\\
R 2 s
< —
7} 1, Wo~-o__ X
Fic. 1.11
To have an image well contrasted one needs
5= I 1
T v, 4duy’

Numerical results
Grating spacing p = 275 p.
Width of the grating openings a = 70 p.
Note. One can also get these results by another simple process (Fig. 1.12).

Fic. 1.12

(a) Fine grating openings: the fringes remain fixed if the vibrations transmitted by an
opening T are phase-shifted by an integral multiple of 2z when arriving at Py and Ps.

(b) Grating with large openings: the vibrations transmitted from the edges of any window
should produce at Py and P; a path difference lying between kA and (k+4)2 in which case
the fringes do not overlap (the fringes produced by the extreme edges of an opening are
shifted by a maximum of ; fringe).

IV. The opening of the detector has finite width b

1. The source slit is infinitely thin

The fringes on plane = have unit contrast (see question I). On the other hand, because of
the finite width of the detector slit, the flux recorded by the receiver is never zero (Fig. 1.13).
The illumination is the same at all points along a single vertical in the observing plane. Break
the window of the receiving cell down into elements of width du and height I.

2‘

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



10 PROBLEMS IN OPTICS [PROBLEM 1

0,77

05}-

0
10 55 275 au)
FiG. 1.13

Call u, the reduced coordinate which corresponds to the linear width b of the slit. The flux
which penetrates through the surface element at abscissa ' is

d® = BI(1+cos 2 mus) du, (19)
from which
W -ul2 1
D(u') = f dd = Bluc[l 4 ST s 2nu’s]. 20)
U —uy /2 T,
As before, one can define a coefficient of visibility by
_ Sinaus @1

TUS

Aslong as u, is less than %s, the intensity of the photocurrent, proportional to the luminous
flux, varies in a reasonably sinusoidal fashion. When one opens the slit, the difference
between the maxima and minima lessens. Finally, for u, = 1/s, the intensity of the photo-
current does not vary regardless of the placement of the cell.

2. The source slit has a finite width a

One has

Iw =1, [1 + SINTOS s 2nus] , (22)

VS

from which

W tu /2 1

D) = Blvof [1 M0TS cos 2nus] du, (23)
w —u,f2
D) = Bluw, [1 + S10 3 X SINTO0S o 2nu's] . 249
TUS VS
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PROBLEM 1] INTERFERENCE 11

One finds that
__sin7mus _ Sin vops
T nus WS

(25)

The visibility can be defined using an “instrument function”.
V = F.T. (source slit, width v,)XF.T. (cell opening, width u,)
In the case of an infinitely fine source slit, the first term of the product reduces to a value
of one since F.T. [6(x)] = 1.

V. The effect of the dark current

Recall equation (25) which gives the theoretical visibility.
1. a = 0.01 mm, b = 0.02 mm (v, = const, #, = const).
One has

Sin wes

Ve =0991X - = 0.987.
VoS

Taking the dark current into account, the intensity of the real current becomes

Ir(w) = Jw) + To- (26)
Hence, the experimental visibility is

Vr — \zrmax—Srmin == .\O‘Smag—%min — (27)
.\Srmax+3rmin \Smax+.\5min+2\50

sin 7wu,s % sin wvgs

v, = S TS (28)

1492
Vo

(The constant coefficient Blu_ has been set equal to one.) Thus one has the relationship

Ve
V=9 —. 29
1+ SJo/vo (29)
Numerical application
Jo _ Ve _ 0987 _
1+ v V.= 05 = 1.974,
¢
V0 — 0.974
Vo
One has
Smax =wll+V,] = v0[1.987],
<y
hence LI 0.974 = L (in practice this value is much smaller).

Smax 1987 2
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12 PROBLEMS IN OPTICS [PROBLEM 1

2. avariable, b = 0.02 mm (v, variable, u, = const).

One has
V, = 0.99] oS, (30)
from which
0.991 %Z;sﬂs sin wes
V,= “T+5050 = 0.991 X7s (et S0

¥V, has a maximum for d¥,/dV, = 0, so that
tan wves = wves+7sFo = mrps+0.111.

This equation is satisfied for wwes ~ 35°.

36 1 a
N A —— J —4,,—1 3 e
Vo 180X %108 1074p~1, since TR
hence
a = v fA = 1074X10%X0.55
a=055u.
The variations of ¥, and V, as a function of v, are shown in Fig. 1.13. For a = 55 . one
has
sin 35°
180
hence
V- ve 0.9 09
" 1+ 8o/vo ~ 1+0.974X10/55 T 11771 °
Vimax = 0.77.

Conclusion. In theory, to have the best contrast, it is advantageous to close the source slit
to the smallest possible opening. In practice, in the presence of a dark current, it is necessary
to give the source slit its optimal width.

PROBLEM 2

Young’s Experiment. Achromatic Fringes

Monochromatic source (A = 0.55 ).

Young’s apparatus as illustrated in Fig. 2.1 has the following characteristics:
Slit separation ¢ = 3.3 mm.
Distance from the pupil to the screen D = 3 m.
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12 PROBLEMS IN OPTICS [PROBLEM 1
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PROBLEM 2] INTERFERENCE 13

X
) 3 M(x)
d
S ) e g
t /;'1 @ (m)

1. Calculate the fringe spacing i.
2. Place a sheet of glass with plane parallel faces and thickness ¢ = 0.01 mm in front of
Slit F1.
(a) Determine the direction of the displacement of the fringes and the formula giving the
relationship for their displacement.
(b) Knowing that the fringes are displaced by 4.73 mm, find the index of the glass. How
precise is this value of n, if the displacement can be measured to 0.01 mm?

II

Nature of the fringes in white light.
The dispersion of glass is given by
A . ny = 1.50,
m=net oy with { A = 0.00605 for 4 in microns.
Express x as a function of the interference order and the wave length.
Give x = f(A)forp = 8/A = 1,0, —1,and —2.

1. Describe the nature of the zero-order fringe.

2. Show that there exists a bright fringe for which x is stationary (4 between 0.4 and 0.75 ).
What is the interference order of this achromatic fringe ?

SOLUTION

1. Monochromatic source

1. Fringes spacing
i= 12 = 0.55X1073X 3¢ = 0.5 mm.
a 33

2. (a) Displacement Ax of the fringes

The difference in path length for the rays which interfere on M is:

without the glass:

61=F1M—F2M=x% (1)
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14 PROBLEMS IN OPTICS [PROBLEM 2

after insertion of the glass:

é= x%-{-(n—l)e. (2)
The fringe of order p which had abscissa x1 = pi has the new abscissa:
x= ;T [pA—(n—1)e]. 3

The system of fringes is displaced toward negative x by an amount:

Ax =—;—(n—1)e. @)
(b) Measurement of the index
From equation (4) one gets
n=1-2 8% (5)
i e

Now x = —4.73 mm, thus
0.55x107% 473

n=lt—F5 X5~
n = 1.5203.
Error determination:
d(Ax)  d(m) . _ .
_ 2X 1072 s
n = 1.520+0.002.

11. Fringes in white light
In equation (3) replacing 7 by AD/d and n—1 by

4 0.00605
0.50 + 7z = 050+T s
one gets
x(p, A) = —4.545+0.909p% 0'235 . 6)

with x in mm if A is in microns.

1. p = 0. One finds a coloured fringe (Fig. 2.2). When one scans in the direction x < 0,
the following tints are found:

red for x =-—4.64 mm,
yellow-green for x=-4.73 mm,
blue for x =-—4.89 mm.
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PROBLEM 3] INTER FERENCE 15

2. p = —1. The spectrum bends back (Fig. 2.2).

One finds dx/dA = O for A near 0.5 p.

The achromatic fringe spreads out about x = —5.22 mm.

Note. On Fig. 2.2 is traced a group of lines from the equation x = —4.545+0.909 p3
corresponding to the fringes given by the insertion of a non-dispersive glass of index
no = 1.50.
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PROBLEM 3

Fourier Spectroscopy

One wants to determine the spectral distribution of the radiance B(s) of a source. For
this a Michelson interferometer is used as a modulator.

A point source Pis placed at the focus of a collimator L;. One of the mirrors is rigorously
parallel to the image of the other formed in the beam splitter S,. Mirror M, is moved with
a constant speed starting from the position of zero path-length difference.
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16 PROBLEMS IN OPTICS [PROBLEM 3

1. The path of the mirror is assumed to be unlimited

1. Calling A the difference in path between the two mirrors, calculate the intensity received
by the photocell R (placed at the focus of lens Ly):

(a) for a monochromatic source (o), and

(b) for the case where the spectrum is comprised of ¢, and os.

2. The expression for the intensity may be thought of as the sum of a constant term (mean
intensity) and a term dependent on A. These two terms when multiplied by 2 form the inter-
ferogram: I(A).

Show that B(c) and I(A) can be derived from one another by the Fourier transformation.
To facilitate these calculations, it will be useful to introduce artificially a spectrum B(—¢)
composed of negative frequencies and symmetric with B(c). One can then use the following
property: the F.T. of an even function is an even function. In all of these problems one
normalizes the functions.

Applications. Describe and calculate the interferogram for the following cases:

() The source emits a monochromatic radiation B(go) = 8(c—0a9).

(B) The ray is a doublet: B(6) = a; X 8{c—01)+ a2 X 8(c—02) (x1 and &z are constants less
than one).

(y) The ray has a gaussian profile:

B(o) = exp [—n(ogooo)j.

I1. The movement of the mirror is limited. Resolving power

A is allowed to vary only between 0 and a maximal value L. Spectroscopists call the
“instrument profile” the spectral distribution one obtains if the instrument receives a rigor-
ously monochromatic radiation of wave number oo. Starting with the interferogram limited
by A = Oand A = L, derive the instrument profile and represent it graphically.

SOLUTION

The rays are normal to the mirrors.
For radiation with wave number o, the two plane parallel waves which interfere are out of
phase by
¢ = 2no A, H

At Ls one has a state of uniform interference which is detected at F.

L. Consider the ideal case where the movement of the mirror M is unlimited

1. Let I, be the total intensity received at R.
(a) Monochromatic source,

I, = B(ao) cos?moo A = IE(ZLO) (1 4+cos 2moo A). 2
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(b) Polychromatic source.

The element of intensity produced by every radiation in the interval do is

dIl; = B(o) cos?no Ado
hence

I = f " B(z") [1+cos 276 A] do. 3)

2. The interferogram thus has the form

IA) = f " B(0) cos 2o Ado.

4%

Only the positive frequencies occur. One has, therefore

I(A) = fw B(0) cos 2n0 Ado. 4
0

B(o), for example, is given in Fig. 3.2. Generate an artificial spectrum B(—g) composed of

negative frequencies symmetric with the preceding spectrum. If B (¢) is the even part of
function B(c), one can write

B,(0) = L[B(6)+ B(—0)] (see Fig. 3.3)

)

B_(0)

) /\ | /\

g
05— ° S =6, 0 %6, g
FiG. 3.2 FiG. 3.3
Equation (4) can then be written
+o0 +o0 )
IA) = f B,(6) cos 2o Ade = f B,(6) ¢4 dg. 6)

If one knows the interferogram precisely for A varying between 0 and - (then, in fact

between —<o and + oo since it is symmetric) the spectrum can be constructed exactly by the
Fourier transform:

oo

+ oo +oo
B,(0) = f I(A) cos 2mo A dA = f I(A) e—i2o8 dA,

B,(0) E5 I(A). @)
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18 PROBLEMS IN OPTICS [PROBLEM 3

Applications (see Appendix A dealing with the Fourier transformation)
Given B(o), one can get B,(0) and from this the interferogram by Fourier transforming

() B(o) = é(c—o0y),
B,(6) = d(c+060)+ 8(c—00) — I(A) = cos 2ma¢ A;
(B) B(o) = a1d(o—o01)+a2d(0—09) - I(A) = o1 cos 2m01 A+ a2 cos 2mos A.
(See Fig. 3.4.)

B(o) | 1(A)
06] ____________
]
o VY
&
Fi1G. 3.4

In the special case where 1 = «» the minima of the envelope are zero.

() B(6) = exp [—n(”;:")z] = 8(0—00) @exp [—n((%)z].

Applying the convolution theorem (Appendix A):

I(A) = COS 2%0’0A X e—n(da'xA)z.

The envelope has a width 1/de (Fig. 3.5).

I1. Resolving power

1. Limited interferogram (0 < Ao < L)
This interferogram can be represented by the function 7’(A) such that:

I'(A) = IQ)XF(B) @®

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



PROBLEM 3] INTERFERENCE 19

with
1 for —L<A< +L

F(A):{O for A<-—L and A=L. ©)

Using Parseval’s theorem one can write
G,(0) = F.T.[I'(A¢)] = F.T.[I(Ao)] @ F. T.[F(Ay)]. (10)

One knows the F.T. of the slit function, namely,

sin 2oL

F.T.[F(A)] = 5T (11)

hence

sin 2n(6—ao) L sin 2a(6+oo) L

Gol0) = 2m(oc—ao) L 2n(c+00) L (12)
I(8)=I{A)F(A)
1
0 7 A
l
FiG. 3.6

The instrument profile is given in Fig. 3.6:

Glo) = sin 2n(o—oo) L (13)

27(c—a00) L

G(o) is the spectrum obtained from a strictly monochromatic radiaton source. G(o¢) has
width Ag = %L. The resolving power for the radiation oy is then

_0’()_ _2L_
R—Ko—a'osz—To—-zN.

The resolving power is thus proportional to the number of fringes, N, recorded.

Numerically:
L=10®, 1=05y,
2X10°
R = 05 = 4000.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



20 PROBLEMS IN OPTICS [PrROBLEM 4

PROBLEM 4

Mach Interferometer

Here one examines the interference of separate beams as shown in section in Fig. 4.1.

(1)

o~

%‘ :
{

-

!
s | D

FiG. 4.1

B and D are two mirrors with unit reflectivity; 4 and C are two identical beam splitters
placed as indicated in the figure. Take AB = CD = dand BC = AD = 2d.

A point source, S, at the focus of the objective O;, emits monochromatic radiation of
wavelength 4 = 0.5 ..

1. Equal path interferometer

1. With the apparatus in adjustment, show that the two plane waves travelling along Cx
are coherent and in phase. What intensity does each separate beam have? I, is the source
intensity. The reflection and transmission coefficients for the beam splitters are exactly ;.

Place an objective of focal length d at O, so that CO» = d. This objective images the plane
Plyingalong BC and gives a real image at P’. What is the appearance of the plane P’?

2. Place at P a thin film (assume the thickness, absorption, and dispersion negligible and
the phaseshift uniform). Describe the new appearance of the field P. Show that by photo-
metric measurement, one can determine the phaseshift ¢ introduced by L. Take as the
definition of the contrast:

I = Imax_Imin

Imax

Numerical application. Calculate the phaseshifts ¢; and ¢ caused respectively by two
films L; and L, which give contrasts I'y = 1 and I's = 0.25.

3. By what quantity Ay is it necessary to displace the beam splitter C parallel to itself in
order to see a black field. Calculate the contrast and discuss the advantage of this method
over the previous one.
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PROBLEM 4] INTER FERENCE 21

I1. Interferometer with fringes

1. Consider the apparatus in 1.1. Rotate the mirror D through an angle « = 2’ about an
axis perpendicular to the figure. Describe the system of fringes and calculate their spacing.

2. What is the appearance of the field in white light?

3. Reinsert the film L. Show that the displacement of the central fringe gives sufficient
information to permit the evaluation of the phase shift introduced by the film. Calculate
the displacement for the values ¢; and ¢ treated in 1.2. Take as the unit length the fringe
spacing i corresponding to the wavelength 2 = 0.5 p.

4. Enlarge the source S and find the plane in which the fringes are localized.

SOLUTION

1. Equal path interferometer (§ 6.9)

1. The beams (1) and (2), coming from the same point source, propagate as coherent
waves:

the geometric paths ABC and ADC are equal.
the reflections experienced at 4 and B on one hand, and D and C on the other are the
same and each beam passes through a beam splitter once.

The optical paths are therefore equal and the waves moving along Cx are in phase.

Since the source is a point, the interference is not localized.

After reflection at A, ray (1) carries energy Io/2, and after passing through the beam
splitter C, its energy falls to Io/4.

Both vibrations which interfere have amplitude 1/ Io/4. Thus, the field in the direction Cx

1 1 0 1

Note. If one finds constructive interference along Cx, one finds destructive interference
along Cy normal to Cx, since the reflections on the beam splitter C are of a different nature
(air-glass for the ray Cx and glass-air for the ray Cy).

Planes P and P’ are conjugate with unit magnification since these are the antiprincipal
planes of the objective Cs. Later in this problem it will be found necessary to remove the
plane of observation from the interferometer in order to make measurements.

2. The film L, when placed at P, produces a constant phaseshift for all the rays which
traverse it. These rays have the amplitude:

1 .
~4°~>< et
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22 PROBLEMS IN OPTICS [PROBLEM 4
while the amplitude of the rays (2) remains as:
[T
Ve
Thus, the illumination of the image of the film is:

122%[1-*-005 ¢]<Io (2)

The object will appear more or less dark on a bright field (Fig. 4.2) with contrast:

I = Inax—Inmin _ I—1I, _ 1—cos? ¢/2

Imax Il 1
. @
— 2 7.
I’ = sin 5 3)
[‘ y Izz lZ‘
A D
A ) Y : :
c 5" x
(2)
Fi1G. 4.2 F1G. 4.3
Numerical application:
I'=1-5L=0~+¢=m3x, ... the image of the object is dark on a bright
field,
T=025—~1,=075ly - ¢ ==, 5%, ..
3’3
F=s0-L=1I5—~g¢=2n4r, ... the field will be uniformly bright and the

object invisible

From the photometric measurement of I; and Iz one can deduce ¢.
Note. If the film introduces only a very slight phaseshift, the contrast can be written:

_
r=+

In this expression ¢ is squared and thus the value of I' is very small. This apparatus does
not lend itself to the detection of a small phaseshift.

3. It is necessary that the vibrations of rays (1) (before inserting the object) and (2) be
completely out of phase. When C is displaced, the path (1) does not change but path (2)
is increased by Ay (Fig. 4.3).
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One wants to have
Ap =" Ay == @

From which

Under these conditions
I1 = 0,

I, = ﬁ[1+cos (p—m)] = ﬁ[l—cos ¢] = Iosin® ¢
2 2 2
Hence

I = Tnax—Inin _12—11 _ Iosin2¢/2—0 -1
N Imax - Iz - Iosin2¢/2 -

The object appears bright on a dark field with maximal contrast for any value of ¢. Using
this method extremely small variations in phase can be detected.

I1. Interferometer with fringes

1. When mirror D is turned through «, the wave surface 2’ turns through 2. One sees
vertical, linear fringes normal to the plane of the figure. The fringe of order zero is on the
axis Cx. The system of fringes with bright central lines has spacing:

A 0.5Xx1073

% = Ix2x3x10f — 042 mm.

i =

2. Observation in white light. The central fringe is white and achromatic. The fringes which
surround it are rainbow-like with blue toward the centre and red to the outside.

3. The reference wave Xy is not perturbed. X'; has a shift (Fig. 4.4a). In the image of the
film L. the white fringe is displaced from 1 to 2 (Fig. 4.4b). One can measure this displace-
ment with an ocular micrometer.

White fringe

o

F1G. 4.4
3 R & M: PIO

STUDENTS-HUB.com Uploaded By: Jibreel Bornat
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Numerical application. For ¢ = 2k (any k), the fringe displacement is equal to d = ki.

1 i
5——d—5—0.21mm

7 1 i

p=%~k=

¢:7‘[—>k=

To obtain ¢ two measurements are required:
the displacement of the central fringe,
the fringe spacing in monochromatic light of known wavelength.

4. Localization. When the source S is extended the fringes become localized.
THEOREM. The surface of localization is at the point of intersection of the two rays generated
from the single incident beam (§ 6.6).

B ya
(mfp RRREE
A
Fi1G. 4.5

In the case of the Mach interferometer, the localization surface coincides with the image
of D formed in the beam splitter C. It is the plane = passing through P and inclined at 45°
to BC (Fig. 4.5). (In practice the fringes are found to belocalized in a somewhat more extended
region surrounding P.)

PROBLEM 5

Michelson Interferometer

Consider the Michelson interferometer as shown in Fig. 5.1. The source S is placed at the
focus of lens L;. Initially, mirrors My and M, are mutually perpendicular and are at 45°
to the beam splitter C. One generally does not consider the effects related to reflection or
transmission through G in this problem.

M _ M

P , LA UL Ll i
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3 M2
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£ F G
F1G. 5.1 FiG. 5.2
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1
The point source S emits a monochromatic wave 4 = 5461 A.

1. The mirror M remains in its initial position while M is swung through an angle « on
the axis O, normal to the figure (Fig. 5.2). What does one see?

(a) Explain why the fringes are not localized and have the same separation everywhere.

(b) Calculate the fringe spacing in a plane E normal to the direction /O, given « = 1°.

2. M1 is again a plane mirror, but M» is now replaced by a spherical mirror (convex or
concave) with radius R = 10 m (Fig. 5.3). The center of M, is on /0,. The vertex of M;
(the image of M in the beam splitter) is in contact with M;. The observing plane E passes
through O;.

g Yy

F1G. 5.3

(a) What is the appearance of the centre of the rings ? Calculate the radii of the first three
bright rings observed under these conditions. Is the result the same for both concave
and convex mirrors?

(b) M is moved toward the beam splitter. Comment on the displacement of the rings if
M, is convex.

(c) What happens in (b) if M, is concave?

11

The point source S emits white light, 0.4 < 2 < 0.8 u. A spectrograph with dispersion
proportional to wavelength has its slit in a plane conjugate to the plane E. The slit is parallel
to the plane of the figure. Its centreline coincides with the extension of the axis JO1. What
does one observe in the exit focal plane of the spectrograph when the experiments described
in L1 and 1.2 are performed.

In both cases give the precise position of the bright lines. (The height of the
slitis / = 10 mm.)

m

S is now taken to be a large monochromatic source (A = 5461 A). M; remains in its
initial position. M is again replaced by a plane mirror. Assume that M, is parallel to M,
and at a distance very close to 1 cm from M; (Fig. 5.4).

The lenses L1 and L, both have focal length f = 1 m.

3=
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a>D
B s el Bl
Q
S
S

Fic. 54

1. Explain why the fringes are localized. Where is the plane of localization?

2. The centre of the observed rings has maximal intensity. Calculate the radius of the first
three bright rings. How will the interference pattern vary if M, is brought toward M,?

3. What will be the minimal diameter of the source for which three fringes will be vis-
ible?

4. What will occur if one moves the source § off centre by 12.8 mm? Precisely draw the
appearance of the localization plane.

SOLUTION
I. Monochromatic point source at infinity

1. The mirrors M1 and M, are planar

(a) With a point source the fringes are never localized. If the mirrors are at an angle «,
one has two plane waves which make an angle of 2« everywhere. One gets equidistant recti-
linear fringes normal to the plane of Fig. 5.2.

A 0.5461

——— —— _3=, .
2% = Ixax 101 <107 =091 mm

(b) Fringe spacing: i =

2. M, is planar, M is spherical

The interference is now produced by:
a plane wave 2,
a spherical wave X, centred at the focus of the mirror at a distance of

fmirror = 'gi =5m (Flg 5.5).
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(a) The relative position of the two waves, 2 and X, is shown in Figs. 5.6a and 5.6b.
Regardless of the sign of the radius of M, one sees the same interference pattern (Fig.
5.6). These are Newton’s rings with a bright centre (since 2y and 2 are in contact on the

axis).
% z z, L z,
(o - F——- =" —---
g ‘K
M2
Concave mirror Convex mirror
FiG. 5.5 Fi1G. 5.6a FiG. 5.6b

At a distance x from the axis, the path difference between the two rays is 8 = e, such
that
x%2 = (2f—e)e =~ 2fe = Re. 4]

The radii of the bright rings (8 = kA) are given by:

r=1k\/IR = Vk /05461 X1073 x 10X 10°
Fmm = 2344k (k integer). 2

The radii of the first three bright rings are:

k=1 ry=234 mm,
k=2 ry=330mm,
k=3 r3=404 mm.

One now moves the mirror M; toward the beam splitter.

(b) M convex. The relative position of the wave surfaces is shown on Fig. 5.7a. When M
is moved forward, the rings rise at the edges and contract into the centre. The number of
rings is much greater than in the case of optical contact between the mirrors.

(c) M4 concave. The rings rise at the centre and move outward. The central ring lies at the
intersection of 2’1 and 2%.

Note. The interferometer when modified in this way is called the Twyman interferometer.
It is used to check the quality of objectives (Fig. 5.8).

One mounts the objective Ob in such a way that its image side focus coincides exactly
with the centre, C, of M. If the objective is flawless, the rays returning along this path appear
as plane waves and one observes the interference pattern of two plane waves. If the objective
has flaws, the wave 2 is no longer planar. This wave, after interference with the reference
plane wave 2, (reflected by M,), gives deformed fringes.
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zl zz
‘Convex mirror a)
3 Uil M'
. 0,
t
!
1
22 E‘ E L G Test objective
N ;
]
' Of ~--
i S 2 —=C
Concave mirror b) %
ob M,
/ E
Fi1G. 5.7 FiG. 5.8

I1. Polychromatic source. Channelled spectra

1. The slit of the spectrograph is perpendicular to the linear fringes and parallel to the
face of M, (along the x-axis) in the plane of the figure.
One has constructive interference if 2ax = kA (k an integer). Since the dispersion of the

spectrograph is proportional to 4 (take the coefficient of proportionality equal to 1), the
equation of the bright bands is

1
X = Ek}-. (3)

These are clusters of lines (Fig. 5.9a).
The interference of two waves gives wide bands.

X {mm) X (mm)
St 43 e 49
446 / '
3,5 /
2,66 : X 28 ] 2,82
/ 2
1,33 // 1,33
0,66
04 08 A, 04 08 A,
Rectilinear fringes —e straight Newtons rings — parabolas
FiG. 5.9a FIG. 5.9b

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



PROBLEM 5] INTER FERENCE 29

2. Expression (1) gives the equation of the bright bands
x2 = RXkKA. 4

These are parabolas (Fig. 5.9b) with vertices along the A-axis coinciding with A = 0.

II1. Large monochromatic source. Rings at infinity
1. One observes fringes of equal inclination localized at infinity.

2. If i is the angle of incidence of the rays on mirrors M; and M3, the path difference
between the reflected rays is

2
d=2ecosi = 2e(1—5) . 5)

The centre appears as a bright point. The interference order on the axis is an integer ko.
The bright rings are produced by rays making the angle i with the axis such that

i=1ko—k l/g (k integer). (6)

In the focal plane of Ls, the radii of the bright rings are given by

104
ke—k=1 ri= 7.39 mm,
ko—k =2 ry = 1045 mm,
ko—k =3 rz=12.80 mm.

ram = fi = 100V/Eo k|| O200L _ pk /5861

3. These rings form an image of the source (L; and L2 have the same focal length, the
source and its image has the same dimension).

In order to be able to observe three rings, it is necessary that the source have a minimal
dimension D = 2r3 = 2X12.8 mm.

D minimal = 25.6 mm.

4. When one moves the source off the centre line, one only sees the portions of the rings
lying on the geometric image of the source. The centre of the rings coincides none the less
with the axis of the instrument.

The rings are centred on the point S (Fig. 5.10) and the image of the source is centred on
S’ (SS’ = 12.8 mm).

Note. Newton’s rings and the rings at infinity have the same appearance. The first are
due to variations in thickness (constant incidence). The second are due to variations in
the incident angle (constant thickness). In the first case k increases when one lengthens
the axis and in the second it decreases.
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Outline of the geometrical
image of the source

Fi1G. 5.10

PROBLEM 6

Interference Filters

Two semi-metallized sheets of glass are separated by a fixed distance e with a constant
index of refraction » (Fig. 6.1).

Metallic layer

v

Z

Cryolite
» Y

s

Glass
Fi1G. 6.1

1. One wants this filter to have a transmission maximum for normally incident waves of
wave length A = 5500 A. Given the fact that the spacing material is cryolite with index,
n = 1.35, determine the possible values for the spacing e. Only one pass band between 4000
and 7500 A is wanted (neglect the phase shift due to reflections on the metallized surfaces).

2. How is the wavelength of the transmission maximum changed when parallel rays fall
on the filter at an angle of incidence i rather than at normal incidence ?

SOLUTION
1. Normal incidence (§ 1.5)

The transmission maxima correspond to constructive interference, that is, to path
differences
0=2ne=koto= ... = ki ¢))

ko, ..., k are integers giving the interference order for wavelengths A, . . ., 4.
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Metallic layer

v

Z

Cryolite
» Y

s

Glass
Fi1G. 6.1

1. One wants this filter to have a transmission maximum for normally incident waves of
wave length A = 5500 A. Given the fact that the spacing material is cryolite with index,
n = 1.35, determine the possible values for the spacing e. Only one pass band between 4000
and 7500 A is wanted (neglect the phase shift due to reflections on the metallized surfaces).

2. How is the wavelength of the transmission maximum changed when parallel rays fall
on the filter at an angle of incidence i rather than at normal incidence ?

SOLUTION
1. Normal incidence (§ 1.5)

The transmission maxima correspond to constructive interference, that is, to path
differences
0=2ne=koto= ... = ki ¢))

ko, ..., k are integers giving the interference order for wavelengths A, . . ., 4.
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One finds a transmission maximum for the filter for thicknesses of cryolite such that

2o
e= koﬂ = Kkoeo (2)
5500

Check for other pass bands in the visible spectrum.

Number of
A A
¢ ! ° g Ay pass bands
|
e k=073 | ky=1 k = 1.37 1
2e, k=146 | ky=2 k=274 1
3e, k=212 | ko=3 k = 411 2

Only the spacings e = e, = 2040 A and e = 2¢, = 4080 A give but one pass band.

2. Obligue incidence

The path difference becomes:

& = 2ne cosr = kylq. 3)
Compare this expression with equation (1). One finds the same interference order for shorter
wavelengths.
A < Ay.

When the filter is inclined, the pass bands shift toward shorter wavelengths.

PROBLEM 7

Fabry-Pérot Etalon. Use of Screens

The plates of Fabry-Pérot etalon are held strictly parallel at a distance of 1 cm by means
of three invar wedges. This etalon is placed between two identical converging lenses L; and
L; having focal length 15 cm. In the focal plane of L, one places a luminous source 1 cm in
diameter (centred on the principal focus of L;). This source emits monochromatic radiation
of wavelength 1 = 0.49 p. (Fig. 7.1).

Take the index of air equal to 1.

L; Plate [

N

et N

(L7
P ———
R
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L; Plate [

N
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(L7
P ———
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1. Calculate the interference order at point F'.
How many bright rings can one observe in the focal plane of Ly?
What is the order and the radius of the largest of these rings?

2. Between the half-silvered plates place an opaque screen which covers half the surface
of these plates.
What is observed in the focal plane of L,?

3. Replace the opaque screen by a transparent 0.5 mm plate of index 1.5. Explain the
appearance of the field. Give the radii of the bright rings.

4. What will one observe if this same glass plate is inserted in an apparatus which gives
Newton’s rings for normally incident light ? (Fig. 7.2.)

SOLUTION

1. Let 7 be the angle of incidence. Two adjacent rays give a path difference:
i2
é= 2necosi=2ne[1——§]. 0

The bright rings, corresponding to constructive interference, are given by

1‘2
2ne[1—7] = kA @)
where k is an integer.
The interference order at the centre,
2¢e  2X10¢

The interference order at the edge of the field (i), representing the maximum i) = 0.5/15 =
0.0333 = :}0 rad.

-2
k(in) = k(ml ——121‘—{] = 40,793.65. (4)

The order of interference for the largest bright ring is equal to: 40,794.
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The angular radius corresponds to a value

i=4/2 l/ *o=ko _ 403307 raq.
k)

From which the linear radius
r = fi = 0.4960 cm.

The 22nd bright ring has a radius of 4.96 mm (it is essentially at the edge of the field).

2. Half the incident rays are intercepted. The useful surface of the etalon is halved. The
position and radius of the bright rings remain unchanged but their illumination is halved

(Fig. 7.3).

FiG. 7.3

3. Let a parallel bundle of rays make an angle i with the axis of the system. Two rays
which pass through the lower part of the etalon have a path difference

81 = 2ecosi.

Two rays which pass through the upper part of the etalon have a path difference 8 such
that, if e’ is the thickness of L,

02(i) = 2(e—e’) cos i+2ne’ cos r = 81(i)+2¢’[n cos r—cos il,
8ai) = Bu(i)+2¢’ [n(l—g) _ (1—%)]
8ai) = B(i)+2¢ [(n-—l)+§ (1—%)] = 61(i)+e’(1+;i).

Hence

72
ki) = kl(i)+%;%(1+%).

One sees in the field two systems of bright rings centred on F’ (Fig. 7.4).

First ring ' Second ring
system system
Interference order at the centre 40,816.32 41,836.73
Interference order at the edge 40,793.65 41,814.43
Number of bright rings 23 22
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4. At the same distance x from the axis of the system, the rays have path differences

d = ® for the rays 1 and 2,

2
& = % +2e'(n—1) for the rays 1’ and 2,

Whatever value of k is taken, the variation in the interference ordered [(2¢'/A(n—1) =
1020.41] differs by an integral number. One sees two ring systems as in Fig. 7.5.

D

FiG. 7.4 F1G. 7.5

PROBLEM 8
Observation of Phase Objects by the Tolansky Method

Consider a Fabry-Pérot interferometer. The plates L1 and L, are parallel. Their surfaces
are separated by a distance e and may be thought of as half-reflecting. The index of the central
medium is 1.5. The interferometer is illuminated by a source S situated at the focus of a
collimator C. The eye is placed at the focus of an objective O which allows one to focus on

any plane between L; and L, (Fig. 8.1).

Ll L2
3 B
4
sl NG I R >
Eye
LA ‘
c G b 0
Py
FiG. 8.1
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Ll L2
3 B
4
sl NG I R >
Eye
LA ‘
c G b 0
Py
FiG. 8.1
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I. Monochromatic point source (A = 0.5 p)

1. The image of the source is formed on the pupil of the eye and the field observed
appears uniformly illuminated. Recall that the illumination is given by
1+ m sin2 5

m being a characteristic of the apparatus taken as 2500. Find ¢ as a function of e and n.
While maintaining L; and L. parallel, vary the spacing e. Show graphically the variation
of illumination as a function of e.

2. Place between the plates a small “phase-shifting object”, that is, a transparent object
of thickness ¢’ which differs from the medium by only its index n' # n (Fig. 8.2).

L

1 2

®

L2
———
e

NN\ \]

r\\ \Y

Fi1G. 8.2

For a given spacing e:

(a) Calculate the phase shift A¢ in the region occupied by the object.

(b) Derive the variation of illumination A in this region. Calculate the contrast of the
object with respect to the “background” illumination. Take as the definition of
contrast

I' = AIlL

(¢) For what values of e is the contrast maximal?

(d) What is the smallest path difference detectable by this method if one can see a contrast
=017

I1. The influence of the size of the source

The source is now a small luminous disc centred on § with diameter d. Each point on the
source gives an illumination I(i, e, n) as a function of spacing, index, and the angle of inci-
dence of the rays on the etalon. Assume that the illumination remains unchanged for the eye
when ¢(i, e, n) and ¢(o, e, n) have a maximum variation of 7/50.

Derive the tolerances on the size of the source if the focal length of the collimator is
f=50mmande = 15mm.
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IIL. The effect of the colour of the source

Now consider a point source emitting radiation with a width dA and a coefficient of
fineness A/dA. To this width corresponds a phase variation which should be, as before, less
than z/50. Derive the coefficient of fineness for the source. Again take e = 1.5 mm.

SOLUTION
1. Monochromatic point source

1. Two adjacent parallel rays differ in phase by

¢ = 27”><2ne. 1)

One has an equal path interferometer. The field has the colour of the source and a uniform
illumination given by (§ 7.4)
1

[=Ily—" .
1+m sinzg

)

When e varies, the illumination varies: it passes through a maximum for e = k4/2n (Fig.

8.3).
| \
1%\ L4

£ \Z\\‘: o
Fic. 8.4
These maxima have widths
Aezi;%-v, with N = n\z/ﬁ. (3

2. (a) For two rays which have passed through the object, one has a phase difference

¢ = ¢+A¢ @
such that
Ap = 2% Ab &)
and
Ad = 2¢'(n’' —n). 6)
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(b) By definition
A —msin ¢/2cos ¢/2 _ —msin ¢
= = imsntgz 2= rmsnzen) 2% @
(c) The contrast is maximal for dI'/d¢ = 0, so that
cos ¢ (1+msin2 %) = 2msin? /2 cos? 2
sin? )2 = —
m+2-°
. 24/ m+1 2 4
= % — = 8
S = — vm 100 ®

The Fabry-Pérot etalon should have a spacing

e= ;—n[k:tnlﬁ] )

By substituting the value of ¢ in (7) one has

mAgp v m
Tpax = A~ Ap = 25A¢. 10
24v/m+1 2 ¢ ¢ (10)
(d) If one takes I',,, = 0.1, one has
1 Ad
AP =252 3
hence
-8
AS A X107 _ 3184,

= 272x250 T 2mx250

Note. For the contrast to be good, it is necessary to place oneself at a point P on the curve
8.3 where the variations of / are large. The ideal point corresponds to

% [l'(l¢)] =0, or II"-I*=0,

This does not coincide with the inflection point of the curve for which one has I’ = 0 but
it is very close to it in the case where m is large.

I1. Influence of the size of the source

One has
do = 2ne,
- _ "y 2 an
8; = 2necosr = 2ne(1—7) = 2ne (I—W),
Ad = 8p—8; =4 ’ ¢
= 00— 01 = OW—e;’—. (12)
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One wants A¢ < /50 where Ad < 1/100. Thus,

.1 ¢/ op 2X50 0.5X1.5
<T6l/7 or d=2fi="5 Xl/ 15X 108

i
d =< 0.224 mm.

111. The influence of the spectral width of the source

When the source is not monochromatic the phaseshift is not constant. From (1) one has

d¢ = —4’%’2"’ da.

So that this variation is less than z/50, it is necessary that

A - 200ne 200X 1.5X1.5X103

a = 2 0.5 ’

so that
A

= 5.
a 9Xx10

This is a large coefficient of fineness.

PROBLEM 9
Fabry-Pérot (Interference) Spectroscopy

1

Consider the interference apparatus formed by a layer of air of thickness e with parallel
faces limited by two plates of glass whose opposite faces Pand Q have an improved reflec-
tion coefficient (Fabry-Pérot interferometer). The reflection of a light ray on each of these
surfaces is accompanied by a phase shift which is taken to be zero for all radiation. Assume
at the outset that the apparatus is such that reflection of light on faces other than P and Q
does not occur. The index of air is taken equal to one. A lens L of focal length f whose optic
axis is normal to the faces P and Q is situated behind the etalon (see Fig. 9.1). One wants
to study the rings in the far-field resulting from transmission by the Fabry-Pérot inter-
ferometer.

1. Recall in which plane one should observe the rings so that contrast will not be lost
when one uses an extended source.

2. Calculate the wavelengths of radiation i, for which the centre of the system of rings
has maximum light intensity when using the interference order corresponding to K.
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f F

REBS
o <>t

Fabry Perot
interferometer

\
Grating spectograph
FiG. 9.1

3. With the interferometer illuminated by radiation with wavelength A slightly less than
the preceding value A, calculate the angular radius « (1) of bright rings corresponding to
interference order K as a function of only 4, and A. (One assumes that the difference 1,— 2
is such that the the angle a;(4) must be thought of as small.)

II

Consider a grating spectrograph formed essentially of an entry slit E which is infinitely
fine and a transmission grating T with a width (normal to the rulings) of L = 5 cm and
which has 1000 rulings per millimetre. The collimator C and the objective £ both have the
same focal length F = 3 m. The optical axis of the collimator is normal to the grating and
the optical axis of the objective is parallel to the diffracted rays in the first order for the
wavelength Ao = 5000 A (Fig. 9.1).

Each image of the slit formed by the spectrograph for a monochromatic radiation is
recorded on a photographic plate 4 normal to the optical axis of the objective. The points on
this plate are referenced by a system of rectangular axes Ox and Oy. The various mono-
chromatic images from the slit are formed on Ox, O being the point where the optic axis
of the objective intersects the plate.

1. What is the distance on the plate which separates the images of the slit corresponding
to wavelengths A; = 4500 A and A, = 5500 A in the first diffraction order?

2. Calculate the values of the linear dispersion D = dx/dA in millimetres per A for the
wavelengths Ao, A1, and 4. in the first diffraction order.

3. Calculate the resolving power of the grating when used in the first order.

4 R & M:PIO
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I

The entry slit of the preceding spectrometer is placed along a diameter of the system of
rings of the interferometer, the middle of the slit coinciding with the centre of the system
of rings (Fig. 9.2). Assume throughout that the grating always acts in the first order and here
the investigation will be limited to radiation with wavelengths between 4; and A2 so that
one can consider the dispersion as being linear and equal to the value D calculated in I1I-2
for the wavelength 4.

xf

2l

YA/OCKOZ:;
I

FiG. 9.2

1. When the interferometer is illuminated by light with wavelength 4, show that one sees
points of maximum illumination on the plate. Find the coordinates of these points in the
xOy system defined above.

2. When the interferometer is illuminated by two monochromatic waves with lengths 4
and A+dZ which are very close together, find the difference dy of the ordinates of the two
maxima corresponding to the same order of interference K. Derive the value D' = dy/d4
of the dispersion due to the interferometer.

What happens to D’ when the wavelength A tends toward 1,?

3. When the interferometer is illuminated with white light, show that a set of maxima
appears on the photographic plate as lines and find the equation of these lines in the xOy
coordinate system. Describe the nature of these curves.

Find the distance which separates the points of intersection of two successive curves with
the Ox axis near A = Ao for e = 2 mm.

4. Show that the difference y2— y1 of the ordinates of two points M» and M with maxima
corresponding to the K and K—1 orders of interference for the wavelength 4, can be put
in the form:

1
Ay = ya—y1 = 7¢(l,f, e),

where y represents an ordinate lying between y, and y;. Assume that the difference Ay is
small and derive the difference in ordinate 8y which separates two points close to M; on
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the plate for which the illumination is equal to half the maximum illumination under the
assumption that the reflection coefficients of P and Q are such that the coefficient of fineness
has the value N = 30.

What is the resolving power R’ for this device near the wavelength 1o? Compare this with
the resolution of the grating spectrograph. Indicate why it is necessary to use the spectro-
graph in conjunction with the Fabry-Pérot interferometer.

SOLUTION
1. Rings in the far-field (§ 7.4)

1. The very fine rings appearing bright on a dark background are localized at infinity.
They can be observed in the focal plane E of the lens L.

2. One finds a bright centre for all wavelengths such that

2e 2e .
= K= g = a (X 1nteger). ey

3. Rings of order K for wavelengths 2 < 4. One has

2e cos ag(d) = KA. @
Since ay is small
2e —a—%‘ = KA
(1-3) =

hence, by using (1),

ax(l) = /2 1/1—;—1{. 3

I1. Dispersion of the grating (§ 7.8)

1. The incident rays are normal to the grating (i = 0).
Let P be the step of the grating. The principal maxima are given by

Psini’ = pA  (p integer).

The first-order spectra are formed in a direction i’ such that

205 1

Psini'=l—>sini'=7._T_?, @
i’ = 30°
By differentiating (4), one gets
Pcosi' di' = da. )

4*
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The images of the entry slit corresponding to 4; and A, are separated by a distance of

Fdi . 01 . =
Pcosi,_3x10xﬁ_2\/3x102. (6)
2

X —=——

dx = Fdi' =

dx = 346.5 mm.

2. Combining (4) and (5) one gets

@ 11 1 1
di  Pcosi’ P A1-22P2 /PP—}%

for which the grating dispersion D = dx/dA in the first-order is

dx F
TaVPR @
One uses F in mm and P and 4 in A.
Numerical application:
= a500A, Dy=— X1 3 0335 mm A
1/108-(4.5)210¢ 1/102—(4.5)
A2 =5000A Do = ﬂ = 3_ = 0.346 mm. A?
1/ 108—(5)2108 1/ 102—(5)2
Bo=SS00A D= X1® 3 — 0.36 mm. A1

1/108—(5.5)2108 1/ 102—(5.5)

3. Resolving power of the grating in the first order.
For the two wavelengths 4 and A+dA, two first-order spectra are separated by
di’ = dA/Pcos i’. The width of each spectrum is

., A
O = feost ®
The two spectra are resolved if
di’ = i’ (8)
The resolving power of the grating in the first-order is
A
R= I, ©)

so that, according to (8'),

R = % = number of rulings = nL,

R = 1000X50 = 5X104.
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II1. Dispersion of the Fabry—Pérot etalon

The objectives C and £2 have the same focal length. The ordinate of conjugate points is
the same in plane E as in plane A4 (unit magnification). It is sufficient to examine the disper-
sion of the Fabry—Pérot etalon in the focal plane of L.

1. Using a monochromatic wave of length A.
Bright rings occur for

2e 2 ax\ _ .
y Cosag = = ( ——2—) =K (K integer). (10)

The entry slit of the spectrometer cuts these rings along a diameter. In the plane E the
bright points have ordinates

y = fax =f‘/2—~§ (Fig. 9.2). (11)

The entry slit coincides with Oy. The photographic plate is normal to the first-order
diffracted rays for 1o = 5000 A. For this spectrum the grating is taken to have a constant
dispersion

dx

—_ = -1
D a 0.346 mm AL

In the plane A, one observes bright points with coordinates (Fig. 9.3)

DA = const.

|

2. One has here two monochromatic waves A and A+dA. Thus one finds two concentric
systems of rings in plane E, hence two series of bright points on the entry slit. On the plate
one sees two series of bright points shifted by D X dA (Fig. 9.4). The derivation of (11) allows

4
o Y/ y
o‘K~-2 """"""" /27'2 M:!
focK_] -------------
M
fo P M2
0 M;,(D}" X =~ femee—e=—- 777.2J.._.-/V:2
L T S I‘i’ L
% S SOUIUUpIg ——aaiN
', KM:; m, 1
M4x 0
D% D(A+dA) X
Fic. 9.3 Fic. 9.4
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one to write:

dy corresponding to the separation of two points such as Mm.
From (13) one derives the dispersion of the etalon:

d 1
y f . Kr
=
e
One can see that maximum dispersion is obtained for the maximum values of K, that is
for rings of small diameter. At the limit, for A = 1, = 2e/K, D’ becomes infinite.

D = (14)

3. Band spectra. If the source emits all the wavelengths lying between 1, and A, the equa-
tion of the lines of maximal illumination in the plane xOy is given by (12). By eliminating
A one finds the expression

»=r(2-53) 1s)

These are bright, very fine parabolas about the Ox axis.
One passes from one parabola to the next by making a unit change in K (Fig. 9.5). The

apexes are on Ox and have as abscissa

2e
X = 'I?D. (16)

K=7213

X‘=0,45p x°=o,sp 3\,2=0,55p
Spectra order +1
Fic. 9.5

Two successive apexes are separated by

2e 2e 22 5X10%)2x0.346
|Ax| = —DXAK_FDzig—D= ( 42107 ~ 0.2 mm
for A1 =4500 A, onehas K; = 2e/A; = 8888.8,
Zo = 5000 A K, = 2e/io = 8000.0,
A2 = 5500 A K;, = 2e[Ay = 7272.7.
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One sees then (8888 —7273)+1 = 1616 “sections” of parabolas in the field. They are con-
cave towards the blue.

4. Resolving power of the Fabry-Pérot. Wavelength A. Orders K and K—1.
Let Ay be the distance between points M; and M, (Fig. 9.4). Expression (11) gives

A AK
Ay=—f—— —— .
Y fZeV KA
o Ml

e

IfFAK = 1:
A 1
y fzel/ X 17

227

e

11

FiG. 9.6

The rings contract as one passes from the centre to the periphery (Fig. 9.6). For wavelength
A, the rings of order K and K—1 are represented as solid lines. For the wavelength 14-dA,
the rings are represented as dotted lines.

Consider a monochromatic wave A. If Ay is the distance between two consecutive rings

and dy the width of the rings, one has

_ Ay
N—W' (19)

N is called the coefficient of fineness. Its values 4/ R/(1— R) depends only on the reflection
factor R of the Fabry—Pérot plates.

If the source emits two close wavelengths A4 and A+ dA, one says that two points such as
M, and M, are resolved if the distance M, M, = dy is greater than 8y (Fig. 9.7):

dy = 6y. 20
Combining (19) and (20) one arrives at the condition
1
dy = Ay. @n
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Referring to the values of dy and Ay given by (13) and (17) and using them in the inequality
(21) gives
= KN = 30 K.

A
di

The Fabry-Pérot resolving power is
R = KN. (22

For 2o, the highest order of interference is at the centre: K = 8000. One finds
R’ = 30X 8000 = 24,000 ~ R/2.

The dispersion axes of the Fabry-Pérot (Oy) and of the grating (Ox) are crossed. One thus
eliminates all ambiguity in spectral analysis for the case where one has overlapping of

different interference orders at the same point of Oy
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PROBLEM 10

Interference of Hertzian Waves

The electrical properties of the water of the Atlantic Ocean with respect to hertzian (r.f.)
waves are characterized by the following constants:

&=28l, u=1, v=43Q1m™?!

1. Show that this water can be regarded as a good conductor for frequencies less than
108 Hz. In the following parts of the problem assume that the water is a perfect conductor.

2. Under these conditions, consider a horizontal dipole antenna situated at point S at

a height H above the surface of the sea emitting monochromatic hertzian waves with wave-

length 4. A receiver is placed at a point O at a height # above the water in the equatorial

plane of the emission from the antenna and at a horizontal distance D from it. Assume

that D is much larger than H and 4 and that the surface of the water, assumed planar, extends
from S to O (Fig. 10.1).

S

H SN P

P :

D
FiG. 10.1

Find the variations of the electric field as a function of H, A, and 2 for a given value of D.
Determine the minimum value of 4 for which there is optimum reception. Numerical
application: H = 300 m, D = 10 km, 2 = 30 m.

3. For small values of 4, find the expression for the intensity of the wave at O as a function
of D and compare this with the corresponding expression one would find in the absence of
the ocean. Assuming that the waves propagate parallel to the surface of the sea (valid since
H and h are small), calculate the mean power ({D) which passes normally through a unit
surface area at O as a function of the total mean power (@) radiated by the dipole.

Numerical application: H=h =2 = 10 m, D = 10 km, (@) = 10 W.

47
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SOLUTION

1. For a good conductor, the conduction current exceeds the displacement current and
the imaginary part of the complex index (§ 2.5) is larger than the real part. Now the ratio
of these two variables for ocean water is

y _ 61x10° 10°

£, w v

Thus this water is a conductor which insulates for » < 10° Hz (A = 0.3 m) and is a good
conductor for » = 10° Hz.

2. The antenna receives both the wave propagating along SO and the wave reflected at P
by the surface of the water, which acts as a perfect mirror, at an angle close to #/2 since
D > H (here i =~ 88°15'). The reflection factor is essentially equal to one. The electric
field of the waves is horizontal and the reflection introduces a phase shift of =, with the
result that the tangential component of the electric field is zero at the surface of the conductor
(§ 2.6.3).

The path difference of the waves reaching O is SPO —SO:

SO = A/D*{(H—hp ~ D[1+%(E—Bﬁ)2]’

2
SPO = A\/D*+(H+h) ~ D[1+%(HTT}1) ]

so that

2Hh

and the phase difference at O is

b _2n6+n_ 4nHh
Y ))

Neither the small difference in the optical path nor the presumed total reflection produces
any reasonable difference between the direct and the reflected wave in amplitude (which
varies as 1/r). Since these fields are parallel, the resultant field is given by:

Eo cos wt+ E cos (wt+ @) = _2E, sin (wt+

D D

D

2nHh ; 2nHh
D )S iD

One then gets at every instant on the vertical at O a set of maxima and minima in the ampli-
tude. At the surface of the water (h = 0) there is a zero minimum. The first maximum occurs
at the height h; = AD/4H.

Numerical application:
_30Xx104

h1—W=250m.
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3. For h < hy, one can replace sin 2zHh/AD by the angle. The amplitude of the electric
field at O is then proportional to 1/D? and the intensity of the resulting wave to 1/D*, while
the intensity of the direct wave varies as 1/D2.

The power (D) is given by the expression (§ 2.3)

(D) = 4ecES,. )

E,, represents the field amplitude (1), so that

4zHh
The field Eo/D, produced by the dipole antenna at a distance D in its equatorial plane, has
an amplitude (with 6 = zz/2) given by equation (10.10) of § 10.3:

EO — 1 w%dm
D =G D @

On the other hand, the total mean power (®) radiated by the sinusoidal dipole is given by
equation (10.13) of § 10.3:

s 4
(D) = ﬁa');;;fc—s = gneocEg. (5
Using (2), (3), (4), and (5),
H2h2

Numerical application :
(P) = 67X1078 =~ 0.2X 1078 W.

PROBLEM 11

Fresnel Formulas

1

The Fresnel equations give the reflection coefficients obtained by assuming that the
magnetic permeabilities u;and ps of the dielectric are equal to that of free space po. What
happens to these equations if this assumption is set aside?

11

Consider the possibility of linear polarization of reflected light resulting from reflection
if 1 and pe are different from po.

111

Show that under normal incidence the reflection coefficient is zero for a dielectric in
vacuum where the relative permittivity e, is equal to the relative permeability y,.
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SOLUTION

1

Maxwell’s equations for a plane wave give the following general expression relating the
magnetic field H to the electric field E (§ 2.4):

€
H= l/~ E.
u
The equations of continuity relative to reflection and refraction at the surface between

two transparent media for the component of the electric field normal to the plane of inci-
dence is given by Fig. 11.1 (§ 3.2).

E;+E,=E, hence Il+r=1;

(H;—H,)cos iy = H,cosiz, from which V%(l—r) cos iy = I/ %tcos Ig.
1 2

|
E[ | (3
I
H L1l ly H
z
12
i
I
| £
¢
A
Fig. 11.1
The derived coefficient of reflection r, is
l/ 7 cos il—l — cos iz
1 2
1= — 1
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One finds for the coefficients relative to the case where the E fields are in the plane of

incidence

/ €2 . Z R

l — cosii— |/ — cosis
122 1253

= —F= — ’
1/2 cosii+ 1/2 cos iz
# # @

2 1/2 cos iy
1

B g . €1 . .
l/— cos i1+ 1/— Cos Iz
12 M1

L

I1

Incidence at Brewster’s angle causes 7/ to vanish. This condition occurs, using (2), for

€3 . €1 . €1 P
1/~ cos i = 1/— Ccos ip = 1/—— \/l—sm2 is.
U2 1238 1251

By using the law of refraction

sin iz Ve E141
sini;y 1 Eglia

and by expressing sin #; and cos i1 as a function of tan i3, one finds
. Eal € — &
tanip = 1/—2( 2 1”2).
e1eaths — €1041)

For p1 = ps = po, this expression reduces to

3] ha

tan iz = ,
€1 ni

which is the usual expression for the Brewster angle.
Equation (1) shows that under the assumptions made here, 7, can also vanish. Proceeding

as above, one finds that this occurs for an angle i,'g such that
tan ip = 1/————“2(82“1*81“2) .
pi(e1p1— eapia)

Under ordinary conditions where u; = ps = o, one has tan iy = v/ ~1. There is no
Brewster angle for the vibration perpendicular to the plane of incidence.
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111

In the case of normal incidence, equations (1) and (2) become

&1 &

ro=1t TR, 3)
V TN
1551 Ua
Since e = gy¢,and g = pop,,1f e, = p,, ¥ = 0. One notes that the ratio v/ u/e is the intrinsic
impedance of the medium (§§ 2.3 and 2.4). Realization of equation (3) at the surface of
separation of two media is equivalent to the situation where the impedance is matched at
the junction of two transmission lines.

PROBLEM 12

Fresnel Formulas. Thin Films

1. Starting with the Fresnel formulas for glassy reflection at normal incidence, show that
the amplitude reflection coefficients r and r’ for crossing the surface in both directions
satisfy r = —r' and the corresponding transmission coefficients ¢ and ¢’ satisfy ##' = 1-r2

2. Alayer of a transparent substance with index n;, parallel faces, and thickness e covers
a glass surface of index n,. Its upper face is in contact with the air whose index is taken as
unity. A plane monochromatic wave of length 4 in air and unit amplitude intersects the
layer from the air at normal incidence. Show that the reflected intensity, taking into account
the multiple reflections is given by

_ r34r3+2rr,cos ¢
T 14Pr4+2rr,c08 ¢

r1 and r, being the reflection coefficients for air-layer and the layer-glass respectively and ¢
the phase difference between two successive reflected rays.

3. Show that if 1 < n; < ny, the transmission factor of the layer plus the glass is always
greater than that of the glass alone for any spacing e. For n; = 1.35 and n, = 1.50, by how
much will the reflection factor R be lessened (relative to the intensity) from that of the glass
alone by the deposition of a layer having the optimal spacing.

Among the possible optimal spacings for the wavelength 4, why does one use only the
smallest?

4. Show that if ny > n,, the reflection factor at the glass is increased. For what thickness
R is it maximal? Do the calculation for ny = 2.30.

5. Indicate the advantages and disadvantages which occur for partially reflecting metal
and dielectric films.
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SOLUTION
1. Fresnel formulas (§ 7.2).

ny—ng na—ny
=—, r= -r=—r. ¢)]
ni1+ns na+n1

The continuity of the electric field requires, for normal incidence: 14+r = ¢,
=210 =2 Ly =1 )

2. Reflection factor. This can be found by the method used in Problem 14, part II.
Here, one is required to take into account multiple reflections (Fig. 12.1).

Fic. 12.1

To obtain the reflected amplitude, one can sum the amplitudes of the successive rays
either in air or in the substance of index #;. The electric field has the same value on either
side of 2'; on the surface separating the media

Medium of index 1 Medium of index n; 3
E=E+E = E, )

Calling ¢ the phase shift introduced by a double pass through the substance

2
¢ = TRXane,
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r being < 1 one always has ¥ — 0 (I is the number of reflections). Value of the resulting
field in air:

titiree—i¢

E = 1+r1+t1t1r2e"¢[1+r1r2e"¢+ ] = 1+r1+m (4)
Value of the resulting field in the substance:
. . . —ig
E = tif1+rirse=it+ .. ]+ tirase~ ¥l +rirse—#+ ... ] = tll +rse”¥] (5)

1—rirse—i¢ °

One can easily verify that equations (4) and (5) are identical, since 1 +r; = ¢;.

Given that E = E,+E, = 1+r, one can immediately get from (4), using (1) and (2), the
reflected amplitude:

_ (1=rDre i
r = r1 + W . (6)

The reflected energy value R = |r|2is given in the text of the problem.

Note. As a further exercise, one can replace r; and r; by the values found from the Fresnel
formulas and verify equation (6) here and equation (28) in Problem 14.

3. 1 < ny < na. Treatment of the surface can only increase the transmission factor. In
effect,

(a) Treated surface film:

R, catea = Ruinimum If @ = (2k+ 1) or nje = (2k+1)4,/4,

R (N0 ?_ ny—n3\2
1—riry ny+nZ) -’
Numerical application:

_ [1.50—(135772 [ -0.3272
R = [1,50.;.(1,35)2] —[ 3.32 ] ~ 0.01.

The condition nie = (2k+1)20/4 is approximately satisfied for wavelengths about 4, and
more so in a larger domain when & is small. Hence the choice k = 0.
(b) Plain glass: Ryayimum = Rytain glass if @ = 2k7 (o1 nje = kiy/2):

_{l=na\2 (1-15\%
R (15m) = (1) =00
4.1 < n; > ny. Treatment of the surface can only increase the reflection factor.
() Rireated = Ruaximum If ¢ = (2Zk+1)m or nie = (2k+1)2/4:

R= (11"l 2= ny—nf\?
1—rr, ny+ni) -

1—n,\?
(b) Rplain glass — (ﬂ_—n:_) .
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Numerical application :

_ [L50—(23)272  (3.8\%
Rtreated glass — {m] = (6—8—) = 031,

Rplain glass = 0.04.

5. Metallic films are absorbing. The dielectric films are selective.

PROBLEM 13
Newton’s Rings in Polarized Light

One gets Newton’s rings between a plano-convex glass lens with large radius of curvature
and index n; and a glass flat whose index n, differs significantly from »;. The incident light
is parallel and linearly polarized. Describe qualitatively the effect of a variation of the angle
of incidence on the visibility of the rings:

1. When the vibration is parallel to the plane of incidence.

2. When it is perpendicular.

SOLUTION

1. The transmitted intensity crossing the upper face of the lens increases uniformly with
the incident angle. The amplitude reflected on the lower face vanishes for an angle of inci-
dence i1 such that tan i; = n;. There can no longer be interference with the rays reflected on
the glass flat and the rings vanish. They also disappear for an angle of incidence i, such that
tan is = ng, the rays no longer being reflected on the glass plate.

2. The visibility undergoes some small uninteresting variations, but never vanishes.

PROBLEM 14
Propagation of Waves in a Stratified Dielectric Medium

I

A monochromatic plane wave whose amplitude can be taken as unity falls with normal
incidence on a plane surface which separates two transparent media with indices n; and n,.

1. Set up the Fresnel formulas giving the transmitted amplitude tand the reflected ampli-
tude r.
Numerical application: n1 = 1, np = 1.5.

2. By using the conservation of energy, write the expression which connects r and t.

5 R & M: PIO
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11

Consider a thin film of a transparent substance with index n, thickness d deposited on a
support formed by a plate of plane glass L with index n, > n. The thickness of the glass is
sufficiently large that it can be thought of as infinite. The set up is a “treated plate” (Fig.
14.1). A monochromatic plane wave (wavelength 2o in vacuum) propagating in the direction
Oz falls on the treated plate under normal incidence.

®
T

L

@ z

FiG. 14.1

1. Write the equations of continuity for the electric and magnetic fields on the surface
Z; (air-film) and on Xy (film-glass). What expression relates the components of E and H
before and after traversing the thin film? Show that this thin film can be characterized by a

four-element square matrix. Assume g = vV €/ to.
2. Determine, as a function of the indices n, and n and the thickness d, the following char-

acteristics of the treated plate: transmitted amplitude ¢; reflected amplitude #; transmission
factor T'; and reflection factor R.

3. What should the thickness and index of the film be so that the treated surface is non-
reflecting?
Numerical application: n, = 1.60, 4, = 0.5 u.

111

Consider now a system of p thin films characterized by:
their respective thicknesses d, d,, . .., d,,
their indices n, n, ..., n,

The same illumination used above is used here.

1. Determine the characteristic matrix for this stratified medium. Derive the transmitted
amplitude and the reflected amplitude for the system of p films.

2. One can make a mirror by using a system of thin films by using alternate high and low
index films (the film in contact with the air being high index). Call the indices of these films
n,, (high) and n, (low). Assume that all the films have the same optical thickness A,/4. Justify
thus choice of thickness.
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(a) Determine the characteristic matrix relative to one period (two films), to 2p films and

to (2p+1) films.
(b) Calculate the reflection factor R of a mirror having 2p and (2p+ 1) films.

Numerical application: n, = 1; n, = 2.3 (zinc sulphide); n; = 1.38 (magnesium fluoride);
n, = 1.52 (glass support). Number the films, 1, 2, ..., 11. Recall that the elements (c;)
of a matrix [C], equal to the product of matrices [4] and [B], are obtained by the following

equation:

p
Cij = z aixXbyj.
k=1

SOLUTION

I. Glassy reflection. Fresnel formulas

1. It is unnecessary to make a distinction between parallel and perpendicular vibration
on the plane of incidence. In effect, for the case of normal incidence, all planes through

which the rays pass are planes of incidence (Fig. 14.2).

4 g h g
—e—-———-—; —e—————;—
H £ H
r
~&— E.-—e_
r
- z b
H, H,
& & & F
P4 P4
(a) (b)
Fic. 14.2

Take the incident fields E; and H, oriented as in Fig. 14.2. The sense of the transmitted
fields remains the same. For the reflected fields one has the choice between the orientations
respresented on Fig. 14.2a and 14.2b. Arbitrarily take the case of Fig. 14.2a. The components

of the electric and magnetic fields on the surface satisfy the continuity conditions

E+E, = F,
Hi_Hr = H, )

Between the E and H fields of each sinusoidal plane wave one has the relationships

H _ = _H

Ei  { po E

H, _]/ £2
E Ho

5%
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With a dielectric medium one has gy = yo and

€1 c
T ST
0
— 3
&g [
=y = —.
&o Vs
Eliminating H between equations (1) and (2) one gets the Fresnel formulas
E, ni—Hng 1—n . Ne
r=—= =_——, with n=-=7
E; ni+ng 1+n n @
fo B _2m 2
T E; ni+ns  l+n°

Note
(a) tis always positive; E, and; E have the same sense,
(b) r has the sign of n;—n.,
if ny > na, r > 0 (Fig. 14.2a);
if ny < na, r < 0 (Fig. 14.2b).

Numerical application :
1-15 05

r=iris - 25 0%
2
t=55=08.

In the case where the reflection is made from a less refracting to a more refracting medium,
the electric field shifts phase by =.

2. Conservation of energy. The electromagnetic energy density is
w = eE? = poH>. (5)
From this the energy contained in the volume dz is
dW = eE?dr. (6)

The amount of energy which passes through a surface element in time dt parallel to the
plane of the wave is that amount of energy which is contained at time ¢ in a cylinder of base
dS and height v dt (v being the velocity of propagation of the wave in the medium).
Equation (6) can be rewritten
dW = eE?dS X vXdt. @)

The radiant energy flux passing the surface dS is then

do = %’ = gvE2dS. ®
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The conservation of energy flux is written

d®; = dP,+d4P;. 9)
After simplification one gets
016, E} = v16, B2+ v,6,E7. (10)

By dividing both sides of this equation by E? and using the definitions of ¢ and r, one gets
1 = r24ne. an

This expression could also have been found directly using the Fresnel formulas (4).
Note. In the case of normal incidence, r and ¢ are related by

1+r=1,
i 2
For the energy, one has
1 =R+4T. (13)
Thus:
R=r?
T = n? = ¢, } (14)

In effect, if the reflected beam propagates in the same medium as the incident beam, it
differs from the transmitted beam: in general, the transmitted energy is not equal to the square
of the transmitted amplitude. '

I1. A ntireflection coatings

1. Continuity conditions. The fields E and H are the result of two waves which propagate
in opposite directions.
Take

E=E*+E-,
(15)
H=H*+H".
The positive exponent designates a wave travelling in the positive Oz direction while the
negative exponent designates the wave traveling in the opposite direction.

The second equation (15) can be written, using (2),

it -y — Z ) = T o
H= V;(E E7) VHO (Et—E™) = g(E*—E"™). (16)

If A and B designate the amplitudes within the film, one has, taking ko = 27/,
Efiim = A e—konz4 Betikonz, a7
Hyiim = q[A e—oz— B e+ikonz],
When passing from one medium to another, Maxwell’s equations require the continuity
of the tangential components of the field vectors. Here, in the special case of normal
incidence, E and H which are perpendicular to Oz should remain continuous.
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On the surfaces 2} and Z}; one has then

E; = A+B,
on 1{ ! * (18)

HI = q(A_B)a
En =A C_ik""d'*'B C+jk°"d,

. 19
Hyy = g[d e—ikond— B g+ikond], (19)

on 2“ {

Eliminate 4 and B from equations (18) and (19). One gets

1
3

Hy = $[(gE1+ Hy) e~ iwd— (gEy— Hy) e+ikond],

Ey = 5~ [(gE1+ Hy) e~i*omd+ (gEr— Hy) e*ikond]

One is led to the following linear relationships:

Ey = Ejcos kond—?JI—Hl sin kond,

Hy = —jgFE; sin kond + H cos kond.
Also,

E; = Epcos kond-{-% Hy sin kond,
H; = jqEy sin kond+ Hy; cos kond,

(20)

or, in matrix form,

j .
E, k “-sink E, E,
[l;] =[COS ond qSl[l ond][ [[}=[M1] [l;l] (21)
I jg sinkond  cos kond Hy, I
The matrix [M,] characterizes the film. It is a unimodular matrix, that is, its determinant is
unity.
2. In the vacuum, on surface X}, equations (15) can be written

E, = E+E, } 22)

H; = qi(E;—E,).

In the support, thought of as infinite, there exists no wave propagating in the negative direc-
tion. On the surface Xy, the field components are

En = E, } (23)
Hy = H; = q,E,.
Using equations (22) and (23), equation (20) becomes
_ s .
E,+E, = E, [cos kond+j p sin kond 29)

g E;—E,) = E,[jq sin kond+q, cos kond].
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From this one gets:
(a) The transmitted amplitude ¢:

p= B 2907 : , 25)
E;  q(qo+4s) cos kond+ j(q*+qogs) sin kond
t= 2 - . (26)
(1+ny) cos kond+j (n+ —ni) sin kond
(b) The reflected amplitude:
_ E: _ 9(90—4.) cos kond+(qog,—g*) sin kond @
E:  q(go+gs) cos kond+j(qogs+ g?) sin kond
(1—n,) cos kond+j(ﬂ —n) sin kond
n
r= P . (28)
(1 +ny) cos kond+j(—ni+n) sin kond
(c) The transmission factor:
T=2 2= Ty _ Do ype, 29)
qdo qo ho

Since the outer media are not identical, one has T # 2. Equation (25) allows one to write

_ 49094°
T= G%(qo+ gs)? cos? kond+ (g2 + qogs)? sin? kond (30)
2
49099 31

9% (Go+ 95+ (*—q3) (¢*— %) sin® kgnd  °

or finally, as a function of the indices,

T = 4n; (32)
= 5 .
(1 +n)2+(2—1) [1—(”7) ] sin? kond
(d) The reflection factor:
One gets immediately
2

(1—n)2+n*—1) [1 - (%’—) ] sin2 kond
R=1-T= 5 . 33)

(1 +ny 2+ (n2—1) [1—(%) ] sin? kond

3. Go back to equation (32). Since 1 < n < n,, the second term in the denominator D is
always negative. To have T maximum, D must be a minimum, that is, sin ko?d maximum,
or finally,

nd = Xofa. (34)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



62 PROBLEMS IN OPTICS [PROBLEM 14

For this optical thickness in the treatment of the surface, the transmission factor will be

4n’n; 4nn,
T = R En (PG = wn) 35)

This value is a maximum for
n = Rg. (36)

Conclusion. The treated plate will be perfectly transparent if the thickness and index of
the film satisfies the conditions

n= \/ns, (37)
nd = 2.0/4
Numerical application:
n=4/16= 1265,
Ao 0.5
=10 = 506~ 0.1 .

Note. There is no solid with an index less than 1.3. By depositing a single film one cannot
get a perfect non-reflector, but rather only a close approximation.

II1. Multiple dielectric films

1. Writing the continuity equations on surfaces 2y and 2y;:

[En] _ [COS konod, é sin konzdzjl [E111:| = [Ma] X [Em]. (38)
Hy; jgz sin kedz  cos kongd, Hip Hin
Using equation (21), one can write
E; Em
= [M M. . 39
[HI] W) <[] [Hm] &

It follows that the relationship between E; and H; (the values of E and H on the plane
z = 0) and Ep_, and Hp_, (the values of E and H on the plane z = d,+d,+ ... +dp) is

simply
[gj = [Mi]X[M:] X ... XIM,]X [52 : ’I] (40)
or finally
PRSP @

With a system of p thin films whose characteristic matrices are [M], one has
4

[M] =[] [Mi]. (42)

i=1
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Note. The matrix product is not commutative. The product should be taken in the order
in which the incident wave falls on the films.

[M]is always a unimodular matrix. This property is a result of the conservation of the
energy transported by an electromagnetic wave.

Equation (40) can be written

EI] _ [mu m12] [EP+I]
[HI © lmar mae| [Hpiad “3)
Transmitted amplitude t. Equation (22) is not modified. Equation (23) becomes:
EP+I = E,
oy } (44)
Hp,1 = Hy = q,E;.

Combining (22), (43), and (44), one can write

E; 2o (45)

{ = — = .
E;  qo(mu+qmi2)+ (me1+qsmas)

Reflected amplitude r. In the same way as above one gets

;= E _ qo(mi1+gqsmy2)—(ma1+qmez) (46)
E;i  qo(mii+gsmiz)+ (ma1+qsmas)

2. (a) Characteristic matrices. Since one has quarter-wave (1¢/4) films, the matrices []
and [M,] become

o J]
(M) = 9n |, (47)
[ jg» O ]
o L
M) = q: | (48)
Ljar 0 ]
The characteristic matrix for one period is
&g ] [ -
¥
[Ml period or 2 ﬁ]ms] = " = g (49)
o _ [ o M
q: | n

For p periods one gets

2y o]

[Mp periods or 2p ﬁlms] = )PJ
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For (2p+ 1) the characteristic matrix is

[M2p+1) siims] = [Map sims] X [M4] 63))

N
n q
[Mp+1) ims] = ’ 1, \? ’ (52)
0 (—71) lj% 0
o (=)
m) q
Mopsrsimd =| e (53)
(‘l) i 0
L n

(b) Calculation of the reflection factor R = |r|%. Return to equation (46) giving r and
replace the m’s by the elements of matrix (50) or those of (53).
Case with 2p films:

(54)

hence

Case with (2p+1) films:

)

Ry, = [j—%)j 2. (55)
()
)

(56)

Fopr1 =

&Y)

Numerical application. The results found in the following table are obtained from the
publications of Abeles. The films do not absorb and R+T = 1.

Number
of 1
films

2 3 4 5 6 7 8 9 10 11

0.138 [ 0.116 {0.0522 | 0.0432 | 0.0191 0.015810.0069

|
J
)
|
|

I
T 0.693 '0.619 0.340 | 0.289

R 0.307 '0.381 0.660 | 0.711 t0.862 0.884 | 0.9478 | 0.9568 | 0.9809 | 0.9842 | 0.9931
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Note. The choice of 1¢/4 as the optical thickness for the films is easily explained (Fig.
14.3). If two consecutive reflections are of different kinds, the two reflected rays have a path
difference of 2nd+ Ao/2.

For these rays to produce constructive interference, it is necessary that nd = Ao/4.

Hence
nhdh = 2.0/4 and n,d, = 2.0/4

Fic. 14.3

It is necessary that the reflections experienced by the rays 1 and 2 are of a different kind
as well as the reflections experienced by the last two rays. In other words, one is interested
in having an odd number of films, zinc sulphide being in contact with the air on one hand
and the glass on the other.

In the modern Fabry-Pérot interferometer the outer faces are treated with multiple di-
electric films. Note that the selectivity increases with the number of films (§ 7.4).

PROBLEM 15

Electromagnetic Waves in a Resonant Cavity

A resonant cavity in the form of a cube has one corner at O and the three edges are
oriented along the Ox, Oy, and Oz of a right tetrahedron. The cavity is evacuated and one
assumes that the walls are perfectly conducting.

I

Produce an electromagnetic field in the cavity having frequency » so that the excitation
produces an electric field parallel to the Oz axis. Starting with the electromagnetic wave
equation and the conditions imposed on the wave field at the walls, show that one can
obtain stationary states in which the field E is parallel to Oz and has a modulus independent
of z for which there is a relationship between the length of the cavity, L, and the vacuum
wavelength Ao for a plane wave with frequency ». Take

E(x, y) = X(x)XY(y).

Determine the minimum value of L and do the calculation for » = 3xX10° Hz.
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II

Assign L the minimum value found above and let E, be the maximum amplitude of E,.
Express the fields E,, H,, H,,, and H, as a function of x, y, z, ¢, and of the parameters L, E,
and w = 2nv. Find the mean energy contained in the cavity as a function of L and E,.

Application:
v =3X10°Hz, Eo,= 10 V/m.

SOLUTION

I

For a monochromatic wave the wave equation is (§ B.2)
AE+0%E = 0 ( L _21‘_) (1)
C Z.o
For the desired field
Ex = 0, Ey = 0, Ez = EZ(x’ y)

equation (1) becomes
O%E, + 0%E,
ox? 0y

Substituting the solution suggested above E,(x, y) = X (x) Y(»)

+0%E, = 0.

1 d&x 1 d?%
Ya‘x—{"'? d—yz—-{-0'2=0. 2)

The general solution is
X = A;sin(o1x+¢1), Y = Azsin(oay+Ps) 3

and equation (2) requires
oi+o} = o?. )

The conditions imposed by the walls of a perfect conductor are that the tangential compo-
nent of E and the normal component of H must be zero, hence

X(©0)=X(L) =0, Y(©0)=Y¥(L)=0.

Solutions (3) become

. K
Klgx, Y=A2smﬂy—,

X = A, sin T

K1 and K, are integers which, using (4), satisfy

a2 o
(K12+K22)ﬁ = 0o
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or
2
Kr+kz =3
3
The eigenfrequencies of the cavity in the mode under consideration correspond to wave-
lengths
; 2L
0= —F—.
VK3 +K}

‘The minimum value of L is obtained for K; = K, = 1

Ly = 2o[V/2.

For » = 3X10° Hz and 1, = 0.01 m, L,, = 7.07 cm.

I
For L = L,, the electric field is given by:

. WX . Jy
E, = Eysin - sin —- cos wt.
z 0 L L

One can find the magnetic field from

oH
curl E =— Ho—5,

which gives

%—ﬁzsinn—xcosﬂcoswt
ot  wo L L L ’

°H, _ ﬂzcos X sin 7 cos wt
dt me L 0L ML O%eh

and, for the minimum value of L,

Eet . mx wy . g0 . ;X wy .
H,=— — —_ =—\1 —E —_ - t,
x ol SIN —~ €0S —~ Sin wt |/ T 0Sin —~ COS —~ sin ®

_ Eom X . wy . _]/so X . wy .
—mCOSTSlnTSlnwt— TMEOCOSTSIHTSIH(DL

The mean energy contained in the cavity is obtained from the mean value of the energy
density

H,

w = 3(e0E*+ poH?)
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taken over time. Since one is dealing with sinusoidal functions, (E%) = E%/2. Finally, one
must take the mean values over the volume

E(z)l L.2nx IJ'L,2ny Eg 1
<E?>—7z.[) sin de)(z A sin Tdy_Tx.‘i,,
o fo (BT _f B 1
<H">—2HOX2X4’ <H3>—2H0X2X4,
ElTe g /1 1 e E2L3
—ry3Z0 (%0, %0 (- , "~} — S0
<W>~L4[4+2(4+4)] .
Application.
4 —1
U 1010 =~ 4.0 joules.

T 8X4X3.14X9X10°X2X /2

PROBLEM 16
Radiation Pressure

Give the expression for the radiation pressure exerted by a monochromatic plane wave
of frequency », containing N photons per unit volume, on a plane surface in vacuum when
falling on it at an angle of incidence i. Consider the following cases: (a) the surface is a black
body; (b) the surface reflects specularly with a reflection factor R; and (c) the surface is a
perfect radiation scatterer.

Numerical application. Calculate the radiation pressure exerted by the sun’s radiation on
the earth assuming the earth is a perfect scatterer. The parameters are given in Problem 19.

SOLUTION

The momentum transported in one second by the incident photons contained in a
cylinder of length ¢ and cross-section S cos 7 (Fig. 16.1) is

N-’—lcchcosi

24
i

Fig. 16.1

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



68 PROBLEMS IN OPTICS [PROBLEM 15

taken over time. Since one is dealing with sinusoidal functions, (E%) = E%/2. Finally, one
must take the mean values over the volume

E(z)l L.2nx IJ'L,2ny Eg 1
<E?>—7z.[) sin de)(z A sin Tdy_Tx.‘i,,
o fo (BT _f B 1
<H">—2HOX2X4’ <H3>—2H0X2X4,
ElTe g /1 1 e E2L3
—ry3Z0 (%0, %0 (- , "~} — S0
<W>~L4[4+2(4+4)] .
Application.
4 —1
U 1010 =~ 4.0 joules.

T 8X4X3.14X9X10°X2X /2

PROBLEM 16
Radiation Pressure

Give the expression for the radiation pressure exerted by a monochromatic plane wave
of frequency », containing N photons per unit volume, on a plane surface in vacuum when
falling on it at an angle of incidence i. Consider the following cases: (a) the surface is a black
body; (b) the surface reflects specularly with a reflection factor R; and (c) the surface is a
perfect radiation scatterer.

Numerical application. Calculate the radiation pressure exerted by the sun’s radiation on
the earth assuming the earth is a perfect scatterer. The parameters are given in Problem 19.

SOLUTION

The momentum transported in one second by the incident photons contained in a
cylinder of length ¢ and cross-section S cos 7 (Fig. 16.1) is

N-’—lcchcosi

24
i

Fig. 16.1

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



PROBLEM 16] ELECTROMAGNETIC OPTICS 69

since the momentum of a photon is equal to Av/c (§ 11.2). The force exerted on the mirror
in the incident direction is

F = NhvS cos i
and the radiation pressure normal to the surface is

Fcosi

@ = — = Nhvcos?i = wcos?i n

since the radiant energy density is equal to Nhv, hv being the energy of a photon.

(a) If the surface is totally absorbing, the radiation pressure is given by (1).

(b) If the surface is a mirror with reflection factor R, a fraction R of the incident photons
leave the mirror in a direction symmetric with the normal to the mirror and these photons
impart a momentum

R I—VE ¢S cos i.
c
The corresponding pressure is
® = RNhvcos?i = Rw cos?i.
and the total radiation pressure becomes
@o+@® = w(l+R)cos?i. )]

(c) If the surface is a perfect scatterer, the incident photons are scattered from the surface
in all directions with equal probability. The probability that a photon is scattered into the
solid angle d@ is then, d2/2n = sin i di, taking for the solid angle that angle which lies
between two cones with half-angles i and i+di respectively. The mean value of the pro-
jection of the impulse of a photon leaving the surface at angle / on the normal to the sur-
face is

a2 hy e ..
—cosisinidi = =—.
b € 2c

This corresponds to a pressure

L hy w )
@' = Nccosi~— = = cos i,

2c 2

to which is added the pressure of the incident photons given by (1). The total is
@ = w(cos? i+ cos i). 3

Numerical application. Using the parameters of Problem 19, 1 m? of the earth’s surface
receives at normal incidence a flux density @ = 1.35X 10®* W. The energy density is w = @/c
and for i = 0 equation (3) yields

3 3X135X10° e

or about 3 mg/m2.
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PROBLEM 17

Antennas

I

Plot, in a plane passing through a Hertzian dipole oriented along the z'Oz axis, the polar
diagram representing the modulus of the electric field E and the radiant flux @. Show that
one can put the flux in a form analogous to the Joule power dissipated by a sinusoidal
current, with maximum value I,,, which passes through the dipole. Calculate the resistance
introduced thereby (radiation resistance of the antenna). Express the field as a function
of the instantaneous intensity of the current, I.

II

Consider a linear antenna oriented along z'Oz which has a slightly smaller length than the
emitted wavelength and which is insulated at the ends. For / = 1/2, derive the stationary
state of the current which is developed in the antenna. Give the expression I(z) for the
current intensity as a function of the ordinate z of a point on the antenna. Take the origin
at the centre of the antenna. Starting with the expression obtained in the first part of the
problem for the field E which can be now thought of as giving the field dE radiated by an
element along the length of the antenna, find the radiated field at a large distance ro from O
and plot the polar diagram in a plane passing through z'z.

111

Consider now a long linear antenna formed on N segments of length 1/2 between which
are inserted N—1 identical self-inductances of negligible dimension and whose value is
such that they phase shift the current by z. Establish the direction of radiation on a polar
diagram in a plane through z'z.

SOLUTION

I

The radiant electric field at a distance r from a Hertzian dipole in a direction making an
angle 6 with the axis of the dipole is given by (§ 10.3)

1 ow?d,sinf . r
Ey; = " . sin w(t—?) 4))

d,, being the amplitude of the sinusoidal dipole which has angular frequency . A magnetic
field H = ¢cE, corresponds to the field E, in the electromagnetic wave.
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The radiant energy flux which crosses a surface element normal to the direction OP at a
distance r from O is given by (Fig. 17.1)
wd? sin? 64X
16n2e4c3r2

¥

dP = §dX = E,H S = ecE3dY = sin? w(,_?), 2
S = EH being the Poynting vector.

The polar diagram of (1)—varying as sin 6—is given in Fig. 17.2. That of (2)—varying as
sin? 6—is in Fig. 17.3.

FiG. 17.1 Fig. 17.2 Fic. 17.3

The sinusoidal dipole moment d may be thought of as due to two oscillating charges
t4,, sin wf separated by a small distance z. One has

dy, sin wt = 2q,, sin wt
and the equivalent current is
dg

= gy = @4m COs ot = 1, cos wt,

hence
zl, = wd,,. 3

Furthermore, the total flux radiated over all space is obtained by integration of (2) with
dX = 272 sin 6 d6, so that

_ ot ., A 02l ., T
—W sSin CO( ?) = 67‘[8063 sSin CO( ?).

The instantaneous power is in the form of a Joule power since it is proportional to I2.
One can then write (0 = RI? where R is the radiation resistance given by

[} w?z2 27 [z\2 z\2?
R= T~ G = 3o (7) = 789(7) ohms,

using the wavelength expression 4 = 2n¢/w.

6 R & M: PI1O
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I

A real linear antenna differs from a Hertzian dipole in two ways: the high-frequency
current which runs through it does not have the same value at every point at a given instant;
and its length is not small with respect to the wavelength. In calculations one replaces the
antenna by a line of dipoles the moment of each depending upon its position and propor-
tional to the current intensity at the point where it is found. The field at large distances is
obtained by adding up the elementary fields andtaking into account the phase differences
resulting from the two points discussed above.

In an antenna insulated at the ends the current is of necessity zero at these points at
every instant. The sinusoidal current with angular frequency w propagating along the length
of such a conductor satisfies these condions at the ends and in the steady state establishes
standing waves. The intensity is of the form (§ 3.7)

. . {2 . (2
I = I, sin wt sin (%«Hﬁ) =1 sm(—f—2+¢)
I, being the intensity at the centre O of the antenna. The conditions at the ends are I = 0

for z = 3A4/4 so that

z
I= Iocos2n—x—.

Using (3), the expression for the field radiated by an element of the antenna of length dz
obtained from (1) and the total field is given by

m i 6 +1/4 3
= 12:%[ cos?dz sin w(t—{_;) . 4
/4

The distance r, from an element dz situated at point 4 where 04 = z (Fig. 17.4) to point P,
at a distance ry large with respect to 4 and thus to O 4, is given by a close approximation
by

r=ro—zcosb

which when introduced into (4) yields

Iosin@ (447 . 6 . 6 2
E=;21 [smw(t-%’——zczs »)+smw(t—rc—°+zczs )] cos T2 dz

= Deocire ), 7
hence:
E = I:;i;oo sin w(t—%) J:M cos 2—i{EXcos 2mz C0s 6 ;os b dz
E= _I_;;i;f sin w(t—%)
X [m sin 2% (I +cos 6)+m sin 2—7;2 (1—cos 6)]:/4
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(n co 0) ( i 6)
. I, sin 6 1 €08 {3 cos cos {3 cos . (t_ ro)
T 2meqcro 14cos @ 1—cos 6 S Y

7
= 6
Io cos ( cos

) cos (1 Cos 0)
2 sin w(t—-rcﬁ) = 60ﬂ ——2—— sin w( ro)

= - “ : r——
2megcro sin 6 ro sin 6 c

Figure 17.5 shows the polar diagram of the radiation.

2]

zl
Fic. 17.4 Fic. 17.5

11

The proposed antenna is equivalent to a set of N antennas of length / = 4/2 placed in
series and with their currents in phase thanks to the presence of the inductances. In direc-
tion O the path difference between two successive elements is (4/2) cos 6 (cf. Fig. 17.4).
The calculation of the resulting field is made in exactly the same way as the diffraction cal-

culation for a series of N identical, equidistant slits radiating in phase (§ 7.7). The resulting
field is

2 cosb in Na co 0)

601, S\2® St % . ( ro)
= - X Xsmwft——)|.
ro sin 6 . (@ c

sin (7 cos 0)

E

Figure 17.6 represents the variations of
. (N
sin (Tn cos 6)

sin (% cos 0)

3 0 (3-9) ,,
FiG. 17.6 Fic. 11.7

s
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as a function of 6 for N = 10. Note that the difference in these relatively similar diagrams
is that in the optical grating case there is only one principal maximum (6 = 0) since the
grating step here is /2.

Figure 17.7 is a polar diagram of the radiation.

PROBLEM 18
Hertzian Dipoles

I

1. Treat the Fresnel mirror experiment from the point of view of electromagnetic theory.
One can regard the source S as a Hertzian oscillator vibrating parallel to A, the line of
intersection of the mirrors and then the images of the sources S; and S act as synchronous
oscillators at separation /. Find the electric field, the magnetic field, and the Poynting vector
of the resulting electromagnetic wave as a function of 7, /, and « in a plane normal to 4 and
at a point P at a distance CP = ro from the centre C of §1S3, r¢ being large with respect to
!/ and making with / the angle «.

2. A light source which will be compared to a Hertzian oscillator is placed at the centre
O of the line IT’ joining two small plane dielectric mirrors M and M’ (Fig. 18.1). The normals

z
! M
s |0 x '
I [ I
zl
Fi1G. 18.1

to the mirrors IN and I’N' make the same angle z/4— ¢ (¢ being a very small angle) with II’.
Discuss qualitatively the possibility of interference between the reflected rays in each of the
following cases:

(a) dipole vibrating along z'z;

(b) dipole vibrating along y’y, normal to the figure;

(c) both dipoles above, assuming them to be identical, synchronous, and coherent. Study
the state of polarization in the interference field.

Assume that the solid angle subtended from O by the mirrors M and M’ is very small
and neglect the difference in the reflection coefficients for the two principal vibrations.

11

A light source O is made up of a set of Hertzian oscillators randomly oriented. Write,
as a function of the angular coordinates, 6 and ¢, the expression for the electric field E and
its components E, and E, at a large distance from O for radiation emitted by the source:
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(a) in direction Oy;

(b) in the direction Oy’ on the xOy plane making an angle y with Oy. Calculate, as a
function of y, the contrast of the fringes obtained through the interference of the radia-
tion emitted along Oy and along Oy'.

SOLUTION

1. The oscillator images S; and S'» are normal to the plane of the figure which constitutes
the equatorial plane for both of them.

The electric field of the electromagnetic wave emitted by each of them is normal to the
Fig. 18.2 at P and is given by (§ 10.3)

1 wdm . Fo
E = Grien® ra sin w(t—?). M

Fic. 18.2

The fields E; and E,, parallel at P, have a phase difference at P due to the path difference
& = |ro—r1|. If this path difference is small enough so that the amplitude difference due to
the 1/r factor is negligible, the fields have the same amplitude

_ ady
T dmegctro

On the other hand, one can take
= lcosa,

from which

¢ =37£lcoscx.

A

The resulting E field is given by the summation of two parallel vibrations with amplitude a
and phase difference ¢. Its intensity is

A2 = 442 cos? %)—

Thus

E = 2acos i C;S % sin w(t—%). )

The H field is the resultant of the fields H1 and H, which are in phase with E; and E» re-
spectively, since the distance CP is large and for this same reason these fields are practically
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parallel. Since for all electromagnetic plane waves in free space
Y
o

_ £o wlcosa . T
H=2a %COS 7 fsma)(t ?) 3)

One gets from (2)

The Poynting vector:

S = EXH = 4a? ]/io_ coszyilcTosji sinza)(t——'—}).

Ho

2. Since the mirrors give images of O separated by a very small angle, one can assume
that the radiation from O forms a quasi-parallel bundle of rays. The electric fields of the
emitted waves are parallel to the dipole and thus are either in the plane of incidence to the
mirrors or normal to it.

FiG. 18.3

For incidence close to /4, less than the Brewster angle for all dielectrics, the vibrations
parallel to z'z or to ¥’y undergo a phase advance of & by reflection. Their arrangement is as
shown in Fig. 18.3. When the reflected bundles combine—which occurs at a large distance
from O—there is, on the z’z axis, constructive interference for the vibrations parallel to
¥’y and destructive interference for the vibrations emitted by O parallel to z’z (these are
practically antiparallel at their point of recombination and are directed along x’x).

When one moves off the centre of the interference field parallel to x’x, the vibrations
parallel to 'y are:

E, =E,coswt, E, =E,cos(wt+¢)

¢ represents the phase difference due to the difference in the optical paths which vary
linearly as a function of x. The resultant amplitude is

E, = 2E,, cos % cos (a)t+ %) 4)

The vibrations emitted parallel to z'z are

E. =E,cosot, E; = E,cos(wt+r+¢).
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The amplitude E,, is the same as before since the reflection coefficients are assumed equal.
The resultant amplitude is
¢

. 9 .
E, = 2E, sin - sin (mt—l— 7) %)

The vibrations (4) and (5) are perpendicular to each other and the ratio of their amplitudes
varies with ¢, that is, with the position of observational point along a line parallel to x’x.
At each point the components give rise to a vibrational ellipse whose axes are parallel to
¥’y and x’x with variable dimensions respectively equal to 2E,, cos ¢/2 and 2E,, sin ¢/2.
All of these ellipses can be inscribed in a square of edge E,, V2 (Fig. 18.4).

For ¢ = 0, the ellipse reduces to a line parallel to ¥, for ¢ = =z to a line parallel to X,
and for ¢ = =/2 and ¢ = 3x/2, one finds circles.

When the vibrations are squared, the resultant intensity is

I=E}E:=4E%.

This is constant. In the absence of an analyser, the interference field is uniformly illuminated.

F1G. 18.4

11

Let 6 and ¢ (Fig. 18.5) be the angles which define the orientation of a dipole OD in the
rectangular system Oxyz. For an observer on the Oy axis, the electric field of the wave
emitted by the dipole is proportional to sin v, v being the angle DOy (§ 10.3). The field E
is in the plane xOz since the free electromagnetic waves are transverse. The components are

E, =EsinfBcos ¢, E,= Ecosb.

In the direction Oy’ which makes the angle y with Oy, the electric field is in the plane x’Oz
(Ox’ normal to Oy’) and its components are given by

E; = Esinfcos(¢xy), E,= Ecosb.
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The vibrations E, and E,, can interfere as can E, and E,. But the first do not interfere with
the second since they are perpendicular. The fields emitted by the various dipoles, which
are incoherent, do not interfere. The intensity maxima are given by

Iy = Z {(Ex +Ex)2 + (Ez +E;)2}
(the sum being taken over all the dipoles) and the minima by’
= Z {(Ex—Ex)*+(E.~E)?).

Defining the contrast by
_ Iy—I.
- IM+Im ’

one has
S {AE:Ei+E.E;)} N

 S(EXHEZS+EA+ER) D

It is now necessary to take into account the random orientation of the dipoles whose axes
are uniformly distributed over all the solid angle elements d{2 = sin 6 d0 d¢. The sums N
and D become the integrals

27 72
N2 f dé | AK(E.EL+E.E)
¢ 0 =0

2n n/2 2n /2
= 2f cos (¢ L) cos ¢ do f sin3 6 d6+2f d¢ cos? 0 sin 6 d0.
$=0 9=0 )

=0 =0
But
/2 . 2
f sind 6 df = %J‘ (1—cos 26) sin 6 d6
0 0

al2
= %—;f (2cos2f—1)sin6db = 3.
0

n/2 a/2 3
f coszﬁsinﬁdezf d(_c_"sﬁ) _1

0

27

cos (¢ £ y) cos ¢ d¢+‘—13§

27

wj;s w|h

V-3
LU . 4z
J‘ cos y cos? ¢ dd):FJ‘ sin y sin ¢ cos ¢ dd>+§—
0 0
N = %lz(lﬁ-cos ).
27 a2
D = d¢ {sin? G[cos* ¢+ cos? (¢ £y)]+2 cos? 6} sin 6 dO

$=0 6=0

= J% [cos? ¢p+cos? (L)} dd J‘nlz
¢=0

0=0

27 al2
sin® 6 d9+2f d¢ cos? 0 sin 6 d6.

6=0 6=0
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The last integral has been previously calculated. Since

2 [ 2 4n 4
D=§f cosz¢d¢+§j cosz(¢iy)d(¢iy)+?ﬂ=—;.
0 0
Then
_ N l+cosy
P=p=—7%":

For y = 0, I' = 1. The Fresnel mirror experiment approximates this case since one has
interference of waves emitted by a single source along approximately parallel directions.

Fory = #, I' = 0. Finally, for p = /2, I" = 1. This latter result is similar to Selenyi’s
experiment.
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EMISSION AND ABSORPTION

PROBLEM 19
Photometry. The Earth-Sun System

One square meter of the earth’s surface illuminated by the sun at normal incidence receives
a flux of 1.35 kW if one neglects the absorption by the atmosphere.

1. Calculate the flux emitted by 1 m? of the sun’s surface assuming that it radiates accord-

ing to Lambert’s law. Recall that the apparent diameter of the sun when viewed from the
earth is 2o = 32'.

2. Calculate the sun’s mass loss per second due to radiation given the earth-sun distance
as 15X 107 km.

3. Assume that the surface of the earth uniformly scatters a fraction p of the incident
radiation flux. Calculate the luminance of the earth.

4. Calculate the amplitude of the electric and magnetic fields due to solar radiation at the
surface of the earth.

SOLUTION

1. The sun radiates according to Lambert’s law and its luminance .£ is a constant. The
flux emitted by a surface elements dS into a solid angle df2 whose axis makes an angle
0 with the normal to dS is

d2@ = _£dS cos 6 dQ. )]

Taking as d©2 the solid angle lying between two cones with apex on dS and axis normal to dS
having an aperture 20 (Fig. 19.1), one has

d2d = _£dS cos 6 X2x sin 6 d6.

]

FiG. 19.1
80
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The flux radiated by dS into all exterior space is:

nf2 72
d¢=n£de 2sin6¢os€d0=n£de 2sin 6 d(sin 6)
0

0

/2
d® = n.0 dS[sinz o] = 7.04dS.

0

The ratio d®/dS = B is the emittance or emissive power of the surface. For an emitter which

follows Lambert’s law, one has
B =n2p. ¥}

Note that a sphere which emits according to Lambert’s law appears to be a plane disc,
the factor cos 6 in (1) compensating exactly for the inclination of the surface when moving
away from the normal (§ 1.8). This is the way the sun appears.

The flux (1) emitted by the sun at normal incidence and falling normally on a surface d.S’
of the earth at a distance r from the sun, can be written

dsl

re’

d*® = LdS

The illumination intensity produced is, by definition,

dzo ds
==L

The illumination intensity due to the solar disc viewed through its angle

— 2
= JTo.
r2

is

&= Lmal.
Thus, the emittance of the sun has the value

e 1.35X103

B=al= = G6x3xI0-9F

= 5.8X 107 W/m?.

2. The mass-energy equivalence (§ 9.11) allows one to write

Am=A—I;V
c

Ll

¢ being the free-space velocity of light.

One can calculate the total power lost by the sun by noting that it is equal to the power
received by a unit area of the earth’s surface multiplied by the surface area of the sphere
with radius equal to the earth-sun distance, that is

D = 1.35X103 X4 X (152X 10* = 3.815X 102 W.
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Hence, the mass loss per second is

®  3.815x10%

Am =

which corresponds to an annual loss of 1.4X 10*® tons. However, the mass of the sun is
2X10% tons.

3. A surface area of the earth which receives a flux d®, reradiates to all space a flux
d®’ = pd®. Thus, the emittance of the earth is

, do’ do
B = a8 = gd—S" = o0&
and its luminance is
=2
7

4, The mean illumination produced by a plane electromagnetic wave is related to the
amplitude of the electric field by (§ 2.3)

2
&= e,
hence

_ Xy  2X1.35X103X36mX10° "
E2 = o = 3108 = 101.8X 10

E, = 1010 V/m.

The magnetic field of the wave has the amplitude (§ 2.3)
H, = 1 1010 = 2.7 A/m.

cpio B = IR TP X126 X 10°8

PROBLEM 20
The Spectra and Energy of a Laser

Suitably excited, a ruby laser can emit giant light pulses of wavelength A = 69359 A
(wave number 7 = 14,418 cm™1). Assume that each pulse can be ascribed to a linearly
polarized plane wave train of constant amplitude, duration r = 0.1 milliseconds and carrying
the energy W = 0.3 joule. The cross-section of the beam is circular with a diameter of 5 mm.
The pulses propagate in air with the index taken as 1.
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I

Calculate the number, N, of photons carried in a pulse. Knowing that the fluctuation of

the number of photons in a wave is equal to V/'N, derive the corresponding fluctuation in
the phase ¢ of the wave associated with the N photons. What conclusion can be drawn about
its preponderant appearance—particle or wave?

II

Calculate the frequency spectrum G(¥) of each pulse. Derive the spectral width Av,
defined as half the separation of the two zeros of G(v) which enclose the central maximum.
Derive an expression between the corresponding width in wave numbers and the length L
of the wave train.

Numerically find A% in millikaysers and A2 in milliangstroms.

If this pulse is injected into a Michelson interferometer, show, without new calculations
what path difference will be required before one will no longer be able to observe the inter-
ference. Is this physically possible?

ITI

1. Calculate the volume energy density, w, carried by a pulse (to calculate the volume
occupied by the wave train, neglect enlargement of the beam by diffraction).

2. Derive a numerical value for the electric field of the wave.

3. Calculate the pressure exerted on a plane screen perpendicular to the beam in the
following cases:

(«) the screen is totally absorbing;
(B) the screen is totally reflecting; and
(y) the screen has a reflection factor R = 0.9 and an absorption factor 4 = 0.1.

Iv

Place on the trajectory of the beam an aberration free lens L with focal length F = 5 cm
whose diameter is sufficiently large that it will not act as a pupil for the system. A film of
steel 0.1 mm thick is placed in the plane of the focus of L (Fig. 20.1).

3

Laser

FiG. 20.1

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



84 PROBLEMS IN OPTICS [PROBLEM 20

1. Calculate the radius p of the central diffraction spot. Assume that this spot receives
75%; of the energy contained in the pulse (take into account the transmission factor of the
lens).

2. The intensity absorption factor for the steel film R is equal to 0.1. The absorbed energy
is transformed into heat and diffused about the spot isotropically. What amount of heat
will be necessary to raise to the melting temperature a half-sphere of steel of radius0.1 mm
(Fig. 20.2)? Compare this value to the quantity of heat carried by one pulse. Conclusion?

. A
f> £
7
A

FiG. 20.2

Numerical values :
h = 6.62X 10734 mksa,

¢ =3X108m,
1 . . .
&0 = 3 0p (in rationalized mksa)

I kayser = 1 cm™! = 100 m™1,

density of steel = 7.83 g/cm?,

specific heat of steel = 0.11x4.18 J/g,
melting temperature of steel £ = 1525°C.

SOLUTION
The energy of one pulse is equal to N times that of one of the photons carried so that

W = Nhv = Nhcy
0.3

= o~ ], 18
862X 10 T x3x 10°x 4418 e = 1 0°%10

N

The fluctuations in the number of photons and the phase of the wave are tied together by
the uncertainty relation
AW At = h.

In effect, the uncertainty in W is due to that in N, the quantum being well defined by the
frequency. Thus, one has
ANhy At = h.
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However, the uncertainty in the time At is related to the uncertainty A¢ in the phase. One

finds
¢ _t _
2w T1 "
hence
Ap = 2nv At
and
AN A¢ = 2n.
If AN = VN,
A¢ = 2n/+/N.

N is large and A¢ is very small. For the frequencies corresponding to relatively long (red)
wavelengths, the wave aspect is preponderant.

11
The pulse is represented by
s(#) = a cos 2yt (—t/2 <t < 1/2).

This has complex magnitude
s(1) = aexp (—j 2nvel).

The corresponding frequency spectrum is

+7/2

G»)=a J‘ oo exp [j2a(v—vo)t] dt = ‘ﬁ_—@ [exp ] 27:(11—110)1]]

oo —z/2
sin 272(v— vo)7/2

G0) = ot = 2

The first two zeros of the well-known function G(v) (§ A.7) arise for 2n(v—vo)r/2 = +=.
The half-interval between these values corresponds to a frequency domain

v—vo= 1/t

so that, since # = v/c and the length L = ct;

1

A —-—.
L

— 5o =

<
{
=

Numerically

r__ 1

et 3X108X10~4

|AZ] = 22 A5 = 48.10X 10714X3.3X 1075 = 1.59X 10" 7 m = 1.59X 1074 mA,
1

— L 4
L—A’_, 3x10¢ m.

Ap = = 0.33X10"* m~! = 3.3 mkaysers,
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One no longer observes interference in the Michelson interferometer when the distance
between the mirrors is of the order of L/2 or 10 km. One cannot obtain homogeneous optical

paths on this distance.
m

The volume occupied by the wave train is

_ad?

V= 74*L = 59X 1072 m3.

1. The density of energy

w 03 ,

2. The expression for the energy density in electromagnetic theory is (§ 2.3.2)
w = SoEz,

hence:
E = 4/575X 108 = 2.4X 105 V/m.

3. The radiation pressure under normal incidence is (§§ 2.7 and 3.11.5)
() @ = w = 0.508 N/m?,

B) @ = 2w = 1.016 N/m?,

() & = (1+R)w = 1.9w = 0.965 N/m2.

v
1. ¢ = 1.224F/d = 8.5X107* cm (§ 5.11).
2. The mass of the hemisphere of steel is
M = Zar3
4 being the density and r the radius
M= 2X3.14X1076X7.83 = 16.9X 1076 g.
The amount of heat necessary to raise the ordinary temperature to the melting point is

MC At = 16.9X1076X0.11 X4.18X(1525—25) = 1.14X 1072 J.

During one pulse the film receives an amount of energy equal to

0.3XX0.75X0.1 = 2.25X1072J.

The film will thus be melted at the point where it is struck by the radiation.
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PROBLEM 21
Optical Constants of Germanium

The index for 4o = 0.5  (in free-space) is given by
n=347-140 (j=+/-1).
1. Calculate the reflection factor at normal incidence for a polished germanium surface.

2. Calculate the phase shift ¢, introduced by reflection at normal incidence.

3. Calculate the depth which a plane wave penetrates into germanium when its intensity
falls to 1/1000 of the incident intensity.

SOLUTION

The index of germanium is given in its complex form n = n—jk, n being the index of
refraction and & the absorption index. The Fresnel formula is applicable to the complex
index under normal incidence. The reflection coefficient for the light amplitude is complex

§ 3.5
_ .y n—=1 n—jk—1
rn_rnexp(.]¢)_n+1_n_jk+1' (l)
From which one gets the reflection factor
e (iR
Ry = torn = TR 2
and the phase advance of the reflected wave ¢,
2k
tan ¢n = m . (3)

1. With the given values one finds

— 1) 2
_ BAT—1P+(140P _ 6104196 _

Re = a1 e+ (140F ~ 19.98+1.96

2.80 _ —280
T—(47p— (1408 ~ 13.00

¢n = 180°—12.20° = 167.80°

tan ¢, = = —0.216.

3. The decrease in the light intensity as a function of the depth x is exponential

I = Iyexp (—2Kx)

7 R &M: P.O
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with

One must have

exp (_iy}zf:_x) = 1073,

drnkx

;P 6.907,

6.907x0.5

* = gx314x140 " 02

PROBLEM 22
Absorption. Black Bodies and Coloured Bodies

I

A small plane disc receives solar radiation at close to normal incidence. Of the two sides
of the disc, only the side F turned towards the sun will be considered, the other side does
not play a role. Assume that the disc is placed in a vacuum far removed from all other objects
and that its temperature is always uniform. Assume that the sun radiates as a black body
at 6000°K and call H its emittance. Its apparent diameter when viewed from a point D is
small and will be taken as 2«. Calculate the equilibrum temperature of the disc in the following

cases:

1. The disc emits and absorbs like a black body on the face F. Take 2« as 1072 rad and
then as 1074 rad.

2. Repeat question I but assume here that the solar rays fall obliquely on the face F.
The cosine of the angle of incidence can be taken to be 0.25.

3. Repeat question 1 replacing the disc D by a small sphere whose entire surface is a black
body.

II

The disc has spectral energy emittance and an absorption factor which is zero for all
radiation except for wavelengths very close to 0.40 p. In this interval the disc acts like a
black body. The angle 2o will be given the successive values 1072 and 104 rad. Assume that
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with

One must have

exp (_iy}zf:_x) = 1073,

drnkx

;P 6.907,

6.907x0.5

* = gx314x140 " 02

PROBLEM 22
Absorption. Black Bodies and Coloured Bodies

I

A small plane disc receives solar radiation at close to normal incidence. Of the two sides
of the disc, only the side F turned towards the sun will be considered, the other side does
not play a role. Assume that the disc is placed in a vacuum far removed from all other objects
and that its temperature is always uniform. Assume that the sun radiates as a black body
at 6000°K and call H its emittance. Its apparent diameter when viewed from a point D is
small and will be taken as 2«. Calculate the equilibrum temperature of the disc in the following

cases:

1. The disc emits and absorbs like a black body on the face F. Take 2« as 1072 rad and
then as 1074 rad.

2. Repeat question I but assume here that the solar rays fall obliquely on the face F.
The cosine of the angle of incidence can be taken to be 0.25.

3. Repeat question 1 replacing the disc D by a small sphere whose entire surface is a black
body.

II

The disc has spectral energy emittance and an absorption factor which is zero for all
radiation except for wavelengths very close to 0.40 p. In this interval the disc acts like a
black body. The angle 2o will be given the successive values 1072 and 104 rad. Assume that
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near 0.40 p. the emittance of a black body is given in good approximation by the expression:

b . 6000
logH; = a—-YT, with 5 = 0.385,

a being a constant. Calculate the equilibrium temperature for 1 and 2 of part 1.

1

A black body with sufficiently small dimension that its temperature will always be uniform
and with heat capacity M is placed in the experimental arrangement indicated above.
Initially it was protected from radiation and its temperature highly depressed. It was then
exposed to solar radiation. According to what law will its absolute temperature rise as a
function of time? How does this law behave near the equilibrium temperature ?

SOLUTION

According to the definition of the emittance energy H, the energetic flux given off by a
surface S into all exterior space is:

@ = HS.

In the case of the sun of radius R which emits like a black body:

S=4aR?* and H =0T} (o= 5672X10"8 Wm2deg™).

This flux travels through spheres of increasing radius and that which reaches an area s on
the sphere of radius r is:

Ds R?
Z”—"Z-=S'rTGT(‘);=S¢20'To4 (1)

for a2 = R2/r2.

On the other hand, the disc with area S at temperature T’ radiates like a black body and
its emittance is H' = o¢T'4. At equilibrium the incoming and outgoing fluxes are equal.

1. Normal disc, s = S.

Sa2eTt = SoT'**, )
hence,
T" =oT¢, T' =+ oT,.
For « = 0.5X1072, T'= 0.071X6000 = 426°K.
«=05X1074, T' = 42.6°K.

2. Obligue disc. This presents as above a cross-section of area S to the radiation but now

the area s = S cos i (Fig. 22.1). However, it always radiates from the entire surface area S,

T
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thus at equilibrium:

Fora = 0.5X 1072,
For o = 0.5X 1074,

PROBLEMS IN OPTICS

[PROBLEM 22

S cos in’oTy* = SoT'"*,

T = A/a A/cos iTo = T'[/2.

T" = 300°K.
T = 30°K.

3

FiG. 22.1

AN

3. 4 sphere of radius p. This intercepts from the rays a section with area s = mp? and
radiates from its entire surface area S = 4mg?, hence at equilibrium:

np®T§ = 4np’eT'*

T' = /2T,

@

~ As a result of the numerical value cos i = % selected in (b) the temperature of the sphere
in (c) is the same as that of the disc in (b).

I

Let A4 be the width of the spectral band in which the disc absorbs and emits, H ;. the
spectral emittance of the sun, H,;. the spectral emittance of a black body at the equilibrium
temperature T’ of the absorbing body, and the absorption factor 4,. Calling S the surface
area of the absorber and s the area which receives radiation the spectral flux energy received

15

so2H AT, AA.

The body absorbs a fraction 4, of this. On the other hand, its spectral emittance is 4,H ;7.
according to Kirchhoff’s law. The flux radiated is

Hence, at equilibrium,

SAH ;1 AA.

S
H),T' = F“2H1To .

Taking the log of both sides and using the expression given for H,, this becomes

from which
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1. Normal disc: S = s.

For « = 0.5X1072, T’ = 2165°K.
o =05%10"% T’ = 1392°K.

2. Oblique disc or sphere: S = 4s.

For « = 0.5x1072, T’ = 1998°K.
«=05%X10"¢ T'=1320°K.

II1

The black body receives flux [see eqn. (2)] from the sun. When its temperature is T, it
radiates the flux SoT4. If its temperature is raised by dT in time d¢, the energy balance is
written :
So(T"*—T%)dt = M dt.

Taking T/T' = x and B= SoT'3/M this becomes

dx

'—1_—x4=Bdt.

This fraction can be broken down into more simple elements. One has in effect

4 2 1 1

1—x* 1+x2+1+x +1—x )

Hence
4Bt+C = 2 arctan x+log (1+x)—log (1—x),

C being an integration constant.
When the temperature approaches the equilibrium value, x — 1, arctan x — /4, and
log (1+x) — log 2, thus
T'-T

T'—T varies according to a decreasing exponential in f.
PROBLEM 23
Absorption. Kirchhoff’s Law

I

1. A parallel beam of monochromatic light propagates in an absorbing liquid. Calling
I, the intensity at a point taken as the origin and K the absorption coefficient, find the
expression which will give the intensity I, after the beam has travelled through a region of
thickness x and also find the optical density D of this region.
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PROBLEM 23
Absorption. Kirchhoff’s Law

I

1. A parallel beam of monochromatic light propagates in an absorbing liquid. Calling
I, the intensity at a point taken as the origin and K the absorption coefficient, find the
expression which will give the intensity I, after the beam has travelled through a region of
thickness x and also find the optical density D of this region.
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2. Find the order of magnitude of the error in K and D for a relative error ¢ in the ratio
I/I.

3. The absorbing medium under consideration is a plate of coloured glass with parallel
faces and thickness x. This is placed normally across a beam of intensity 7o and one measures
a new intensity 7.

The reflections which occur at the faces of the plate weaken the beam so that I; cannot be
used as I, without introducing an error ¢ in the ratio I,/I,. Evaluate &' by taking % as the
index of the glass and unity for the air index. How can one measure the optical density
of this absorbing plate in such a way as to prevent this error? Neglect beams arising from
multiple internal reflections.

II

1. Consider a homogeneous flame whose radiation obeys Kirchhoff’s law and which is
initially assumed to radiate monochromatically. Show that the spectral luminescence /, of
this flame with thickness x tends toward a limit as x increases without bound. Call /; dx the
luminous energy, a; dx the absorption factor of an infinite thin film of thickness dx for
radiation at the wavelength 4 and call .2 the luminance of a black body at the temperature
of the flame.

2. What occurs when the radiation is not rigorously monochromatic?

SOLUTION

I

1. The intensity of a parallel beam measured by the illumination which it produces on a
surface and which in this case is constant, is proportional to the radiation flux so that the
law for the variation of the intensity in an absorbing mediumis (§ 1.11)

—dI = KIo dx,
hence
I, = Iyexp (—Kx). )
The ratio I,/I, is the transmission factor of the substance with thickness x. The absorption
factor is (I,—I,)/1,. The optical density is given by
Iy 1

I,
D= —log10 I_o = log10 ‘I—x = ﬁ

Kx. 2

The optical density is proportional to the distance travelled in the medium.

2. Taking

A = LI, = exp (Kx): 3)
d4
dA = x exp (Kx) dK, s=—A—=de,
d4 dD € dX
D=354 ' D igd K
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3. The reflection factor for one face of the plate under normal incidence is (§ 3.4)

R= (’l‘—‘)z
n+1
The intensity which penetrates across the entry face is
I, = I(1—R).
At the exit face this has reduced to
I' = Iy exp (—Kx).
It then undergoes a second reflection and the emerging intensity is
I, = I'(1—R) = I(1— R} exp (—Kx). )
Comparing (1) and (4) one sees that
I, = L(1-R).

As a result of the reflections, the value A4 defined by (3) is reduced by

_ I I
M=T-1
hence
, QA _ 1 _ R(2—-R) N
=T =a-rr T a-re "R

These values approach one another when R is small. In effect,

1.5—1\2 1
R= (1—5+—1) =25
e = 0.08.

To eliminate the error caused by the reflections, it is necessary to make two intensity
measurements on the transmitted ray for different thicknesses x; and xs. Let D’ be the
optical density due to the reflections. One has

1 1
D, = D'+2—§ Kx1, Dz= D’+j§Kx2,

hence

1
Dl—Dz = ﬁK(xl—Xz).
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11

1. Compare this flame to an isothermal volume limited at O by a plane normal to Ox
(Fig. 23.1). The variation of /. in passing through a thin film of thickness dx is due to the
emission /; dx and the absorption —a;/, dx following Beer’s law. From this

dlx = _allx dx+l1 dx = al(ee_lx) dx,

since I1 = a1-£,

£_lx = da dx.
For x =0, [, = I;, hence log £:11 = aix.

L—1I, = (L—1) exp (—ax)
I, = L[1—exp (—aix)]+ /1 exp (—aix).

For x » o, [, -~ L.

N
AN\

/ -

N
N\

L
X oy

~,

N

v
x dx

Fi1G. 23.1

2. If one is dealing with a set of radiations for which the absorption factor is not constant,
the value of the total absorption factor evidently depends on the distribution of the energy
in the radiation source. Now assume that this source follows Kirchhoff’s law, /; = a,.£,, the
the total luminance is

l= J‘l;,dl = J‘a;,,ggdl

and the total absorption factor is
I f a;,,Q;, da

a:-*:———,
£ [0

hence
Ly f £, d2.
a
In the case where the incident radiation arises in a body which completely absorbs all
radiation in the spectral interval under consideration. Kirchhoff’s law applies to this set of

radiations.
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PROBLEM 24

Stokes’ Parameters. Poincaré Representation. Muller Matrices

Stokes’ parameters

The state of polarization of a monochromatic light wave can be characterized by four
quantities, all having the same dimensions, known as Stokes’ parameters. These are

So=a®+b?, S;=a2-b? S:=2abcos¢, S3=2absind. Q)

a and b are the amplitudes along two perpendicular directions Oy and Oz in the plane of
the wave and ¢ is the difference in phase between them.

1. These four parameters are not independent. Find the relationship which exists between
their squares.

2. What does the parameter S, represent? What are the four parameters relative to a
linearly polarized wave along the Oy direction, along Oz, and at 45°; to right circular
polarization, left circular polarization, and natural light (in this last case, in (1) use the
mean values of the amplitudes) (§ 4.8.2)?

3. Prove the relationships
S1 = Socos28cos 26, S2= Socos2fsin2f, S;3= Sosin2p, 2

B being the angle whose tangent is equal to the ratio of the axes of the elliptically polarized
vibration and 6 the angle which the major axis of the ellipse makes with Oy.

II

Poincaré sphere

The preceding equations show that the polarization state of a monochromatic vibration
of given intensity can be represented on the surface of a sphere with radius So by a point
M whose latitude is 28 and whose longitude is 26. S, S», and S3 are the cartesian coordinates
of this point (Fig. 24.1).

95
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1. The amplitudes a and b relative to the point M can be thought of as the components
of a rectilinear vibration making angle « with Oy. How are the angles « and ¢ represented
on the sphere (§ 8.2)?

2. What points on the sphere correspond to the directions Oy and Oz? What is the locus
of points representing linear polarization, circular polarization? What do points situated
on the same parallel represent?

3. Derive from I1.1 a simple geometric construction which will allow one to get M, being
given a birefringent medium with phase retardation ¢ and with known axes, for an incident

linearly polarized wave coming in at angle «. Allow ¢ to vary and examine the results given
by § 8.3.

4. Generalize the preceding construction representing the action of a birefringent medium
with phase retardation ¢ on a vibration M. Look into a quarter wave plate as a special
case (§ 8.6.4).

1
Muller matrices

The Stokes’ parameters can be thought of as the four components of a column vector.
One can represent the action of a polarizer or of a retarding system with known retardation
and orientation on a light wave by a square matrix [M] which when multiplied by the inci-
dent Stokes’ vector {¥] gives the Stokes’ vector [V '] of the outgoing vibration:

V1= M]V1 3
Here are several examples of the [M] matrices:

11 00 1 0 01 1 0 0 O 1 0 0 O
1{1 100 110 000 01 0 0 0 0 0-1
210 0 0 0 210 000 0O 0 0 1 0O 0 1 0

0 000 1 0 01 0O 0-1 0 0O 1t 0 0

(M) (M>) (Ms) (My)

M linear polarization with transmission direction Oy,
M: right circular polarization,
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M3: quarter-wave plate with its advancing axis along Oy,
M, quarter-wave plate with its axis at 45° to Oy.

With this information we want to use these methods to generate the following known
results:

1. The action of a linear polarizer on natural light.
2. The action of a right circular polarizer on natural light.

3. The action of a quarter wave plate with axis along Oy and Oz on right circular polar-
ized light.

4. Repeat question 3 with the axis at 45°.

In each case, find the components of the vectors [V'] and [V’] and verify equation (3).

(The advantage of this method of calculation is that the action of a succession of polarizers
and phase shifters on a light wave reduces to the multiplication of the Stokes’ vector by a
unique matrix which is the product of the matrices appropriate to the successive devices.)

SOLUTION

I

8% = S1+S53+.53. “)

2. S represents the intensity of the vibration. For a linear polarization along Oy, b = 0,

hence
S0=S1=a2, Sz=Sa=0.

Likewise, for linear polarization along Oz

So=b2, Sl=-—b2, Sz=Sa=0,
linear polarization at 45°:

So = 202, Sl = 0, Sz = 202, S3 = 0,
right circular:

So = 202, Sl = 0, Sz = 0, Sa = 2(12;
left circular:

So = 202, S1 = 0, Sz = 0, Sa = —202;
natural light:

So=2a®, S1=0, S2 =0, Ss=0.

3. The equations require that one go back to the classical expressions (§ 8.2):
(@) S3 = Sosin28, 2absin¢ = (a®+b?%) sin 28
sin 28 = sin 2« sin ¢. (5)
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(b) S1 = Socos2Bcos 20, a*—b* = (a%+b?) cos 28 cos 20
cos 28 cos 20 = cos 2. 6)
(¢) Sz = Socos2Bsin20, 2abcos ¢ = (a*+b%) cos 28sin 20 thus using (5),
sin 2« cos ¢ = cos 28 sin 26:
tan 2« cos ¢ = tan 26. @)

I1

1. Trace a great circle on the sphere passing through M and the origin of the longitudes 4.
In the spherical triangle ABM with a right angle at B (Fig. 24.2), one has

cos AM = cos AB-cos MB

Pl
FiG. 24.2

so that, using (6)
AM = 2«
and
sin AM = sin BM[sin MAB
so that, with (5)
MAB = ¢.

2. For the linear vibrations, 8 = 0: the representative points are on the equator. For § = 0
the vibration has the direction Oy and it corresponds to point 4, the origin of the longi-
tudes. For 8 = z/2, the vibration is along Oz and it is represented by the point 4’ on the
equator diametric with 4 (20 = n).

For circular light, 8 = n/4. The representative points are the poles P and P’. The point
P represents right circular light (0 < ¢ < %) and P’ left circular light (m < ¢ < 27).

Right elliptical vibrations are in the northern hemisphere and left elliptical in the south-
ern.

The points along a given parallel represent ellipses of the same form but different inclina-
tion.

The points on a given meridian represent vibrations of the same orientation and whose

eccentricity varies from O on the equator to 1 at the poles. Figure 24.3 summarizes the state-
ments above.
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F1G. 24.3 FiG. 24.4

3. Let R be the point on the equator which represents the linear vibration and A the point
which represents the vibration oriented along the optic axis Oy of this (uniaxial) birefringent
system (Fig. 24.4). Curve AR = 2«. With A as the centre, trace on the surface of the sphere,
a circle, C, with radius AR. The intersection of this circle with the great circle passing
through A4 and making angle ¢ with the equator is the required point.

For ¢ = 7/2, M is on the meridian of 4 and the ellipse has its axes along Oy and Oz. If, in
addition, « = 7/2, R is at R’, and the circle C is the meridian normal to OA4 and M passing
through P or P’, the vibration is circular. For ¢ = 7, the vibration is linear but with «
changed in sign.

4. Let AA’ be the diameter corresponding to the orientation of the birefringent system
acting on the vibration represented by the point M. Trace the great circle passing through 4
and M (Fig. 24.5). As has been seen in 3, the angle ¢, which this circle makes with the equa-
tor measures the phase difference between the vibrations entering along the neutral axis
of the system and those entering along this one. The algebraic phase retardation ¢ is added
to ¢ and the point M’ is then obtained from M by a rotation of ¢ about 4.

If ¢ = m/2, M passes into M"’ on a great circle passing through 4 and making an angle
y with the equator such that

p+o+do=m

;G
F1G. 24.5 F1G. 24.6
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In the quarter-wave method, the linear vibration obtained from the polarizer is represented
by point 4 (Fig. 24.6). The uniaxial lines of the birefringent system under study are repre-
sented by B and the diametric point. One adjusts 4B = w/2. Consequently, the point M
associated with the vibration leaving the system is on the meridian of 4. The spherical
triangle MBA is rectangular at M and 4 and from spherical trigonometry

cos ¢ = cos MA = cos 28.

The neutral axes of the quarter-wave plate coincide by their adjustment with the ends of the
diameter AA4'. The quarter-wave plate rotates the point M by =/2 about 4, and the vibration
leaving is represented by the point R. It is rectilinear and AR = AM = 28.

111

The results obtained in 1.2 give the following expressions for the Stokes’ vector taking
the incident vibration to have unit intensity:

1 1 1 1 1
0 1 —1 0 0
0 0 0 1 0
0 0 0 0 1
Vv V2 (V3 (Va) Vs)

V1 = natural light, V> = linearly polarized along Oy, V3 = linear along Oz, ¥, = linear
at 45°, and Vs = right circular.

We detail the symbolic operation [F’] = [M][V]. The multiplication rule for matrices
gives for the component ¥, of the vector [V""] related to row / and to column c:

Vie=Y MV,
3

M is a term from row / of the matrix [M]and V,_is the term with the same index i in the
column c of vector [V].
For [V]and [V'], c can only have the value one. Thus

Vii = MuVi+MioVa+ MV + MiVa,
Va = MaVii+MaoVa1+ MasVs1+ MV,
Vi1 = Ma1)Vin+MsoV a1+ MssVa +MsdVa,
Vi = MuVi+MaVor+MsVa+ MV

1. In this case [V'] = [M;][V1], so that

Vi = 1X1+1X0+0X0+0X0 = 1,
Va = IX14+1X0+0X0+0X0 =1,
Var = 0X1+0X0+0X0+0X0 = 0,
Vi = 0X1+0X0+0X0+0X0 = 0,
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then, taking into account the factor % which acts on [M], the vector [V'] is

V'] =

O O -

This can be seen to beidentical to [V5] to within the factor % which shows the reduction
in intensity due to the polarization.

2. Likewise one finds [M,][V1] = [V4] to within the factor % again due to polarization.
3. [M;])[V5] = [Vi4] rectilinear at 45°.
4. [M4] [V5] = [V5] linear along Oz.

PROBLEM 25
Fresnel Formulas. Birefringent Prism

1. Recall the expressions for the reflection and transmission of a monochromatic, parallel
beam of light incident from free space on the surface of a plane isotropic refracting medium
with index n. Call 7, and r, the amplitude reflection factors with the subscript p being with
respect to Fresnel vibrations parallel to the plane of incidence and n normal to that plane.
The corresponding transmission factors are designated by ¢, and ¢,.

2. Apply the results of 1 to the following two questions: A glass prism whose apex
angle is 60° has an index of 1.52 for the radiation being studied. The face AB of the prism
receives a parallel monochromatic beam of this radiation normal to the edge 4 and with an
incident angle such that the deviation of the beam leaving the face AC is minimal. The
incident beam has been polarized linearly so that its vibrations are at 45° to the plane of
incidence. What is the angle that the emerging vibrations make with the plane of incidence?

3. In what way is it necessary to modify the angle A4 of the prism and the incident polariza-
tion so that one loses no light by reflection at the point of entry and at the exit point of the
beam in the glass prism?

4. Assume now that the prism is of Icelandic spar which has been carefully cut so that the
section ABC is an equilateral triangle, the face BC being planar and polished. The crystal
axis is parallel to the face ABC. Show that a parallel beam of linearly polarized monochroma-
tic light falling normally on the face 4B and propagating with its vibrations at 45° to the
face ABC, is totally reflected at BC, but that at its exit point on the face AC it is elliptically
polarized. Neglect reflection losses in entering and leaving the prism since these are small
near normal incidence and indicate how the emerging elliptical vibrations depend on the
height # of the triangle ABC and on the two principal indices of sparn, = 1.65andn, = 1.48.
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near normal incidence and indicate how the emerging elliptical vibrations depend on the
height # of the triangle ABC and on the two principal indices of sparn, = 1.65andn, = 1.48.
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5. Assume finally that the crystal axis is normal to the entry face 4B, that is, parallel to the
incident beam. Show that it then has two distinct beams leaving the prism which have been
reflected on BC. Find the direction of each of the emerging beams and indicate with what
vibrations they propagate.

SOLUTION
2. One has (Fig. 25.1)

. A . D+4 . A o
nsm—2~——sm 3 and D=2-A, r—7—30 .
sin Qfgﬁ — 1.52X0.500 = 0.760, 9%’.’- = 49°28' = .

Fic. 25.1

Using the appropriate expression [(8.28) of § 8.4]
tana, = cos (i—r)tana;, o; =45°, tana; = 1.
The beam leaves at the same angle
tan o, = cos? (i—r),
i—r=49°28'-30° = 19°28',  cos(i—r) = 0.94293,
cos? (i—r) = 0.88912
o, = 41°39'.

3. The reflection factor is zero for vibrations in the incident plane at the Brewster angle.
It is therefore necessary to polarize the incident beam so that the vibration is normal to the
plane of incidence and the incidence is such that tan iy = n, hence

ip = 56°40'.
For the emerging beam to be at the Brewster angle it is necessary for 4’ = 2f. Thus
sinr = cosis, r=90°—ip= 33°20".
A =66°40', hence A'—A= +6°40".

4. The incidence at I (Fig. 25.2) is at 60°, hence sin i = 0.866 is greater than 1/n, = 0.675
and 1/no = 0.606. Thus there is total reflection. The propagation of the e- and o-waves is
normal to the axis so that the e- and o-rays which are reflected and emerge are mixed.

However, they are polarized, the o-ray in the plane of the principal section and the e ray
normal to this plane. Since the vibrations are coherent at the entry where the two principal
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axes are parallel and perpendicular to the edge, the birefringence is n,—n,. The distance
travelled is A sin 30° = h/2. One knows (§ 8.3.2) that for « = 45° the ellipse is oriented
with its axes at 45° and the ratio of its axes is tan 8 such that tan 28 = tan ¢ (Fig. 25.2):

2 h zh
¢ = e 5("0“‘",,) = —Z-XO.17.

FiG. 25.2

5. The incident rays undergo no birefringence up to 7 (Fig. 25.3). They are totally reflected
at an angle of 60°, that is, in a direction making an angle 6 = 60° with the optic axis. The
normals to the reflected waves remain mixed, but one wave has an index no and the other n
such that [(4.25) of § 4.4]

n?sin26  n?cos?f 1
- b

ne ng

n? 3 + ! =1=n? 1
(4)(2.19 4><2.72) T T 04347
n® = 2.304, n = 1.517.

The corresponding rays are separated: the ordinary ray, coinciding with the wave normal,
strikes the face AC at a normal and passes out without deviation. Its vibration is normal to
the plane of the figure. The extraordinary ray makes an angle with the ordinary ray given by
[(4.37) of § 4.9]

(n2—nd) tan 6 _ (2.19—2.72)1.732 — 0088
n2+ng tan? 0 2.19+2.72X3 B

{=—5%.

tan{ =

The minus sign shows that the extraordinary ray makes an angle of 54°58’ with the normal
to BC. The incident angle at 4AC is  and the angle of refraction is

sin i, = 1.517Xsin 5°3’ = 1.517X0.0877 = 0.1335
i, = T°40".
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PROBLEM 26
The Field of Polarizing Prisms

A spar polarizing prism has the form of a parallelepiped whose face ABCD (Figs. 26.1
and 26.2) is normal to the optic axis. The plane of the cut contains the optic axis and lies
along the line AC. The two halves of the prism are separated by a layer with parallel faces
formed either of a transparent cement with index n = 1.540 or of a layer of air. Determine
in both cases the maximum angular range of the polarizer for rays normal to the optic axis,
that is, the sum of the angles which these rays can make on either side of the normal to the
face AB so that the emergent beam is polarized. Also find the size of this range when the
angles are symmetric with respect to the normal. Calculate the ratio R = L/h of the length
AD of the prism to its height AB. The principal indices of spararen, = 1.658 and n, = 1.486.

SOLUTION

Propagation is directed normally to the optic axis and the ray direction is coincident with
that of the normal to the waves.

1. It is the ordinary ray with the higher index which is eliminated by total reflection in the
case where the two halves of the prism have cement between them. The range is limited on
the upper side (Fig. 26.1) by the angle of incidence ¢ corresponding to the direction AC of
the refracted extraordinary ray whose angle of refraction is the angle « which defines the
shape of the prism

h 1
t = — = —
an« I=-R’ ¢))
and one has, at 4

sini = n, sin «. 2)
inNA C

&

L)
7’57 ~h A ! 5
B c
FiG. 26.1

On the lower side, the range is limited by the condition that the angle of refraction r of the
ordinary ray be such that its angle of incidence on the cutting plane AC be at least equal to
the limiting angle /, for spar-cement defined by

sinlo = n/no.
Now

I = %—(oﬂ-ro),
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hence
cos (a+ro) = njny. 3)
The angle of incidence limiting the range on the lower side is such that
sini = npsin ro. 4
Combining equations (1), (2), (3), and (4), one gets

n,

Sini = ————
V1+R?

and
(3~ R4+ [ — 2~ 2n(n+ n )R — (n+n,)? = 0,

The numerical factors give
R=L/h=493
i=17°10', o = 11°30".

If one only wants to find the maximum symmetrical angular range, one must take @ = rq

and (2) yields
cos 2x = nfne = 0.9275
a = 11°
and one gets from (1):
R =L/h =514

This prism is called a Glazebrook prism.

2. The condition for which the ordinary ray striking the face 4B in the plane of the figure
above the normal is totally reflected on AC is the same as above now withn = 1:

. 1
—a—ro=1lp, sinly=—.

.. . 11
sinfo = nsinro, > .
0

But the extraordinary ray can also undergo total reflection and the range will be limited on
the upper side by the condition that this ray can again exit at the face CD, which gives

.. . 14 . 1
sini,=n,sinr,, ——o+r,=<I[l, sinl, =——

2 n, '
A D
o
e
el
z —
(o}
l‘//
B c
Fi1G. 26.2

8‘
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For the range to be symmetrical it is necessary for i, = iy, so that
sinio = nosinre = n,sinr,. 4)
Now the angles r, and r, are small since
ro+r. = l,—1lp = 5°11".
Thus, one can write, in place of (4)

g = Noro = Nele,
from which the range
_ 2n.no 2n.no

2ip = M0 =
o= me To T = 1

(l.~1y) = 8°10',
and the ratio

R = cota = cot (lo+r9) = cot (lo+:1—°) = (.825.
0

This is called a Glan polarizer. It is much shorter than the Glazebrook prism but the light
wasted is much larger since the reflection factor is larger at the spar-air interface than at the
spar—cement interface.

PROBLEM 27

Rotary Dispersion

A parallel beam of white light passes through a spar plate of thickness e placed between
two nicols set at extinction. The optic axis of the plate is at 45° to those of the nicols. In
addition, the beam passes through a grating with 500 lines per millimetre and a converging
lens with a focal length of 1 metre. On a white screen placed in the focal plane one observes
the first order spectra which are formed about the central fringe.

1. At what distances from the central fringe will the points P and Q be found where the
radiation of wavelengths 2; = 0.6 . and A, = 0.7 w converge?

2. There are dark bands at P and Q and one finds forty-one bands (fringes) between these
two points. What is the thickness of the spar?

3. Consider now the white light which leaves the spar plate and which does not pass
the second nicol.

(a) What are the wavelengths A for which the polarization is linear?

(b) What are the wavelengths A for which the polarization is circular?
Indices of spar: n, = 1.658, n, = 1.486.
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Rotary Dispersion

A parallel beam of white light passes through a spar plate of thickness e placed between
two nicols set at extinction. The optic axis of the plate is at 45° to those of the nicols. In
addition, the beam passes through a grating with 500 lines per millimetre and a converging
lens with a focal length of 1 metre. On a white screen placed in the focal plane one observes
the first order spectra which are formed about the central fringe.

1. At what distances from the central fringe will the points P and Q be found where the
radiation of wavelengths 2; = 0.6 . and A, = 0.7 w converge?

2. There are dark bands at P and Q and one finds forty-one bands (fringes) between these
two points. What is the thickness of the spar?

3. Consider now the white light which leaves the spar plate and which does not pass
the second nicol.

(a) What are the wavelengths A for which the polarization is linear?

(b) What are the wavelengths A for which the polarization is circular?
Indices of spar: n, = 1.658, n, = 1.486.
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SOLUTION

1. A parallel beam of light which normally crosses a uniaxial birefringent plate with
parallel faces cut parallel to the axis remains parallel and does not undergo doubling.

In effect, the normals to the ordinary and extraordinary waves are coincident within the
crystal and are, in this case, both coincident with the rays since the normal to the extra-
ordinary wave is in the equatorial plane of the indicial ellipsoid (Fig. 27.1). It thus strikes
the grating normally. The principal maximum in first order for radiation with wavelength 1

is in the direction i,
siniy = AJd,

Optical axis

——
=3

Al N
e R 4
Fi1G. 27.1 Fi1G. 27.2

d being the grating step. One has d = 2y and

A=06y, siniz= % =030, i;=17°27'30",

A=0T7yu, sinij= % =0.35, i1 = 20°29'15".

The distances from these two beams to the central image (i = 0) are respectively

ri=ftani; =0314m, r;=ftani; =0.373m.

There are two spectra in the first order symmetric about the central image.

2. The band spectra observed are due to the variation with wavelength of the phase
difference between the principal vibrations introduced by the birefringent plate. The linear
vibration OP from the first polarizer (Fig. 27.2) falls on the spar at 45° to the optic axes
which are in the direction of the optic axis and normal to it, and has equal projections on
these axes. After exiting from the plate, the vibration parallel to the axis, which is propagated
with the index n, less than the index n, of the perpendicular vibration, has taken a lead in
optical path over the latter of:

b = e(no—n,).

This does not depend on the wavelength if one neglects the dispersion of the birefringence.
This approximation, always good in the domain of radiation under consideration, is imposed
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by the statement of the problem which only gives a single value for the indices. However,

the phase difference
2né  2me
o= =g (o

varies with the wavelength. The intensity transmitted by the analyser (§ 6.19) is given by

1= sinzg, 0y

since the optic axes are at 45° to the direction of vibration given by the polarizer and which
itself is crossed with the analyser. The intensity is zero for

¢ =2Kx or elno—n,) = KA, (K integer). 2)

All wavelengths for which this relationship is satisfied—that is, for which the thickness of
the plate is equal to K times that of a single wave plate—are quenched. They then correspond
to dark bands in the spectrum.

To find the thickness of the plate, one needs to know the integer K (or K’) relative to the
A band (or A'). If one has forty-one bands between these two wavelengths

K = K'+42.
Thus one has
ene—n,) = K'A’ = (K'+42)4,

hence
, 0172
K = eX—OJ -
and
42%0.6 42X0.6X0.7
= 06\ = ormaxol -~ 1026
0.172(1—ﬁ)

3. From one dark band to the next, the phase difference ¢ varies by 2%. For the wave-
lengths lying between these bands the vibration leaving the spar is generally elliptical.
The axes of the ellipse are always oriented along the direction of the vibration OP defined
by the polarizer and in the normal direction OA4 (§ 8.3).

(a) The vibration is linear when this ratio is zero or infinite, that is, if:

% =Kz or % = (2K+1) % (K integer).
In the first case, one again gets equation (2) and the vibration parallel to OP is quenched
by the analyser. In the second case, the thickness of the plate is equal to an odd number
times that of a half-wave plate for the radiation under consideration and the linear vibration
is parallel to O A4 and is passed by the analyser. Illumination of the spectrum is maximum for
wavelengths defined by

e(no—n.) = 2K+ 1)%.
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(b) The vibration is circular for tan ¢/2 = 1, so that
¢ 4
5 = 2K+1) e

The thickness of the plate is equal to an odd number times the thickness of a quarter-wave
plate. This occurs for radiation whose wavelength satisfies

e(ng—n.) = (2K+1) % .

PROBLEM 28

Two Passes through a Quarter-wave Plate

A monochromatic light source emits a parallel beam which passes through a polarizing
prism P. The emerging light rays fall at normal incidence on a crystalline quarter-wave plate
(for the radiation utilized), L;, and are then reflected normally at the surface of a perfectly
reflecting metallic mirror M (Fig. 28.1).

J4
12— | E
LR e s ,
L P L, M
Fic. 28.1

Calling « the angle formed by the plane of the principal section of the polarizer P and the
advancing optic axis of the plate L;, and I, the luminous intensity of the incident beam
before passing through polarizer P, one wants to know:

1. The value of the luminous intensity I of the returning beam emerging from the polarizer.
Discuss the special cases of the angle «.

2. Rotating P uniformly about the incident light beam with a frequency »(ax = 2mt),
what will be the modulation frequency »' of the beam I?
In each case neglect the losses due to glassy reflection.

SOLUTION

The normal reflection on the mirror leads to a phase advance of = for all linear vibrations
(§ 3.5). In addition, if one considers the most general polarization state of a light vibra-
tion—elliptical polarization—the reflection makes a phase advance of @ both elliptical
components thus the direction of the path is not modified.

However, the propagation direction of the light is inverted by reflection and the plate
L, receives an elliptical vibration in an inverted sense to that which it originally produced.
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(b) The vibration is circular for tan ¢/2 = 1, so that
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12— | E
LR e s ,
L P L, M
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advancing optic axis of the plate L;, and I, the luminous intensity of the incident beam
before passing through polarizer P, one wants to know:

1. The value of the luminous intensity I of the returning beam emerging from the polarizer.
Discuss the special cases of the angle «.

2. Rotating P uniformly about the incident light beam with a frequency »(ax = 2mt),
what will be the modulation frequency »' of the beam I?
In each case neglect the losses due to glassy reflection.

SOLUTION

The normal reflection on the mirror leads to a phase advance of = for all linear vibrations
(§ 3.5). In addition, if one considers the most general polarization state of a light vibra-
tion—elliptical polarization—the reflection makes a phase advance of @ both elliptical
components thus the direction of the path is not modified.

However, the propagation direction of the light is inverted by reflection and the plate
L, receives an elliptical vibration in an inverted sense to that which it originally produced.
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On the whole the experiment is equivalent to that illustrated in Fig. 28.2:

/

I
el 7| ]
[ N |
L P L
FiG. 28.2

P and A: polarizer and analyser parallel; L,: a quarter-wave plate; Ly: a half-wave plate
having its optic axes parallel to the axes of the elliptical vibration exiting L,, it inverts the
sense of the ellipse as does the mirror but without altering the direction of propagation;
L,: a quarter-wave plate having its optic axes parallel to those of L,; I: the direction of
observation.

1. The linear vibration given by P is acos wt with a = 4/Is/2. Its components on the
optic axes of L; can be written:

on the entry side  yo = acos « cos wt, Zo = a sin « cos wl,

on the exit side Y1 = acos « cos wt, z1 = asin « sin wf,

calling « the angle which the vibration a makes with the advancing optic axis y of the plate
L,. The vibration is left-handed in this case with its axes along y and z. The plate Lg has its
optic axes also directed along y and z. It transforms the components y; and z; into

Y2 = acosacoswt, zs= —asina sin wl.
’ .
The plate L, gives
. . 7 .
y =acosacoswt, z =—asinasin (wt+—2~) = —a sin « cos wt.

The analyser 4 permits passage of the components
y cosa = acos’acoswt and z'sina = —asin® « cos wt,
so that
a(cos? a —sin? &) cos wt = a cos 2« cos wt.
The intensity is

I= % cos? 2a. 0

It reaches its maximum value for « = 0 and « = n/2. In both cases a linear vibration
directed along Oy or Oz passes through the entire apparatus.

The intensity is zero for « = m/4. In this case, it exits from L; as a left-handed circular
vibration (using the convention adopted). The plate L transforms this into right-hand cir-
cular light. This is transformed into a linear vibration by L;. However, this latter vibration
is perpendicular to the transmitting direction of the analyser which therefore quenches it.

2. The result is obtained immediately from (1) which gives

I
I =2 cos? 4mvt,

2

where » is the frequency of rotation of the polarizer-analyser. The modulation frequency is
therefore " = 2,
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PROBLEM 29

Birefringent Monochromator

A parallel beam of light from a sodium vapour lamp passes through a polarizer analyser
pair which have their transmitting directions parallel and which are separated by a calcite
plate with parallel faces whose optic axis is fixed in the plane of the faces. What must be the
minimal thickness of this plate so that only one of the sodium D-lines, separated by 6 A,
leaves the analyser with maximum intensity ? The following table gives the principal indices
of calcite in the region of the D-lines:

MA): 5876 5893

n, : 1.486 47  1.486 41

ng 1.65846  1.658 36.
SOLUTION

The obtain a zero minimum, it is necessary to have the axis of the plate at 45° to the
principal plane of the polarizers. The intensity is (§ 6.19)

I = cos? i; e(no—n,)

since, for a plate parallel to the axis, the principal indices are n, and n,. For the intensity at
wavelength A to be a maximum it is necessary that

e(no—n,) = KA (K integer). ¢))
For it to be zero at the same time for the wavelength A’ = A+ 84, it is necessary that

e(ng—ny) = (K+3)A = (K+3) (A+84).
But
dng d

ne = nog— — 0k, No= N,—-

n,
da A o2,

di

hence

dny dn, _ 1
e{no—ne— ("a"x* - )dx} - (K+5) (A+82)

and, taking (1) into account,

e(no—ne) dne dn, _ A+ 64
{*x*“’(dx ‘J)}‘” =5
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and finally, neglecting 84 in the second term,

_ A2 1
€= mx ) dno glli )
(no—n,) (W_ dl)
With
dne 107¢ dn,  6X107°
A = 5893, 64 =06, TR T TR
one gets

e~ 17x10% A ~ 1.7 mm.

This arrangement can effectively serve to separate the components of a doublet.

PROBLEM 30
Experiments of Fresnel and Arago

I

A collimator provided with a vertical slit and an astronomical telescope are situated in
such a fashion that their optic axes are along the same horizontal. The two instruments are
focused at infinity and the collimator is illuminated by a monochromatic radiation of wave-
length 0.54 11 (the green line of mercury). Between the objectives of these two instruments an
opaque screen is placed normal to their common optic axis and the screen is provided with
two vertical windows F and F’. The windows have the same width @ = 1 mm and their
centres, situated on the same horizontal, are separated by a distance d = 3 mm. Sketch the
appearance of the fringes as they appear in the telescope and, knowing that the magnification
of the telescope is 20, find:

(a) the apparent diameter of the central maximum;

(b) the angular separation between two consecutive interference fringes.

1I

A nicol polarizer whose principal section is vertical is positioned between the collimator
and the screen containing the windows. In addition one has transparent, easily cleaved mica
whose two principal indices for the green mercury line at normal incidence and for the two
vibrations at right angles lying along the optic axes L’ and L"’ of the mica sheet are given by:

n = 15998, n” =15948]

A half-wave plate of this mica is required for the green mercury line. Determine its thickness
and show how one can verify that the cleaved plate is precisely half-wave.
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and show how one can verify that the cleaved plate is precisely half-wave.
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1

From this half-wave plate two pieces are cut having the form of elongated rectangles.
One of these rectangles ABCD has its long axis 4B parallel to the optic axis L and the other,
A'B'C’'D’, has a long axis 4’B’ which makes an angle of /4 with the direction of L. These
two plates are placed in front of and against the opaque screen with their sides 4B and 4’B’
vertical so that each one covers one of the windows. Explain why under these conditions the
interference fringes previously seen disappear completely and show that in order to make
them reappear again in the same place it is necessary to introduce an appropriately oriented
nicol analyser behind the windows.

1A%

Can one, by initially placing a thin plate of mica suitably oriented and covering the entire
field, make the fringes continually visible when one turns the nicol analyser but displaced
in a continuous fashion depending on its rotation?

SOLUTION

This problem is a variation on the experiments of Fresnel and Arago on interference in
polarized light (§ 6.17).

Young’s fringes are formed as with natural parallel monochromatic light. The angular
distribution of the light passing through a system of windows is given by the usual expres-
sion (§ 6.1):

aa sin §

I =4I, —
7a sin i

A

os? (nd;in i)- )

I, is the diffraction intensity along the axis of the system and i is the angle made with this
central line in the plane of the diffraction. Since the magnification G of the telescope is, by
definition, when focused at infinity equal to the ratio of the apparent diameters of the object
when viewed with the instrument and the naked eye, it is only necessary to multiply the
result given in (1) by G to obtain the required value.

(a) The first factor of (1), which corresponds to diffraction by each slit vanishes for
sin i; = A/a. The angular diameter of the central maximum thus has the value

2Gsini; = 26—2— = 40><9"1%;,‘ﬁ = 2.184X1072rad = 1°15".

(b) The angular separation between two neighbouring fringes corresponds to the difference

between two values of i which cause the second term of (1) to go to zero, namely sini = 1/d

and through the telescope

Gi — 20X 0.546

T = —2
d 3% 10° 0.364X 1072 rad.
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Thus one has 2.184/0.364 = 6 interference fringes in the central diffraction maximum.
Since the central fringe is a maximum, the third bright fringe on either side of the central
maximum falls in the direction i; where the intensity goes to zero. Therefore, five inter-
ference fringes are visible (Fig. 30.1).

The intensity due to the second factor of (1), namely
41, sin? —?« = 2I(1—cos ¢) )

is modulated by the variations in the first factor.

II

The thickness of a half-wave plate (§ 8.3) is

A 0546
2(n'—n'") — 2X0.005

e =

= 54.6 p.

Verification requires that one recall that a half-wave plate converts a linear vibration into
a linear vibration. By placing it—in any orientation—between a crossed polarizer-analyser
pair, one can find extinction by rotating the analyser. The procedure does not distinguish
between a plate giving a phase retardation of A/2 and one giving k4/2 (k integral) but one
knows that the plate is essentially a half-wave plate.

To increase the precision one uses the quarter-wave method (§ 8.6.4): the angle of rota-
tion of the analyser which acts from the zero transmission region to restore the illumination
is equal to ¢/2 = 90°.

I

The plate ABCD does not affect the orientation of the linear vibration given by the
polarizer which is parallel to the optic axis L’. The plate 4'B'C’D’ rotates this same vibration
through 90° since it is oriented at 45° to the optic axis L'. The diffracted beams from the two
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slits thus consist of coherent, linear vibrations of equal amplitude but oriented perpen-
dicularly to one another. These recombine to give elliptical vibrations which vary according
to the phase difference but which contains a uniform distribution of energy. Thus there are
no longer any interference fringes.

The analyser prism allows passage of all linear vibrations parallel to its direction of trans-
mission. These components which then have the same polarization can interfere. Calling
OV and OV’ (Fig. 30.2) the two linear components, OA the transmission direction of the
analyser which makes an angle 8 with OV, and Ov and Ov’ the respective projections of OV
‘and OV’ on OA4, one has:

Ov = acosfcoswt, Ov = asinf cos (wt—¢),

Fic. 30.2

with a the common amplitude of OV and OV” and their phase difference which depends
on the angle of diffraction. Combining Ov and O+’ gives the intensity:

I = a®sin® B+ a? cos® f—2a? sin B cos f cos ¢ = a*(1+sin 28 cos ¢).

To recover the original system of fringes where the distribution of intensities is given by (1),
it is necessary to have sin 28 = 1 and 8 = n/4. The amplitudes Ov and Ov’ are then equal
and the fringe contrast is unity. The contrast is clearly zero for 8§ = 0 or 8 = x/2 since only
one of the vibrations OV or OV" is transmitted by the analyser and there can be no inter-
ference.

v

The preceding discussion shows that the visibility of the fringes depends on the azimuth 8
of the analyser. To have them independent of this it is necessary that the projections
Ov and Ov’ do not depend on this, that is, that the vibrations OV and OV” are circular rather
than linear. One can accomplish this by placing in front of the analyser a quarter-wave
plate of mica with its optic axis at 45° to both OV and OV". The two vibrations are trans-
formed into circular vibrations with opposite senses (§ 8.3.3) and having the same ampli-
tude. At any point in the field one of these has a phase difference ¢ with respect to the other.
However, one knows (§ 8.5) that the resultant of such vibrations is linear with an azimuth
equal to ¢/2. Between two points in the field where the phase difference varies by 27, the
linear resultant has rotated through = and at these points extinction will be obtained for
the same orientation of the analyser. One has a system of fringes with the same separation
as in natural light. Now, by turning the analyser through an angle «, one extinguishes all the
vibrations inclined at an angle of « to those above and one sees a continuous displacement
of the system of fringes.
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This can be made more precise by a calculation. The components of OV on the optic
axes OQ and OQ' of the quarter-wave plate (Fig. 30.3) are, at the exit side,

a

V2

00, = % coswt, 0Q:= sin wt (right circular),

while those of OV are

, a —a
0Q1 ==

V7 cos (wt—¢), 0Q, = VI

The signs are those obtained by assuming that OQ, is the advanced optic axis (that with
the smaller index).

sin (wt—¢)  (left circular).

VI

Fic. 30.3

Let 0 be the azimuth of the analyser OA with respect to OQ:. The projections of the
vibrations on OA are

a a . . a
—-——cos wt cos 8+ —— sin wtsin § = V—f cos (wt—0),

V2 V2

?_ cos (wt— ¢) cos 6— 2 sin (wt—¢)sin 6 = 2 cos (wt—9+6)
V2 V2 V2 '
These are two vibrations in the same direction and with the same amplitude which have a
phase difference 20 — ¢ with a resultant

I = 242 cos? (6— ¢/2).

If 6 = O or K=, one has the system of fringes represented by (1). If 6 varies, the maxima are
where 0 = ¢/2.

PROBLEM 31
Polarization Interferometer. Differential Method

I

A ray of monochromatic natural light falls at normal incidence on a quartz plate Q
having parallel faces and thickness e. The optic axis is in the plane of the figure and makes
an angle of 45° with the normal to the plate (Fig. 31.1). One has n, = 1.533 and n, = 1.544.
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I
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1. Construct the path of the rays in the crystal.

2. Calculate as a function of e, n,, and n, the separation of the emerging rays. Give their
states of polarization.

0. Q, Q,

/ / /if

(E)
FiG. 31.1 FiG. 31.2

nn

One adds a second quartz plate Q. identical to Q,. The faces of these two plates are
parallel. Let « be the angle between the plane of the principal sections of these two plates
(Fig. 31.2). Show that in general four rays leave Q,. Find for « = 0, 45°, 90°, 135° and 180°:

the relative positions of the rays on the screen E (giving the polarization state of each);

the energy carried by each of them taking the source as unity.

In what follows assume that the axes Q, and Q; are parallel.

11

Place in front of Q1 a polarizer P which only lets passage of vibrations oriented at 45°
to the plane of the figure. Between Q; and Q: is placed a half-wave plate whose optic axes
are at 45° to the plane of the figure. Sketch the path of the rays through the system and
indicate the nature of the vibration transported by each one.

v

Place behind the half-wave plate a transparent plate L to generate a phase variation (Fig.
31.3). Call ¢ the phase difference introduced between rays (1) and (2) displaced by A. What
is the nature of the vibration leaving Q2 in the case where

T T

$=0, 0<¢=<32, ¢=17

%<¢<n and ¢ =n?
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— /Z (1)

.
; ZRS

87

7

Z

L

Fic. 31.3
Vv

1. One can cause the rays leaving Q, to interfere. What is the function of the polarizer P?
How does it contribute to the production of good contrast?

2. One illuminates the system by a plane wave X parallel to the faces of the quartz. Show
that the waves issuing from Q. are displaced laterally by an amount A. Assume that the
plate L generates a phase constant variation throughout a groove of width a (Fig. 31.3).
Find as a function of ¢ the illumination in the different regions of the image.

VI

In general one can detect objects with different phase and not measure the phase shift.
Place behind Q4 an objective O focused in the plane of the plate L. With this objective (with
given characteristics) are associated the quartz plates Q; and Qs so that the separation A is
less than the limit of resolution of the objective O.

Find e given that O has a numerical aperture sin ¥ = 0.2 and the wavelength used is
A =05y

SOLUTION

1. Huygen’s construction (§ 4.2).
The wave surface is made up of:

a sphere of radius 1/n,
an ellipsoid of revolution with
axes 1/n, and 1/n,

tangent along the axis
(Fig. 31.4).

The incident plane wave breaks up within the crystal into an ordinary wave Xy and an
extraordinary wave X, (Fig. 31.4). The ordinary wave is directly transmitted and the extra-
ordinary ray is deviated toward the axis (in the case of a quartz crystal).

2. The intersection of the ellipsoid with the plane of the figure is an ellipse with equation

nyx?+n2y? = 1. @
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At point N the tangent is parallel to the bisector of xOy and thus one has dy/dx = 1. Using

equation (1) this becomes

n x

1=—"2=
ny @
hence
y ng
Z=tana =——2,
X an « 2 3)
The separation of the two emerging rays is
T l+tana« n?—n?
A = — = = ¢ 0 .
¢ tan (4 +a) * T—tana ni+ng @
Since the birefringence of the quartz is small, one can write
n,—ny 9x 103
A=e =€ 1355 " (%)

The extraordinary vibration is in the plane of the principal section (which contains the axis
and the normal to the entry face). The ordinary vibration is perpendicular to the plane of the
figure (Fig. 31.4).

II

One sees that the plate Q4 splits the incident radiation into two rays situated in the plane
of the principal section.

Take ray 1 incident on Q.. If the vibration E does not coincide with the optic axis of Qs
one has on the exit side two parallel rays in the plane of the principal section of Q» and
carrying the vibrations EE and EO. Likewise, ray 2 is split and the two rays carry the OE
and OO vibrations (Fig. 31.5).

9 R & M: PIO
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E
!

1

o 00

/ 7
/,

& ¢
Fic. 31.5

o« =0 OO and EE are in the plane of the figure separated by 2A. Each ray carries
energy +.

« = n/4 four rays each with energy ;.

« = n/2 two rays each with energy 3-.

« = 3m/4 four rays each with energy .

« =m  two coincident rays with energy .

The results are seen in Fig. 31.6.

Note. The assembly of two identical plates making an angle of « = n/2 forms a “Savart
plate™.

ox=0 & = 45° o =90° ® =135° o =180°
FiG. 31.6

1

The vibration transmitted by the polarizer P can decompose into two rectangular vibra-
tions Px and Py having the same amplitude (Fig. 31.7). In the crystal Q,, P, becomes ordi-
nary and P, extraordinary. If one does not insert the half-wave plate, one has the situation
shown in Fig. 31.6a. Knowing that a half-wave plate transforms a linear vibration into
another linear vibration symmetric with respect to its optic axes, the vibration which is
extraordinary in Q; behaves (after rotation by 90°) like an ordinary vibration in Q. In-
versely, the ordinary ray in Q; becomes extraordinary in Q. (Fig. 31.7). The vibrations E and O
are shifted out of phase in passing through Q; however, EQ and OFE are again in phase
after passing through Q,.
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p P E'A ?E EQ
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i RO

¥

Polarizer O] 02

FiG. 31.7

Iv

At the exit side of O, one has, in general, an elliptical vibration (formed from two linear
vibrations out of phase by ¢). The ellipse can be inscribed in a square and its axes coincide
with the diagonals of the square (§ 8.3.2).

¢=0 linear
0 < ¢ <z/2 right elliptical
¢ =m/2  right circular
nf2 < ¢ <z right elliptical
¢=a linear

v

1. The polarizer makes the vibrations coherent. It is necessary to add an analyser after
Q. to render the vibrations parallel. The contrast is maximum and equal to one when
the vibrations have the same amplitude, that is, when the favoured direction of the analyser

is at 45° to the plane of the figure.

2. The wave X' is split into two waves 2, and X longitudinally and laterally out of phase.
The two waves Z,zand 2y, are again found to be coincident and in phase as a result of the

z b3
13 13 Yy
¥ Eo, -
A
Before Q] After Q, After L After 02
Fi1G. 31.8

9*
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compensation by Q.. However, if phase variations are introduced between Q1 and Qs, the
field contains two phase-shifted objects separated by A (Fig. 31.8).

A > a total splitting method (Fig. 31.9a),
A < a differential method (Fig. 31.9b).

a

-— -

m_[@]1@] @ L6

. ferlal

A
Fi1G. 31.9a FiG. 31.9b

The phase shift and therefore the illumination varies in the different regions. The results are
summarized in the following table:

Region 1 2 3 4 t 5
Phase difference 0 +¢ 0 - 0
Illumination 1 cos? /2 1 cos? /2 1

This polarization interferometer leads to an interferometer with uniform brightness. If one
uses white light, the phase variations show up in variations of colour.

VI

When one wishes to detect objects with different phase one uses the differential method
and chooses a splitting less than the limit of resolution g of the objective. This requires

A<eg, 6)
hence
nZ—n2 1.24
n2+n? = 2sinu’ ()
e(u) < 1.5%x1.2X0.5
B = 9x1073x2%x0.2°

e < 250 .
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PROBLEM 32

Electrical Birefringence

A capacitor with rectangular plates 4 and B of length / and separated by a distance &
(Fig. 32.1) is immersed in a cell containing carbon disulphide at 22°C. A parallel beam of
light with wavelength 4 in air is directed between the plates and parallel to their long axis.
This beam is polarized by a polarizer P whose principal section makes an angle « with the
plane of the plates. After ascertaining that the faces of the cell crossed by the incident light
are isotropic, one applies to 4 and B the potentials ¥; and V,. Determine the orientation

Al
—_—
= ]
[ | A
Bl
Fic. 32.1

and ellipticity of the light leaving the apparatus. For « = 45°, show precisely on a figure the
positions of a quarter-wave plate and of the principal section of an analyser .4 corresponding
to complete extinction of the emergent ray.

For numerical purposes take / = 20 cm and # = 4 mm. For ¥, and V; take the pole
potentials of a series of S000 batteries of 2 volts each with the centre of the voltage source
grounded.

Note. One knows that carbon disulphide placed in an electrostatic field E, behaves like a
positive uniaxial crystal with axis parallel to the field and that the birefringence acquired
by it at 22°C measured by the difference of the indices n, and n, is such that:

ne—ny = 3X 107X AEE,
the variables being in SI units. Neglect the effect of the edges of the capacitor and assume
the field to be uniform.
SOLUTION

The cell acts like a crystalline plate with plane, parallel faces whose privileged directions
are oriented along the direction Oz of the electric field (that is, normal to the plates of the
capacitor) and Oy normal to Oz. Since the crystal is positive uniaxial, n, > n,. The direction
of the extraordinary vibration Oz is retarded.

The linear vibration OP = sin w? given by the polarizer has the following components
along the optic axes at the entrance to the cell:

Yo = cos & sin wf, zo = sin « sin of;

at the exit from the cell
y = cosasinw!, 2z = sinasin (wt—¢),
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with

b= (re=n0).
The expression given in the problem allows us to calculate the birefringence. The field

V=V, 104

E, = PR tv Ty 25X 10% V/m.
n.—no = 3X 10714 XA X (25X 10%)?
and
¢ = gﬁéf)i()xb( 1071421 X625X 101 = 0.075% = 0.236 rad = 13.2°.

The light which leaves the cell is elliptically polarized. For « = 45°, expression (8.19)
from § 8.6 shows that 6 = « whatever ¢ may be. The axes of the ellipse are respectively

A 2 P

/%
7

Fic. 32.2

parallel and perpendicular to the direction of the incident linear vibration OP (Fig. 32.2).
Equation (8.16) of § 8.6 gives sin 28 = sin ¢. The ratio of the axes of the ellipse is
e @
tan 8 = tan 5
so that

B = 6.6°.

Since the direction Oz is retarded, the ellipse is traversed in the trigonometric sense
(§ 8.3.1).

The emergent beam can be eliminated by the analyser if the vibration it carries is linear.
The quarter-wave plate can convert to linear the elliptical vibration leaving the cell if its
privileged directions are oriented parallel to the axes of the ellipse. One can adjust the
quarter-wave plate before having applied the electric field by crossing the polarizer OP and
the analyser OA then positioning the quarter-wave plate and rotating it until extinction
occurs. The optic axes of the quarter-wave plate are parallel to OP and OA.
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If the advancing optic axis of the quarter-wave plate is placed along OP, the OP compo-
nent of the elliptical vibration, retarded by z/2 with respect to the component normal to it,
is found to be advanced by 7/2 after passage through the quarter-wave plate. The vibrations
along OP and O A are then in phase and their resultant is a linear vibration OP which makes
an angle 8 with OP. Extinction can be achieved then by adjusting the analyser, initially at
0A, and bringing it to OA4’, that is, by turning it through an angle 8 in a sense inverse to
that of the elliptical rotation (§ 8.6.4).

PROBLEM 33
Rotary Power. Circular Dichroism

Using the eye as a detector one wants to examine here the polarization states of a plane,
monochromatic wave of sodium light, 2 = 0.589 p.,, which passes through a cell containing
a liquid having an absorption and a natural rotary power.

1

(a) In the first experiment, the light is linearly polarized by a polarizer P (Fig. 33.1) and
one determines the azimuth of the vibration before and after passing through the cell which
has a length of 0.5 cm. Knowing that the vibration has turned through a clockwise angle

: &2 8 1A
P (o A
Fic. 33.1

o = 1.2° for the observer, and recalling that the rotary power is explained by circular
birefringence, find the sign and magnitude of the difference in refractive indices for this
liquid in right and left circular light of the wavelength given above.

(b) The inclination of the vibration is found using a half-shadow analyser which is
made up of a half-wave plate L (Fig. 33.1) rigidly mounted on a Glazebrook prism 4 and
covering half the light beam. The transmission direction of this prism makes a small angle
¢ with the optic axis of L. The assembly can be turned through a known angle. Explain the
function of this apparatus.

11

(a) In a second series of experiments the light is circularly polarized. This is accomplished
through the use of a linear polarizer (Glazebrook, for example) and a quarter-wave plate
with known optic axes. Indicate briefly using a drawing, how one can produce right and left
circular light with this apparatus.

(b) What is the thickness of the quarter-wave plate if it is cleaved from crystalline mica
whose principal indices in the cleavage plane are n = 1.5977 and »’ = 1.5936 in sodium
light?
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Fic. 33.1
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(c) Given this, one discovers, with the aid of a suitable flux detector, that a 1 mm cell
full of the liquid transmits a fraction of 0.520 of the incident left-hand light and that a
similar cell 2 mm in length transmits 0.320. Calculate the absorption coefficient of the liquid.
Why is it necessary to measure it for two thicknesses?

Repeat this for right-hand light where the transmitted intensities are 0.503 and 0.301.

(Recall that for a homogeneous absorbing substance, the relative loss in intensity of a
monochromatic light flux F in passing through a thickness dx of a substance is

dF

—“T=de

where K is the absorption coefficient.)

111

Find the reduction in amplitude of right and left circular vibrations which pass through
0.5 cm of the liquid. If one illuminates the liquid by linearly polarized light, show that the
emergent light is elliptically polarized and find the ratio of the axes.

v

Repeat the measurement of rotary power made in part I. Now, without touching the
analyser adjusted to extinction, place between the cell and the analyser a quarter-wave plate
whose optic axes are parallel to those of the half-wave plate. What rotation of the analyser
is required to re-establish extinction? Justify the result.

Vv

The absolute uncertainty in the orientation of a vibration as measured with an analyser
at extinction and the eye varies inversely as the square root of the light flux received by the
analyser. What thickness of this active, absorbing liquid will make the relative uncertainty
minimal?

SOLUTION
1
(a) One has (§ 8.5):

/)
o = ”T (m—n,),

« being given in radians. If the rotation occurs in the clockwise sense for the observer, it is
the right circular vibrations which propagate most rapidly in the medium. n, > n,.
1.2X0.589 X104

— = —_ -7
n—n, 180035 7.85X10™7.
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(b) Let Oy and Oz (Fig. 33.2) be the directions of the optic axes of the half-wave plate, 04
be the direction of the vibration transmitted by the analyser, and OV be the direction
of the linear vibration carried by the beam falling on the plate. This vibration takes the
direction OV, symmetric with respect to OV about Oz in the half of the beam striking the
half-wave plate. Let y be the angle made by OV with Oz. The projections of OV; and OV
on OA respectively are

Ovy = OVisin(y+e) and Ovs= OVqsin(y—e).
The intensities of the corresponding two beams after passing through the analyser are

I; = Isin2(y+¢&) and I, =Isin?(y—¢).

1

Clavoncncnnaana

o}

R T

Fic. 33.2

They are equal when y = 0, that is to say, when OV is parallel to Oz. They are faint since
e is a small angle; this is favorable for their comparison to be made by the eye (the solution
y == 7/2 gives too large an intensity). One can then precisely locate the azimuth of the vibra-
tion OV before and after introduction of the active liquid.

II

(a) The transmission direction of the polarizer OP is oriented at 45° to the optic axes of
the quarter-wave plate. To obtain a left-hand vibration for the observer receiving the light
leaving the quarter-wave plate, the “advancing” optic axis, that is, the optic axis correspond-
ing to the lower index of refraction, should be aligned along Oy (n, < n.). This is reversed
for a right-hand vibration.

(b) For a quarter-wave plate of thickness e:

e(n—n") = %

or:
0.589

= 215977—1.5936) ~ 0 ¥

e

which can be easily obtained from mica because of the ease of cleaving.
(c) Expressing the absorption coefficient K in cm™1, one has:

for the 1-mm cell Fi1/Fo = A4 exp (—0.1K),
for the 2-mm cell Fy/Fo = A exp (—0.2K),
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Fo being the incident flux, 4 a constant coefficient which depends on the cell and especially
which takes into account the reflection losses on its faces. Hence:

il = exp (—0.1K).

Fy
For left-hand light:
0.320
exp (—0.1K)) = 050 = 0.615,
—0.1K; = 2.310g 0.615 = 2.3(—0.21112) = —0.4856.
K; = 486 cm™t.
For right-hand light:
0.301
exp (—0.1K,) = 0503 = 0.599,
—0.1K, = 2.310g 0.599 = 2.3(—0.22257) =—0.5119,
K, =512cm™.

It is to eliminate the effect of the cell accounted for by the coefficient A that requires the
use of two measurements with varying thickness of cell.

m

(a) The intensity of a monochromatic light vibration is proportional to the square of the
amplitude and the absorption coefficient for this latter is K/2. Hence, the values for the
reduction factors resulting from passage through 0.5 cm are

Left-handed vibration: exp (—4.86X0.5X0.5) = exp (— 1.200) = 0.3012.

Right-handed vibration: exp (—5.12X0.5X0.5) = exp (—1.280) = 0.2791.

The resultant of the two circular vibrations with the same amplitude and opposite sense
is a linear vibration. For two vibrations occuring in the opposite sense with unequal ampli-
tude the resultant is an elliptical vibration. To see this, one can refer the circular vibrations
occurring after passage through the medium to two general rectangular axes, Oy and Oz.
The left-handed one is, for example, given by the expressions

yi=Gcoswt, 2z = Gsinwt
and the right-handed by
yr = Dcos (wt—¢), z, = Dsin(wt—¢)

with ¢ = 2« where « is the angle of rotation. With respect to the axes OY and OZ with
which these make the angle «, the equations take the form

Y; = Gcos(wt—w), Z;= G sin(wt—ua),
Y, = Dcos(wt—a), Z,=-—Dsin(wt—a).
The resultant of circular vibrations is

Y =Y+Y, = (G+D)cos(vt—ua),
Z = Z+2Z, = (G—D)sin (wt—a).
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These are the equations of an ellipse related to its axes. They are respectively equal to
2(G+ D) and 2(G—D). The vibration is left-handed if G—D > 0 and right-handed if
G—D < 0. The ellipse is described in the sense of a circular vibration less the absorption.

The ratio of the ellipse axes is

G—-D 0.3012—-0.2791

G+D — 03012702791 ~ 20381

One can get this result also by a geometric reasoning. The two circular vibrations can be
represented at each instant by the vectors OD = D and OG = G which rotate about O
making equal angles about OY (Fig. 33.3). Construct the resultant OR of OG and OD then
draw through R parallels to OY and OZ which strike OG at M and N. One finds GN = GR =
OD. The point N describes a circle of radius D+ G and M of D—G.Thelocus of R isobtained

by considering the two concentric circumferences, a moving radius ON and, at the points
where it strikes the two circles, the parallels drawn respectively to OY and OZ. This is one
definition of an ellipse.

Note that the elliptical vibration is obtained here by a mechanism quite different than that
of linear birefringence. In the latter case, the ellipicity of the vibration varies with the angle
of the incident vibration with respect to the optic axes of the birefringent system (§ 8.2).
In the actual case, the ellipse does not depend on the angle of the initial vibration since
optic axes in a liquid to which no field has been applied do not exist. The rotary power of a
liquid turns the ellipse through an angle « independent of its orientation.

v

The quarter-wave plate issituated with its optic axes parallel to the axes of the ellipse which
leaves the cell, since the analyser at minimal transmission is set along the major axis of the
highly flattened ellipse and since this axis is parallel to one of the optic axes of the half-wave
plate. The quarter-wave plate transforms the elliptical light into linearly polarized light which
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makes an angle 8 with its optic axes such that

tan § = g%g— ~ B = 00330 ~ 2°

The angle 8 is clockwise for the observer if the advancing optic axis of the quarter-wave
plate coincides with the major axis of the ellipse.

A%
The absolute uncertainty ¢ in the direction is
e=CA/F (C = Const).

The relative uncertainty is e/a. However, « = 4l (4 = const.) and F = Fy exp{(—KI).
Hence

e CA/Fo exp(—KIf2)
« T A T T

24

As a function of / this expression is minimal for

ﬁ= 2 %=0.4cm.

> 1, from which [= T~

PROBLEM 34
Faraday Effect

I

Between two polarizers P and P’ (Fig. 34.1) set so that the direction of transmission of P’
makes an angle of +45° with that of P for an observer at O one places a column C of carbon
disulfide CS2, 0.5 m long, in a uniform magnetic field B parallel to the length of the column.
What should be the direction and minimum value of B so that the maximum flux leaving
S reaches O? What happens if one exchanges the positions of S and O without changing
anything else in the apparatus?

The Verdet constant of CS2 is 42X 10 min/tesla-m.

K 'S
o N s B
( fm) i_ﬁw'—'—_"' T ﬂ" GlorB)
M M,
FIG. 34.1
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II

S and O are now replaced respectively by two identical bodies 4 and B while maintaining
the experimental set up described above such that one can operate in an adiabatic enclosure.
The polarizers P and P’ are birefringent prisms which eliminate the second beam by total
internal reflection (Nicol prism, Glazebrook prism. . .). The rejected beams reflect normally
on the perfect mirrors M;, M,, M;, and M,. Show, by examining the polarization state of
all of the beams, that the exchange of radiant energy between 4 and B does not alter the
thermal equilibrium once it has been established.

SOLUTION
I

The Faraday effect must equal +45° for the observer. The sense of this rotation is
the same as that of the current which produces the field B. For the rotation to be right at
0, the axial vector B must in the conventional sense be directed from O to S.

The magnitude of the rotation is given by Verdet’s expression (§ 18.14)

e = goBl.
Hence, in SI units

0 45X 60

E;I— = m = 0.1286 teSla.

B =

The Faraday effect always preserves the sense of the current generator of B and it
changes the sense of the rotation for the observer when he exchanges positions with the
source. The linear light formed by P’ will then be found to be normal to the transmission
direction of P and light will not pass.

This apparatus forms an optical valve; light passes freely in the sense SO but is stopped
in the sense OS.

II

On the surface the reasoning involves taking the results of part I into account and saying
that B receives half the flux @ which 4 transmits to P (the other half being eliminated by
total reflection) whereas A does not get half the flux @ emitted by B and which passes P’
(the other half being totally reflected). The thermal equilibrium is then broken down con-
trary to the second law of thermodynamics. This is Wein’s paradox. In the complete picture,
taking the mirrors into account, 4 recovers the flux @/2 which it has emitted and which is
reflected on M,. Likewise, B recovers the flux @/2 which it transmitted to M, after total
reflection in P’. The other half, which contains the light vibration Ejy crossing P’ and C
(Fig. 34.2) (the light vibration is Ej at the exit side of C), is totally reflected at P, then in Mo,
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FiG. 34.2

then again in P and returns toward B. But, at the exit from the cell, the orientation of the
vibration is E; normal to E,. The beam Ej is then reflected in P’, then at M,, then in P',
and returns toward P which allows it to pass since the vibration now has the orientation E".
A then does, finally, receive the flux ®/2 coming from B and transmitted by P'.
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DIFFRACTION

PROBLEM 35

Far-field Diffraction

Consider the apparatus shown in Fig. 35.1. It is made up of a centro-symmetric system
of two lenses Ly and Lg, both having the same focal length f. A luminous object placed at
a1 the focal plane of L; has its image formed at 7z2 in the focal plane of L.

The source emits monochromatic radiation of wavelength A.

Y,

k

il
\/L
Fi1G. 35.1

I

Between L; and L is placed a rectangular pupil of width a and length b (b > a). The
centre of this slit coincides with the optic axis of the system. The coordinates of a point in
the plane of the pupil are designated x and y.

1. Treat successively the cases dealing with the following type of object:
(a) a dimensionless point placed at the focus of Ly;
(b) a small, infinitely thin line segment passing through F and parallel to the edges of
the diffracting slit.

In both cases briefly describe the image. Find the distribution of the illumination in plane
72 where the general point is represented by the coordinates £ and 7. Graphically represent
this distribution along the axis F»f. (Use as the ordinate the illumination and along the
abscissa plot # = (sin i)/ where 7 is the angle the diffracted ray makes with the normal to
the plane of the pupil.)

133
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134 PROBLEMS IN OPTICS [PROBLEM 35

2. The object now taken is a series of fine luminous lines parallel to one another and to
the diffracting slit. These lines are equidistant from one another (period d) and the size of
the object is taken to be very large.

What is the minimum value of d for which the image has a periodic structure:

(a) when the object emits in a totally incoherent fashion. Recall that

RE S
32 352 8’

(b) when the illumination is coherent?

Numerical application.a = Smm; f= 1m; 2 = 0.5 .

Question 2b is difficult to solve if one does not use the Fourier transformation.

11

Again a point source is placed at F; and in the plane xOy one places successively different
gratings with step p.

1. The grating is made up of infinitely fine straight rulings parallel to Oy and separated
by opaque intervals of width p.

(a) Determine the distribution of illumination on the plane z,.

(b) Give the distribution of light graphically as a function of u = (sin i)/A.
Consider the cases where the grating has an infinite width and then a finite width L.

2. The grating rulings are all parallel to Oy but now the transparent and opaque intervals
have the same width, namely p/2. Answer the questions above.

3. Now consider a sinusoidal grating. The transmitted amplitude at a point P(x, y) in the

pupil is of the form:
X

2
Sf(x) = cos 7

The transmittance is constant along lines parallel to Oy. As in the questions above,
determine the distribution of the illumination and present it graphically.
Numerical application: p = 2 p; A = 0.5 u; L = « then L = 10 cm.

SOLUTION
1. Diffraction by a siit

Since the slit is long and narrow, it gives diffraction only along planes parallel to xOz.
Throughout this problem we are going to reduce to a one-dimensional problem. Only the
variables x and £ arise.

1. (a) Point object. If the pupil is very large, diffraction does not occur and one image,
identical with the object is formed at F, (the conjugate point to Fi).
The insertion of the pupil causes a spreading of the image which does, however, remain
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centred on the geometric image F». Since the pupil is a slit parallel to Oy, the image spreads
along the line Fof (Appendix A, III. 1).

A calculation will establish this result (§ 5.10).

In all of these problems we will normalize the results, that is, we will take the maximum
intensity equal to 1. Thus

Iw) = (

sin ua\? . sin [
nua"m)’ taking u = P M

The image is made up of a set of small luminous segments situated along Fof (Fig. 35.2a).

g

5

Fi1G. 35.2a

The variation in illumination is shown in Fig. 35.2b.

I (u)

\

2 1 0 1 2
a a

1

- P +

Qjes

FiG. 35.2b

The central bright region is twice as wide (2/a) as the other lateral fringes.

(b) The object is a very fine bright line. The problem does not specify the degree of spatial
coherence of the light source. However, the result will be the same in all cases. The line
segment can be thought of as being made up of a series of luminous points (Fig. 35.3) m,
my, ..., m,. Each of these points gives a line of diffraction centred on its geometric image
and parallel to O& (Fig. 35.4).

oy
m m 3%

Q

L
FiG. 35.3 FiG. 35.4
10 R & M: PIO

L,
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Since the locus of the diffraction lies in the planes parallel to §F.(, there is never any
interference found along Fsn. When the source is made up of a short luminous line segment,
the fringes formed are parallel to Oy (Fig. 35.5). The height of the fringes is equal to the
height of the line source since in this case the magnification is unity.

The distribution of illumination along any line parallel to O is the same as previously
calculated.

i

Fi1G. 35.5 Fi1G. 35.6

I ()

17

2. The object is a grating with step d.

(a) Incoherent illumination. Each slit gives a system of fringes identical to that found
above and centred on its geometric image.

Since the line sources are incoherent, we have to consider the intensity given by each of
these and then form the sum of these intensities.

For simplification we are going to assume that the diffraction figure given by each slit is
limited to the central fringe centred on its geometric image. The distribution of the illumina-
tion is shown in Fig. 35.6 where u, is the ratio d/fA.

One can clearly see that when d decreases eventually the situation will arise where the
grating is no longer resolved.

If one adopts as the resolution criterion the case where the diffraction maximum coincides
with the first minimum of the neighbouring image, one has (Fig. 35.7)

1 sin { i d
uo=Z=—1—z7=~ﬂ—. (2)
Hence
dmin = 4 %- (2 blS)

In reality, if one takes the secondary maxima into account, one finds

Inax = 1(0)

A TR S
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Equation (1) gives

Imax - 19
1 1 1
Inin = 2 f+9l2+25n2+ ,
4 ) 4 4)
8 1 1 72
Imm_ﬁ[1+9+g+ ] = X = 1= I
For u = uo, the image has no contrast.
Hu)
!
w
0 . Y
FiG. 35.7
Periodic structure only appears for
u > uy, 5
d > if]a. ©)
Numerical application:
10?
d > 0.1 mm.

(b) Coherent illumination. It is now necessary to sum the amplitudes rather than the
intensities. There is no interference along Fan, only along F€.

I1. Diffraction by a grating (§ 7.7)
1. Grating with fine slits

(a) Grating of width L. Each slit, infinitely fine, diffracts uniformly into space.

As before, since the slits are parallel to Oy, there is onlydiffractionin planes parallel to
xOz. In addition, as a result of the point source, the diffraction image is centred on the
geometric image F» and spread out along Fa&.

The N diffraction slits produce an intensity

() = A(w) A*(w) = (

sin Notup \ 2
*p) . (6)

sin wup

10*
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The examination of (6) allows us to determine the position of the spectra: they are equidis-
tant with period Ju = 1/p.

Their width is du = 1/Np. The number of spectra is limited by the condition sin i < 1
which here appears as |k| < 4. Thus there are seven spectra visible all having the same
intensity.

Figure 35.8a represents the intensity variations in the plane of the image. The variables
u = (sin i)/4, sin i, ¢, and the interference order k are shown beneath each maximum on the
figure.

SU:NIE (a)
u
S IO IO I ST E /- - -
(b)
u
R
7&)_ 0 +%_ +% +% sin ¢
-2¢ 0 +21m +4m +67 A4
-1 0 +1 +2 +3 k
Fi1c. 35.8

Note. The term spectrum as used here does not refer to a coloured spectrum since we are
using monochromatic light, but rather to a maximum in the illumination in the diffraction
figure.

(b) Infinite grating. The width of the spectrum éu = 1/Np decreases when N increases.
For infinite N, the image is made up of a series of bright points on the axis Fa¢ (Fig. 35.8b).

2. Foucault grating (step p, width of the slits p/2)

(a) Pupil with N slits. The diffraction amplitude from one of the slits in direction u is
given by

<. )

Aou) = %
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The grating diffraction intensity in direction u is

sin 24P ?
_lr 2 sin Naup
1) = 2 aup X( sin mup ) ®
2
diffraction interference
term term

(a) '

1$w) Al
(» \
0 ISR Il IRRLTSNR sint_,,
Ve i %% % YA
0T A 7 % T
@
0 2n/N 2T 4t 6T 8%
“n +1 2 +3 rv
FiG. 359

The results are shown in Fig. 35.9a. The spectra of even order vanish and only spectra of
orders O, +1, 13 remain. The distribution of the diffraction figure is always along F&
since we are dealing with a point source and a one-dimensional pupil.

(b) Infinite grating. The discussion is the same as for the preceding case. Along the axis
one finds five points of unequal intensity (Fig. 35.9b).

In summary, the characteristics of the grating lead to the following characteristics in the
image:
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The width of the slits determines the amount of modulation. When the slits have a finite
width (as is always the case in practice) the spectra do not have the same intensity.
Certain orders can even vanish.

The step of the grating determines the position of the spectra. They are equidistant in u
space with period Au = 1/p.

The width of the grating characterizes the width of the spectra (éu == 1/Np = 1/L).

3. Sinusoidal grating
(a) Grating of width L. The amplitude in the u direction is given by

+Li2 ] +Lj2 x .
A(u) = f(x)e¥x dx = f cos 2z — eZ™x dx. 9
~Li2 L2 4
Taking
uy = 1/p. (10)
The preceding integral is written
1 f+L2 1 p+Li2 |
Aw) = f giznatunx dx+5 f eznu—ux dx, (an
2 ) 1 —Li2
thus
1 sinw(u+u)) L sinm{u—u1) L
Aw) = EL[ mutu)L Au—u) L ] (12)
Since L is very much larger than p, one finds
1.1
L p
or
l < u
L~

The two spectra shown on Fig. 35.10a have practically no common point.

(a)

~—

(b)

FiG. 35.10 -% T
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Thus one can correctly write for the normalized intensity

13)

Iw) = [ sina(u+uy) L ]2 [ sins(u—u;) L ]2

a(u+u) L (u—uy) L

The variation in illumination is represented by two curves, analogous to the Fig. 35.2b and
displaced by 2u;.

The image on axis £ is made up of two spectra separated by Au = 2u; = 2/p and with
width éu = 1/L.

One finds only spectra of orders +1 and —1 (Fig. 35.10a).

(b) Infinite grating. The image reduces to two bright points situated on the &-axis, sym-
metric with respect to Fe, and separated by Au = 2/p (Fig. 35.10b).

All of these problems can be treated more simply using the Fourier transformation.

I. Pupil a slit

1. (a) Coherent illumination. Since the source is a dimensionless point placed at the focus
of L,, a plane wave parallel to the plane of the pupil illuminates the slit.
The diffracted amplitude is the Fourier transform of the amplitude distribution on the
pupil (see Appendix A, III. 1), namely
sin zua
A(w) = Fu) = o

(b) Illumination by a line. A(u) retains the same value as above in paragraph (a).

2. The object a grating. (a) Incoherent illumination of the object. Notation. Call M a point
in the object plane and M’ a point in the image plane. In addition, we will approach this
question as if the planes of the object and the image were coincident (the separation of these
two planes does not arise explicitly in the calculation). Therefore the vector M —M’ will be
represented by the vector joining the point M’ in the geometric image to point M. (M desig-
nates the vector F1M or FoM and P the vector OP.)

Each point M of the object gives a diffraction image centred on the geometric image (which
we now call M also).

Since the diffraction images have no definite phase relationship, the intensities add in the
image plane.

If O(M) represents the intensity distribution in the object plane, the intensity at M’ in the
image is given by

IM)=| OWM)DM —M)dM (14)
‘'object
with D(M'— M) = |A(M’'—~M)|? = the distribution of the intensity in the diffraction spot
obtained with this pupil. Given that
I(M) "% i(P)
oM) EL o(P) (15)

D(M) EL d(p)
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Parseval’s theorem allows transformation of the convolution (14) into a product
i(P) = o(P)X d(P). (16)

We return to the special case in the text where the pupil, a fine slit, parallel to Oy, diffracts
only along planes parallel to £F5(. The only variables with which we have to deal are x, u,

and u'.
Thus
W) = J‘O(u) D' —u) du (17
and
i(x) = o(x)Xd(x). (18)

We now will determine successively d(x), o(x), then i(x).
(«) Calculation of o(x). The intensity distribution in the object plane is

O() = f 8(u— nuo). (19)

n=-—oo

This is a “Dirac series” with step uq.
The Fourier transform of a “Dirac series” with step ug is a “Dirac series” with step 1/u,.

One has
o(x) = ":zl 6("—1%,)' (20)
(B) Calculation of d(x). We have taken
D(u) = A() 4*(w). @l
However, here A(u) is real and
D(u) = [Aw)]* (22)

Parseval’s reciprocity theorem allows us to write
+ oo
dx) = f £ flx—X) dX 23)

d(x) is the autocorrelation function of the pupil transparency (in amplitude).

Since f(X) is a “rectangular” function, the convolution is equal to the common area of
two rectangles displaced by x (see Appendix A, B.III).

Several cases arise depending on the value of u,.

o = a | (Fig. 35.11a).

One has i(x) = o(x) d(x) = 6(x). Only the fundamental is passed by the slit.
One finds

Iw) = FT[8(x)], sothat I@)=1 (Fig. 35.11b). (24)
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LEx) Iwh
. 1 . 1
; i . X i u'
1 )
-4 -a a++5
A + 7
Fic. 35.11a Fic. 35.11b

The image plane is uniformly illuminated.

| ljug<a (Fig. 35.12a).

In addition to the fundamental a certain number of other spatial frequencies pass. These
latter are always attenuated by the function d(x). To establish these concepts take the exam-
ple in Fig. 35.12. One finds

i(x) = a(x)+c[a(x+£0)+a(x—ulo)], (25)
tx) Hu")

b ommmm g

1 0 0 Y%
-a -+ += +a
% o
Fic. 35.12a Fi1G. 35.12b
with
1
C=1-—.
alp
One gets from this
I(') = 1+ C[e? /o4 g —i2n'luo] (26)

’

IW') = 142C cos 272 .
Uo

Since 1/ug is less than g, the image has a periodic structure (Fig. 35.12b).
We conclude that the grating is resolved for

l< a, thatis, for d>,1£.
Uo a

Note. One sees that, even for values of ug greater than 1/a, the image does not always
conform to the object. In effect, even if all the spatial frequencies pass, their amplitudes are
modified by d(x). It is only the fundamental which is not affected.
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(b) Coherent illumination of the object. Here it is necessary to take into account the
phase relationships which exist between the various amplitudes transmitted to the image
plane from points on the object. One needs then to evaluate the integral

EM) = fQ(M) AM'—M)dM, 27
E(M") being the resultant amplitude at point M’.
Take
(M) = amplitude distribution in the object plane;
A(M) = amplitude distribution in the diffraction spot.
If

QM) =% o(P),
AM) =5 f(P), (28)
E(M) =T e(P),

Parseval’s theorem leads to

e(P) = w(P)Xf(P). 29)

The problem is always one-dimensional and thus one has
the convolution:

E@Ww) = f Q(u) A(w' —u) du (30)
and the product:
e(x) = o(x)Xf(x). (3hH
Take the product of the functions w(x) and f(x) and call this product e(x) (Fig. 35.13a).
e(x)
. 1
: _g a :
, 2 2 x
2t 0 1 2
% “% % %
FiG. 35.13a
UI
FiG. 35.13b Fic. 35.13¢
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One gets the following results:

for 1/ue > a/2, only the fundamental is passed.

E(') = 1. The amplitude is uniform in the image plane.

for 1/us < a/2, the fundamental and some of the harmonics pass.
In the example in Fig. 35.13a, one has

1 1
e(x) = 8(x)+ 6(x——) +6(x+ —). (32)
Uop Uo
Hence
E@W') = 1+ei2wluiof e—iznllio = |1 +2 cos 2 :: . (33)
0

The curves 35.13b and 35.13c represent the amplitude and the corresponding intensity.

The image has the same period as the object, but secondary maxima appear between the
principal maxima. In summary, when 1/u is less than a/2 the distribution of light in the
image becomes periodic and the grating is resolved. The more spatial frequencies passed by
the slit, the more the image resembles the object. In any case, the image will not be identical
with the object since the width of the pupil is finite.

Conclusion. Comparing the results for coherent and incoherent illumination, one finds
that in each case one “resolves” the object for the following limiting values of uy:
incoherent object 1/u, < a,
coherent object. 1/u, < a/2,
In addition one finds:

the resolution increases with the width of the aperture.
the resolution is better in incoherent than in coherent light (the ratio being 2).

Note. The microscope is the optical instrument which allows one to vary to a great extent
the coherence of the illumination. In effect, the operator can adjust the aperture of the con-
denser (condenser closed —~ coherent illumination, condenser open — incoherent illumina-
tion). Microscopists know that they can improve the resolution by using the most incoherent
light possible.

I1. Grating
Since the source is a fixed point it is no longer useful to introduce the variable #’. One
needs only deal with the conjugate variables x and u.
A. Grating with finite width (see Appendix A).
The amplitude transparence of the pupil is characterized by
g(x) = h(x)Xf(x), (34)

h(x) is the amplitude transmitted by an infinite grating,
f(x) is the amplitude transmitted by a slit of width L.
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The diffracted amplitude in the direction u is given by the function G(x) such that:
Gu) = Hw) ® F(u). (35)

1. The slits are infinitely fine.
It is easy to determine the convolution graphically:

F®H
(see Figs. 35.14b, 35.15b, and 35.16).
2. Foucault grating (see Figs. 35.14b, 35.17b, and 35.18).
3. Sinusoidal grating (see Figs. 35.14b, 35.19b, and 35.20).

fix; F{u)
1
A 5 + x v
-5 +5 47
Fi1G. 35.14a Fi1G. 35.14b
h{x) H(u)
1 1
u
0 p 2p x g W 2p
FiG. 35.15a Fi1G. 35.15b
G‘(q)
0 o %
FiG. 35.16
H(u)
i
h(x) ’
1
| | % h
0 X .
A P 7
Fi1G. 35.17a FiG. 35.17b
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G)

2p 3

0" b
Fic. 35.18

yhix) H(u)

AANAYE u
\/p\/ \ % 0 Ve

FiG. 35.19a Fi1G. 35.19b

-Yp 0 o
Fig. 35.20

B. Infinitely wide grating

The problem is simplified since there is no slit diaphragm of width L. The amplitude
distribution in the image plane is given by H(u) such that

H() = F.T.[h(x)]. (36)

For the three gratings treated, the amplitude distribution is given by the curves 35.15b,
35.17b and 35.19b.

PROBLEM 36
Diffraction by Circular Pupils

Consider an objective O limited by a circular contour of radius 7o = 3 cm.

This objective, assumed perfect, is illuminated by a point source at infinity along the axis
of the objective O.

The source is monochromatic and radiates at wavelength 4 = 0.6 p..

Let xo be the maximum aperture of the objective (Fig. 36.1). Assume «o small.
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FiG. 36.1 FiG. 36.2

I. Open pupil

1. Give the amplitude distribution and the illumination in the plane w. Characterize a
point M in the plane = by its distance g from point C, the geometric image of the source.
For simplification take Z = (27/A) aop. What is the illumination at the centre, C, of the
diffraction figure?

2. Find the angular radius 8 of the first dark ring in the diffraction figure (0 is the angle
which one sees from the optic centre O of the lens to the radius of the first dark ring).

I1. Opague disc

In front of the objective O, an opaque circular screen D is placed normal to the incident
light. The centre of the screen is on the optic axis of the objective. The screen D subtends the
half-angle a, at point C (Fig. 36.2).

1. Give the amplitude and intensity distributions on plane 7. What is the illumination
intensity at the centre of the diffraction figure? Find the radius 7, of D such that the intensity
decrease not exceed 10% of that value found in question L.

2. Find the angular radius of the first dark ring in the case where g = 2ax;.

3. Compare graphically the nature of the two diffraction spots:
(a) without the screen D,
(b) with the screen D.
Optical systems with a central screen occur in certain telescopes. What happens in these
cases to the resolution of the components of double stars? Assume the component stars have
the same intensity.

111. Annular pupil

Assume now that the screen D almost completely covers the objective O in such a way
that light only passes through an infinitely narrow ring.

What is the structure of the diffraction pattern in planez?

What is the angular radius of the central diffraction spot?
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IV. Identical screens distributed at random

Replace the screen D by 1000 small opaque screens distributed at random in a plane in
front of the objective O. Each screen subtends a very small angle at C equal to a such that
a2/ag = 1072. Find the illumination in plane z at a distance 30/1.22 times the radius of the
diffraction spot formed by the free objective O (in the absence of the small screens). Show
initially that the conditions are such that Babinet’s theorem can be applied. In the remainder
of this problem the illumination produced by an open pupil at C is taken as unity.

V. Apodization

The objective is now used with its full aperture (the screens are removed) and with a plate
of glass, L, with parallel faces in front of it (Fig. 36.3). Deposited on one face of the plate L
is a thin film with non-uniform absorption which does not introduce a phase variation. The

L

FiG. 36.3

absorbing film is deposited so that the absorption is the same for all points situated on a
circumference whose centre is the intersection O’ of the optic axis of the objective with the
plate. The variation of the amplitude as a function of « is given by the expression e™***
where a is a coefficient which fixes the maximum absorption.

Find the variation in illumination at the centre of the diffraction figure. Numerical applica-
tion: ag = 1/5 and a = 1. Can one form a diffraction figure if the absorption becomes
very strong at the edge (@ > 1)?

V1. Focusing defects

The plate used in the last section is now replaced by a perfectly transparent plate which
has a uniformly varying thickness. The variation is, as in question V, cylindrically symmetric
about the optic axis of the objective. The thickness variation of the plate introduces a phase
variation (through a path difference) as a function of « given by ex2/2 where ¢ is a coefficient
which fixes the maximum path difference. Find the illumination at C. Examine the variations
in illumination of the centre of the diffraction figure as a function of the phase difference
& = meal/A (A = wavelength of the light used). Plot the curve for values of @ from 0 to 4.

Show that by removing the plate L and by slowly displacing the focal plane parallel to
itself to some point, the variation in illumination at the centre of the diffraction figure is
given by the preceding curve.
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Note. It is not necessary to know the properties of the Bessel functions to solve this
problem. One simply requires several useful results:

2n
f e—iKaecost 4§ = 2] o Kap)
[}

fz Jo(z)zdz = Z-J«(2Z).
o

TABLE OF NUMERICAL VALUES

J(Z

z J2) 2 ‘(Z )
0.0 +1.000 +1.000
1.00 +0.765 +0.880
2.00 +0.224 +0.577
3.00 —0.260 +0.226
4.00 —~0.397 ~0.033
5.00 —0.178 ~0.131
6.00 +0.151 —0.092
7.00 +0.300 ~0.001
8.00 +0.172 +0.059
9.00 -0.090 +0.054
10.00 ~0.246 +0.009

Jo(Z) is zero for Z = 2.405, 5.52, 8.65, ...
J(Z)/Z is zero for Z = 3.83, 7.02, 10.17, ...

SOLUTION

Throughout this problem, where the examples studied have rotational symmetry, one
uses cylindrical coordinates (Fig. 36.4).
Determination of the amplitude at point M (§ 5.11).

FiG. 36.4
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The general expression for the amplitude at point M is given by
% (27 .2m , ,
AM) = exp (—J < %@ cos (9—0)) « do df. (¢))
[ [
Changing the origin of the azimuths, one can write

e [*27 2%
A(M) = f f exp (— j S g cos 9) « da df. )
0 0

1. Open pupil

1. One has
AM) =2z fao Jo(Koa) « de. 3)
o
A — 2 27
M) = gag | JoKex) X (Kow) d(Kex) = g3 5 (Kexo) Ju(K o),
A(M) — mz%yiz(z—) with Z = 2—; 0 %o. (4)

The diffracted intensity at M is then equal to

100) = (nagp 2). ©)

The intensity distribution is given by Fig. 36.5.

The diffraction “solid” has rotational symmetry about C. The first dark ring corresponds
to Z = 3.83.

The diffraction image is always centred on the geometric image.

At point C one has

10) = (uaxa( T2t = e ©)

The intensity is always equal to the square of the area of the pupil S.

12

(o)’

4

C 383 702 1017

FiG. 36.5
11 R & M: PIO
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This result seems paradoxical but is easily explained. In effect, the diffraction spot is
spread out on a surface inversely proportional to the surface of the pupil. The total flux,
equal to the volume of the “diffraction solid” is therefore proportional to S.

2. Since the first dark ring corresponds to Z = 3.83:

2n 2xry  2x_ ¢ 2=m _
Z = TQQ— 779 = 7"07 = 7"09 = 3.83.
Hence:
P 3.83%x4A _ 3.83X0.6X107*

TAX3.14Xre  3.14X6
6 = 1.2X1075 rad.

I1. Opaque disc

1. Starting from the general expression for the amplitude, one can write

AM) = 27 f * Jo Kag) @ da— 2z f ™ Jo(Kag) « da, )
0 0
AM) = maz 2. ga -t ;lzl) ®)

taking Zy = maop and Z; = ma;p.
The illumination then becomes

2J1(Zo) 12 2J1(Z1)1* 2J1(Zo) 2J:(Zy)
— 2] |’ i UL 7 5 9 2o/ 1(£0) S1(£0)
IM) = {ao[ 7. ] ¥ 1[ = ] 203a3 =5 S8 } )
The illumination at C is equal to
272
1C) = nzag[l - (%) J (10)
0

whereas in the case of the open pupil one found 7%,
For the decrease in intensity not to exceed 10%;, it is necessary to have

272 2
[1—(2)] =0.90, so that 1—(%) = 0.95.

®o 0
2
(ﬂ) <005 or <022
oo %o

Hence

02

To

ro = radius of the objective, (a1
r1 = radius of the opaque disc.

Note. The result given by (10) shows that one does not have the right to apply Babinet’s
theorem near the geometric image. In effect, an objective which has an open pupil of radius
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ry gives at C an intensity
2
et = nza(‘,[l - (2)2] . (12)
xo
2. Radius of the first dark ring. The amplitude A(M) vanishes for values of ¢ such that

J1(Zo) Ji(Zy)
2 a2 —
ol Z al Z - 0. (13)

Returning to the definition of Z; and Z,, taking m = a1/x0 one can write
J(Zo) = mJy(mZ,). (14)
In the special case where m = 0.5, one finds

J1(Zo) = 0.571(0.5Zy).

Using the table
Zo=3.14 Jy(3.14)—3J:(1.57) =+0.00185

Zo =315 J(3.15)—3J4(1.575) = —0.0023

Through linear interpolation

Zy = 3.144.
Thus
6 — 31444 i _ 6X107
T 2X3.14Xry  2ro 60
6 = 10~ 5rad.

3. Comparison of the diffraction images. On Fig. 36.6 are plotted the distributions of
illumination as a function of Z for the open pupil and for the opaque disc. One can see that
the opaque centre leads to:

a decrease in the illumination at the central peak;

a slight improvement in the power of separation.

Note. In Fig. 36.6 only the central maximum is represented. If one examines the values
of the intensity for Z > 3.14, one discovers that the rings take a much more important role
in the case of the Airy curve.

1(Z)

/ Open pupil

Opaque disk

~
C 3,14 383 4
Fi1G. 36.6

11
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One can approach this problem using the Heisenberg relation: if one decreases the dimen-
sions of the pupil, there is a spreading of the diffraction figure.

In practice, this example arises in telescopes of the Cassegrainian form (see Fig. 36.7).
Such an instrument is made up of two concentric mirrors. Covering of the pupil occurs
because of the position of the small mirror.

Star M

M Image

FI1G. 36.7

1I1. Annular pupil

One can assume that the transparent ring, since it is taken to be infinitely thin, corresponds
to a constant value of xp. Under these conditions, the amplitude at M becomes:

AM) = 21T o(Katop). (15)

Figure 36.8 gives Jo(Z) as a function of Z.

1(Z)

C 2405 552
Fic. 36.8

The numerical values given in the table in the problem show that the decrease is much
less rapid than in the case of the Airy disc. The first zero minimum in this diffraction figure
is given by the first zero of Jo(Z), namely

Z = 2405
which gives § = 0.774/2ry:
6 = 0.77X107% rad.

Notes. 1. When one covers the pupil, the illumination of the rings increases at the expense
of the illumination in the central peak.
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2. A pupil of this type is used in the phase-contrast microscope. The condenser is provided
with an annular pupil. With respect to ordinary microscopic observations such illumination
leads to:

a loss of luminosity,

an improvement in the power of separation,

a considerable importance of the diffraction fringes which can make the interpretation

of images difficult.

IV. Identical screens distributed at random

The amplitude at M is now given by:

AM) = ff e~ iKaecosby do 46 — ff e—iKzecos8y o d6

open surface of the
pupil small screens
AM) = Ay(M) — Ax(M).

The first integral has already been evaluated in the first question of the problem. The second
integral represents the amplitude diffracted by N openings, each of which has the same
dimension as the small opaque screens (§ 5.16).

N
Ax(M) = ao(M) Y ek, an
n=1
(ao being the amplitude diffracted by a small hole on the axis of the instrument).

Application of Babinet’s principle

Fix the distance CM = g, set in the problem. If we call p; the radius of the central
diffraction spot given by the open pupil, we have

30
g2 = 12 01, (18)
1.224
g1 = —m, (19)
Then:
304
02 =7 (20)

Calculating the diffracted amplitude for the open pupil at this point

A(M) = may 24D

. 2
A with Z = 7 %oez = 30zx.

For a large value of Z, the Bessel function of order 1 is practically zero. In this particular

case we are able to state
|A(M)]| = | Ax(M)] (21)
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hence:
I(M) = I,(M).
2

N
IM)= lafM)]? X|Y ek t )
diffraction term for n=1
1 small aperture term due to
interference

So that finally
N N
I(M) = |ay(M)|? Z Z 1Ko X @ —iK0n,
Aa=1m=1

Since the phase distribution is random one can assume that it has both positive and negative
terms.
The preceding equation gives
I(M) = N|ao(M) . (22)

Although the illumination is coherent, the random distribution of screens destroys the
phase relationships; the intensities add as if the illumination were incoherent.

The point M is sufficiently removed from the geometric image that one can apply Babinet’s
principle.

Numerical application:

ao(M) = w3 12D,
Z,y
with
Zy = 2%920(2 = 27” %XIO‘%O ~ 1.
But
274(1) ~ 1.

Thus one has

I(M) = Nn%uh = anaé(%)4.
Hence the normalized intensity

M) = N(%z—)4 = 10°X 1073,

I(M) = 1075,

V. Apodization: absorbing pupil

Here the pupil is not uniformly transparent as was the case previously. The transmission
is such that

T(x) =e ' for 0 <a < a, 23)
) =0 for « > «o.
The general expression giving the amplitude at some point M is now
% [*2n .
f f et g—iKeecost dg d, (24
0 0
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At point C, one finds
ap 2n %o
AC) = f f e~y da df = nf e~ %* d(«?),
o (] (]
14 . w2
A(C) = = (1—e—9%), hence I(C)= z [1—e—ad]2, 25)

If as?2 is very small as is the case with the values given, one can write by a series expansion
A(C) = % [1—1+ a0 —a%d/2] = w21 —and/2].

After introduction of the plate, one has A(C) = ol
One gets the normalized intensity

I(C) = [1—ax3/2]*. {26)
Numerical application:
o =1/5, a=1.
I(C) = [1-0.02]2 = 1-0.04 = 96/100.

Note. Returning to the general calculation of amplitude, one sees that the quantities o
and g are conjugate variables (by taking the wavelength as the unit of length).

The results obtained in II and V can also be stated in the language of the Fourier trans-
form.

First example: a contraction in the « dimension leads to a dilation in the ¢ dimension.

: / Airy curve

\  Gaussian curve

v

1
1
1
\

A

FiG. 36.9

Second example : the pupil’s transmittance is governed by 7(«) = e~ which is a gaussian
function. Knowing that the Fourier transform of a gaussian function is a gaussian function,
one can immediately predict a gaussian distribution for the amplitude distribution in the
image plane (Fig. 36.9). Without going into details, the figure shows the cross-section of the
diffraction solid with and without the apodizing plate. The apodization causes the diffrac-
tion rings to vanish; however, it does diminish the resolving power of the instrument.
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V1. Phase plate, focusing defects

The plate, L, with uniform transmittance does produce a variable phase-shift.

(x) = e~ k=2 for 0 < a < oo, @n
() =0 for o > ay.
One has
2y *27 X
AC) = f f e—iKeati2y do d6, (28)
0 0
%w 2 27 .
- —jKea2/2 Z_ — —jKea2/2]a
ZnJ; e d(z) o [eimege
AC) = —[1— 7. (29)
The amplitude at C is now complex. The intensity becomes
I(C) = A(C)X 4*(O),
so that:
n? 16x (/]
IC) = K232[ —cos®] = K28231n 5
sin®@/2
1C) = ( Ers ) . (30)
The variations of I(C) as a function of @ are shown on Fig. 36.10.
JAC)
¢
0 2n 4T 6 8w
FiG. 36.10
Focusing errors
Displace the observation plane by a distance CC’ = e. By virtue of Malus’ law and

Fermat’s principle, the path difference A between the ray passing through C and the ray
passing through C’ is equal to the separation between the aberrant wave centred on the
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point of observation C’ and the sphere centred on the gaussian image (Fig. 36.11). One
finds

A=1] =CJ—IK—KC = R-C'I-KC = R—(R—¢&)—e¢cos a.
A = g(l—cos o) = ex?/2.

One can see that the phase plate introduced above introduces the same phase-shift as a
focusing defect.

FiG. 36.11

Note. Using the results above, one sees that the centre of the diffraction image is alterna-
tively bright and dark when one moves the focusing plane from one side to the other of the
gaussian image. This method is used in industry to control objectives. In effect, the periodic
succession of bright and dark central images is produced only if the objective is free of
aberrations.

PROBLEM 37

Abbe’s Experiment

A Fraunhofer grating consists of parallel opaque lines separated by transparent intervals.
It has N lines. The collimator which is illuminated by monochromatic light is made up of
an infinitely fine slit F placed in the focal plane of a lens L;. A second lens L2 is used behind
the grating and a photographic plate is placed in the image focal plane. Use the following
notations and values: grating step p = 10 i, number of lines N = 5000, wavelength of the
light 2 = 1.0 y, focal length of Ly, fi = 50 cm, and the focal length of L : f3, and finally,
the angle which the diffracted rays make with the normal to the grating is i.

I

The transparent lines of the grating are infinitely fine.
1. Find sin i for the various images formed of F under the conditions of normal incidence.

2. Find the expression giving the angular width of a principal maximum in the diffraction.
Find the theoretical resolving power in the spectra of various orders. Determine the focal
length F for which the photographic plate shows all the details which the resolving power
allows one to distinguish. (Assume that the photographic plate separates precisely two
images separated by a linear distance of 20 .)
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II

When the slit F is no longer narrow, what is the maximum value of its width which
will allow one to make use of the resolving power of the grating?

111

Assume the width of the opaque rulings to be 2p/3.
In the following consider the source slit to be very narrow and the light monochromatic.

1. Draw the curve representing the illumination in the focal plane of L; as a function
of sin i.

2. Replace the photographic plate by a lens Ls whose focal length f3 = f2/2. What does
one observe on a screen placed at a distance f2 from L3 in the following three cases: (a) one
only allows the zero-order image to pass Ls, (b) one only allows the orders +1 to pass, and
(c) one allows all the diffraction images to pass.

v

Consider another grating having the same step and the same number of lines but with the
opaque lines having the width p/3. Show that, for the same amplitude of incident plane
wave, the amplitudes in the images of the first two orders are the same for both gratings.
What is the ratio of the amplitudes in the zero order? Show that the results of part IV can
be tied to Babinet’s theorem.

SOLUTION
1. Infinitely narrow linear source
Characteristics of the grating:

infinitely narrow slits,

grating step p,
grating width L = Np.

One finds diffraction only in planes normal to the slits in the grating.
There is no interference along lines parallel to the slits.

1. Position of the diffraction maxima (normal incidence). Between two homologous rays
there is a path difference (Fig. 37.1):

6 =psini )
hence a phase shift:

¢ = 2Tnp sin i. 2
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The interference is constructive when
psini = kA (k integer).

From which one gets the values of i corresponding to diffraction maxima
.. kA
sini = —. 3
F 3

Numerical application: sini = kX%,
The condition sin i < 1 implies k < 10.

2. Resolving power. Each slit gives a highly spread out diffraction figure. The intensity
in direction i is

N g gen _ SINENG[2
I()) = A A*() = Sof g2 )
The principal maxima are given by: ¢/2 = k.
I
1
/ )
I,/} \ . _ ’(2- --------- Asint:N—p
P -
\‘\, t A
18 A
' A gy A 2)  sine
P A P P
Np
FiG. 37.1 FIG. 37.2

The zero minima correspond to N¢p/2 = k'n (k'[N # k).

The variations of I are given in Fig. 37.2.

By taking sin i as the variable, all the diffraction images are identical and they give:

the same illumination,

the same width sin i = A/Np,

the separation A/p.

There are nineteen of them (sini < 1).

Assume that the source emits two wavelengths 42 and A'. Since the deviation produced
by the grating is proportional to the wavelength, the light distribution is similar to that
shown in Fig. 37.3. For the wavelength A, the positions of the maxima correspond to
sin i = kA/p and the width of a diffraction peak becomes

.. A
Asini = *ﬁp—,
so that
Npcosi’
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T

Sin ¢
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A X 2h
p P P

%ly-_

2K
P
k=2

X~
"
[en)

k=1
FiG. 37.3

For the wavelength 1’ near 4 such that A’ = A+ d4, the position of the maxima is given by

’

. A
sini’ =k —. 6
’ 6)

In the spectrum of order k, two linear images corresponding to 4 and A’ are separated by
&(sin i) = cos i-8i, hence

P [,1' ).]z k di -

cosi|{p pl| cosi p-

By convention one assumes that the two images are resolved when the maximum of one
falls on the minimum of the adjacent one, that is, when
Aj = i
Equations (5) and (7) then yield
A —k da

Npcosi = p

Hence, the resolving power of the grating is

A
R = = kN = kX5000. )

Note. R is maximum for kK maximum so that one should utilize the spectra of high order.
R is minimal for £ = 1 (R = 5000). In these spectra, one can separate two lines where

A 1000

d1=m=50—00=2A. ©

The angular separation of these two lines will be given by:

A A 1

Aim 2o L
"= Npcosi ~Np — 10X5000

= 2X10"%rad (10)
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and their linear separation in the image plane will be
Ax = fo Al an

It is now necessary to take into account the resolving power of the receiver dx = 20 p.
The two lines are resolved on the photographic plate if

Ax = dx or faAi=> dx. (12)

The minimum focal length of L, is then

P _dx _ 20x107°
2TA T 2X107¢

The focal length for resolution f, = 1 m.

I1. Slit source of finite width (incoherent illumination)

One can enlarge the slit source in such a way as to increase the luminance without in
every case decreasing the resolving power of the grating. Let d be the limiting width of
the source which can be attained without modifying the appearance of the image.

To treat this problem one can use two methods:

either generate an expression giving the distribution of illumination in the image as a

function of the slit width and compare this with the results found in 1 and then derive
the maximum width;

or directly determine the degree of coherence of the source.

First method

Determine I() for a slit source of finite width. The problem is one-dimensional. Call x
the abscissa of a general point in the pupil and u the conjugate variable such that
u = (sin #)/A. Since the illumination is incoherent, the diffracted intensities of each point on
the object add in the image plane. The resultant intensity at a point M’ in the image plane
will be:

1) = f O@w) D' —u) du = O(u)® D(u), (13)

with: O(u) = distribution of light in the object,
D(u) = distribution of light in the diffraction image due to a point source (unit
impulse).
Parseval’s theorem allows us to transform the convolution (13) into a product (see
Appendix A, B.II):
i(x) = o(x)-d(x) (14)
with
o) £% o(x)
D@) % d(x) (15)

Iw) E% (%)
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Determination of the Fourier transforms:

o(x)
O(u) is a slit function of width wu,.
One gets (see Appendix A)

__ sinawex
o(x) = “ox (16)
d(x)
f(x) dx)=f®Ff
i i
X X
=Ly 0p *f -L O p +L
Transparency of the grating Transfer function
FiG. 37.4a FiG. 37.4b

FiG. 37.5 FiG. 37.6

1. d(x) is the transfer function of the instrument (see p. 346). Here what is necessary
is the determination of the autocorrelation function of a grating with infinitely narrow slits,
step p, and width L = Np (Fig. 37.4 a and b). In the determination of the product o(x)-d(x)
many cases can arise:

when the source slit is highly narrowed, the curve o(x) is very much spread out (Fig. 37.5)

and one has
o(x)Xd(x) =~ d(x). an

The distribution of light in the image is given by D(u).
when the slit is widely opened the width of o(x) can be less than that of d(x) and the pro-
duct o(x) d(x) can be very different from d(x) (Fig. 37.6).
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Only the last case is of interest here. One has
i(x) = d(x)

that is, I(u) = D(u) if o(x) is about equal to 1 for —L < x < + L. Assume that this condi-
tion is fulfilled for

FwmL oo gL as)
hence
d< %fl% (19)
Numerical application: .
d< % =25u.

Second method

Use the Van Cittert-Zernike theorem which is stated and proved in Appendix B.

In the plane of the pupil (grating plane) place an artifical diffraction spot centred on Py
(P corresponds to an edge of the grating). The distribution of amplitude in this diffraction
spot is equal to the F.T. of the energy distribution in the source plane.

Let

o(P) L o).

Of course this diffraction spot does not exist in the xOy plane which is in fact uniformly
illuminated by the source. However, the amplitude distribution in the diffraction image is
equal to the coherence distribution in the plane of the pupil.

The degree of coherence between a point P (a general point in the pupil plane) and the
point Py is equal to the normalized amplitude o(P), that is to say, o(x) (Fig. 37.7).

On Fig. 37.7 is shown both o(x) (dotted) and the pupil (amplitude) transparence f(x).

The degree of coherence between P and Po will be 1 if one has o(P) = 1. The illumination
of the grating will be considered coherent if o(P1) = 1, that is, if o(Np) = o(L) = 1.

olx)
1|f{x}
I” b\\
’/ 1\
’ L
4 \
[ Y
7 \\
I’ 1
‘ 1Y
A \
|
1' z s
, h R B
P Pl P i, P 7
- of : : ht LR
0 H X
P & Ne
(4]
Fic. 37.7
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One assumes that this condition is obtained if

1
zu—o > L.

One again finds (18).

111. Abbe’s experiment
In the remainder of the problem assume that the illumination is coherent.

1. The transparent lines have a finite width namely p/3. The pupil amplitude transmittance
is shown on Fig. 37.8.

I

A (sini)

J

\ AA
AN sin {
p

N e
'm
o[

e
A

sinn(—p— S—l-ri—l)

~_ P 3

AG) = 3 psini (20)
"377

The (normalized) intensity transmitted by the N slits in this direction is given by

1) = (sir(;;ﬁg/6)2 (si?nl\;q;/;)z @1
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with
2 . .
¢ = —-psini.

The variation of I as a function of sin i shown on Fig. 37.9. The spectra +3, +6, and +9
vanish.

2. The lens L3 acts between its antiprincipal points. With the grating acting behind Lo,
its image will be formed at O, with magnification 1 (Fig. 37.10). Let « and x be conjugate
variables (u = (sin i)/A). The amplitude distribution in the planes R, L3, and 0, are given
successively by

f(x)
F(u) before the stop is inserted, and @(u) after (22)
(x).
L L L
Ry :
5 ‘
' 2
F ' - . 0,
0, ; 0, Q F 2
Fic. 37.10

(a) Ls acts as a stop in such a way as to pass only the O order spectrum. Thus

sinswtul
sul

D(u) (23)

@(u) is the diffracted amplitude from a slit of width L. The final image is thus made up of a
band of uniform light having the width L and the height of the grating.
Using the language of the Fourier transformation

1 for —LR2<x<LJ2

24
0 otherwise, @4

¢(x) = F.T. [®ow)] = {

These two functions are shown in Figs. 37.11a and 37.11b.

(b) Only the spectra of orders +1 and —1 are transmitted.

These two spectra constitute two secondary sources which are coherent and in phase and
which produce Young type fringes. In effect, if one calls @'(«) the amplitude distribution
after crossing L3, one has

&) = (D(u%—%) —Hb(u———;-) (Fig. 37.12a). (25)

12 R & M: PI1O
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(U |

1

0 +1/p

FiG. 37.12a

0y, )

Fic. 37.11a ‘\ ﬂ ﬂ]
FiG. 37.12b
Lpll

o(x)

Fic. 37.12¢

-Lfo 0 *Lfy
Fi1G. 37.11b

Hence an amplitude distribution in the image plane
¢'(x) = F.T.[D' ()] = ¢(x) eiz*/e+ ¢(x) e—izwlp
¢'(x) = 2¢(x) cos 2 %. (26)

The image is made up of Young’s fringes with step p/2 and width L (Figs. 37.12band 37.12c).
(c) Lens L; passes all the spatial frequencies.

One has

D) = F(u) hence ¢(x) = f(x) The image and object are identical.

Conclusion. If one suppresses or attenuates certain spatial frequencies, one can modify
the image.

We see two examples of this.

(a) The fundamental passes and the image of the grating disappears completely.

(b) The first two harmonics pass and the illumination in the image plane is periodic.
However, even though the grating step is p, the period of the image is p/2.

(c) It will be necessary for the lens to have infinite aperture for all spatial frequencies to
pass so that the image will reproduce the object. In practice, objectives always have a
finite aperture limited by the need to correct aberrations. One sees in Figs. 37.11 and
37.12 that it is often quite difficult to reconstruct the object knowing the image.
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DIFFRACTION

IV. The complementary grating

169

f(x) and I(sini) are given in Figs. 37.13 and 37.14. In the following table we summarize
the performance of the grating treated above, (I), and this grating (II). Of course, since we

wish to make comparisons of the intensities we no longer normalize the results.

One sees that

Grating I Grating I1
Width L L
Step p p
Slit width pl3 2p/3
AG) & sin 7up /3 2_p sin wu2p/3
3 wup /3 3 nmu2p/3
Spectra order O: A(0) 1\;_17 N Z?p
Np sin /3 2p sin 27/3
Spectra order 1: A(1 _ —
pectra order 1: A(1/p) T 3 23

A1(0) = 2A4,0)
An(1/p) = Al1/p).
Fix}

I{sin{)
J

FiG. 37.13

L
NN

12¢
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For the central image the amplitudes are in the ratio of two. For the spectra one finds the
same amplitude.

This just verifies Babinet’s theorem: two complementary screens give the same illumina-
tion at all points in space not illuminated in their absence (in their absence one has the central
image given by a pupil of width L).

PROBLEM 38
Holography
I. Recording of the hologram
A coherent, monochromatic plane wave falls on the apparatus shown in Fig. 38.1. Pr:

small angle prism, a, of index n. Ob: the object treated in transmission. At P(x) one examines
the interference of the wave 2 transmitted by the object with complex amplitude 4(x)ei**

X
.
~Je Plane wave
a
by
0
h
1P(x;
b / 0
%2 Wave deformed by object )

Fi1G. 38.1

and the wave X', known as the reference wave, which is deviated by the prism and which
has the amplitude A¢e’®™. Assume that the object does not diffract. Determine the
intensity function I(x) by finding the relation which exists between the prism deviation 6 and
the phase of the reference wave.

II

The results are recorded by a photographic plate placed in the plane z. This is arranged
so that one works in the linear part of its characteristic, that is, in the region where the
density D is given by D = y log E. Find the relationship which ties I(x) to the amplitude
transmittance function #(x) of the developed plate which is called a hologram. Show that
(x) takes a simple form when | A(x)|2<<| Ao |? (one looks for a series expansion of #(x) where
the significant terms are easily treated for values of ¥ near 3 or 4 for example).
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and the wave X', known as the reference wave, which is deviated by the prism and which
has the amplitude A¢e’®™. Assume that the object does not diffract. Determine the
intensity function I(x) by finding the relation which exists between the prism deviation 6 and
the phase of the reference wave.

II

The results are recorded by a photographic plate placed in the plane z. This is arranged
so that one works in the linear part of its characteristic, that is, in the region where the
density D is given by D = y log E. Find the relationship which ties I(x) to the amplitude
transmittance function #(x) of the developed plate which is called a hologram. Show that
(x) takes a simple form when | A(x)|2<<| Ao |? (one looks for a series expansion of #(x) where
the significant terms are easily treated for values of ¥ near 3 or 4 for example).
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II1. Restoration of the object

In the expression for #(x) which has been determined explain the role of each of the terms.
The hologram behaves like a grating when it is placed in a parallel monochromatic beam.
{One can find a “magnification” effect tied to the wavelength.) Show how the wave X' is
restored.

IV. Holographic lens (Fig. 38.2)

1. The reference beam remains unchanged. The object is replaced by an opaque screen
containing a small hole 7. The incident plane wave is transformed by diffraction into a
spherical wave X' centred on T. The distance from T to the plate is called f.

(a) Give expressions for I(x) and #(x).

(b) As before the hologram is illuminated by a coherent plane wave of wavelength A.

Show that the hologram acts on this wave as:

a converging lens of focal length f when observed in the — 8 direction,
a diverging lens when observed in the + 6 direction.

f

. ~
Spherical wave centred on T
FiG. 38.2

2. The screen is now pierced with two identical holes T; and T, symmetric with respect to
the OT axis and separated by 2d. The waves 2o and X have the wavelength 4.

(a) Give the expressions for I(x) and #(x).
(b) This new hologram is now illuminated by a point source S situated at a distance p
from the centreline of the hologram and emitting the wavelength A’.

Find the distance 2D which separates the images T; and T, from T, and T,. Find the
magnification of holographic lenses as a function of p, f, 4, and A'.

V. Sinusoidal grating

The photographic recording of the interferogram obtained through the interference of
two waves with greatly different amplitudes 41 > A2 (when the mirrors about do = O are
inclined at an angle 0 with respect to one another) is nothing more than a hologram. Show
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that J(x) = I(8) and that by illuminating such a photographic plate with coherent light one
obtains directly the spectral distribution of the source. Show this by means of an elementary
apparatus,

SOLUTION
Introduction

After crossing the object Ob, the electromagnetic wave carries an amplitude of in the form
oA = A(x) &?™. Both the real and complex amplitudes are required to characterize the
structure of the wave. The majority of the detectors which are photographic plates are
sensitive to variations in the illumination but do not provide information about the phase.
The method shown here allows one to restore the wave 2'in its entirety.

1. Recording the hologram
The reference wave is deviated by an angle § such that
0= (n—1a.

This wave, 2o, has a constant amplitude Ao. Its phase @o(x) varies linearly as a function of
x in the plane z. One has

o) = 2 ox. 1)

In all of the problems here one takes the origin of the phase on Ox and assumes that the
rays which interfere at O are in phase. The waves which have not crossed Ox have a
positive phase difference and those which have crossed have a negative one.

The resultant amplitude at P(x) is given by

Ao e—iPu(x) + A(x) ei®(x), (2)
The resultant intensity is

I(x) = [AO e“jQO(X)-*_ A(x) ejQ(X)] [AO e+j¢0(x)+ A(x) e—jQ(x)]
I(x) = A§+ AXx)+24,4(x) cos [Do(x) +P(x)). 3)

Notes. The phase ®(x) occurs in the expression for I(x). A variation in @(x) involves a
modification in the step or the position of the fringes. A modification in A(x) changes the
contrast of the fringes.

II. Amplitude transmitted by the photographic plate

The plate is exposed to the illumination E(x) such that:
E(x) = I(x) = vibrational intensity. @)

This plate is developed then illuminated by a parallel beam normal to the surface and
with amplitude 1.
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Recall that the density of the plate 1s given by

D =ylogkE. (%)
On the other hand, one has
Iin ident 1 1
D =log " = log— = log = . 6
g Itransmilted g T g t2 ( )

T is the transmission factor and ¢ the amplitude transmitted by the hologram.
Equating (5) and (6) one finds
(x) = I(x)=72. M

If the reference beam is much more intense than the beam which crossed the object, one
has the condition
Ao = A(x), (8)

which allows us to transform the expression for #(x):
H(x) = I(x)~7"2 = {A¢+ AXx)+2AA(x) cos [Po(x)+DP(x)]} 72

= A2~ — 22)— Ag 7 24%(x) — yAy 7~ LA(x) cos [Dy(x) +D(x)]
= A1-02) {A% - % A%(x)—yAyA(x) cos [D, +<D]}.

Dividing by the constant factor —2A4;7~2 one finds
1(x) ~= =245+ AX(x)+7ApA(x) @0+ D+ y Ay A(x) €70t D), ®
This equation can then be written
Hx) = — 242+ p AU X)+ A, €9%0 X A(x) €12+ y 4 e~3%X A(x) e—i%), (10

Notes. The y of the plate occurs in the last three terms of (10). The amplitude of X, namely
A(x)e"®® appears directly in the three terms. The recording of the hologram can, in princi-
ple, be made with any coherent source, but the ratio A4o/A4(x) is very large and one must use
a laser so that A4(x) will not be too small.

HI. Restoring the object

The restoration is easy and may be done without an optical system.

The hologram is illuminated by a wave oo plane-parallel and coherent at the plate (Fig.
38.3). The amplitude distribution in the plane of the plate is #(x) and we need the amplitude
distribution in Fourier space.

The four terms in #(x) correspond to the following spatial frequencies:

—2A4%+yA%x) — frequency O,
yAoA(x) ei®® — frequency +uo = +86/4, (11
yAoA(x) e—1%® — frequency —uo = —6/A.
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G,

Gy

+6
-6

-1
FiG. 38.3

The results are shown in Fig. 38.3. One has

a direct wave o, with amplitude —2A43+y4%x) in the direction 6 = 0;

a wave ¢, making an angle 46 with Ox reproducing to within the coefficient y4, the

wave X'

a wave o_, having the same amplitude as o, but opposite phase (in the direction —6).

To understand how the hologram acts on the plane wave g, recall that a “apex down-
ward” prism with angle a rotates the beam through the angle 6 and introduces the phase-
shift + (27/4)0x (Fig. 38.4). The third term of (10) can then be interpreted as the amplitude
of the object transmitted by the prism above.

O:H

o

eié(x)
{amplitude =1)

E |amplitude{= A(x)

Hologr

+0

FiG. 38.4

The direct beam in the direction 6 = 0 is very bright while the beam diffracted in the
direction + 6 is highly attentuated and restores the object.

Fi1G. 38.5

Magnification. If the hologram is illuminated with a wavelength 1’ different from the
wavelength A used to generate the hologram, the waves ¢, and o_, propagate along the

direction +6’ and — 6’ such that
% = g— (from grating theory). (12)

One sees (Fig. 38.5) that the dimensions of the object vary directly with the wavelength.
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IV. Holographic lenses
One causes the plane wave 2 to interfere with the spherical wave X (Fig. 38.6).
1. (a) The resultant amplitude at point Pis:
Ao e=i%) - 4 ¢i®(), (13)

One assumes that A(x) = 4 = constant and does not vary when one passes from the
centre O to the edge of the field. @(x) is the phase difference between the wave X centred at

X
z \p/ %
e .- ——————— 0
T

FiG. 38.6

T and the plane Ox (see, for example, the problem dealing with Newton’s rings)
2 xj =
Ao W

Putting this value of @(x) in the general equation (3) one finds

D(x) = x2, (14)

2
I(x) = A%+ A2+ 24,4 cos 2= [Bx +3 f] (15)
{b) The amplitude transmitted by the hologram when illuminated by a coherent plane
wave 1is
Hx) = —242+yA2+yA, exp ( Bx)XA exp ( i )
+yAqoex —'2150 X A ex x? (16)
s (a3

Look at the expression for #(x):

the first and second terms: the hologram transmits a plane wave 6o unperturbed having
amplitude —2A45+y4® in the direction § = 0;

the third term. the hologram behaves like a point down prism (deviating the wave in the
direction + 6) as if a divergent lens of focal length —f (transforming the plane wave
into a divergent wave (Fig. 38.7). o, is a divergent wave restoring the object;
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- P
- -
- -
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~

)
Divergent lens ——« Q:e”)«%x
Fi1G. 38.7a
X
F F

2
Convergent lens —— &= e“’)?x

FiG. 38.7b

the fourth term: here one has the equivalent of a “point up” prism and of a converging
lens of focal length f (Fig. 38.7b). o_, is a convergent wave.

The final images are shown in Fig. 38.8.
Wave
Uﬂ( restoring the )
/ object

Hologram

Incident beam

. U turbed

et o | bem
Vi;tual. image Real image
Fic. 38.8
2. (a) The resultant amplitude on the plate is
2@
it ; 2 2
Aoexp( 7 6x)+Aexp(J Xf d))+Aexp( Xf(x+d) ) 17

(b) One derives for the amplitude transmitted by the hologram:

1x) ~ 2A§—2yA2[1 —cos 7 dx]

+vAed {exp ( f(x d)2)+exp ( f(x+d)2)}exp (jz%r()x)

+vAoA {exp( f(x d)2)+exp( fo(x+d)2)}exp (—jzfn()x). (18)
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One has

a wave in the direction 6 = 0,

two divergent waves in the direction + 6,

two convergent waves in the —6 direction which give the real images T; and T, of T,
and T.

For simplicity consider only these last two images. The last two terms of (18) show that
T, and T, are obtained by comparing the hologram to

a point up prism, ,
two convergent lenses of focal length f for the wavelength A whose centres are separated
by 2d (this distance is exaggerated in Fig. 38.9).

! P ! a9 :
L e Ty
s(x)'~<:€gé
L2 _________ i 7;0
Optical system T

equivalent to the hologram

FiG. 38.9

The two lenses when acting on the wavelength 4’ have a focal length £’ such that (see
Fresnel Zones, § 5.4):
fh=fn. (19)

The lens equation allows us to determine the positions of T}, and T,,. One finds:

1 1 1 p+q
= —f— =1 20
T p q P4q (20)

Using the triangles SL,L, and ST,T,, We can write

=41
2d p f f

If the plate is exposed with X-rays and the hologram illuminated with laser light at
6328 A, one gets a very significant magnification. It is necessary, however, that one does not
forget that the photographic plate has a finite resolution.

-P_rta_4 472 1)

V. Sinusoidal grating

One has
2n

I(x) = A3+ A43+24,4, cos 5

Ox. (22)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



178 PROBLEMS IN OPTICS [PrROBLEM 38

If A; > A,, the developed plate transmits the amplitude
2 0 .27 . 2w
t(x) = —2A43+yA%+yA,A, exp i7 OxY+yA,A,exp { —j - O0x). (23)

This sinusoidal grating allows only the spatial frequencies 0, +uo, and —ug to pass.
Apart from the direct image, one has the spectra of orders + 1 and — 1 where the dispersion
is proportional to the wavelength (Fig. 38.10). This spectrogram does not contain spectra
of order higher than 1. Unfortunately, the grain of the plate impairs the resolution.

L

BRI
I

Fic. 38.10

+1I

we

PROBLEM 39

Reflection Gratings

I

Consider a reflecting and diffracting pupil of width @ and height 4 >> g illuminated by a
parallel monochromatic beam of light.

The incident rays are normal to the large dimension & of the pupil. Let i be their angle of
incidence and i’ the angle of the diffracted rays relative to the normal to 4 which will form
the basis of the problem. Find the expression for the far-field diffraction intensity in the
direction i and specify the sign of i and /'.

F1G. 39.1

Consider a set of N pupils of width @ and N pupils of width b illuminated as in part I but
displaced by e as indicated in Fig. 39.2. Their second dimension is always 4 > b and
> a.
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If A; > A,, the developed plate transmits the amplitude
2 0 .27 . 2w
t(x) = —2A43+yA%+yA,A, exp i7 OxY+yA,A,exp { —j - O0x). (23)

This sinusoidal grating allows only the spatial frequencies 0, +uo, and —ug to pass.
Apart from the direct image, one has the spectra of orders + 1 and — 1 where the dispersion
is proportional to the wavelength (Fig. 38.10). This spectrogram does not contain spectra
of order higher than 1. Unfortunately, the grain of the plate impairs the resolution.
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Consider a reflecting and diffracting pupil of width @ and height 4 >> g illuminated by a
parallel monochromatic beam of light.

The incident rays are normal to the large dimension & of the pupil. Let i be their angle of
incidence and i’ the angle of the diffracted rays relative to the normal to 4 which will form
the basis of the problem. Find the expression for the far-field diffraction intensity in the
direction i and specify the sign of i and /'.

F1G. 39.1

Consider a set of N pupils of width @ and N pupils of width b illuminated as in part I but
displaced by e as indicated in Fig. 39.2. Their second dimension is always 4 > b and
> a.
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1. What is the delay of the vibration diffracted by the centre C” of (b) with respect to that
diffracted by the centre C of (a)?

2. Derive the diffracted intensity for the set of pupils (a) and (b).
Assume that the angles i and i are sufficiently small that the incident and diffracted beams
will not be noticeably separated.

3. This set of N pupils (¥ large) forms a reflection grating. Show that the proper choice
of e allows one to cancel out some orders. Take a = band i = 0.

III. Echelle grating

Littrow’s mounting (Fig. 39.3) uses an echelle grating.
The ruling of the grating is as shown in Fig. 39.4.

1£

T

K1

Cell

Fic. 39.3

FrG. 39.4

On the metallic surface AB one rules grooves whose profile is saw-toothed. The surface
MN of each tooth makes an angle 6 with 4B and has a width MN = a.

1. Explain the diagram.

2. The incident rays are normal to the surface 4B.

(a) Give as a function of sin i’ the diffracted intensity in the direction i’ for a tooth of
width a.

(b) Find the intensity of diffraction in this direction for N teeth.

3. What minimum value must 6 have so that the diffracted energy from the grating will
be concentrated in a particular spectrum near 4 = 1 u.. What will be the order of this spec-
trum? MN = a = 4 p.
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SOLUTION

I
Amplitude diffracted by a pupil of width a (§ 7.8).

sin rrua
Fou) = a
o) mwua

by taking
sin i+sin #'
A

[PROBLEM 39

1)

)

It is convenient to take the origin of the angles on the normal to the pupil and to take the

usual trigonometric sense for positive and negative.

11. Amplitude diffracted by a step

1. Between the incident rays which reflect at C and C’ (Fig. 39.5) one finds a path differ-

ence
6;=C'H=CL+LH = C'Ksini+ecosi.

FiG. 39.5

Since i is small

8= —121 sini+e, with p = a+b.
Between the rays reflected at C and C’ one has a path difference

&= -121 [sin i+ sin i']+ 2e,
hence

4
¢ =npu+—)—'7£e.

2. Diffracted amplitude for a step of width p:

sin ua sinmub .
—_ 9
Fiu)=a ia +b ; e,

(€)

@
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hence the intensity is
I(u) = [Fi(u) ?

3. Diffracted amplitude for a grating with N identical steps (§ 7.8):
Fu) = Fi)[1+e®+ ... +¢ei¥-D?]

from which
- , SN NO/2
I(u) [Fl(u)] sin? ¢/2 s (5)
with
D = 2nup 6)
If a = b = p/2, equation (4) simplifies to
sin 7tua . . sinmua
= 9] ~— g2 "7 ’
Fiw)=a i [1+e#] = 2q¢ el /2, 6"
from which
_ sinmua\2 , ¢ sin? NO[2
Tw) = pz( nua ) cos" g sin2@/2 ’
s sin wua \ 2 . 2le sin N2nua\ 2
I(u) = 4a ( p ) X cos [nua+ 7 | X ~sin oo ) )
One can write finally:
: 2 ; 2
Iw) = 4a2(sm nua) (511? N2nua) cos? [nua+gn~e].
wua sin 2nua A

I 1I

The product I represents the diffracted intensity for a Foucault grating of step p = 2a
having N lines (see Problem 35). The spectra of even order (except k& = 0) vanish. Only the
spectra of orders k = 0, +1, +3, +5, ... remain. The variations of 7 as a function of u are
shown in Fig. 39.6 by the solid line.

\
1[1(0/( sintug )2

W\ TTug RN o

\ / \ /
/ \ /
h\ / J l«m \——,
0 Sl 1 u
2Na 2a a
FiG. 39.6
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I is modulated by II. The function cos? (szua+ 2me/A) has period 1/a and the positions of
the maxima and minima depend on the value of e. The variations of 7 are shown in Fig. 39.6
as dotted curves. Depending on the position of this function certain spectra can vanish.

(a) If e = KA/2 (K integer) — II = cos?(nua). A maximum of the dotted curve coincides
with O. Only the zero order spectrum is reflected. The odd order spectra vanish.

(b) If e = Kn/4 (K 0odd) — II = sin? (7rua). A minimum of the function occurs at the
origin. Only the remaining odd-order spectra have maximal intensity.

III. Echelle grating (§ 1.9)
1. Littrow mounting (§ 20.5).
2. (a) Amplitude diffracted by one tooth:

sin ua
Fiu) = a pompa ®)
with:
u= %(sin 6+sin i') &)

I = |Fy(u)]? (see the dotted curve in Fig. 39.7).

I
\\\\
| N
{ AN
\

| \
|
| \
| \
[ \

\
[ \
| \
| \

~ -
1 ~ ~
_sin0=-2/2a ° /20 sin i’

k=+1 kio

Fic. 39.7

(b) Amplitude diffracted by the grating.
One only requires (5) taking

D= 2%-2— = 27”51_1 = 27“@ sin CDH (see Fig. 39.8)
27 a . .
= T oosg P B-1). 9)
3. Using equation (8) one can see that the modulation due to the diffraction by one tooth
does not arise if u = O ori’ = — 6. This corresponds to the ordinary law of reflection.
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Fic. 39.8

For that value of i’ corresponding to a principal maximum

D = 2kn
or finally, using (9)
a

. Y S _ .
g Sin CEER I cos g Sl 20 = 2asin 6.

os 0

The smallest value allowed for 6 corresponds to k = 1, namely

. i1 o

With the echelle ruled at this angle 6 the most intense spectrum corresponds to the order
k = +1 and the diffracted rays lie in the direction i’ such that:

sini’ = ——.

2a

The position of the other spectra is given by (9) where 8 is replaced by its value but one can
see that this coincides with the zero minima of (8). All the energy is concentrated in the
+ I-order spectrum (Fig. 39.8).

PROBLEM 40
Irregular Grating

A Fraunhofer diffraction grating has 3N+ 1 lines which are assumed infinitely narrow
with the result that the diffraction factor of each of these can be thought of as constant.
One covers one slit in three (including the first and Iast). Find the conditions for maximum
intensity and the expression for the relative intensities when N becomes infinite.

13 R & M; PIO
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Fic. 39.8

For that value of i’ corresponding to a principal maximum

D = 2kn
or finally, using (9)
a

. Y S _ .
g Sin CEER I cos g Sl 20 = 2asin 6.

os 0

The smallest value allowed for 6 corresponds to k = 1, namely

. i1 o

With the echelle ruled at this angle 6 the most intense spectrum corresponds to the order
k = +1 and the diffracted rays lie in the direction i’ such that:

sini’ = ——.

2a

The position of the other spectra is given by (9) where 8 is replaced by its value but one can
see that this coincides with the zero minima of (8). All the energy is concentrated in the
+ I-order spectrum (Fig. 39.8).

PROBLEM 40
Irregular Grating

A Fraunhofer diffraction grating has 3N+ 1 lines which are assumed infinitely narrow
with the result that the diffraction factor of each of these can be thought of as constant.
One covers one slit in three (including the first and Iast). Find the conditions for maximum
intensity and the expression for the relative intensities when N becomes infinite.

13 R & M; PIO
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SOLUTION
1

Number the slits from 0 to 3N (Fig. 40.1). The diffracted amplitudes are all the same.
From one slit to the next the phase difference varies by

2adsin i
p =201
2 7 s"/x 10/
FIG.40.1

by taking the origin at slit 0. One must find the sum

exp (—jo)+exp (—2¢)+exp (—4jp)+exp (—5jp)+ . ..

which can be written as the difference between two other sums. The first is obtained by
considering the entire grating

1—exp[—j(3N+ D¢l

3N ]
ZOZCXP (=ing) =

1—exp (—j¢)
_exp[—j3N+1)¢/2]  exp[j3N+1) ¢/2]—exp[—j(3N+1) ¢/2]
- exp (—j$/2) exp (j¢/2)—exp (—j¢/2)

_ o\ & sin(BN+1)¢/2

The second sum is due to the covered slits

1—exp[—j3(N+1) ] cany @\ sin 3(N+1)¢/2
T—exp (—3¢) P (’J3N 7)X sin 362

The resultant vibration is given by

o @\ [sin GN+1)$/2 sin IN+1)¢/2
e"p(_ﬁN 7)[ sng2  sin3¢/2 ]

3N
; exp (—j3ng) =

and the intensity is proportional to the square of the expression between the brackets which
we will call 4.
The maxima are generated for:
(a) ¢/2 = Kz (K integer). The phases of 1 and 2 differ by 2z. All the emitted waves are
in phase:
A=3N+1-(N+1) = 2N,
I oc 4N2,
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(b) ¢/2 = {(3K+1)/3}. The phases of 1 and 2 differ by 2=/3 and those of 1 and 4 by 2x:

sin BN+1)=/3 sin(N+ D)=z

4= sinz/3 sinm

In the second term replace # by z—¢:

B = sin [(N+1) (n—#)] — sin [((N+1D)a—(N+1)¢]

sin (— ¢) sin &
Make & go to zero:
if N is even, B+~ N+1, A=1—-(N+1)= —N,
if N is odd, B -~ —(N+1), A=—1+N+1=N.

In the second case I oc N2.
(¢) ¢/2 = {(3K+2)/3}n. The phases of 1 and 2 differ by 4n/3 and those of 1 and 4 by 4x.
Reasoning similar to that of (b) shows that
I oc N2,

Figure 40.2 shows the resultant amplitude values for the vibrations emitted by slits I and 2
in cases (a), (b), and (c).

2 A

a b c
Fi1G. 40.2

The set of slits, 1 and 2, form the “basis” of a periodic grating which in its entirety is.
generated by a set of translations through 3d. This problem gives a simple mode] useful in
the analysis of crystalline structures whose sites contain a basis composed of several atoms.

II

These results are obtained immediately using the Fourier transformation.

One knows that the Fourier transform of a Dirac series of step p is a Dirac series of step
1/p (Appendix A).

Consider successively a grating of step p and a grating of step 3p. The diffracted ampli-
tudes are represented respectively on Fig. 40.3 and 40.4.

0 1% % O
F1G. 40.3
13+
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A,
______
[ TP ErT]
0 Yap%sp u
FiG. 404

The amplitude is proportional to the surface of the pupil, thus, here, to the number of
slits. Let 4 be the amplitude diffracted by the covered grating:

A= A1—A,.

The values of I are shown as ordinates in Fig. 40.5.

by
(2N)?
(N+1)?
0 ooty a
FiG. 40.5
One finds:
intensity of the principal maxima oc [BN+1)—(N+1)]2 = 4N?;
intensity of the secondary maxima oc [N+1]2 ~ N2,

PROBLEM 41

Phase Grating

(It is recommended that one first solve Problem 39.)

Consider a metallic surface on which one has ruled parallel grooves of width a and height
e. This is to form a reflection grating with step p = 2a whose profile is shown in Figure 41.1.
The grating is assumed infinitely wide.

Use the set-up shown in Fig. 41.2 to observe the surface of the grating. A slit source is
placed at the focus F of the collimator, L. This slit is parallel to the grating rulings and
normal to the figure. It emits monochromatic light of wavelength A. The incident rays are
normal to the surface of the grating. The diffraction spectra S, are formed in the focal plane
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A,
______
[ TP ErT]
0 Yap%sp u
FiG. 404

The amplitude is proportional to the surface of the pupil, thus, here, to the number of
slits. Let 4 be the amplitude diffracted by the covered grating:

A= A1—A,.

The values of I are shown as ordinates in Fig. 40.5.

by
(2N)?
(N+1)?
0 ooty a
FiG. 40.5
One finds:
intensity of the principal maxima oc [BN+1)—(N+1)]2 = 4N?;
intensity of the secondary maxima oc [N+1]2 ~ N2,

PROBLEM 41

Phase Grating

(It is recommended that one first solve Problem 39.)

Consider a metallic surface on which one has ruled parallel grooves of width a and height
e. This is to form a reflection grating with step p = 2a whose profile is shown in Figure 41.1.
The grating is assumed infinitely wide.

Use the set-up shown in Fig. 41.2 to observe the surface of the grating. A slit source is
placed at the focus F of the collimator, L. This slit is parallel to the grating rulings and
normal to the figure. It emits monochromatic light of wavelength A. The incident rays are
normal to the surface of the grating. The diffraction spectra S, are formed in the focal plane
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b f(x)

0 a 2aq 3a X
FiG. 41.1
flx) Flu) fx)
T B, 2 SRR N :
I -7 X \\\~\ :RI
R w7 _— e —  —— T v e+ e e+ e RS e
E_ -\ & Sp 0, s
e e
. L) L:!
|
F
FiG. 41.2

of L,. Lenses L, and L, are identical. The distances RO,, 0,S,, S,0,, and O;R’ are equal
to the focal lengths of L, or L3. As a result, the planes R and R’ are conjugate with a magni-
fication of 1.

Assume that the lens openings are very large in order that there be no stop. Assume the
Fourier transform applicable.

1. Ordinary observation

Determine the amplitude distribution in the plane S,. What are the amplitude and illumi-
nation distributions in the image plane R’? Find the appearance and the image contrast.
Take as the definition of the contrast

11 - Imax_lmin

Imax

Treat the special case where ¢ = /2, 1/4, and e small.

I1. Observation by phase contrast

The heights e of the rectangles are small with the result that the phase shift introduced by
them is very small.

Place, in the plane S, a phase plate which retards the direct wave by 7/2. Compare these
results with those which are given by a Schlieren experiment.
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111

To improve the sensitivity of the phase contrast method, one can reduce as desired the
amplitude of the direct wave. To do this, one adds a phase plate in front of a birefringent
plane (Fig. 41.3). This latter plate is made‘up in the following way: from a half-wave plate
one cuts three surfaces S1, S», and S3 and inserts the element S; between S2and S (Fig. 41.4)

R 1_2 Phase Half wave L3 R
plate plate
[ L — e —
Fl
i
| Y]
P |
}
L l
lF
FiG. 41.3
b P
l S, 2 53
/ | /
v :
0 6
Fic. 41.4. Half-wave plate shown from the front. FiG. 41.5

The slow axes are represented by two arrows.

The strip S covers the image F’ of the slit F. The retarding optic axes are oriented as indi-
cated on Fig. 41.4. A polarizer P which only passes vibrations OP parallel to the lines of the
grating and an analyser A4 are set in position. The vibrations transmitted by 4 make the
angle /2 — 6 with OP (6 variable) (Figs. 41.3 and 41.5). Find the extremes of the intensity.
Find the value of 8 as a function of e for which the image is made up of bright bands of
width a interspaced with dark bands of the same width.

SOLUTION
1. Direct observation

1. Amplitude distribution in the spectra. If one recalls (6’) in Problem 39 after normaliza-
tion and a change of the origin of phases it becomes:

Fu) = Tua sin 2mu At 5= M

sinua  sin 2Nmua 2ne
cos )
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Since N — oo, the spectra are very narrow. They are equally spaced at a distance

1 1 ‘ 2

The positions of certain spectra coincide with the zeros of the function

sin mua . 1 2 3
, with u=->-,—, =, ..
nua a’a’ a

Finally, one only has the spectra of orders 0, 1, +3, £5, etc.

By taking
4me
one gets for the amplitudes of these spectra
U
F(0) = cos )
1 ¢
F(i?a—) = F—sin 3
3 12 . ¢
+— ) =F Zsin --
F(""2a) LETE )
5 12 . ¢
F(izzf) =Fg oy
or, more generally,
% K=0, F(O)=cos—§—
Fu) = F i-—) 4
v ( 2 K odd F(»K)— Lgsm2 X
’ %) =Tk = 2
F(u) is shown on Fig. 41.6.
Flu)
COS%
+ 2sin®
T 2
125n?
+12sin® 3T 2
57t?m 2 | 1/2(7 32a 5/2a
Sha  Ya Yoo ° 12508
12gn® BTT2
3T 2
2sin®
FiG. 41.6 =2
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2. Amplitude distribution in the image plane. This is precisely the same as in the object
plane since the spectrum is transmitted in its entirety. One gets from the inverse of the Fou-
rier transform

') = f(x) = E.T. [F)). ®)
Knowing that
6(14— ZK_a ) FT, ei2n(Kiea)x — giknxla (6)
one finds
(%) = f(x) = cos %_ﬁ sin % [(e]nxla_e—]nxla)+ 1 (e3nxla— g—i3nxla)
+% (eFsmsla—g—ismia) 4 ] 7

1 . ¢ ¢ J, . X 1 . X
ff(x)=f(x)= cos?———m ?[s1nn—+3s1n3n;+§s1n5n;+...].(8)

3. Distribution of the illumination in the image plane (Fig. 41.8):

d>16 ¢f. ax 1 . 3ax 1 . 5;x 2

2 2 — cos? - 2 T 6in 22t 4 ogip 22

I(x) = |f'(x)] |f(x) {2 = cos > + sin 5 [sm P +3 sin 4 +5 sin 2 + ]
®

Since the periodic function between the brackets oscillates between +x/4 and ~=/4 (Fig.

41.7), one finds

Imax = COs? —‘; +sin? —(zb =1,
¢
R 2 ¥
Imin = cOS >
Thus:
I' = sin? ——2 . (10)

X, 1gind3Tx, 1 Smx,
sin &2 a +3sm a 5Slr‘l

+T%
I 0 a 2a X
_1%

Fic. 41.7

Special cases:

e = 1/2, ¢ = 2. In the focal plane of Ls one finds only the zero order spectrum. The
image plane is uniformly illuminated (I" = 0). The periodic structure of the object dis-
appears completely.
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e = /4, ¢ = m. One only finds odd-order spectra:

von . Y. omx 1 . 3ax
f(x) = - [sm 74—? sin 7-*— ]
The image plane, uniformly illuminated, has black striations equally spaced at a distance
a (I = 1). It is not possible to distinguish the relief of the grating.
e small, ¢ small. The image is similar to that above but with poor contrast.

1(x)

e e e ba—

a 2a x

FiG. 41.8

I1. Observation by phase contrast (§ 5.15)

The diffracted wave is advanced by 7/2.
The amplitude of the odd spectrum is multiplied by e/ = + .
Taking account of the fact that ¢ is small,

K=0, F(O)=cos£=l

F@) = F(5,) 2 | an
I kodd, F(K)oj2and J s
’ 23a) T ka2 T Tka”
Thus the amplitude in the image plane
oy _ 26 7. nx 1 . 3;x
£ = FT.IF@) = 1+ [sm X g sin Ty ] (12)
and the intensity
26 7. mx 1 . 3ax 2
—_ 4 2 — . T _ -
I() = [P = {1+ ! [sm X g sin Ty ]} .
Neglecting powers of ¢ greater than 2, one can write
4 .nx 1 . 3mx
I(x): 1+;¢[Sln 7—*-? sin —E‘—+ ...], (13)
Imax = 1+¢, Imin = 1_¢, (14)
I'= 1—2_:_1)-(1)— , hence I'=2¢. (15)
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I(x)
f+¢
| — 1 — S|
| W 1 | 1 1 1 | | ] L
e o]
] I
] t
] 1
H I
0] a 2a x

FiG. 41.9 Phase contrast.

Notes. (a) One has transformed the phase variations into amplitude variations to which
the detector is sensitive. The grating relief appears as variations in the illumination, but the
image has a poor contrast (proportional to ¢) (Fig. 41.9).

(b) In the case of Schiieren photography, one shifts the direct wave. The amplitude in the
plane R’ is then

w4 2 . oax . 3mx

'(x) _+;¢[sm —Fsin ==+ ] (16)
Thus
4 . @x 3ax 2

— A2 _ mn —_—

I(x)_.nng [sm , Fsin ==+ jl an
¢2

Inx =" Inn=0-T=1 (13)

The image formed has bright bands of width a separated by fine black lines (Fig. 41.10).

I{x}

FiG. 41.10

1. Variable phase contrast ( Kastler-Montarnal apparatus)

Equation (11) gives the amplitude of the spectra after crossing the phase plate.
The polarizer P polarizes the incident light.
The strip 1 does not modify the orientation of the vibration carried by the direct wave.
The half-wave plates Sz and S turn the vibrations of the odd spectra through 90° (Fig.
41.11) (see the properties of half-wave plates, § 8.3).
The direct and diffracted waves are always at right angles, and their vibrations are normal.
FO)y=1 parallel to OP (19)

K J .
F (E) =— ﬂd) perpendicular to OP.
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S S| Incident vibration

Fic. 41.11. Direction of vibrations after crossing the half-wave plate.

The analyser only passes the components of the vibrations along O4 so that

F(0) = sin § parallel to OA4,
K\ ] (20)
F (521—) =~ % ¢ cos 6 parallel to OA. _
Taking the Fourier transform of the amplitude distribution in the plane S,
s 2¢ .awx 1 . 3ax
f'(x) = sin 0+?cos0[sm 7+§sm —a-+ ] @n
Hence, in the image plane R’,
I(x) = sin® 6+sin 6 cos 8 72 [sin ax 1 n 3™y ] 22)
n a 3 a
The extremes of the intensity are
I = s1:n B[S%n 0+ ¢ cos 6], )
Iy = sin Osin 6— ¢ cos 0].

6 = 0. The direct wave is totally stopped. I(x) = ¢2/4.
This is ordinary Schlieren photography.

6> 0. If ¢ >0, one has I1 > I,. The phase advance is accompanied by an intensity
increase. The phase contrast is positive. The intensity minimum is 0 if I = O so that:

2n

¢=tan0x0=TX2e.
Thus
A6

6 < 0. The effect is inverted and the phase contrast is negative.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



194 PROBLEMS IN OPTICS [PROBLEM 42

PROBLEM 42
X-rays. Production and Diffraction

I

Describe briefly, using a drawing, the construction of a tube to produce X-rays.

The radiation emitted from the tube consists of a continuous spectrum upon which is
superimposed intense lines which characterize the anode. Briefly indicate the origins of
the line spectra and the continuous spectrum (without taking into account their fine
structure).

1. Knowing the potential difference applied to the tube to be ¥ = 40 kV, find the mini-
mum wavelength of the continuous spectrum.

2. Given a copper anode whose ionization potential for the deepest level electrons
(K-shell) is 8.98 kV, find the wavelength of the K-absorption limit of copper. What should
the minimum potential difference applied to the tube be for one to observe the line corre-
sponding to the transition between the L- and K-shells?

11

One wants to isolate the line (K,) with wavelength 2 = 1.54 A by means of a crystal
monochromator. A beam of X-rays from the tube T is collimated by fine slits F and F’
(Fig. 42.1) and allowed to fall on the face of a cube of sodium chloride. What relationship

FiG. 42.1 F1G. 42.2

exists between the wavelength 4, the distance d of the crystal planes parallel to the face of
the cube, and the angle § which the beam makes with the face of the crystal, so that the
beam with wavelength A will be selectively reflected? Find the smallest value of §, given
that the ions of Cl~ and Na* alternate in the sodium chloride structure at a distance of
a = 2.81 A (Fig. 42.2).

111

Replace the sodium chloride crystal by another crystal whose crystal planes are separated
by an unknown distance d'which we wish to measure by measuring the angle 8 of selective
reflection of order K for A = 1.54 A. The angle 6’ is determined with an uncertainty of 6.
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For what values of 6’ will one get the best precision for d’? From what angle forward will
the relative precision reach 1/1000? Near 3.1 A, what is the smallest value of K which
corresponds to the greatest precision on d’?

v

Show that if one removes the slit F’ in Fig. 42.1 and if then one rotates the crystal about a
point passing through C normal to the figure, the rays with wavelength A which diverge at
F after reflection will pass through a point P in the plane such that CF = CP.

One is given the values of ¢, h, e, and m,.

SOLUTION

I

1. The continuous radiation from an X-ray tube is due to the transformation of the kinetic
energy W, of the electrons into radiant energy through interaction with the anode (§ 11.3).
A single electron can undergo numerous decelerations in passing through the atoms of
the metal each time producing a photon with energy hv = —AW,. The maximum frequency
»,, of the photon which one can get through this process corresponds to the transformation
of the entire kinetic energy of the electron into radiant energy at one time. With W, = eV,
one finds:

c he  6.62X1072X3X108

= = — = = —10
Im = = o = TEOXT0-Bxax 08 — 031X1070m (031 A).

2. The K absorption limit separates the radiations of very short wavelength which can
produce ionization of the atomic K-shell and the longer wavelengths. For copper:

he _ 6.62X10~3x3X 108

eV, = ~10

Ax =

The emission of an X-ray corresponding to a transition of an electron between the various
L, M, N, ... levels and the K level can only occur if the K-shell, filled in all atoms from
helium onward, has lost through ionization one of its two electrons. This is true in particular
for the K, line (L — K, Fig. 42.3). It is necessary to have, therefore, the potential difference
Vi = 8.98 kV available.

-

FiG. 42.3

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



196 PROBLEMS IN OPTICS [PROBLEM 42

II

The expression required is the Bragg formula (§ 7.14):
2dsin 8 = KA. (K integer) n
The smallest value of 6 is obtained for K = 1 and for d equal to the minimum separation
of two parallel crystal planes in sodium chloride parallel to the cube face* so thatd = g, and
5

. 1.54 ocqy
smO—m—O.273, 6 = 15°50".

111

From (1), one gets
2d’ cos & -A6'+2sin ¢ -Ad" = 0
A | g
| d | tan6
The greatest precision will be obtained for 6’ = =/2. If one wants |Ad’'/d’| < 1073, it is
necessary for

, 6X3XI1074 , °
tan 6 =T=l.8, 6’ = 58°.
The minimal value of ' is 58°. For all the integral values of K, only the value K = 4 gives
6 > 58°:
.o, 4X1.54
sin §' = %31 = 0.993.
IV

Let « be the angle through which the reflecting surface of the crystal has been rotated
(Fig. 42.4) so that the ray FC’ leaving F strikes this plane at the same angle 8 as the ray FC
before rotation. FC’' makes an angle « with FC. Let P be the point of intersection of the

Fic. 42.4

* Note that the cube in Fig. 42.2 is not basic for NaCl; a is half the translation which will map the crystal
lattice onto itself.
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reflected ray corresponding to FC with the circumference of a circle with centre C and radius
CF. Find the symmetric positions F, and F, of F with respect to the two successive posi-

tions of the reflecting plane. The arc F, F, = 2« and the angle EFFI' = «. The reflected ray
in the second orientation is then C'P.

PROBLEM 43

X-ray Spectrometer with a Curved Crystal

Cut a thin plate parallelepiped of sodium chloride whose thickness along OZ is small;
then subject this to an external force so that it takes the form of a cylinder in which the planes
initially parallel to XOY become coaxial cylinders whose axis is R = OC = 1 m and with
the curved surface parallel to OY. With this deformation one can assume that the crystal
lattice is not deformed but only its orientation varies.

1. Show that the rays obtained by reflection from the crystal planes which remain parallel
to YOZ before deformation are tangent to the same curve for a given order of diffraction
K. Assume the plate infinitely thin.

2. What happens to the above result if the plate has an appreciable thickness?

3. Show that the rays corresponding to a diffraction order K are practically brought to a
focus and find its position.

Where are the various foci F,, obtained with 4 = 1 A located ? The distance between crys-
tal planes parallel to YOZ is d = 2.8 A.

SOLUTION

1. The crystal planes, initially parallel to the plane YOZ and thereby parallel to the faces
of the plate, reflect among the various incident X-rays those which, in the plane of the figure,
make with their normal CO in this same plane, the angle 8, given by the Bragg formula
(§ 7.14):

2d sin 0, = KA. 1)

K is the diffraction order and d the crystal spacing.

Assume initially that the plate is infinitely thin. After it is distorted into an arc S’ about
the centre C (Fig. 43.1) the selective diffraction of order Kat any point Pall occur giving the
reflected ray with the same angle 6, with the normal CP to the crystal plane passing through
P, or, in other words, with the radius to the centre C. When P is displaced across the plate,
the distance CP = R and the angle 6, remains fixed. From C draw the normal CF to the
ray reflected at P. One has

CF = R sin 6, = const. 2)

In addition, the rays reflected from various points on SS’ corresponding to the same

diffraction order K are all tangent to the circle with radius R sin 6, and centre C.
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Fic. 43.1 Fic. 43.2

2. Consider a plate of finite thickness and a ray PF reflected on the crystal plane CP at P
through angle 6,. This ray passes through a point P’ on the plate and makes an angle 6,
with CP’ to the crystal plane passing through P’ (Fig. 43.2). One has

CPsin 6, = CP'sin 0, = CF. 3
from the geometry:
d _CP
d ~CP

and expression (3) becomes
dsin 6, = d'sin 6;.

so that the direction PF is the same for the rays reflected at each point such that P satisfies
(1). The thickness of the plate thus makes no change in the conclusions of the first part of
the problem.

3. Since the plate has small dimensions, Fig. 43.1 shows that near F all of the reflected
rays are concurrent to within the second order. The coordinates of F are
x = CFcos 0; = R sin 6; cos 0,
z=CFsin 0y = Rsin? 0;.

For the various values of K, equation (1) lets us find the various values of sin 6, and (4)
gives the values of the corresponding focus F,. One finds

4

k = 1 2 3 4
sin 6, = 0.1786 0.3572 0.5358 0.7144
O = 10°17 20°56 32724 45°33’
cos r = 0.9839 0.9340 0.8443 0.7003
Xk (in m) = 0.175 0.333 0452 0.500
zx (in m) = 0.032 0.127 0.287 0.510

When 0, varies, the geometric locus of Fy, is a circle with the equation

x2+ 2_52—52
(=2) =%

Its centre is at xo = Oand zo = R/2. It is then situated about the centre of CO (Fig. 43.1).
The circle passes through C and is tangent to the plate at O.
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PROBLEM 44

Group and Phase Velocity

Calculate the group velocity U of waves whose phase velocity ¥ has the following func-
tional variation with wavelength:

1. Acoustic waves in air: ¥V = A4, A4 a constant.
2. Transverse elastic waves in a bar: V = A/A.

3. Deep water waves: V = 4 V.

4. Capillary ripples: ¥V = 4 / VA

5. Tonospheric electromagnetic waves: ¥ = V/c2+ A222 (c is the free-space velocity of
light).

SOLUTION

The group velocity of sinusoidal waves, each characterized by its angular frequency w
and by its wave vector ¢ = 2%/A, whose angular frequencies are distributed about a mean
value w, are given by (§ B.3)

O

1. If V is constant the medium is not dispersive, dV/dA = 0,and U = V.

A A
— A A = V
3. U=A l——;:— l=_,
v 24/2 2‘/ 2
A A A 3
4, U=—+— —— ==V
VA 2 /B2
A2A42) c2 c?

5. U=A/c2+ A2~ = =
\4 24/c24+ 4292 2+ A2V

Also see Problems 54 and 56.

14 R & M: P1O 199
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PROBLEM 45
Foucault Method for the Velocity of Light

I

The measurement of the velocity of electromagnetic waves using stationary waves gives
the phase velocity v,. The toothed-wheel method of Fizeau where one uses very short-wave
trains gives the group velocity v,. Show that the Foucault rotating mirror method gives the
group velocity. To do this take into account the frequency variation which arises from a
moving mirror as a result of reflection. Show that after reflection on the rotating mirror M

S

L

T M
FiG. 45.1

(Fig. 45.1), the wave front propagating in the dispersive medium contained in the tube T
with length / undergoes an additional rotation after exiting into the air and this rotation
adds to that previously produced by the mirror.

II

Michelson, using this method, measured the velocity of light in carbon disulphide con-
tained in the tube T and found it to be v = ¢/1.77. The source S emits white light. The
index of refraction of carbon disulphide has the following values for the wavelengths in air
measured in microns:

2 ‘ 0.580 | 0.550 t 0.486

|
n I 1.628 1.640 f 1.652

Show that these values are in agreement with the conclusions of the first part.
SOLUTION

I

After passing through the lens L, the plane wave, obliquely reflected on the rotating
mirror M, enters the tube 7. If one neglects the typically small relativistic effects (§ 9.10),
displacement of a mirror with a velocity u in a direction normal to its plane produces, for

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



PROBLEM 45] REFRACTION AND DISPERSION 201

radiation with frequency » falling on the mirror with angle of incidence i, the same effect
that one would get by displacing the source with a velocity 2u cos i. Thus, the frequency
variation due to the Doppler effect is

_A_v =% E cos i.
v ¢
One takes the + or — signs depending upon whether the mirror is moving toward or away
from the ray which strikes it.
With this in mind, let MM’ (Fig. 45.2) be the face of the mirror rotating about the axis O
with the angular velocity w. The reflected wave is no longer monochromatic. Its frequency is
altered from M to M’ by the amount

Ay = » 4wR cos i )

z|8
- M’
7

s

Fic. 45.2

by taking MM’ = 2R, since u = wR at M and at M’. The wave front which enters the tube
at AB at normal incidence propagates in the dispersive medium contained in the tube with
a phase velocity v, as a function of »
d'U¢
Avyy = Fr X Av, )]
thus, using (1),

4 .
Avy = % wvR cos i ‘

dv X c @)

For carbon disulphide, as for all transparent media, dv,/d2 is negative in the visible.
Therefore, with the rotation w in the direction indicated in the figure, one can easily see that
the velocity of the wave front is greater at 4 than at B. The front propagates with a mean
velocity, that of the phase velocity vy, of the radiation incident at O where the frequency is
not changed, but it undergoes a rotation which per unit time is given by

A vy dvy 2w

T AB T 2Rcosi dv ¢’ @)

the minus sign being due to the fact that the direction of &’ is opposite that of w. The expres-
sion relating the group velocity v, to the phase velocity (§ B.3)

L_i(l)_i_l%
vy, dv \v, vy v§ dv
140
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allows one to write (4) in the form

. 20 2(1 1)
0 = —vgl——-—|.
[4 Vg Vg

After the time Az = 2//v, necessary for up and back travel through the tube, the angle
through which the front of the wave has turned is

n \v; v

n = c/[v, being the index for radiation of frequency ». When it enters the air, the wave front,
which is inclined at a small angle £ to the interface, undergoes refraction which transforms 8
into

1 1

o=nf= 4wl(———).

Vg Yg
This rotation resulting from the reflection turns out to be in the same direction as the rota-
tion of the mirror. The latter, neglecting the Doppler effect, is given by (§ 1.5)

_ ol
Lt

6 )

for radiation of frequency ». The effective rotation is

Vg

rather than (5). Thus one measures the group velocity.

II

Using the results above, the velocity ¢/1.77 is the group velocity. To relate this to the data
given in the statement of the problem, it is necessary to express it in terms of the dispersion
dn/dA, of carbon disulphide. One has (§ B.3)

Vg = vg—A dvs
g (] da

where A is the wavelength in the medium. Since

n=2C, 90 __d%
B
A dn
Vg = ’U¢(1+71‘ a).
Using Ao = An
A _dho_dn
A o n°’
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hence
G dn _dedn (G dn
da n_ndlo'( na;)'

The term between the parentheses represents a small correction. Hence, finally,

Vg =7, 1+& dn
£ ¢( n dlo)
The data from the problem statement gives

dn  0.024 Ao 0.55

n 1.640° die ~ 0.1031 °
For the mean wavelength v, = ¢/1.64, hence,
c
Vg— Yy = m(—0.077)

(the negative sign because dn/dA < 0). One gets

1 1 c
Ve % = c( 177~ 1.64) = T4 (70073

The agreement is satisfactory.

PROBLEM 46
Velocity of Light in Moving Water

The Fizeau experiment on the velocity of light in moving water has been repeated with
improved precision by Zeeman.

The length [ of each tube is 6 m and the velocity of the water is 5.50 m/s. The index of
refraction for the green line of mercury (4o = 546 nm) in water is 1.3345 at the temperature
at which the experiment was conducted. One registers the position of the central fringe for a
given direction of flow and then reverses the direction of flow and finds the new position of
the same fringe.

1. Find the observed displacement as a function of the fringe spacing.

2. In this experiment, the water through which the light is transmitted is in motion with
respect to the source. One has, therefore, a Doppler effect. Calculate the new fringe positions
taking this effect into account. Can one neglect this effect if the fringe position can be found
within an uncertainty of 0.01 fringe separations? The index of water for 4 = 589 nm is
1.3330.
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SOLUTION
1. The difference in time of passage of the light in the two tubes is (§ 9.5)
/ /
At = N M
and if one neglects the Doppler effect, one has
c 1
vy = —r?:tu(l—ﬁ-z—), @)
hence
2
At = ! —- ! — ~ 2 1), 3)

The displacement in terms of the fringe spacing is

At cAr 2
= = = (n?2—
Ap - T }.0 CZO (n 1),
,_ 4X6X5.5 3

2. The radiation with wavelength 4, emitted by the source has a wavelength 4, = i,+A4in
a system bound to the water. The index of the water must be found for Z('). Now

. dn
n = n-{-m Aig
and (§ 9.6)
A}.o u
T Twe

the + sign relates to the tube in which the water moves away from the source. Hence

. dn un _ dn u
n —nilod—lx—c-—n(liloa‘x‘c‘)

The phase velocity given by (2) becomes

by replacing n'? with n? which is equivalent to neglecting the terms in c/u. Equation (3)

becomes
2lu dn
~ 2
At =~ E (n 1—nig dlo)
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and the displacement of the fringes is

2lu dn nie dn
o o 2_1_ Y = ’ _ o
Ap io (n 1—nie dlo) Ap (1 =1 dlo)'
Numerical application:
dn 00015 w1 = 078

dle  43X10°°

-9
Ap’ = 0.64(1+ 1.3345x 456X 10 X0.00IS)

0.78X43X107?
= 0.64(1+0.034) = 0.66 fringes.

This effect should be taken into account as Zeeman has done in his experiment.

PROBLEM 47
Propagation of Waves in a Periodic Discontinuous Medium

Consider the longitudinal elastic waves which propagate along an infinite lattice of point
particles each having mass m and distributed along the Ox axis with spacing d. Each of
these particles exerts a repulsive force on its neighbours proportional to the change in their
spacing from the equilibrium position (Fig. 47.1).

F1c. 47.1

1. Find the equation of motion of the particle indexed by n, calling the displacement
from the equilibrium position s, and show that the simultaneous equations for the motions
of the particles yields a solution of the type

sn = S cos (wt—ond).
Show that the angular frequency w varies with the wave vector ¢ and always remains less
than some value w,, which should be determined.

2. Find the phase velocity of the sinusoidal waves which can propagate along this lattice
of particles and examine its variation as a function of ¢. Find the group velocity of the waves
whose angular frequency is near a given value.

3. Given that the refractive indices of crystalline NaCl and KCl have the following values
at the two extremities of the visible spectrum
NaCl 1.537 1.568
KCi 1.483 1.510

what must be the number of particles per wavelength to account for the dispersion due to
the mechanism studied above? Is the preceding mechanism applicable to light waves ?
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SOLUTION
1. The equation of motion of the particle # is

d2s,
de

= — k(Sp—Sn—1)—K(Sr—Sns+1) = k(Sn—1+Sns1—25p). 4]
k being the Hooke’s law coefficient.

One wants to satisfy this equation with a progressive wave
s(t) = S exp [j(wt—ox)].

The displacement is only defined about the abscissas nd (n = 1, 2, . ..) where one finds the
particles, hence

sq(t) = S exp [j(wt—ond)]. )

By substituting the solution (2) in equation (1), one finds, following division by s,,,

mw? = —k[exp (—jod)+ exp (jod)— 2] = 4k sin? %{ ,
hence
w = o, sin %d = Wy, sin %ﬂ, 3
with
wk = % @

The angular velocity o varies periodically with a. The period of the variation is ¢ = 27/
(A = 2d). For the values of the wave vector
ox = 0+K%7n (K integer)

o has the same value as for . The maximum value w = w,, is obtained for ¢ = m/d. Figure
47.2 respresents these results. Only the angular frequencies lying between O and o,, can be
transmitted along this lattice.

When exp (j2Kz) = 1, the solutions of (2) for ¢ and oy, are identical. If one wants to get
a unique relation between the vibrational state and the modulus of the wave vector, it is

:

X
0ﬁ2_7r

d 4

l
af-----
a3y

Fi1G. 47.2
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necessary to limit the latter to an interval 2zz/d. One typically selects the following interval:

4 o 4
—— ==,
d

d

The positive values of o correspond to the waves which propagate along the direction of the
lattice and the negative values to those which propagate in the inverse direction.

One can find the conditions imposed on the wave vector by another method by considering
the wavelength. Figure 47.3 represents a wave of length 2 = 12d by the solid line so that
o = 2/12d and the dotted curve represents a wave

, 11
=2 (1‘27# 2‘)’
sothat A’ = 12d/13. The displacements s are the same.
2. Using (3), the phase velocity of the waves (2) is given by

o _ond smod2 sin ad/2
o 2 a2  ° dad2

vg = )
In this form the function (sin x)/x has an absolute value varying as a function of ¢ as shown
in Fig. 47.4. The phase velocity is a maximum for ¢ = 0 (A = ) and v; = v,. It has fallen

to 2/m = 0.695 of this value for 0 = m/d and it goes to zero with w for ¢ = 2n/d.

%

0,635t

‘
]
1
27 4z 6w c T O
d d d d
FI1G. 47.4 F1G.47.5

R

In Fig. 47.2 the phase velocity at a point P is represented by the slope of segment OP
(Fig. 47.5). The group velocity v, = dw/do is represented by the slope of the tangent PT

at this point. One has, using (3),
_ de c od od

) 0s —2—= ’U()COST.

Vg
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For very small values of ¢, the curve (o) can be taken to coincide with its tangent O 4 at the
origin. As a result v, is constant and the lattice of particles, which can be thought of as a
continuous medium for the propagation of waves only when A > d, is not dispersive. One
knows that this is the case for elastic waves propagating along strings at an audio frequency.

3. Expression (5) can be written
§in w/N
0 TZ/N )

Vg =0

calling N = A/d the number of particles contained in a wavelength. The following table
gives the values of v, as a function of N:

N 2|4’8i12 161201:»

23/, 0.636 0.900 0.974 0.989 0.994 0.996 1

Now the relative variations of the index and hence of the phase velocity approach 0.02
for NaCl and 0.018 for KCI. The number of particles contained in a wavelength can never
exceed ten, if one uses this mode] for a dispersive medium. But one know that the distances
d are of the order of several angstroms and thus one has at least a thousand atoms in a wave-
length of visible light. The theory of dispersion in this region of the spectrum must involve
intramolecular mechanisms.

PROBLEM 48

Sellmeier Dispersion Equation

I

The quantum mechanical expression giving as a function of the frequency v the refractive
index dispersion of a pure material removed from regions of spectral absorption is written

2N vd?
2 — _ Vit
" 1+ 3heo Zv,?~v2' M
h is Planck’s constant, ¢, the permittivity of free space, d; the dipole moment of the transi-
tion with frequency »,, and N the number of molecules per unit volume.
Taking the moments d, as being produced by harmonic oscillators with charge g;, mass m,
and energy W = hw,, show that expression (1) is equivalent to the classical expression:

Nifiq}
= Vg S @

In this latter expression, each oscillator has only one eigenfrequency and there are as many
oscillators as eigenfrequencies. f; is a numerical coefficient called the oscillator strength.
Find an expression for f; in the case where only a single transition is considered. One sees
then that f; is of the order of unity and in that which follows take f; = 1.
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II

The dispersion of hydrogen under normal conditions of temperature and pressure can be
represented between 0.4 u and 9 u by

n? = 142721X 10‘4+2'le£>< 107 (A in metres). A3)

To connect this expression with the theoretical expression (2), one writes it in the form

nt = 1+A(1+%). @)

Find the values of 4 and B and verify that the eigenfrequency lies in the ultraviolet. Find the
ratio g/m. To what particle does it apply ? The density of hydrogenis ¢ = 9.0X1072kg-m™3,
the Faraday (e = 9.65X 107 coulombs, where (9 is the number of molecules per kilomole,
and e is the elementary charge.

m
Between 0.3 p and 10 p. the index of refraction of CaF, is given by
6.12Xx 10715 5.10x107°

2 i
7; 6.09+ P 888XI0-5 +12_ 1265 10°9 (4 in metres). &)
Put equation (2) in the form
CAk  Ciid
2 _ 11 32
n:= A+ 7 +aa e )

By comparison with (5), give the expressions for 4, Cy, and C,. Find 4; and 4, as well as
the ratio C,/C;. By assuming that the oscillator responsible for the infrared absorption is
made up of a set of two F~ ions displaced with respect to a fixed Ca* ™ ion, find the ratio
my/m, of the mass of the proton to that of the electron and compare it with the theoretical
value 1830. my; = 19my.

v

In the X-ray region, show that one can neglect all the electron eigenfrequencies and not
consider the ions. Put (2) in the form

n? = 1—KA2. %)

Give the expression for K and its numerical value for copper, 4 = 63, density y = 8§ X10?
kg-m~2 and atomic number Z = 29.

Calculate the phase velocity v, and the group velocity v, in the X-ray region.

What must the dispersive law be for a substance which satisfies v,0, = ¢ where c is the
free-space velocity of light ?
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SOLUTION
I
The energy of a harmonic oscillator with frequency ; is given by
W, = hv, = 4n®mpis?,

s; being the displacement. The dipole moment d; = ¢;s;. For the oscillators of type #, one
has
2Nvd?  2Nvisiq? 2Ng?

3esh  3gghwi | 3egdaim;

Therefore, comparing (1) and (2) one sees that

fi=2/3.

II

For v << v,, equation (2) with a single term can be written

Ng* 1 Ng? 72
2 — = il
= 1 et~ = ¥ et (137
o
and with A = ¢/v and 4, = ¢/v;:
B
n = 1+A(1+1—2),
with
2 2
=_Nq_’ B=_”i12=1;{z, i=N—q
4nZegmyv? v} B 4n?cc'm

Comparing the coefficients of (3) and (4)

21110714
_ —4 — = —14 — )2
A=2712X10"%, B = 2791 0.78x10 A?

hence
A = 4/0.78X1077 ~ 0.9X 1077 m ~ 900 A

2; is in the far ultraviolet.
To determine the charge to mass ratio of the oscillators, g/m, one writes

A e Ne

=2 - _ "
B m 4dmleec?’

taking g = ke where e is the elementary charge and k an integer. One has N = @{u/M, (M is
the molecular mass in this case 1) hence

Ne = Glep = 9.65X107X9x 1072 = 0.87X 10? coulombs
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and
4 X 9Xx 1018

2 =
meo® = 4 OX10

= 107,
hence
e 2721x107¢ 3.14x107

P = = 1
k m  0.78X10-14 XO.87><107 1.3X 10" coulombs/kg.

Thus the value of e/m is 1.76 X 101 C-kg~!. Now k = 1 and the oscillators which determine
the ultraviolet absorption are the electrons. One knows that the ultraviolet transitions
cause the electronic energy of the molecule to vary.

IT1
When one only retains the first two terms in (2), one has

N g} 1 N, g3 1

2 =
" 1+47t280m1 v2—12  daegm, T vE3—12 ®)

Replacing » by ¢/4 this becomes

o . M@t Ny
4n2eoc?my T AR—AF  dmPe c?m, T A2—23°
1212 1212 12(12_12_{_12) 12(12_12_{_ 12)
n? = 1+C112__12+C2 P 12— 1+C, 2 12_}% YV 4Cy =2 12_35 2,
CiAd G
= 1+C A+ Cpl+oo 32—{—12 3
Thus
N,g3 Noq2
— 2 2 — 111 = 212
4= 1+C111+C212’ Cl - 471:28002"11 ’ C2 471:28002"12 '

Comparison with the empirical expression (5) gives

= 4/88.8X10716 = 942X 1078 m = 942 A (ultraviolet),
Aa = 4/12.6X 1071 = 3.55X 1075 m = 35 p. (infrared),

C, Cypi_ 724  510X107° (8.88)(10—15)

Nogi
G _Gh A ~ 5 m
C, = CJi <7 T 6.12xi0-% \T26xi0-v) = 413X107 x

qu m,

The first term of the dispersion expression is the electron term and ¢, = e and m, = m,.
On the other hand, ¢, = e (the F~ ion is monovalent) and m, = 19m,,. There are two
valence electrons which are both optical electrons and two F~ ions. One takes N; = No.
Hence

myr 1

‘m, = 19X4.15x10-5 12170.
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This value is of the order of magnitude of the ratio 1830. This kind of calculation with
many approximations played an important role at the turn of the century in suggesting the
atomic origin of the oscillators active in the infrared.

v

(a) In the X-ray domain, » is very large (of the order of 10'®) and 2 is very small (of the
order of several A). Thus » = v; > v,. On the other hand, the masses m, of the ions are
about 2000 times greater than those of the electrons while in (5) N is of the same order as
Ny and q as q2. Therefore, the latter term in this expression is negligible. One has then

n o 1—

taking

2 242
Ne =1 ___&zl_laz,

4n2eom,c? 4n2eoc?m,

_ Ne?
4n2eoc®m,

N is the total number of electrons per unit volume since here v is greater than all the electron
eigenfrequencies. Each atom has Z electrons and one has

= ad
Ne = (JleZ R
For copper:
3
Ne = 9.65X 1o7><29><i>23i = 3.5x 101,
hence
1
—_ 1 1 — 15
K = 3.5X101X1.76 X 1011 X 314X107 2X 105,
(b) By definition:
YR A, -
T V1=K’
c
ov oy 8(7) (9
G ) 2G)
Vg ¢ A
One finds from (7)
n\2 1\2
() +*=(3)
Hence
vg = NHC
Then one has
veX vy = €2 (10)
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In general for (10) to be satisfied it is necessary for

vg=nc, since vy = c/n.
But, using (9),

c c
v d(T) _ A2 _ c
& P n 1 dn n _ldn
(z) A di 22 di
thus
dn c 1
A T e T m
where
2ndn _ 242
n2—1 "~ 1 -

One finds then
nz2—1 = const. X A2,

which is the dispersion law (7).

PROBLEM 49
Dispersion in a Region of Weak Absorption

1. Starting with equation (7) from Problem 51 giving the complex amplitude of the electric
dipole moment induced by an electromagnetic wave on a classical model of the atom, find
the expression giving the complex index n = n—jk in a gaseous medium containing N atoms
per unit volume.

2. From the preceding expression derive an expression for the index of refraction n and
the absorption index k in the case where the following assumptions can be made: the absorp-
tion is very weak so that one can neglect k in finding n; the region with absorption is very

narrow so that one can take
wt—w? = 2ww,—w),

relating w and we when their difference is not a major factor; take n = 1 in the product nk.

3. Graph the variations in n and & in this case using the ratio

2
u == (wo—w).
2 (wo—w)
as the variable.
4. The gas above is crossed by a parallel beam of polychromatic light carrying the energy

flux per unit area @, = f ®_ do where the interval dw entirely covers the region of spectral
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absorption. Assuming that the monochromatic flux @, has the same value for all the radia-
tion, find the flux absorbed —d®, in passing through a thickness dx of the gas as a function
of the absorption index & found in question 3 and the radiant energy density w(w). Recall
that

What is the expression giving the absorbed flux if the energy density is expressed as a
function of the frequency » rather than the angular frequency w?

SOLUTION

1. The starting expression for an oscillator with charge ¢ and mass m is

- 7E
P -t ) @
The polarization p of a gas formed of such atoms is
P = Np
and the complex index
P Nqg?
n—1= €r_1 = ;of = eom(w%_wz_*_ng) . (2)
Separating the real and imaginary parts of # = n— jk, this becomes
Ng? wi—w?
2_ L2 —
e A O ) @
and
_ Neg gw
= e o g @
2. The approximations indicated in the problem statement give
ne] = Ng? 2wo(wo—w) _ N¢* % u  Cu 5
2egm " dwiwo—wf+g%wf  2egmweg T wE+1 T w417 ©)
_ N¢g® gw _ Ng? 1 Cc
k= 2egm X oY (wo—wP+g%wE  2e,mwyg XEF T sl ©)
calling C the constant
_Ng
2eomwog

3. The curves representing n— 1 and k as a function of u are given in Fig. 49.1. Foru = 0
(w = wo), n—1 vanishes and k passes through a maximum equal to C. For u = £1 (jwo—o)|
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= g/2), n—1 passes through maxima (in absolute value) equal to C/2 at the same time as &k
has the value C/2. The interval 2 |wo—w| = g is the width of the absorption line.

c
2
Fi1G. 49.1

4. The absorption law for a beam of monochromatic light is:

do,,
-5 = 2K,

where K is the absorption coefficient related to the absorption index by K = kw/c (§ 2.5).
Throughout the absorption region the flux loss is

d@" - 2% f ko do. (D

Replacing k in this expression by (6), w by wo, and dw by —g/2du, it becomes

d®, DoNg* du
dx  2epmc ) w2+1°

The integral measuring the area lying between the curve k() and the abscissa in Fig. 49.1,
is found to be arctan u. It has about the same value in the spectral interval where the absorp-
tion is significant and in the interval — oo to + o-. With the latter limits it has the valuez,
hence

dd)o _d)oquz
dx = 2egmc @)

The flux carried by a parallel beam is related to the energy density by @¢ = cw (¢ being the
velocity of the electromagnetic waves in the medium where 7 is presumed close to unity).
15 R & M: PIA
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Now w can be expressed as a function of w, with®, from (7), (8) now becomes

dod, _ Nrg?

ax = 2em WO

If one takes v = w/2m as the variable with @o(w) dw = Po(v) dv

Do(w) = %@o(v) = éc; w()

and
d@o _ Nq

2
dx 4eom w()- ©)

PROBLEM 50
Band Spectra. Anomalous Dispersion of a Vapour

A Michelson interferometer is adjusted in such a way that the image M, of mirror M,
given by the beam splitter Sp makes an angle o with the mirror M and the distance between
M, and M, (image of M, in Sp) measured along AIA’ has a given value AB = €. Alens L
produces on P an image of M with unit magnification (Fig. 50.1).

AB!_M‘
B M

Al
FiG. 50.1

1. The interferometer is illuminated withlight of wavelength A. Explain why one sees linear
equidistant fringes on the plane P. Given that one finds 250 fringes in a distance of 5 cm,
give the fringe spacing 7 and the angle « for 2 = 3009.14 A.

2. The monochromatic source is now replaced by a continuous source. Given that e, is
of the order of 1 mm, what does one see on the plane P?

3. Plane P contains the entry slit of a spectrograph. The slit is extremely fine and parallel
to the fringes observed in monochromatic light. It is situated at the point 4’, the image of
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B M

Al
FiG. 50.1
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A given by L. What does one see on a photographic plate when the interferometer is illumi-
nated with a continuous spectral source? For this question and those that follow, make the
following simplifying assumptions:
the dispersion of the spectrograph is linear in wave number in the region under study;
one will locate the positions of maximum illumination on the plate by the corresponding
wave numbers o;
the magnification, normal to the direction of dispersion, is unity.
Find e,, knowing that between 4 = 3009.14 A and 1, = 3034.12 A, one observes 50.2
times the distance between two consecutive illumination maxima.

4. The spectrograph is inclined so that the entry slit, which will always pass through A4’,
makes an angle 0 with the direction of the monochromatic fringes. The position of a point
M on the slit is determined by its distance y = A’M from A’ (Fig. 50.2). On the figure the

F16. 50.2

fringes are vertical and the interference order increases from left to right. Find the path
difference for rays interfering at M as a function of y, ey, 0, o and i, the fringe spacing for
radiation o in the plane P. What does one observe in the plane of the photographic plate
when the source is continuous over an interval such that one can neglect the variation of i
with o.

5. In each arm of the interferometer is placed a sealed cylindrical cell of length d with
transparent parallel windows and set parallel to the arms. The two cells are identical except
that one is evacuated while the other contains heated tin vapour. The positioning of the
cells is such that the path difference for the rays which interfere is lessened in absolute value
for radiation in which the index of the gas is greater than one.

Recall that the dispersion of the index of a gas is given by Sellmeier’s equation, which, in
the case of an isolated absorption line and for low pressure, can be written

—Bae

n—1=-——
V—90

where 4o (= 1/#,) is the wavelength of the absorption line and B is a quantity related to the
number of atoms per unit volume and the the charge and mass of the electron. (This expres-
sion is not valid for # = #, where # is very close to #,.)

The interferometer is always illuminated by a continuous spectral source.

(a) What happens to the expression derived in the previous question?

15¢
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(b) What does one find on the photographic plate about #,? Show that each fringe
generates two points on a horizontal tangent (parallel to the dispersion direction of the
spectrograph). It will be useful to make the change of variables x = #—#,.

(c) Find the values of x and y at these points. Find their height separation Ay and express
it as a function of i, B, d, and eo.

Numerical application:

sin 0 = 0.1
d =20 cm
B =600m for A, = 3009.14 A.

SOLUTION

1. One has the localized fringes of a wedge of air (§ 6.5). The fringe spacing in monochro-
matic light is
50

l=2T0=0.2mm.

Additionally, one has

L 300904 3X10-4 ,
2% = ax02xi0F =~ 04 2d =25 O

. A
1—2—a, hence « =

2. Observation in white light. The interference order

puz%z4000

is high. One sees white.

3. Spectrograph slit parallel to the fringes. One sees a channelled spectrum having about
fifty bright bands between 3009 and 3034 A.
The path difference on the axis of the interferometer is such that

8 = 2ep = kir1 = kola = (k1—50.2)A,, 2
hence
5022, 3x103
and
1 _ 502 9X10®  45.18 ;
€0 =5 kil = 5=X o = 96 <107 A

eo = 0.94 mm.

4. Slit of the spectrograph inclined at an angle 8 to the fringes. Let A’£ be an axis normal
to the direction of the fringes. The path difference of a point on the abscissa & is

81 = 2(eo+af).
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Replacing « by the expression obtained in the first question and £ by y sin 6, one has

A . i
01 = 2(eo+——.y sin 0) = 2e0+ ys?? b .
2i iy
Thus, the path difference at M is

in 8
61 = 26’o+ b4 Sl.l,} . (3)
114

If the spectral interval is small, one can take i as a constant. One gets constructive inter-
ference for

81 = kA = k/# (k integer). 4)

The dispersion of the spectrograph is linear in wave number (take the coefficient of linearity
equal to 1). Combining (3) and (4) allows one to write by taking i/sin 8§ = const. = C

y = C(k—2eo). 5

This is the equation of a straight line with slope —2Ceo. The y intercept is y = Ck and the

intersection with 4'% is equal to # = k/2eo. The bright bands are line segments (Fig. 50.3).
The interference order at 4’ for the wavelength Ao is denoted ko.

Ok} - - - 0 D
N
b ~
¢ ) v
& 1
uA Pt
Fi1G. 50.3

5. Dispersion in tin vapour. (a) The cell leads to an additional path difference equal to
2(n—1)d. Hence, the new path difference on M (taking into account the sign conventions

of the text) is
8y = 2[eo—(n—1)d+% y sin 0]
Sellmeier’s equation gives

B2

n—1 =_5—~17o' (6)

In the spectral interval where i can be considered constant, one finds constructive inter-

ference for
k B 1
== 2(€o+ _ l"“’)+ y =

P—7 C v’
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Taking #—#% = x, this becomes
Bd
y = Clk—200 eo—ZBlod)—Z(xeo+7) . )

(b) This equation allows one to describe the appearance of a band of order k& in the spectral
interval about # (but for § = ).
The points P, and P, with horizontal tangent are given by

=~ =0, so that eo—B—d=0 or x = l/ﬁ,..

x2

+ 0 J;z A ) x
. Bd
Vg VB
AT=2\/Bd
%
F1G. 50.4

In substituting the values of x in equation (7), one has obtained the slant separation between
the two points P; and P, (Fig. 50.4)
/ Bd 1[e0 | ,os o
Ay = 4Cleo l =+ 22 xA/Bd ) = 8C +/Bde,.
€9 Bd
Numerical application:

=4 = 44/12X10% = +347 m™?,

‘eo 10-3
x=4347cm™?

. =iVBd 600X0.2

Ay = 8><g% 4/600X0.2X1073 = 16 4/12X 10! = 5.5 mm.

In equation (7), when x — +4/Bd]e,, the term
2Biod = 2X600X0.3X1076X0.2 = 72X 107¢
is negligible with respect to 24/Bdeo = 24/12X 1071, Near points Py and P, the portions
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of the bright band of order k have the equation:
Bd

For other orders the bright fringes are resolved from one another by a translation parallel
to Oy (Fig. 50.4). Figure 50.5 shows a picture taken of bands observed for a gas having many
absorption lines.

Fi1G. 50.5

PROBLEM 51
Scattering of Electromagnetic Radiation Using a Classical Atomic Model

Consider an atomic model involving an electron of mass m, and charge e elastically bound
to the atom and capable of undergoing harmonic vibration. Let wo be its natural angular
frequency.

1

When this oscillator is put in free vibration it radiates energy. The energy loss per unit
time is given by the expression:
daw 1 .
ot = e P
W being the energy, ¢ the time, ¢ the velocity of light, p the electric dipole moment of the
oscillator, and { p%) the mean value of the square of the second derivative of p with respect to

time. The energy loss induces a damping of the oscillation. Find the damping coefficient g
resulting from the oscillation radiation.
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II

1. N identical, independent atoms per unit volume, described by the model above, are
placed in a parallel radiation field of angular frequency w where the electric field oscillates
along the Oy direction. The incident radiation propagates in the Ox direction. Under the
influence of this field the atomic oscillators undergo forced oscillation. Calculate the atomic
electric dipole moment.

The atomic oscillators in forced oscillation themselves radiate. Find the expression giving
the total flux scattered by a unit volume of the material as a function of the incident radiant
energy.

2. Consider the case where w} > w® or A2 < A%. Show that the intensity of the scattered
light is proportional to A~ 4 where A is the wavelength of the incident and scattered radiation.
Find the ratio of the intensity of the incident light to that of the scattered light per unit vol-
ume. Assume

N =108 m™3, Ap/4=0.1.

Also find the ratio of the scattered intensities in the red for 2 = 7000 A and in the violet
for A = 4000 A assuming that the incident radiation intensity is the same in each case.
Discuss these results and show that they explain the blue colour of the sky and the red colour
of the setting sun.

3. Consider finally the case w] < w,, useful in the X-ray region. Find the expression for
radiation scattering in this case. Calculate the ratio of scattered to incident radiation inten-
sity here taking N = 1022 cm™2.

Compare this ratio for $Cu and 2%Pb assuming the number of atoms per cm?® in the
first case 1s 8 X 1022 and 3 X 102 for the second. All of the electrons in the atom are assumed
to participate in X-ray scattering.

I

1. Consider now conductors with conductivity y. Assuming the medium to be continuous,
write Maxwell’s equations for this case. Assuming the electric field to vary sinusoidally
with angular frequency w and to be propagating in the Ox direction, find the real and imag-
inary parts of the complex permittivity.

2. Establish the dispersion relationship for a metal. In this case one can assume that the
electrons giving rise to the optical properties are free so that wo = 0. Assume the damping
coefficient g to be different from zero.

To determine the expressions giving the real and imaginary parts of the complex
permittivity.

(a) Examine the case w > g. Find the real and imaginary parts of the permittivity. Com-
pare this with the results obtained in I11.1 and find the damping coefficient as a function
of . What is noteworthy about this expression ?

(b) Finally, look at the case w < g. Discuss the dispersion expression in this case. Find the
wavelength 2, for which the complex permittivity vanishes. Discuss the behaviour of
the substance for A > 4o and for A < A,.
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3. In the case II1.2 (b) express the complex permittivity as a function of 49 and 4 and
calculate the reflection factor R of the substance for (/4¢)? < 1 and for (A/4¢)? > 1.

4. Find the oscillator intensities which arise in the calculations above for Cs, Rb, K, Na,
and Li given the respective values of 4o are 4400, 3600, 3150, 2100, and 2050 A, and the
number of free electrons/m3 as 0.85X 10%, 1.1 X108, 1.3 10%, 2.5X 10%, and 4.5X 10%,

respectively.
SOLUTION
I
The oscillator has an electric dipole moment p = es where s is the amplitude of the elec-
tron motion. Since the motion is harmonic, one has p = —wﬁp. Since wyq is of the order of
10% sec™*, onecan take the mean value {p)* = 3 p* in the expression for the energy lost per
unit time
dW e’} M
dt T 12ag0c3”
The energy of the oscillator is
W= imodst ¥)
and (1) becomes
2
aw wie? W, 3

dt —67zeoc3me
Thus, the energy decrease is exponential in time
t
W = Woexp (——?),

_ Smeoc’m,
T Wi

7 is the time constant. After time 7, the energy is reduced to the fraction 1/e = 0.368 of its
initial value W,. For visible radiation (wo =~ 10%%), this time is of the order of 107 sec. It
therefore contains a large number of periods. The motion of the oscillator is not sinusoidal
but rather sinusoidal with an exponential decay. It can be thought of as the solution of the
equation

d3s ds o\ _
me(a}g-i-g E'*‘ 'n—e) =0 (4)

where an artificial frictional force m,g(ds/dt), proportional to the speed, has been introduced.
g is the damping coefficient which is required. To find it we equate the loss in energy (3) to
the work done by the artificial force over unit time

mggixsls—zmgﬂw%os’wt.
“ dt " dt esTmo
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o 1s the pseudo angular frequency and w® = w?—g/2. Since the motion is only slightly
damped, one finds, quite reasonably w = wo.
The mean value of this work, which acts over a large number of pseudo-periods is

1
Fm.gsawg = gW

hence, by equating to (3),
g =1/ ©)

FiG. 51.1

II

1. Under the influence of the field E, = E,, sin wt, the electron is subjected to a force
eE, and undergoes forced movement with its equation, derived from that of the natural
motion (4), being

d  _dy

me(—— +g *d—t

ar + wgy) =+eE. 6)

Corresponding to the sinusoidal field E, take the complex field E,, exp (jot) and to the
displacement y the complex function y = y,, exp (j¢) exp(jw?f) with the same angular fre-
quency as the imposed field. Equation (6) yields

—eE,
m (i — o+ jgw)

Ym =

and the moment induced has as its complex amplitude

_ e*E,,
B me(wg —? +ng)

Pm = —€¥m (7)

where the modulus is
_ e’E,,
Y e
The radiation from the sinusoidal moment p is equivalent to that of a Hertzian dipole. The
mean flux which it radiates into all space is given by (§§ 10.3 and 17.5)

Pm

@) = w'pl, wie'E?
T Rue® T 12neim (w0 —w?)?+g%w?]
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If the atoms are independent as in the case of an ideal gas, their radiations are incoherent
and the mean flux radiated per unit volume is N(®). On the other hand, the energy of the
incident monochromatic radiation which crosses a unit surface per unit time is given by

(§2.3)
(&) = FecEL.
One finds then
N(D) _ Nowlet ®)
& 6medcm](wf—w?f+g%w?]

2. If % > ? expression (8) reduces to

N@) _  Natd 16wtV 1 ©
& T bmiecmiod T~ Gegming A%’

since w = 2zc/A. One sees that the scattering intensity, all other things being equal, is
proportional to 174,
For N = 10® m~3, w/wo = 0.1, and the ratio (8) has the value

N@)  10%X(1.60X 10719)4x 107X (367X 109

—_ —5
@& = 67X (3X 1091 (9.1X 10-)2 = 6.63x10

The ratio of the scattered intensities in the blue and red is equal to (Ag/Ag)* if (¢) has the

same value for both so that
Ar\% 7000\¢
(TB) = (40—00) — 9.38.

For the atmospheric phenomena involved see § 17.5.

3. If w? < &? as is the case for X-rays, since all the atomic electrons, Z in number,
participate in the scattering, a unit volume contains NZ oscillators and (7) becomes (§ 10.4)

N NZet
<<8>> = Sreichm? = 3.3X1078NZ. (10)

For $Cu: N—<<(g;—> = 33X 10"¥X8X 1028X29 = 7.65X 10~*.
For 2Pb: 1"% = 33X10"®X3X 1028X 82 = 8.12X 10~*.

These two values are nearly equal. If one looks back at (10) for the scattering coefficient per
unit mass by dividing by the density g of the element under study, ¢ = NA/3(, where 4 is
the atomic mass and #{ Avogadro’s number, the ratio
N@D)  UD) _ z
= L = 3.3X107BG —- 11
) 4 an

depends only on the ratio Z/A of the atomic number to the atomic mass of the element
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considered. This ratio is equal to 0.453 for Cu and 0.395 for Pb. For the light elements it is
close to 0.5 so that the mass scattering coefficient for X-rays is constant. This regularity,
however, is only true for medium length X-rays (§ 15.14).

III
1. Maxwell’s equation for an ohmic conductor are (§ 2.5)

oE oH
curl H = yE+¢ FTE curl E =— o B
One gets for the equation of propagation of an electric field varying along Oy and propagat-

ing in the Ox direction

(12)

®F _ ( FE, O
5?‘””(8 an V“a?)’

which has as a solution a sinusoidal function of time. One has then

°E . o02E

o B am =k

and (12) becomes

o2E ( . y) R
= ”o

2 )W) o

This equation has the form of the free-space wave equation

o02E Y

axz T ¥ Bp

but the permittivity eo of free space is replaced by the complex permittivity

e=e—j % = so(s,——”’—). (13)

Eo
¢, is the real part of the complex permittivity and y/eqw its imaginary part.

2. Under our assumptions, equation (6) for the motion of an electron in a metal re-

duces to
d%y dy\ _ .
m,(—d-t—z—+g 717) = —eE, sin of. (14)
Its solution (§ 10.7) is
_ —eE
Y md(—tige)

One finds, as in part I1.1, the induced moment p, then the electric polarization of the medium
P = Np, and finally, the relative permittivity by the formula
P

Ep = 1+_8E.
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One finds
Ne? 1
IV (15)

g =1+ ; .
gom.w’ jg—w

This complex permittvity &, = ¢,+je,” has a real part

Ne? 1
pr— X—g2 > (16)
and an imaginary part

., _ Ne’g 1

= eomewxm' an

(a) For g > w, expressions (16) and (17) reduce to
__Ne
eom,g?’

Ne?
EoMm.g )

g =1

rr

& =

Comparison of this last expression with (13) shows that

y Ne?

eow  Eowm,g

and this allows one to find g as a function of y

_ Ne?
=

(18)
a value independent of w.

(b) For g < w, the dispersion expression (15) becomes

Ne Ne2iz

= 1——f DA
r £, w? 4nc2eom,

(19)

This expression vanishes for a wavelength 2o such that

_ 4n’c®eom,

= —Ne

(20)

For 1 > A¢, the metal has a complex permittivity which represents its absorption properties.
For 4 < ¢, the permittivity is real and less than 1. The metal becomes transparent.

3. Expression (19) can be written, taking (20) into account

lz
"E.

g =1—
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The reflection factor at normal incidence is given by
R= (_@)2 - (M)z
'\/er+1 ,\/}%_}'2_{_}'0

For A2 « A%:
R=~0

For 22 > A%:
R =~ 1.

This last expression is good when applied to a strongly absorbing body.

4. The oscillator intensity (or oscillator strength) £is the number by which it is necessary
to multiply the theoretical terms in the dispersion relationship to make it agree with the
experimental values (§ 10.10). Expression (19) becomes

e = 1 Ne232f
T 4n2c2eom,
and equation (20) gives
1 4nc2eom,
f= N—}% X —a 21

Now, one has

dnPcteom,  4n*X9X10718X9.1X10731 4
& = GOXIPX(.60x10-mE = 1115X10%

The data given in the problem lets one calculate the products NAZ, and hence the values
of using £ (21). One finds:

Metal: Cs Rb K Na Li
N2AZX10714; 16.45 14.25 12.89 11.02 18.90
f 0.68 0.78 0.865 1.02 0.59

PROBLEM 352

Dispersion and Reflection of an Ionic Crystal in the Infrared

Consider here a binary crystal of the NaCl type formed of Na* and Cl~ ions situated at
the nodes of a cubic lattice which is to be thought of as being infinite (Fig. 52.1). Thermal
agitation produces, among other things, the vibration in which the two partial lattices of
ions are displaced as a unit with respect to one another. Assume that the interaction of two
neighbouring ions (action over a short distance) can be represented near the equilibrium
configuration by an elastic restoring force with coefficient ko. The relative displacements of
the ions create an electric dipole moment on each mesh of the lattice. The crystal acquires
a homogeneous polarization P and electric field E uniform over the interior of the crystal
as a result and this subjects each ion to an additional force (long-distance force).
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~

€

[ ————

ONa* oCl~
FiG. 52.1

I

1. Show that if u is the relative displacement of the positive and negative ions whose charge
is e and reduced mass u, the equation of motion is
d?u
and that the polarization P is given by

1
P = 7[(a++oc_)E+eu] 2
o, and «_ being the polarizabilities of the two ions and ¥ the volume containing a pair of
ions.
Recall to begin with, the definition of the electric displacement D in an isotropic medium
of relative permittivity ¢,:
D = got,E = goE+P. 3

2. The solution of equation (1) is a harmonic motion with angular frequency w. This
angular frequency will have the value w, if only actions at a short distance exist.

Find the dispersion expression &,(w) from equations (1), (2), and (3). Show that this can
be written
2 — —_ €3~ Eoo
m= e = ety @
where ¢, is the relative permittivity in an electrostatic field (w — 0) and ¢_, the relative per-
mittivity for high frequencies (w > w,).

Draw the curve g,(w). Let o, be the frequency for which &, = 0. Find the ratio ,/w,
as a function of ¢, and ¢_.
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11

Draw the curve representing the reflection factor R of the crystal under normal incidence
as a function of w.

Let w, be the frequency for which R = 0. Find a relationship between w,, w,, &, and «_,.

Application: for NaCl the experimental values are A, = 31 u, 4, = 61.1 y, ¢, = 5.62, and
e, = 2.25,

With what precision is the preceding relationship satisfied ?

111

The experimental curves ¢(w) and R(w) differ significantly from the theoretical curves
found in parts I and II. In particular, &, remains finite for = w, and one finds a maximum
of R which is less than unity for a certain frequency w,,. To interpret these results, one adds
a damping term —y du/dt in equation (1) for the motion. What happens with this equation
for periodic complex solutions? What happens with (4)? Assume the ratio y/w, small and
examine how this modifies the R(w) curve.

Havelock has shown that the expression approaches

WO _ £0— Eou 1/2
o (”ma) : )

With the aid of this expression, find 4, for NaCl and compare it to the experimental
value of 52 p for NaCl.

SOLUTION
1

1. In the cubic crystal under consideration, the motion clearly has the same equation for
displacements along a direction parallel to any one of the axes of the cube, x'x, y'y, or z’z
(Fig. 52.2). As a result of the cubic symmetry of the ion sites, the coefficient ko is the same
regardless of the displacement direction. The equation of motion of the two ion species is
then

2
m, _d;l;;’ =—ko(uy—u_)+eE and m_ dd—;lz— = —ko(u_—u,)—eE.

’

'z
FiG. 52.2
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Multiplying these equations by m_ and m_, then subtracting and dividing by m_ _+m_
one gets equation (1). The dipole moments due to the two species of ions are, respectively,

eu,+a,E and —eu_+a_E.
The first term is due to the displacement (§ 10.3.1) of the ion and the second to its deforma-

tion. Since one has 1/¥ ion pairs per unit volume, the polarization P is obtained by multi-
plying the sum of the two dipole moments above by 1/¥ and then one gets equation (2).

2. The harmonic solution of equation (1) is
—w’u = _k ut+-E.
I

If the field E is zero, that is, if one has no long-distance actions, this equation reduces to

—w’u = _ko u =—wlE
hence
u e 1
E~ W wl—at ©)
The permittivity ¢, is obtained from (3), so that, using (2),
P arta_ e u
8r—1+80—E— 1+—80V +Wf. @)

At optical frequencies, the ions are too heavy to follow the field (§ 17.6) and only react to
the first two terms of (7)
2 28 + oL _

b = 1+ 8oV

®)

In the electrostatic field E(w = 0), equation (7) gives

u e

Eo—yw?

hence

apFta_ € et
= tut o, 9
8oV + 8oV ft 8oV ( )

g =1+

One gets from (7), (8), and (9) the dispersion relation

E5— Eoo

—(@/of @

& = €xot
One has ¢, = = for o = w,. ¢, is positive for 0 < w < w, (the second term on the right-

hand side of (4) is then positive) and for w; < w, w, being the value of w above which the

16 R & M: PIO
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second term takes a negative value less than ¢_ in absolute value. w, then corresponds to

& = 0, so that
w1 = o ]/ Efi. (10)

The index n = 4/¢, is therefore complex: # = n—jk. n is the index of refraction and & the

absorption index. It has real values n below w, and above w,. Between these limits the values
k are purely imaginary (Fig. 52.3).

n

Ehemccacacnn

1
¥
0 ! 0 P
FiG. 52.3 Fic. 52.4
II

The reflection factor under normal incidence is found by using Fresnel’s generalized ex-
pression (§ 3.5):

_(n—1\2  (n—12+k?
R= (n+l) T (m+ 124k (an

Between o, and w,, where n is purely imaginary, R = k2/k? = 1 (Fig. 52.4). It has total
reflection (§ 3.3). R vanishes forn = 1 or ¢, = 1, so that for a given frequency w,, using (4),

wr\2 &gs—1
(;r—) T Eee—1" 12

Application. One has A = 2nc/w, thus

M\ [0\t (6L1\2
(2) = () = Gr) =2

One the other hand, one has

g—1 462
1125 3.69.

Expression (12) is thus satisfied to within 5%;.
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I
For sinusoidal solution written in complex form, the equation of motion
d2u du

becomes
Y e
—w = (—w,z+_]— w) u+—E.
u u

It is then sufficient to replace w? by w?+ jy/u w in the calculations of part IT of this problem
to get in place of (4) the dispersion expression

n={n—jkPR=¢e = €.+ 8;_8°.° = em-i————-A— (13)
) o) et
——) + — wi—w+j—w
w; Hwt W, ‘ll

where 4 = (g,—e,)w? represents a constant. By separating the the real and imaginary
parts of the complex index in (13), one finds

Wk = et A(wi—w?)
(w?—wz)z-{-ﬁzw2
onk = Ayw

2
(wi—w?)?+ % w?

One sees that the presence of the term in y assures that #2 will always have a finite value and
never be purely imaginary. In addition, R is always less than unity. Reflection is never total.
R can only attain high values (0.8-0.95) between w, and w, (Fig. 52.5).

Application: with the given numerical values, equation (5) is written

2 2 —
(w_,,.) _ (6112.1) g 5627225 Lo

w‘ 6X2.25_4
hence
m = 61—.—1 = 52.5 .
4/1.355

R
1

w, O o %)

FiG. 52.5

16*
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PROBLEM 353
Transmission of an Absorbing Thin Film

Calculate the transmission factor T of an absorbing film with parallel faces, thickness d,
and complex index n, placed in air and normally traversed by a plane wave of frequency w.
What happens to the expression for 7 when the thickness d is much smaller than the wave-
length of the incident radiation?

If the dispersion of the index # can be written

A
—_ p2y -
n? = n3+ ol igw
(cf. Problem 49) show that the transmission of a very thin film has a minimum for the
frequency wo.

SOLUTION

Let E,; be the complex amplitude of the electric field of the incident wave (Fig. 53.1), E,
the reflected field off the first face X, E, the transmitted field, E, the reflected field off the
second face 2", and E,' the field transmitted by the second face.

Er

E't
FiG. 53.1

At X', where one places the origin of the phases, the continuity conditions for E give

E.+El =E, ()
and for H = (n/cuo)E
n(E,~E)) = E]. 2

Likewise at 2, taking into account the film thickness, one finds

E;+E, = E, exp (—jond)+E; exp (jond) A3
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and
E;—E, = nE, exp (—jond)— nE; exp (jond). ()]

Adding (1) and (2) term by term one finds

2E; = (1+n)E,+(1—n)E;.
By subtracting (2) from (1)
(I1—nmE, = —(1+n)E;.
Adding (3) and (4)

2E; = (1+n)E, exp (—jond)+ (1—n)E; exp (jond).
Hence
El _ (I1+mE,+(1—n)E,
E; ~ (1+nE, exp (—jond)+(1-n)E; exp (jond)
(I1+nP—(1—np?
= (1+n)2 exp (—jond)—(1—n)? exp (jond)

t =

t

If d < A,0d = 2nd[4 <« 1. Taking the first two terms of the exponential expansion, this

yields
4n 1

t= . = .
4n—2jond(1 + n?) 1_10211(1_*_"2)

The transmission factor is given by
1 y 1 3 1
1-’%’ (1+m?) 1-{—'%‘{(14—"*2) 1-{—1%1("*2—"2)

T=u"=

{ignoring terms in (od/2)?]. T is minimal when jod(n*2—n?) is maximal. Now if

A

— pn2
n = nj+ P —oitigs

one has, since ¢ = w/c,

2
ot 1) = 22 T
The derivative
d w? _ 20(0?+ o) (05— ?)
HE( (0 —wd)*+ gw? ) T (@~ wdP+ g

actually vanishes for w = w,.
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PROBLEM 54
Electromagnetic Waves in a Plasma

A gaseous atmosphere is made up of positive and negative ions and contains (per unit
volume) N ions with charge + e and mass M and N ions with charge — e and mass mo.

1

Neglecting the effect of the neutral molecules, one wants:

1. The expression for the relative permittivity of such a medium for electromagnetic
waves of frequency ». Since the mass M is many times greater than myo, show that the role
of the positive ions is negligible.

2. The phase velocity v, of electromagnetic waves of frequency » when the medium has
the magnetic permeability of free space. The minimal value of the frequency », for which v,
has a real value.

3. The relationship between the velocity v, the group velocity v, of the waves in such a
medium and the velocity ¢ of waves propagating in free space.

4. What is the radius of curvature of the trajectories of the electromagnetic waves propagat-
ing in a direction perpendicular to the vertical, if one assumes that the gaseous atmosphere
undergoes a 6%/ decrease in the relative value of N for an increase in altitude of 100 metres,
the frequency of the waves involved being » = 2»,. Determine the sense of the curvature of
the trajectory.

II

1. An infinite plane separates two regions of space where one finds in the first (1) the ion-
ized atmosphere described initially and in the second (2) the same atmosphere but free of
ions. Give the value of the energy reflection factor (normal incidence) for the waves of
frequency v = 2v,.

2. For the same waves falling on the plane of separation, what is the value of incidence
for which one would obtain reflected waves with their electric field vibrating perpendicular
to the plane of incidence when the field of the incident wave has some given orientation.

Treat both cases where the waves propagate in the sense (1) to (2) and (2) to (1).

Numerical values: N = 1.226X 10" m~3 (one is also given the values of e, m,, and ¢).

SOLUTION
I
1. The equation of motion of the ions is (§ 10.4)
d2s . dzs .
mo e = —ekE,, sin wt, M 9E = eE,, sin wt,
s—ﬁ'—sin t S—eE"' in wt
= m0w2 wl, = Al—wz sin wi,
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s and S have opposite directions, however, S/s = mo/M, and therefore, S is negligible with

respect to s if mq is negligible with respect to M.
The polarization and the permittivity are then given by (§ 10.6)

- Ne2 . Net
& = 80m0w2 - 473280'”()72 k4
. o | 1:226X1012X2.56X 10" %X 4a X 9X10° 10
r= AnX 9% 10-31 12 e

2. The phase velocity v, is related to the velocity of light in free-space by

c c

c
_\/s—,_]/l_ Ne? _‘/1_1014'
4n2egmor? =

So that v has a real value, the quantity under the radical must be positive, that is

Vg

Ne?

Tegne® 1

The frequency » must then have a value greater than the cut-off frequency », defined by

" Ne?

One can then write
v2
g =1—-%.

2

3. The relationship between the group velocity v, and the phase velocity v, (§ B.3) can be

rter 1 d (e d (v 1dm) 1 dvve)
EE)-s6)- -l

vgzd_w =av_¢ c dv dv

so that

2 p2_ 2 -
c_d ,,1/1_& VT N S Y -~ )
v2 dv V2 —1? 1/1_ v2 c

v, dv

Thus
Vgrvp = C2.

4. Formula (5.5) of § 5.1 gives the curvature of the wave normal with cos 6 = 1

L__1a_ 1 am_ 1
o ndz 2w dz 2, dz’
L1 e av_1 % 4N
o 2¢ 4n2eemg® dz  2¢, N2 dz
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[PROBLEM 54
Forv = 2v,:
i_1.1 d~¥
o 8, N dz’
and with e, = 1— ¢ = 3,
1 1 1 d8v 1 6 . _
TN & T O

o= 10fm.
Since N decreases as the altitude increases, ¢, increases and de,/dz is positive. The curvature
is upward.

11
1. The reflection factor for energy at normal incidence is

n—1\*  [ve—1\*
R = |—- = —_—
n+1 Ve +1
for any sense of the propagation.
V075-1\* _ (0866—1)* [—0.134\* _ (0073 = 53X 10-4
V075+1 0.866+1 1.866 ' '
2. The desired angle is the Brewster angle i, defined by

tanip = n = /¢, = 0.866
for waves moving into the ionized medium

ip = 40°54',
For waves propagating in the opposite sense

., 1 .
tanip = 71- = cotipg,
iy = 49°' .
PROBLEM 55
Plasma Oscillations

I

Show that in an isotropic medium, Maxwell’s equations have as solutions longitudinal
plane waves, that is, plane waves in which the electric vector E is parallel to the wave vector .
What conditions must be satisfied by the index of refraction of the medium so that these
waves can propagate?
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II

Establish the equation giving the index of refraction of a plasma for a monochromatic
wave. Neglect the collisions of the ions and electrons and, after indicating why, the effect of
the ions relative to the electrons. Under what conditions can one establish longitudinal
oscillations of the electric field in the plasma? Determine the phase and group velocities
of the corresponding waves.

SOLUTION

I

Maxwell’s equations for a plane monochromatic wave with angular frequency w are

written (§ 2.3)
Exo = —powH (1)

Hxo = wD. (2
D is the displacement vector related to E by
D = cE = ¢g,60F = eoE+P, 3)

so that the relative permittivity ¢, and the polarization P of the medium are joined by the
relationship

P = (g,—1)goE. 4
The condition which defines a longitudinal wave, E||o involves from (1), H = 0, hence
from (2) D = 0 and from (3)

60E = —P (5)
The vectors o, E, and P are directed as shown in Fig. 55.1. Equation (5) introduced into (4)
leads to
& = 0. ©6)
0
P ) z
Fig. 55.1

Following Maxwell’s relationships, the index n = 4 s_, of the medium should vanish so that
longitudinal electromagnetic waves can exist.

II

Neglecting the effects of collisions amounts to treating the ions and electrons as free.
Under these conditions, the displacement s of one of them with mass m; and (algebraic)
charge e, is given by the equation (§ 10.4)

d%s

m,-cw = e;E,, sin wt.
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To this corresponds an electric dipole moment

2

e .
d=es = —— E,, sin wt
mo

and the polarization of the medium due to these charged particles, numbering N per unit
volume and without mutual interaction, is P = Nd. Equation (4) gives

-2

«Somew2 7 eom,w2

2

& =1

Q)

N, and m, refer to the electrons and N, e;, and m; to the various positive and negative ions.
The sum is taken over all of the ions. Since the plasma is neutral, the concentration of the
positive ions is equal to the sum of the concentrations of the negative ions and electrons.
The term relative to the ions in (7) is negligible since their mass is much greater than that

of an electron. Taking this simplification into account, equation (6) is satisfied if

&N,
“’=1/eome' @®)

This expression shows that  is independent of o. In addition, the phase velocity v; = w/o
is not subject to the relationships one finds in the study of waves. The group velocity
v, = dw/do is zero. One sees that here one is dealing with oscillations of the electric field
and of the electrons, rather than with the so-called waves.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



QUANTUM MECHANICS

PROBLEM 56

Electromagnetic and de Broglie Waves

I

Consider a beam of particles with rest mass mo moving in a straight line in a vacuum with
uniform velocity u.

1. Assume that all the particles have the same velocity. ;Calling the energy W and the
momentum of the particles p, write an expression for the de Broglie wave associated with
them. Write an expression for the phase velocity, v, in terms of # and p. Also express v,
as a function of u and ¢, the free-space velocity of light.

2. Assume that there is a distribution of velocities about u, the form of which is not known.
Can one write an expression for a de Broglie wave? Show that the group velocity, »,, can

be expressed generally as
vy = dW/dp.

Give v, as a function of the mean velocity, u, of the particles.
What relationship exists between the phase velocity and the group velocity ?

3. The particles are electrons whose velocity u is such that their wavelength 2 is equal to
half the Compton wavelength .. Calculate (a) their velocity, u; (b) the phase and group
velocities of the associated wave; (c) their mass, m; and (d) the potential difference ¥ neces-
sary to produce this velocity if it is assumed that the electrons are emitted from a hot cathode
with zero initial velocity.

Compton wavelength: 4, = 2h/mc.

II

Replace the beam of particles by a beam of photons having the same frequency » as the
de Broglie wave associated with the particles. The photons are travelling through a non-
absorbing medium of index n. Call A’ and #' the wavelength and the wave number respec-
tively in the medium.

1. Assuming the beam to be monochromatic, give the phase velocity v, as a function of
vand #.
241
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2. A photon beam cannot be rigorously monochromatic. Show that by using » and #',
the group velocity v, can be put in a form analogous to that in question 1.2 for the group
velocity of particles.

3. What must be the dispersion law for the medium, n = f(2), so that between v, and v,
the same relationship is obtained as is obtained in question 1.2 for particle waves?

4. In whatregion of the electromagneticspectrum would you expect to find such a dispersion
law in a material medium? Show that this law is a limiting case of the general dispersion
law valid in regions remote from absorption bands:

where #, is the wave number in vacuum, #,is the wave number of the centre of the absorp-
tion band, and 4, is a constant. Absorption bands are found in the visible, the infrared, and
the near ultraviolet.

SOLUTION
I

1. For a particle in uniform rectilinear motion, the momentum p = mu is a constant. The
energy W is also constant. It is purely kinetic aside from the rest energy which requires the
theory of relativity for its evaluation. The fundamental relationships

W =hv 1))
allow one to associate with the motion of the particle a sinusoidal plane wave (§ 13.5)
P(x,1) = Aexp {;i— (Wt—px)}, (3)
A being a constant and x the direction of the wave. Hence the wavelength
_h
P
The phase velocity is given by
vy = Av. (4)

To express v, as a function of  and ¢, one must choose for » the value which corresponds

to the total energy defined by the theory of relativity, namely W = mc?, where m is the

inertial mass. The momentum p is here equal to mu and (4) can be written
h W ¢

’U¢=—-o

P h T &)

2. A distribution of the speeds of the particles corresponds to a distribution of momenta.
The monochromatic wave (3) is replaced by a group of waves in the form

¥ 0= [ en |-} e ©
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This expression indicates that ¥ has a maximum within the domain Ap surrounding p.
The largest value of ¥ is found when the phase of the wave

¢ = Wit—px

remains almost constant in this domain, that is, when

d¢ _dw

The centre of the group of waves moves with a uniform motion, whose velocity is the group

velocity
x dw
ri Q)

From relativity: W2 = m2?c*+ pc?, hence W dW = c¢%p dp, and from (5)
_re_c_
vg—W—%—u. )

The group velocity is the velocity of the particle.

3. The wavelength of the electrons under consideration is

am ke M
2 moc
A non-relativistic calculation then gives
h
U = L = = c,
mo Amyg

which is an unacceptable result. It is necessary to take into account the relativistic variation

of the mass
u2
u—L—h _h 1_5'_ 1_u2
“m T dm T Imy € 2’
hence,
u = c/v2.
From (8) one finds
vg = ¢[1/2,
and from (5)
Vg = C '\/2
The mass of electrons with velocity u is
dda = Mo ’\/2

m= ——
u
1/‘7
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Their kinetic energy is given to them entirely by the action of electrostatic forces

eV = Wi = (m—myg)c? = 0.414 moc?

hence
_ mec? 0.9x 10730 6 "
V= 0.4147 = 0.4I4XL®<—1()_1—9X9X 1006 = 222X 104 V.
11
1. By definition
=Y
’U¢ = }. Yy = ﬁ' .

2. With the fundamental expressions (1) and (2), the wave group (6) can be written in

the form
+ o0
¥, 1) = [ 716 exp nion— 50 05, ©)
which suits electromagnetic waves. The same reasoning which led from (6) to (7) in this
case gives
dv
v = (10)
3. Equations (5) and (8) show that
Vge¥y = c?

which when combined with (10) and # = v/v, give

L1 % _d(v
ve ¢ dv (v,)

or
v v v 1 v\2
av=yd(y) = 29%)
hence
2 2
o) -2
V¢ C

K is a positive or negative constant, thus finally

2
C=m= 1+g = 1+K3Z,
’U¢ 4

/o being the wavelength in vacuum.
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4. This equation agrees with the dispersion law given in the text for #2; > 2; one has then

in effect
A;
Voi
or
n2 = 1—)»(2)214,.

This expression is valid for X-rays or whenever the wavelengths are very short compared
to the wavelengths of the atomic or molecular absorption bands.

PROBLEM 57
Five Exercises on Uncertainty Relationships

1

In a Michelson interferometry experiment it would seem possible at first inspection to
determine if the photon associated with a wave train is reflected from one or the other of the
two mirrors by measuring the recoil of the mirror. Show, using the uncertainty relationships,
that this measurement is incompatible with the preservation of the coherence of the wave
trains which interfere.

SOLUTION

In order for there to be coherence, it is necessary that the uncertainty in the position of
the mirrors is much less than the wavelength of the light, If Ax >- 4, the corresponding recoil

should be:

h h
ApzA—x>>7.

where /A is the momentum of the photon. The experiment is therefore impossible.

11

Starting from the gedanken experiment on the measurement of position using the “Heisen-
berg microscope” (§ 13.7), determine the short wavelength limit on length measurement
imposed by the relationship W = hy.

SOLUTION

Use of radiation with wavelength Ao allows one to measure a minimal length of the order
of Al = 2¢/2 sin u, with a microscope with numerical aperture sin #. The lower limit 4,
of 4 useful for this corresponds to the annihilation of the reference particle, that is, to a
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proper energy moc? of the particle. Thus

2,1s then the Compton wavelength for the case where the particle is an electron (§ 11.4).

M= h = 242X10712 m.

eC

For heavier particles such as atomic nuclei, the limit decreases but only to about 10715 m.
Measurement of lengths much smaller than this is without physical meaning (see L. Brillouin,
Science and Information Theory, chap. 16).

I11

In quantum mechanics a harmonic oscillator of mass m and frequency » has in its ground
state a residual, zero-point energy Wo = +hv with corresponding normalized eigenfunc-

tion:
(2
Vo=V zag *P 2 a2)

where x is the oscillator extension and a = 1/ h/4n*vm the amplitude. Calculate the mean
value (x) of x and ((Ax)?) = {(x—(x))?) and show that if the energy is well known and has
value W, the uncertainty relationship ((Ax)%) (Ap,)?) = #2/2 results.

SOLUTION

The mean value of x is

*ee 1 (*r x2
(x) = J‘_w xy2dx = ‘/@J‘_w X exp <_?) dx=0

since it is the integral of an odd function. The mean quadratic value of the variation of
x1s
(Axp) = {(x—(x))) = (xP),

since (x) = 0, so that

tee I e x2
{(Ax)?) = J‘—w xyldx = ‘/@ - xZexp (_a_2> dx.

Integrating by parts this becomes

T @ 2\ [T @ [ 2
(Ax)?) = I/Ea? [_Txexp <_55)]_w+1/@ 7f—~» P (_F> o
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The first term on the right-hand side is zero like (1). The value of the integral is a V7 and

h

~ 8ntvm’

2
(Bxp) = 5
The energy expression is
2.
W = gm—"+2n2v2mx2.
If this is fully determined, one can write
2
W= <pﬂ">-{—2n2v2m (x%),

and since (p) = 0
W = «Azp—’:l)2>+2n2v2m {(Ax)%).

The uncertainty relationship
((Ap=*) X (Ax)?) = #%/4

gives
e
- 2 2\
W 8m (A0 +2n%?m ((Ax)%)
This expression has a minimum for
fi
(Ax)?) = dmvm

The minimum value of Wy is
Wo = hav = hy/2.

v

Starting from the uncertainty relationship between the momentum of a particle and the
corresponding coordinate, evaluate the ground state energy of the hydrogen atom.

SOLUTION
The energy of an electron at a distance 7 from the nucleus is given by

pP__é
2m. Admeor’

W =

The minimal energy is obtained by taking the smallest possible values for p and r. However,
according to the required uncertainty relationship

Ap-Ar =~ .

17 R & M: PIO
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(Note, in writing this expression, that the velocity is radial; one says in effect that the angular
momentum of the electron is zero in the ground state.) The mean values {r) of r and {p)
of p cannot be less than Ar and Ap respectively. Thus one has for the minimal mean values

rYX{p) ~ h
so that:
2 &
W) = 2o (%5 oo (s

This expression has a minimum for
eoh?
r) = -
me?

This is the value of the first Bohr orbit or the most probable distance of the electron from
the nucleus. One finds for the energy minimum the value

met

Wo=—%am

v

One proposes to measure the magnetic moment M due to the spin of the electron by meas-
uring the magnetic field H which it produces at a distance r. In order for this experiment to
have meaning, one must be able to localize the electron in a domain Ar < r. It is also
necessary that the magnetic field H’ due to the motion of the electron (velocity v) is negligible
compared to the field H. Show that these conditions are not consistent with the uncertainty
relations.

SOLUTION
The maximal field H is given by (in ampere-metres)
1M
4z P’
The maximal field H’ due to the motion of the electron is

e
T 4m 2

(4

One knows in addition that M is equal to a Bohr magneton (§ 15.6), so that

eh
M= 2m,’
The condition H = H' thus leads to
h = 2pr,
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with p = mv. The uncertainty relationship leads to

ArxAp = h,
which, with Ar « r, gives
h<rAp,

an inequality incompatible with (1).

PROBLEM 58
Potential Barrier

A flux of single velocity particles of mass m and total constant energy W moving from x’
to x encounter a potential barrier of width 4.

I

The cross-section of the barrier is shown in Fig. 58.1.
W,=Wi=0 for x<0O

W,=W, for O0<x-<d
W,=Ww; for x=d.
W -

W,

MS ............

i I : S

WI H

¥ 0 d x
Fic. 58.1

Write the continuity conditions for the wave function associated with these particles and
for its first derivative. Derive the transmission coefficient T for the potential barrier (ratio
of the transmitted to incident flux) as a function of d and of the wave vectors o1, 62, and o3
corresponding to the regions I, II, and III. Assume that W is greater than W,. (Initially the
energy of the particles is purely kinetic.)

II

Consider the special case where Wy = W, and where W > W, (Fig. 58.2). Give the trans-
mission coefficient T for this barrier as a function of the reflection coefficient R; at the poten-
tial discontinuity O. Show the analogy between this expression and that for the transmission
of electromagnetic waves falling on a glass plate with plane parallel faces. The glass plate
has index n2 and is situated in a homogeneous medium of index 7.

17*
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17*
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WL
W,
x’ (4] d X
Fr1G. 58.2

III

Use the potential barrier above but consider the case where W < W,. Calculate T for
W =1¢eV, Wy=2¢eV and d =1 A for both electrons and protons.

SOLUTION
I
Asymmetric barrier

Schrédinger’s equation is written
in region I: L

%"fwgw —0, with o = ﬁ,;’ﬂ 1
in region II:

%wta%np =0, with o,= w )
in region III:

%;'%-l-o'%w =0, with o;3= i2_m(_l;’ﬂ 3

In regions I and II one has both a direct wave and a reflected wave. In region II, which is
assumed to go to infinity, there is only a direct wave.
The solutions of the Schrddinger equation corresponding to these three regions are

Y= e~z p etinx
yu = A e—i"z"-l-B gHioex (4)
Yur = te—iosx,

Recall the origin of the continuity conditions. The function p, whose square measures the
probability density for the particles at a point along x'x, can only have a single value at a
given point. In addition, since the energies W and W are finite, equations (1), (2), and (3)
show that the second derivative of y is also finite. Thus the first derivative is continuous.
Writing the continuity equations on the plane x = 0

14+r = A+B }

0i(1—7) = 6y(4—B) ®
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and on the plane x = d*:

. . . 6
o2[A4 exp (—josd)— B exp (joad)] = to3 exp (— jozd). ©)
We have already solved an identical system of equations in Problem 14. It is sufficient to
replace t by ¢ exp (—josd) in equation (25) and on the right-hand side qo, ¢, and g, by o,
o2, and a3 as well as k¢ by o2.

Taking the modulus of this expression, one gets the transmission coefficient for the
barrier

A exp (—joad)+ B exp (jod) = t exp (—josd) }

_ 4‘710':,2'0'3 7
= Ko+ 0Pt (03— (Gh—d) S od 0

Note. 1t is useful to show in parallel some results from physical optics and quantum optics
obtained in Problems 14 and 58.

Dielectric films Potential barriers
One writes continuity expressions for the One writes continuity conditions for
tangential components of the electric and the wave function associated with the
magnetic fields. particle and for its first derivative.

The same set of equations result:
equations (18) and (22) <« equation (5)
equations (19) and (23) — equation (6)

The different media are characterized by The different regions are characterized
their index (ng, n1, .. .) hence the different by their potential energy W,(x) hence by
wavelengths of the electromagnetic waves the different wavelengths associated with
(Ao = ¢/no, 21 = ¢/n, ...). the particles and their corresponding wave

numbers,

21 NI,

A h
11
W = W, 01 = 03.
The equation for T simplifies to
1
= 1+ [0 ot]? sin2 o2 d . @
40%03 :

* It is necessary to write the exponential on the right-hand side and not just s as is the case with thin films
(eqn. (2), Problem 14). 1t is only through this condition that the factor o, appears in the second equatiorn (6).
Later on exp (—jo,d) cancels in the calculation of T.
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On the other hand, the reflection coefficient at O is obtained by starting with equation
(13.45) ( Optics) which can be written

I_VW W,
_ 01— 02

= 9
‘/ W-W, Ooitoz’
1+ =22
from which:
_ . [01—02)\?
Ri=r= (~—01+02) . (10)
The transmission coefficient at the potential barrier is
T= 1 48]
- I+ —F 4R, sin? 0'2d
(I—-Ry?

Notes

1. The transmission coefficient of a thin plate has the same form. In effect, if in equation
(31), Problem 14, one makes g, = g, or n, = n, = n,, one has
1
T = ) (12)

3_ 313
l+[—% sin? aod
1

Fresnel’s formula allows us to write

Ri= (11)2 (13)

ni+ns

and equations (11) and (12) are identical.

2. The potential barrier, like the dielectric plate, is perfectly transparent when sin god = 0
or d = A2/2. An application of this quantum effect is the Ramsauer effect.

A beam of approximately 0.1 eV electrons passes through an inert gas (neon or argon)
as if there were no atoms in the path. The atoms appear practically transparent to electrons
at this energy. When the electron energy is greater than or less than this value they are
scattered away from their path.

111
Wi< Wy, 01=0; (Flg 582)

The solutions of the Schrodinger equation are
P = e—iox p e+i0‘1x’
Y = Ae %>+ B etoex, (14)
Ym=r e—""lx.
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Equations (5) and (6) become

(I1+r)= 4+B, s
joi(1—r) = a9(A—B); 15)

A e—o’zd+B e+o’,d = te—jo'ld’
0-2[A e-%d_PB e+o',d] — jO'lt e—ind, } (16)

Solution of these equations gives (it is sufficient to replace jos by a5 in (6))

i —joed
‘= 4jo102€ a7

 (o2t+jo1) e~ (0—jor)2etd

Since the external media are identical, one has (taking into account the identities
2sinh x = e*—e™* and j sin x = sinh jx)
40202

— 1712 = _
T= 1 = i (it o sinhiogd” (18)

Numerical application:

0’2 = 0'2 — = ____1—.
1 2 1 +sinh2a.d’
A 2m(Wo—W) 4

h

O’zd =

For the electron,

_2X3.144/2X0.9X107%X1.6X 1071

oo 662X 10~ 107%,
ood = 0.51, sinh asd = 0.53,
T — 1 - 1
1+(0.53)2 14028 °
T =071,
R = 0.23.

For the proton, m = 1840 m,, god = 22, and the term exp (02d) which arises in:
sinh o9d = 3[exp (02d)—exp (—02d)]
is of the order of 10, Therefore, T ~ 0.

PROBLEM 59
The Deuteron

The deuterium nucleus (heavy hydrogen), called the deuteron, is made up of a proton and
a neutron bound together by an attractive force derived from a central potential W (r).
Assume the proton and neutron masses are equal (this is valid to within 0.007 parts) and
are 1.672X10~% kg.
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1. Write the time independent Schrddinger equation for the deuteron in the system of
coordinates relative to its centre of mass.

2. When the deuteron is in a spherically symmetric state, write the radial wave equation.

3. Experiment shows that when the deuteron is in its ground state, the absolute value of
the binding energy is |W | = 2.23 MeV. Give the sign of the energy and tell its significance.
One can assume that the interaction energy W (r) in a first approximation can be represented
by a square well such that W,(r) = —W, forr < ry and W (r) = O for r > r, (Fig. 59.1).
Assuming the ground state to be spherically symmetric, determine the corresponding wave
function (which along with its first derivative should be uniform, continuous, and bounded).
One takes in the wave equation ry,(r) = u(r).

FiG. 59.1

4, Calculate the radius 7, of the potential well—that is, the nuclear interaction length—
for Wy = 21 MeV (one takes for r, the smallest possible value).

5. Calculate the probability that r is larger than or less than ro.

SOLUTION

1. The system is equivalent to a particle of mass 4 = m/2. The time independent Schro-
dinger equation is

Ap+ 25 W =W,y = 0. M

2. In the spherically symmetric states (S states), y = const. Xy,(r). The laplacian is given
by
1 d /., dy,
?ar (’2 ar )

d, 2 dy, m _
are + "r— ? +F [W“' Wp(’)]'pr = 0. (2)

and the wave equation

3. The binding energy is the difference between the energy of the two-component system
and the energy of the components at rest at infinite separation. It is, therefore, negative
since the proton and neutron attract one another. The value W = —2.23 MeV of the ground
state is the eigenvalue of the Schrédinger equation for this state.
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Taking ry, = u(r), one has

dy, _1du u d% _ 1 duw 2du 2u

dr rdr 27 drr T r drz 2 dr ors

and equation (2) becomes
1 d2u m u

For r > ry, W, = 0, the solution of (3) is an exponential (since W < 0), so that

Vml W]
ED

u(r) = Aexp (—Kr)+Bexp (Kr), with K=

B is zero, since r~* exp (Kr) is not bounded at infinity.
Forr < ry, W, < W.The energy W is the sum of the kinetic and the (non-zero) potential
energy. The solution of (3) is sinusoidal,

VmWo- W)

u(¥) = Ccos K'r+DsinK'r, with K = 7

C is zero, since r~! exp (K'r) is unbounded at the origin. The sine solution is acceptable,
since as r - 0

lsinK’r—»K’ and g(smKr) - 0.
r dr r

Using the continuity conditions for 4 and for du/dratr = r¢

Dsin K'ro = A exp (—Kro),

DK’ cos K'ro = — AK exp (—Kry), G
from which
K’ cot K'ro ==K )
or
VoWl ot YWD i ©

4. For |W| = 2.23 MeV and W, = 21 MeV, one has

_ 2X3.14 4/1.672X10727X2.23X 108X 1.60X 10-1°

k 6.62X1073¢

= 2.32X104 m™1,

, Wo—|W| _ 14V18.77_ P
K'=K — T = 2.32X10 2—23—_6.72X101m .

Using (5) one finds
cot K'ro = —0.345

14

K'r= >

+arctan 0.345 = §+0.332 +nw (ninteger).
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The smallest value of rq 1s
157140332

o= —gmax10%

5. The probability that the proton-neutron separation exceed ro is given by

= 2.83X10715 m.

oo iad 24>
P = w2 4mr? dr = 442 exp (—2Kr)dr = - g €XP (—2Kry).
The probability that this distance is less than #¢ is
ro ro 2
P = f |y |2 4ar? dr = 4ar D> f sin? K'r dr = 22 (K'ro—i sin 2K’ro)
A A K 2
The ratio of these two quantities is, using (4)
P _K 4 exp(=2Kr) _ K sin? K'rg

P K D K’ro— % sin 2K'ro K K'ro—%sin 2K're

One has: K'ro = 1.903, sin K'ro = 0.945, sin 2K'ro = —0.615, and P/P" = 1.17.

Since P+ P =1, P = 0.54 and P’ = 0.46.

In the ground state of the deuteron, the proton and the neutron spend the majority of the
time outside the range of the nuclear force. This accounts for the small value of the binding

force W.

PROBLEM 60

Double Potential Well
I

A vparticle of mass m can move along the Ox direction in regions where the potential
energy has the following values:
x<0, W=oc;
O<x=<a W =0((regionl);
a<x<a+b, W = W,(region?2);
a+b<x < 2a+b, W =0(region 3); and
2a+b<x, W =oco.

1. Show that the wave function of the particle can be represented by:

Y1 = Asin ox,
Yo = Bea’(x—a—b)+ C'e—tr’(x—a)’
y3 = D sin ofx—(2a+b)].

in regions 1, 2, and 3, respectively.
What are the values of ¢ and ¢’ when the energy W of the particles is less than Wy ?
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2. Write the continuity conditions for the wave function at the various interfaces. What
relationships can one derive between 4 and D on one hand, and between B and C on the
other?

3. By using these relationships, write the equation defining the possible values of the
energy, W, of the particle in the form

tan ga = f(o, o). 1))
For b sufficiently large (how large?) this equation can be put in a more simple form,
tan ea = fo(o, o). (2
Resolve (2) graphically using the following numerical values:
a=044 h = 6.6X10734 J-sec

Wo=020eV e = 1.6X1071% coul
m = 5x1072" kg b is measured in A

Derive the possible values of W.

IT

Assume now that b is smaller. Show that (1) can be put in the approximate form
tan oca = fo(o, 0') (1£2n) 3

where 7 is a small quantity depending on b. Show the existence of a doubling of the levels
determined in question I.3.

For what value of b does this doubling have a separation of 0.8 cm™1 for the first level ?
What then is the separation of the second level in cm~1?

I

The preceding problem refers to the inversion of NHj. Indicate quantitatively what
happens for NDj (it is necessary to take twice the value of m) and for PHj (it is necessary
to take 3 times the value of W)

SOLUTION

I

1. Since the energy W of the particle is less than the height Wy of the potential barrier,
in classical theory the particle can only reside in region I or in region III. In quantum theory
it cannot exist to the left of region I or to the right of region I1I, but it can pass from I to III
or from III to I (Fig. 60.1). The wave equation for the stationary states in I or IIT where
W,=0is

A2 dZp

om Gz Y =0
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o 1 | x
a a+b  2a+b
FiaG. 60.1

Its solution is sinusoidal and y must go to zero for x = 0 and for x = 2a+b. Hence

y1 = Asinox,
y3 = D sino[x—(2a+b)],

with o = v/ 2mW/h. In region II the wave equation is

2 dty _
‘i;; d?'f'(W—-Wp)lp =0.
Since W < W, the solution of this equation is sinusoidal between x = a and x = a+b,
so that
y2 = Bexp (¢’ x)+C exp (—o'x),
with

5 = V2 o—W)
= ) ,

2. The continuity conditions for y and for dy/dx are given by
for x = a:
A sin ga = Bexp (o’a)+C exp (—o'a),
04 cos oa = o'[B exp (¢'a)—C exp (—o'a)}];
for x = a+b:
Bexp[o'(a+b)]+Cexp[—o'(a+b)];= Dsinoa,
o'{B exp [0'(a+b)]—C exp [—o'(a+b)]} = —aD cos oa.

3. By elimination of B and C from the four equations above, one finds

!

(% tan oa+ I)A exp (6'b) = (% tan oa— I)D,
o’ o’
(? tan aa—l)A exp (—a'b) = (7 tan aa+1)D.

The compatibility condition for these two equations is written

!

(% tan oa+ 1) exp(o'b) =+ (% tan oa— 1),
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from which

o
tan oa =——-—{

1Fexp (—o'b) (1)

0'

1+exp’(—a'b) }

This is the required general relationship. If b is sufficiently large that ¢'b is much greater
than one, equation (1) simplifies to

tan oa = — 01 [1£2 exp (—o'b)]. Q)

In a first approximation, one sets aside the exponential, it being small with respect to unity,
and then gets

tan ca = —

(12
'0_/ s (3)

independent of b.
Equation (3) can be written

oga = arctan (——57) +kn (k an integer).

Since
1 c ho

sin oa = = =
vV 1+cottoa A/a*+e? A 2mW,

one has finally

oa = km—arcsin

fic
A\ 2mW, ) )

This transcendental equation, which determines ¢ and thereby W, can be solved graphically
by finding the intersections of the line y = oa with the curve

. fic .
y = km—arcsin —— (Fig. 60.2).
V2mW
The energy can be seen to be quantized.
y i
2% '
'
1
'
T 1]
¥
'
0 _ o 2/:WQ
FiG. 60.2
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When W <« W, that is whzn ¢ < ¢, thz equatioas (3) and (4) give as a solution

oa=kn
and the energy values are
2. 2
we = kz:;f: . &)

One finds here again the energy levels for a particle in a box which is natural, since neglect-
ing W with respect to W, is equivalent to enclosing the a intervals by infinite potential walls.
With the given numerical values, the energy levels (5) have values

WO — L — k2 43.56X 10768
8ma? 8X5X10727X0.16 X 1020

= k2X6.82X10722 ],

while
Wy=020X1.6X10"1% = 32x10-20 ],

The approximation made by taking W << W, is therefore a good one. A better approxima-
tion is given by (3). Since the right-hand side is small, one can take

o = g0 92
o = g0 70 ©
from which
2(1)2 0)2 (0)2 ©)
W(n:h" _ P02 UPe®2 (o)__2W__
2m 2m 2mo’'©®q o'®q

This expression relates to the potential curve of Fig. 60.3: W, = < for x = 0 and infinite
width of the barrier of height W.

II

Equation (2) has the form required in the problem. By considering oa small, one can
make the approximation as in (6)

® — gwxy °2 '0)
0® = oW F2 5 exp (—0'®b), @)
from which
AW O ,
WO = WOF G - exp (—0'®b). (8)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



PROBLEM 60] QUANTUM MECHANICS 261

The last term leads to a doubling of the energy levels. The separation resulting from the
splitting of the first (K = 1) level is

o

8w
@) =
AWE = oa

exp (—a'0p). )]

For
AW = hc A, with A% = 0.8X10>m™1,

it is necessary that
o' Oahc AF A/ 2m(W,— W O)2nahc Av
22 8hw ()

4/32X107%X3.14X0.4X 10710X 3 X 108X 0.8 X 102
4X6.82X 1072

exp (—o'®p) =

exp (—o'9b) =

= 1.98X 1072,

from which
o' ©®p = 3.92,
Since
S o
Y 3.§>6< :(olo_zjé.zs 1710,
one has
b= ‘3’1;97_2><10‘11 =23X100"m or 0.23A.

The splitting of the second level is

s ,
AW2 = O'W €Xp (“O’ (O)b).
W® is therefore negligible compared to W,

Since

WO = KO = 4w D,

the splitting of level 2 is 4 times greater than that of level 1, namely 3.2 cm™1.

m

The problem of ammonia, NHj, inversion is as follows. This molecule has the symmetry
of a pyramid with a triangular base. If the atoms are numbered H}, Hs, and H; one can see
(Fig. 60.4) that as a result of inversion about the centre of mass the inverted molecule
cannot be superimposed on the original molecule by any process of rotation or translation.
This leads to two distinct molecular species and to two identical potential minima for the
two positions of the N atom with respect to the plane of the hydrogens. One then has the
general situation treated in this problem with the more correct potential curve given in
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Fig. 60.5. This, however, is difficult to solve. The value 0.8 cm™* adopted for the splitting
of the first energy level above is that which is found for NHj. The transition which one sees
between these levels is a dipole transition which gives rise to an absorption at A = 1.25 cm.

For NDj3 the form of the potential curve is the same as for NHjs. If one doubles the value
of m, 0 is multiplied by V/2 and W is divided by 2. The value of —¢"® b changes from

3.92 to 3.92XV/2 = 5.04 and exp (—0'®b) = 0.64X 1072 Equation (9) shows that the
value of Ag is divided by about 9.

N
Hx/\Hz H,
2
Hl\/ 2 /Ha
N 4]
Fig. 60.4 Fi1G. 60.5

For PH; assuming that the width of the barrier 5 will remain unchanged but that the
height W, is multiplied by 3, ¢’® is multiplied by V/3, exp (—0'®b) = 0.11X 102 and
equation (9) where only ¢’ varies, shows that the value of Ao is reduced to about 0.03 of
the value for NHj. The full calculation is difficult.

PROBLEM 61
Angular Momentum Operators

The one-electron wave function for the state / = 2, m = 2 is given by:

Yn22 = ¢f (r) sin® 6 exp (2j$),
where ¢ is a constant. The function £ (r), the radial part of the wave function depends on the

principal quantum number 7 but is not important here. Show that y,,, is an eigenfunction
of the operators G, and G? but not of G, or Gy (G being the angular momentum).

SOLUTION
1. The operator G, is given by (§ 14.3) —j#(3/0¢), from which

a'/)nzz_

3 ¢ = —jhzjy)nzz = 2h1/’n22 .

éz'l’nzz = —jh

¥,25 is thus an eigenfunction of G, with eigenvalue 24.

2. The operator G2 is given by

. 19 8y, 1 @
2 _ _ o O fsing Z Vo~ &
Gt =t [sin@ a0 (Sln980)+sin29 a¢2]'
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2 _ _ o O fsing Z Vo~ &
Gt =t [sin@ a0 (Sln980)+sin29 a¢2]'
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One has:
821,0"22
a¢2 = —41,0’122 s
a'g'é”_ = 2¢f (r) sin 6 cos 0 exp (2j¢),

s (sin o 2= ) = ¢f (r) exp (2j) [4 sin 6 cos? 6—2 sin? 0],

G202 = —I2cf (r) exp (2j$) [4 cos? 6—2 sin? H—4]
= h%f(r) exp (2j¢)-6 sin? 6 = 6A%ypp2z.

V20 is therefore an eigenfunction of G2 with eigenvalue 642 which should be equal to
I+ 1)A? and therefore does have the required value for / = 2.

3. The operator G, is given by
4 f G )
Gy = —Jh(sm ¢ -a§+cot 0 cos ¢ %)
from which

wanzz = —j#i(—2 sin ¢ sin 6 cos 6—2j cot 8 sin? O cos P)y,ze.

The right-hand side of this equation is not equal to the product of a constant with y,,,,
and y,,, is therefore not an eigenfunction of G,. The same holds true for Gy.

PROBLEM 62

The Compton Effect

A monochromatic y-ray falls on a very thin metallic foil placed in a vacuum and, by the
action of a uniform magnetic field B, electrons are extracted. Determine the energy, the
frequency, and the wavelength of the incident radiation under the following conditions:
R is the radius of curvature of the ejected electrons in a plane perpendicular to the field B;
Ax is the wavelength corresponding to the work function of the metal; and the constants
h, ¢, m,, and e are given. Neglect relativistic corrections.

Numerically, B = 15X 10~4 tesla, R = 0.10 m, and A, = 0.15 A.

11

The y-ray above passes through hydrogen. Derive the theory of the Compton effect using
relativistic mechanics. Calculate the wavelength of the photon scattered through an angle
of 6 = 90° with respect to the direction Ox of the incident photon beam.

18 R & M: PIO
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One has:
821,0"22
a¢2 = —41,0’122 s
a'g'é”_ = 2¢f (r) sin 6 cos 0 exp (2j¢),

s (sin o 2= ) = ¢f (r) exp (2j) [4 sin 6 cos? 6—2 sin? 0],

G202 = —I2cf (r) exp (2j$) [4 cos? 6—2 sin? H—4]
= h%f(r) exp (2j¢)-6 sin? 6 = 6A%ypp2z.

V20 is therefore an eigenfunction of G2 with eigenvalue 642 which should be equal to
I+ 1)A? and therefore does have the required value for / = 2.
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4 f G )
Gy = —Jh(sm ¢ -a§+cot 0 cos ¢ %)
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18 R & M: PIO
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Calculate the kinetic energy W of the recoil electrons in a direction making an angle ¢
with respect to the incident direction Ox, as a function of the ratio « = 1,/A (the Compton
wavelength over the wavelength of the incident photon). Find a relationship between the
angles ¢ and 6. Show on a polar plot, as a function of the angles ¢ and 6, the energy of
the scattered photon and the recoil electron.

SOLUTION
I
The energy balance for the action of a y-photon with frequency » and wavelength 2 is
written :
hv=h % = work required to extract the electron +the electron kinetic energy 0

The y quantum is energetic enough to ionize metal atoms by removing K electrons from
them and once this is accomplished the energy necessary to remove the electrons from the
mean potential of the metal is negligible. Since one is applying Newtonian mechanics to
this electron, equation (1) becomes

he _ hc

1
2
7 1x+ muv2, 2

2
The velocity v of the electron having charge e and mass m, is derived from the radius of
curvature R which is a result of its trajectory normal to the magnetic field B

eBR _ 1.6X10710

. = OXI0-% X15X1074X 1071 = 27X 10® m/s.

=

Hence the photon energy

he = 6.62X107%X3x10° 9 —31 12 — —-18 J.
T = T oSXiom T3 X107XT29X 10 = 165X1071 T,

its frequency
W 165X10718

= = sExTo-T = 25X10° He,

its wavelength
c 3IX108

A=

1I
In relativistic mechanics energy conservation in Compton scattering is written

E= he +me(,'2 —1"‘"‘_1 ’ (3)
_/32

R V1
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with 8 = /e, the ratio of the speed of the electron to the speed of light. Conservation of
momentum along the axes Ox and Oy (Fig. 62.1) gives

%_i cos 0 = meﬁc

cos ¢ ©))

A V=g

)

By eliminating ¢ and the velocity Sc of the electron from equations (3), (4), and (5), one
gets the shift of the Compton ray

h 2h . . 6 .. 0
r_ = —_ = 2 = 2
A—2 mc (1—cos 6) s sin? 0.0485 sin 7" ©)
For 8 = 90°
M =012+ 0'02'85 = 0.1443 A.

Equation (6) can be written
A = A[l+a(l—cos 6)],
with « = hv/m,c? one has
Y
V= 1+a(l—cos 6) 7

From (3) and (7) one can get the kinetic energy of the electron

a(1—cos 6)

Wk=h(1’—1’)=h7m. (8)
By eliminating 8 from equations (3), (4), (5), and (7) one gets for a relationship between 6
and ¢
1—cos 6 = 2 9)
O T (I +aftanz ¢
which when put into (7) yields
2a

W= b T T opant " (10)

18*
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This is the required expression. Also, equation (9) can be written

1+cos 8 1
2 2 — — o
(I+a) tan® ¢ = l—cos 6 ~ tan26/2’

so that by noting that 6 and ¢ always have opposite signs

cot¢=——(l+a)tan%. (11

Table 62.1 gives the values of ¢, hv'/hv, and W, /hv as a function of 6.

TABLE 62.1
6 0 /6 /4 /3 xf2 2x/3 3z/4 T
cos 0 1 0.866 0.707 0.500 0 —0.500 -0.707 -1
tan 6/2 0 0.268 0.414 0.577 1.00 1.732 2414 oo
cot ¢ 0 0.282 0.435 0.605 1.05 1.82 2.53 oo
0 90 74.25 66.5 58.8 43.6 28.8 21.55 0
' [hy 1 0.875 0.764 0.656 0.488 0.388 0.358 0.322
Wy /by 0 0.125 0.236 0.344 0.512 0.612 0.642 0.678

2
A Y
\
\
\
\\
Y |
1 78
\)
PAN -7 6
e
FI1G. 62.2

Figure 62.2 represents the various cases found in the table.

PROBLEM 63
Planck Radiation Formula

1. Derivation. Consider an isothermal enclosure containing linear harmonic oscillators
with eigenfrequency vy and dipole moment d with density N per unit volume. At thermal
equilibrium the power radiated by an oscillator in the form of electromagnetic waves is
equal to that which it absorbs from the isothermal radiation which is characterized by a
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density w(v) dv in the spectral interval dv. The power is radiated like a Hertzian dipole. To
evaluate the absorbed power, one starts from the results of Problem 51. Assuming initially
that the total mean energy of one of the oscillators obeys the equipartition principle, show
that the expression obtained for w(v)—that is, the Rayleigh-Jeans formula—is inacceptable
since it does not satisfy Stefan’s law. Then making Planck’s assumption that the oscillator
can only take on values for its total energy which are integral multiples of an energy W,
calculate the mean energy of an oscillator and the radiant energy density w(»), assuming
W = hy where h is Planck’s constant.

2. Show that Plank’s formula reduces to the Rayleigh-Jeans expression at low frequencies.
What form does it take at high frequencies?

3. By writing w(v) dv = —w(4) d1 express Plank’s formula in terms of the wavelength, 2,
as a variable. Show that it takes the form w(1) = A~%f(1/AT) and that it satisfies Stefan’s
law:

W= ~fw(l) di = i1t

and Wein’s law: A,T = C,.

4, Experiments give for Wein’s constant: C; = 2.897X 1073 m-deg and for Stefan’s
constant: C; = 7.562X 10716 W-m™3-deg™*.

Given:
< x3dx !

e—1 15

and the solution of 5(¢*~1) = xe* as x = 4.965, find Planck’s constant A and Boltzmann’s
constant k as a function of the velocity of light in free space.

SOLUTION

1. The mean power radiated by a linear Hertzian oscillator is given by (see Problem
51, also § 10.3)

wid?

@)= 12mec®
If one introduces the oscillator energy
W = 3 mofsh, = %mwgiéé
and the frequency » = w/2n, one finds
2
@) =% . )

‘On the other hand, the expression for the absorbed power is derived from the flux absorbed
by a medium made up of classical oscillators (Problem 49). The flux @, transported by a
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plane wave of unit area through a distance dx encounters N dx oscillators. The power
absorbed d@, is given by equation (9), Problem 49. Each oscillator absorbs power given by

ab, ¢

Ndx = degn w(v). 2)

At thermal equilibrium (1) and (2) are equal, hence

8nv

w(y) =

But the thermal radiation in an isothermal enclosure being isotropic has a density 3 times
greater than that corresponding to a single direction of propagation. Thus

8my?

If one has equipartition of energy (cf. Problem 79) one knows that a linear harmonic
oscillator has energy kT. Equation (3) gives

8nv

w(v) = 4)

The integral f w(v) dv has an infinite value if w(»)is given by (4) instead of being propor-
0

tional to T* as required by the Stefanlaw. The Rayleigh-Jeans law (4) thus does not represent
the spectral distribution of the black body. This expression results from the equipartition
of energy obtained in turn by assuming that the energy can vary continuously (see Problem79).
Assume now the converse, that the energy of an oscillator with frequency » can only take
on values, 0, hv, 2hv, . . ., vhy (v being a positive integer) and that N is the number of oscilla-
tors which are not excited. The number of oscillators of energy nhv in the enclosure at
T° is, using the Boltzmann factor,
vhy

N, = Noexp (—ﬁ-).

The total number of oscillators is

B hy 2hy _ No
N~No[1+exp( kT)+eXP (—k—T)+ ] ~ 1—exp(=hv/kT)’

and the energy of the assembly is given by

U = hvNy exp ( T T

:T)+2th0exp( 2hv)+ ... +vhvNg exp( vhv)+

U is equal to the derivative of N with respect to 1/kT, hence

hy
U N°"”°"p( kT) N

ooe (] ()
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The mean energy (W) of the oscillators is equal to U/N and equation (2) becomes

8mhv? 1

W T) = =5 Sp kD=1

)

This is Planck’s radiation law which gives the distribution of energy radiating from a black
body with good precision.

2. For low frequencies, if Av < kT, one can expand the exponential in (5) in a series and
limit it to its first two terms, giving
8nhvd kT
W@, T) =
The constant / vanishes and one again has the classical expression (4) which was unsuitable.
At high frequencies, if hv > kT, the unity is negligible with respect to the exponential

in (5) which leads to
8ahv® hv
W0, T) = =5 exp ( — 'i{T‘)' 6)
This expression defines a function of » and T analogous to that which had been proposed by
Wein before Planck by placing particular conditions on the emission and absorption of

radiation. It is a good representation of the isotherms of a black body above 2 10'* Hz
(see Fig. 63.1).

wiA)

0 1t 2 3 4 5 6 AonH
Fic. 63.1

3. Let w(») be the energy density of radiation on a frequency interval dv and dA the wave-
length interval corresponding to dv. One has

Jv=1c¢, hence vdi+idvr=0
and
w(v)dy = —w(A) di
hence
v 8nhe 1

70 = 5 p GelkAT=1)

This expression has the form w, = A~3f(1/AT).

w(d, T) = (M

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



270 PROBLEMS IN OPTICS [PROBLEM 63

Figure 63.1 represents an isotherm of a black body (T = 1600°K). Curve I represents
formula (7), curve II the expression derived from (4), and curve III represents the formula
analogous to (6).

Taking x = hc/kT2, one has from (7)

8nkt < x3dx

w(T)=f°°w(A,T)dx=—T4 o
o hcd A e*—1

®

The integral is a number independent of T. Thus the total radiation from a black body is
proportional to T4 This is Stefan’s law.
The maximum value of w(4, T) at a given temperature is found for the value, 4,, of 2

which minimizes
he
5 ladil U
A [exp (le) 1]

A(ex—1) . _ (he\?
5 Ty with A= (k_T) .

or

The minimum condition can be written
5(ex~1) = xe*. C))

The solution of this equation in x gives a value of x as a function of constants. Thus 4,T
is equal to a constant. This is Wein’s law.

4. Equation (8) using the value of the integral given in the problem yields

8mok*

— — —16 -3 -4
5863 C; = 7562X10718W m~3deg™*.

Equation (9) has as its solution x = 4.965 and one has

he
A0zl — = = —6
4.965k AmT = Cs = 2897X 107¢ m deg.
One finds
_ 7.652X 10716 (4.965X2.897)4X 10712 15 "
h= 8X(3.14)°X3X 108 = 6.627X 10734 J sec.
Also

_ 6.627X 107X 3X 108

- _ .
k= Foesxasorxio-s — |382X107% Jjdeg.
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PROBLEM 64
Ground State of a Two-electron Atom

One wants here to estimate the ground state energy of a two-electron atom or ion using
the uncertainty relations. To apply these semi-quantitative concepts, one reasons via a one-
dimensional system. The nucleus with charge Ze is assumed to be an infinitely heavy point
nucleus situated at the origin.

1. Write the expression for the mechanical energy of the system in terms of the coordinates
riand r; and the momenta p; and p, of the electrons.

2. R, and R; are the dimensions of the regions where the position probabilities of the
two electrons are appreciable. What is the order of magnitude of the uncertainties Ap; and
Ap. of the momenta?

3. Estimate the order of magnitude of the ground state energy by finding W as a function
of R; and R, then taking the minimum of this expression which is symmetric with respect
to the two variables.

4. Compare the values thus obtained for the systems, H-, He, and Li* with the experi-
mental values which are —14.2, —78.4, and — 196.6 eV respectively.

SOLUTION
1 Zet Ze: 2
(— ) , )

dmeqy

1
— ___(p2 2y
w Im (pl +p2) 3 ra Fiz

with rip = |r1—rsl.

2. Ary = Ry, Ars, = R,, hence
h h
Apy ~ — o,
D1 R, and Aps R

3. The energy minimum is found classically when the two electrons are at rest (W, = 0)
at the origin (W, minimally negative). This configuration is incompatible with the uncertainty

relation. The states of the electrons are described by wave functions on the origin with
extensions R; and R,:

R /1 1 1 1 1 e?
W~ g (R 1) | 2 (2 R) YRR @

The minimal value corresponds to 9W/0R; = oW [0R. = 0, so that, since W is symmetric
in Riand R;and Ry = R, = R

h? 1 [2Ze2 ¢
W~ mR2_4neo( R +ﬁ)' 3
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The condition oW /0R = 0 gives
4neh® 1

R= X = 4)
m? z-1
By substituting this value in (3)
1\2 met
=z = 5

4. One notes that if one writes the uncertainty relationship in the form Ap-Ar =~ &,
equation (4) contains the factor eoh?/nme2, which is the Bohr radius and (5) can be written:

Wmin = (Z—%)2X2Wo

where Wy is the ground state energy of the H atom (§ 14.5), namely 13.6 eV, and one finds

then in eV
H- He Lit
Z 1 2 3
W min —153 —83 ~205

in close agreement with the measured values.

PROBLEM 65
First-order Perturbation. Ground State of Helium

The helium atom is made up of a nucleus with Z = 2 and two electrons.

1. Write the Schrodinger equation for the stationary states taking the potential as being
coulombic.

To solve this equation, one initially neglects the mutual interaction of the electrons
(hydrogenic approximation). The equation is then in the form

Hopo = Woyo (H

where H, is the hamiltonian operator. What are the eigenvalues of the energy W, and the
eigenfunctions y,,? Show that in the minimum energy state allowed by the Pauli principle
the one-electron wave function is

Y100 = 4 exp (—%) 2

where p = 4r/ro, r being the distance from the nucleus to the electron and ro the mean radius
of H and 4 the normalization constant whose value one should calculate.

2. Consider the coulomb repulsion between the electrons as a perturbation, that is,
replace equation (1) by
(Ho+eH'Yp = Wy. 3)
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el is the operator corresponding to the hamiltonian perturbation which is written this
way (e being a small real number) to indicate that this term is small compared to Ho. Write
the expression for A’. To find the eigenvalues W, and the eigenfunctions y,, one makes a
series expansion in powers of & about W, and y,,, respectively,

Wn=WonteWp+Wy'+ ... 4)
Yo = Yontepnt ey, + ... 6)

Introducing these expansions in equation (3) one writes the equation giving the effect of the
first-order perturbation. Replace y, by an expansion on the eigenfunctions of the non-per-
turbed atomic system and show that the variation W, which the energy level » undergoes as
a result of the first order perturbation is given by

Wl’l = f wanH ’WOn dr. (6)

3. Show that in the ground state, the calculation of W is similar to the energy calculation
for an electric charge distribution with spherical symmetry subject to an analogous potential
distribution. Calculate W, numerically given the ground state energy of hydrogen as 13.56 eV
and thereby find the ground state energy of the helium atom. Compare this with the experi-
mental value of —78.4 eV.

SOLUTION

1. The mass of the electrons are much smaller than the nuclear mass so that the nucleus
can be considered as fixed. The hamiltonian is then given by

_pn B ZE  Zef e?
H = 2m,+2m, 4meory 4nsor2+ dneoriz |

The indices 1 and 2 refer respectively to each of the electrons, r; and r; are their respective
distances from the nucleus, and 712 is their mutual separation. If one regards the mutual
coulomb repulsion as a perturbation, that is, the term

e
- 4%80"12 ’

M

the hamiltonian for the unperturbed system is given by

# 2e? 7 2¢e?
Ho = (_.'Fn: A1_4nsor1) + ( " 2m, A2_4nsor;)'

The variables are separable and the Schrodinger equation can be broken into two parts

both of which are for the hydrogen problem with nuclear charge Ze. On can easily see
that if, in the solution of the hydrogen atom problem, one multiplies the potential energy
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by Z the energy W is multiplied by Z? and the eigenfunction ¥100 becomes
Zr
Y100 = A €xp (——)
to

so that with Z = 2 this satisfies equation (2). The constant 4 can be calculated by writing
the normalization condition
J Piedr=1= 4nA2f exp (—)o?dp.
0 0
Integrating by parts

f exp (—)e?de = —o?exp (—p)—2p exp (—)—2exp (— o). 8

The value of the integral is 2 and

A=718—_n-. (9)

The Pauli principle allows two electrons to have the same eigenfunction w100 in the ground
state if their spins are opposed. The eigenfunction of the ground state of the unperturbed
system is the product of the eigenfunctions of the two electrons.

P100(F1, 2) = P1eo(ry) X p1oo(ra).

The energy of this state is the sum of the energies of each of the electrons and this is equal
to Z2 = 4 times the ground state energy of the hydrogen atom.

2. When one substitutes the expansions (4) and (5) in equation (3) and equates the zero
and first powers of ¢ in the identity obtained in &, one gets

Hoypon = Wonpon

A, , , , (10)
Ho%-i-ﬁ Yon = WOn"pn‘f' Wn"POn

The first of these equations is only the unperturbed equation for the system (1). If in the
second v, is replaced by the expansion

"Pl,l = Z Cnn'Yon’
one gets, using (1),
Z Clm’(WOn’_ WOn)"P o = (WIII_H,) Yon. (11)'
Multiplying both sides of this equation by y;, and integrating over all space, one finds
Z cnn’(WOn’_ WOn) J "P(}n"POn’ dT = Wr,: f "Pan"POn dT - J wanﬁ, Yon d‘(

or by taking into account the orthogonality and normalization

W, = f WouH'pon dr. (12)
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This is the required expression. One sees that the shift of the energy level n is equal to the
mean value of the perturbation for the unperturbed system in state n.

3. When one applies expression (12) to the problem of the ground state of helium where
(7) gives the perturbation term, one finds

W= jf Yloo(r1) Yloo(r 2) Wloo(rl) Y100(re) dry drs. (13)

The product eyy,, represents the electric charge density at some point due to the presence
of an electron at that point. Equation (13) therefore represents the electrostatic energy of two
spherically symmetric distributions each related to one electron. The energy can then be
written, using (2) and (9), as

, exp (—po1) Xexp (—p2)
Wi = ro(8:z)2 43180 ff o1 dz, dz. (14)

with pj2 = (4/ro)r12 and the volume elements dz; and dz. being expressed as functions of
p1 and p2 respectively. To evaluate this integral, one forms at each point the expression
for the conlomb potential due to the volume density exp (— p1) and then the energy at this
point for the volume density exp (— pz) due to the other charge. The charge

dQ; = exp (— )47} do,

is contained in a spherical shell of thickness dp;. At an interior point this gives a potential
which is constant and equal to dV = dQ1/p:. At an exterior point situated at a distance p,
from its centre it gives the same potential as if the charge contained in the shell were massed
at the centre, namely d¥V’ = dQ./p.. The potential due to the density distribution ey(p;)
is then

Ql 2 o
V(o) = 4 f exp (=00 & do+4 f exp (—o2)ex dox.

0 2 ()

using (8) and the integral

f exp (oo dg = — g exp (—0)—exp (— @), (15)
one finds

V(es) = ‘—Z—’ [2—2exp (— 0z)— 02 xp (— 02)].

The integral (14) then is given by
3= [ Ve a:

and, by taking for dQ. the charge of a spherical shell

dg, = 4“9% exp (—p,) dps,
— (4ap? f [202 €Xp (— 02)— 205 €Xp (—205)— g exp (—209)] dpa,
0
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or, using (8) and (15),

3 = @mpx 3.
The energy (14) then has the solution

Wi=Sx_ el 10 &
T4 (8m)2(Ameg)ro 4 (dmeo)2ro
Now the ground state energy of the hydrogen atom is given by

e2

W1 =~ (g 27’

from which
Wi=—3W;1=+1X1356 =+33.9eV.

The energy of the helium ground state in the approximation where one neglects the electronic
interactions 1s, as was seen in no. 1,

Wo=2X4W; = —108.5 eV,
Therefore, the corrected ground state energy becomes
W =W,+W,;=—1085+33.9 =—746¢V.

One sees that W, is not very small compared to W, as should be the case in applying this
method. None the less, the result obtained is still correct to within 5%;.

PROBLEM 66
Second-order Perturbation. Stark Effect for a Rotor

1. By using the general perturbation method described in the second part of Problem 65,
write the equation for the effect of a second-order perturbation. To do this replace the sec-
ond-order term vy, of the eigenfunction of state n by a series expansion of the eigenfunctions
of the unperturbed system. Use an expansion analogous to that used in Problem 65 and
find the coefficients. Show that the second-order correction which must be applied to the

energy level n is given by
2
(J‘wsn’H’wOn dT)

W, = . 1
" n;n WOn_WOn’ ( )

2. A diatomic molecule, which has a moment of inertia I about an axis passing normally
through the line joining the nuclei and through the center of mass of the molecule and a
dipole moment d, will be treated as a planar rotor. It is placed in a constant uniform electric
field E normal to the axis of rotation. By treating the action of this field as a perturbation,
give the first non-zero term correcting the energy levels of this rotor.
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SOLUTION

1. By introducing the expansions (4) and (5) from Problem 65 into equation (3) of that
problem, the terms in &2 are found to be

HOWI’:, + H'WI’: = WOlﬂPr’x’ +Wy r’x+ Wr’x’y’On
or
Ho—Won) ' = Wr—H)pr+ W, pon. ¥))

Assuming, as indicated in the statement of the problem

w;’ = ZVnn'WOn'
o

and introducing this expansion in (2) then multiplying each term by y;, and integrating
over all space, one finds, using equation (10) (Problem 65) and the expansion of v,

Z' Vnn'(WOn' - WOn) J’ Wa:ﬂPOn' dz =

= Z crm'Wr’x J’ WEnWOn' d‘K - Z Cnn’ w;nH 'WOn' d7+ Wr’x’ wan Yon d‘t’.
n’sn

n’#n

As a result of the orthonormality of the unperturbed eigenfunctions, the integral on the left
and the first integral on the right are zero and the last integral on the right is unity. Thus

Wr'x’ = Z Cnn’ ws::ﬁ ’WOn' dr.

n’#n

To calculate c,,, one refers again to equation (11) (Problem 65) (changing the present indices
n’ and n”’) and multiplies both sides of the equation by y3,.. One gets

Z cnn'(WOn'_ WOn) J’ wan'WOn" dr = J’ wan'(Wr'x_ﬁ ,) Yon dr
from which, for n’ 5 n and using equation (12) (Problem 65),

wan'ﬂ 'WOn d‘t’

c’m; =

WOn - WOn'

2
(J' YouH Yon d'c)
W;';, = Z ’

n’#n WOn_ WOn’

and

which is equation (1).
2. The unperturbed rotor has only kinetic energy. The hamiltonian operator is

.G
Ho= 5y
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G, being the angular momentum. By replacing the operator G, by its value (§ 14.3)
G h 9

z—‘_JT”a?,

where j = 4/ —1 and ¢ is the angle variable, Schrédinger’s equation

Hoyo = Woypo
becomes
B %o
T Bgr Voo (€)
which has eigenvalues
h2y?
Wo =~ @)
and eigenfunctions
1
= ——exp (+j/¢). 5
Yo Ve p (£i7¢) ©)

J being zero or an integer.
In a uniform electric field E, the potential energy of a rotor with dipole moment d is

W, =—E.-d=—Fdcos ¢

since E, normal to the axis of rotation and making the angle ¢ with d, is a suitable coordinate
origin reference.
The perturbed hamiltonian is A’ = W, and equation (3) is replaced by

dzy 21

a3 +3z WotEdcos $)y = 0. (6)

Calculating the first order correction using equation (12) (Problem 65), one finds
2n , Ed (2= .
W= [ vty a6 = =2 [ exp i —1)9] cos ¢ do. ™
(1] (1]

The integral is zero and as a result the energy shift of all the levels is zero in the first order.
The second-order correction is given by equation (1) which is written here as

2n 2
( f i p0s d¢)
0

Wiy = . 8
! J;J Wos—Woy ®

The W, are given by (4) and the y,; by (5). One then has
2n o Ed %= .
[ vtrrve o =32 [ exp i =291 cos 6 do.
0 0

One knows that this integral is zero for all values of J'—J except for the value +1 in which
case it is 7z. The sum (8) then reduces to two terms, in agreement with the selection rule
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AJ = 1 for the rotor (§ 16.2)

W — E2d2 n2 + 2
d 4m2 W()J—‘W()’J_l W()J_WO,J+1
o _ B 2L ) SR .. |
T T am | B -1 R+ R@EE-])

Thus the energy levels of the perturbed rotor are given by

., RI2 B
W;=Wou+Wj = 7+m

PROBLEM 67
Intramolecular Potential of Ethane

One assumes that the function W, = —W, cos 30 suitably represents the variation in
potential energy of the ethane molecule when the two methyl groups rotate with respect to
one another about the carbon-carbon bond. The angle 8 is the angle between C'CH; and
CC'H; (Fig. 67.1) and W, is a constant characteristic of the molecule.

Fi1G. 67.1

Take the bond lengths CH; = CH; = CHj3; = a and recall that the direction of the bonds
from C to Hi, Hs, Hs, and C’ have the symmetry of a regular tetrahedron.

Two separate cases will be considered in this problem:

Case 1: the ethane molecule H3C—CHj, and Case 2: the hexachloroethane molecule
CI3C—CCl;.

Numerical values: mass of C1 = 35.5 times the mass of H; a = 1.08 A (Case 1)and 1.8 A
(Case 2); Wy = 0.06 eV (both cases). Also given are the values of N, e, and h.

1. Show that the Schrédinger equation can be written:

Rz d¥y _
8—7}_27 . a—;';+Wocos 30"!/) ——W‘lp, (1)
I being the reduced moment of inertia with respect to the CC’ axis. Find I for both Case 1
and Case 2.

19 R & M: PIO
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T T am | B -1 R+ R@EE-])
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2. Assume initially that W, is negligible with respect to W.

(a) Solve the Schrodinger equation in this case giving the expression for the eigenvalues
and the eigenfunctions of the system by taking into account the periodicity conditions
on the function y.

(b) What is the probability of finding the various states of the system as a function of the
angle 67

(c) Compare the energy levels found above with those of a rotor having the same moment
of inertia about a fixed axis.

(d) Is the condition W, negligible with respect to W satisfied ? Calculate W in electron-volts
for Cases 1 and 2.

3. Assume now that W, plays an important role.

(a) Show from purely physical considerations, that y takes on significant values for
30 = 2kx (k integer). This leads to the study of the Schrédinger equation with the
retention of only the first two terms of the expansion of cos 36.

(b) Is the form of the transformed equation recognizable? With what problem is it
associated ?

4. One wants to determine the energy levels of the system defined by the preceding equa-
tion. Look for solutions of the form

P(6) = exp (-’-’;f) P(6)

where b is a constant to be determined and P(6) is a polynomial. By writing P(f) with a
finite number of terms, give the conditions which define the possible energy values W of the
system.

(a) Apply these conditions and write the general expression for W.
(b) Compare W to W,. Calculate the first three levels for W in electron-volts in Case 1
and Case 2. Discuss the results.

SOLUTION

1. The rotation of the CH; groups with respect to one another takes place about the C—C’
axis fixed in the molecule. This axis is perpendicular to the plane of Fig. 67.1 with the group
CH, H,H, being in front of C'H;H;H;. The relative position of these two groups depends
only on the angle 6. The problem is actually analogous to the rotor about a fixed axis
(§ 14.2) but differs on two points. First, since the methyl groups are both mobile, the mo-
ment of inertia which applies is a reduced moment of inertia analogous to the reduced
mass of a linear oscillator, it being in general

111,
I= .
5L+1,
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Here I; = I, = Io and I = Io/2, I, being the moment of inertia of a methyl group with
respect to the CC’ axis. One has (Fig. 67.2)

Iy = Zmr® = 3m(a sin «)?

[

FiG. 67.2

where m is the mass of the hydrogen (or chlorine) atom and « the supplement to the angle

N
H,CC’ = 109°28’.

For CzHg:

_ 3x107% -9 - 47 2
For C.Cls:

_ 3X10-%x35.5 _ o

Secondly, one has here a potential energy W, which does not exist for the rotor. Starting
from the Schrédinger equation relative to the stationary states for a mass m

hz
S Ap+ (W— W,)zp. =0,

a discussion analogous to that of the rotor shows that the first term can be put in the form
7 dyy
21 d6*°
Additionally, taking into account the expression W, = — W, cos 30 given in the problem,
one finds the Schrédinger equation to be equation (1) as required.

2. If the potential energy is negligible with respect to the energy of the molecule, equation
(1) takes the form of a rotor about a fixed axis. It has a free rotation for the two halves of
the molecule one with respect to the other. The eigenfunctions have the form of the rotor
functions (§ 14.2):

p = Cexp (ij 2?(#-&-«). 2

19*
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But here, examination of Fig. 67.1 shows that the function is periodic for period 27/3
2n
w0 = (7).
This condition, when applied to (2), gives
1/2IW 2=
exp (:tj ‘/7 . T) =1

which determines the energy eigenvalues

9h?

Wy = PY (/ integer). 3)
One out of three of the energy levels of a rotor about a free axis is permitted.
< For CyHe:
Wy = Je 9?53;22:: L '95'?3929;100__428 = 1.90X 1072 J2 joules
w, = JOXI0 5 19x1072 2 ev.

~ 1.60x10-®

The energy W exceeds the value W, of the second excited level (J = 2).
For CxCls:

9 (1.054 10~

W = L 3% 10-TX 1.60X 10-7

= 1.2X107¢ J% eV.

This time, J must be equal to 23 for W, to reach W,,. Thus it is easy to cause an internal
rotation by excitation of the CsHg molecule while in contrast this is difficult in the case of
the C5Clg molecule.

3. Equilibrium exists in the molecule when the potential energy is minimal, that is for
6 = 2Kn/3. The probability of finding such a configuration is maximal. By virtue of the
probabilistic interpretation of ¥, this function will have significant values for those values
of 6 above. For small values of 0, equation.(1) becomes

h_2; %Jr [W—i— Wo(l—% 62)]1,0 =0, (4)

In this form, where the potential energy is a quadratic form of the dependent variable of y,
it appears similar to the equation. for the harmonic oscillator. One has here rotational
oscillations which produce a torsion in the molecule about the axis CC'.

4. To solve equation (5) one proceeds in the same way as for the harmonic oscillator
(§ 14.4). Taking

2 9IW, -
G=F(W+Wo), b= hzo’ ‘I:e\/b,
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equation (4) becomes

For values of ¢ much greater than a/b, this equation has an asymptotic solution

_ A bR
peerm (~2) = o (22

One then looks for a general solution of the form

Y = exp (—%2)_ X P(q),

for which
dzy q%\ [d2P dP -
By substitution in equation (5) one gets
—¢*\[d*P , dP [(a _
(GG

The exponential term only vanishes for ¢ = «, therefore the expression within the brackets
must be zero. Taking:

P(g) = ast+ag+aq*+ ... @)

substituting in (6) and letting the coefficients of the successive powers of ¢ be zero, one finds

2a2+(%—1)ao =0, 603—201'*'(%—1)“1 =0...

whose general form is

(14 1) (14 2)an s 2— 2180+ (%— l)a,, - 0.
Hence the recurrence relationship
a2 _ ab—1-2n (n integer or zero). _ (8)

a  (n+DH(n+2)

If a/b = 2n+ 1, the series (7) ends with the term ¢” since the coefficient of ¢"*2 and all
terms of higher order vanish. The same is true for a**1. One has then

i1 =& o WVIWHW
b 3 AW
hence

W= 3(n+%)h V?’— Wo. ©)
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For C2Hg the values of the first three energy levels are

_ 3 _501/006X1.60X 10~ "
n=0, W=3X1054X10 ]/ 5 e io=F— —0-06 160X 10

W+Wo=030X10"20J = 1.87X1072eV.
The quantity W+ W is the energy measured from the minimum of the potential energy

n=1 W+Wo,=090X10"20] = 561X10~2eV

n=2 W+Wo=150X10"20] = 935X 102 eV
For CxCls:

n=0, W+Wo,=0308X10"2J =0.19X10"2 eV

n=1, W+Wo=057x10"%eV

n=2 W+Wo,=095x10"2¢eV

"y

dsmeme

\mg ’21;/3/5\ 41;/3/_
AV,

Fi1G. 67.3

Figure 67.3 shows the value of the assumed potential energy (sinusoidal curve) and its
value in the parabolic (II) approximation of equation (4). For large values of W, W, is
negligible and is treated like the line (III). :

PROBLEM 68

Vibrational-rotational Energy of a Diatomic Molecule

One will consider in this problem a heteronuclear diatomic molecule in the Born-Oppen-
heimer approximation. Assume that the potential energy of the two-atom system (due both
to the actions of the electrons and the nuclei) can be represented by the expression

a a
W,(r) =—2D(7—2—'5),

where r is the internuclear separation and a and D are constants (D being the dissociation
energy of the molecule).
1. Set up the time-independent Schrédinger equation characterizing the motion of the

nuclei.
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2. Write in polar coordinates—the advantage of which should be shown—the general
wave function solutions of the Schrédinger equation.

3. Write the equation which determines the radial part of the wave function v,() by
using two dimensionless quantities, p = r/a and the parameter 42 = (2ua?/f2)D. Show the
analogy between this problem and the hydrogen atom problem. One will rely on this
analogy later on in the problem.

4. Show that the equation giving y,(p) solutions of the form
v(@) = e? exp (—be) X f(e)-

Determine the values of the constants p and b and write the equation which the function
f(p) must satisfy.

5. Find the possible values of the rotation-vibration energy of the molecule as functions
of the vibrational quantum numbers 7 and the rotational quantum numbers J

6. The parameter A is large compared to unity. For small values of n and J find a suitable
expression for the energy inclusive of the second-order terms. Interpret this result.

SOLUTION

1. The Schrédinger equation relative to the molecule whose nuclei are numbers 1 and 2 is
= A1w+ Azw+ W—-W,(nly = 0.

A4; and 4, are the laplacians expressed as functions of the coordinates of the two nuclei.
By introducing the reduced mass

MM,
b= MM,

and the internuclear distance r = r;—rs, one gets

;2 {W+2D(——2a—r2) }1/) 0. (1

2. Since the potential is central, polar coordinates allow the separation of the variables
(§ 14.7.3). One can assume (§ 14.5.1)

1/)(r, 09 ¢) = y)r(r)'¢(09 ¢)9

and one finds an equation analogous to the H atom, namely

;7(’2?')+{2:2r [W+2D(——2—r?) J(J+1)]} = 0. ¢)

Ap+
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3. By taking p = r/a and d%/dr* = 1/a?® (d%/dg?), equation (2) becomes

d, . dy, , [2u@W , 4Dua®  2Dua?
de—zz);+29»di;+{ e e T s —J(J+1)}%=o

or, setting A2 = 2Dpa?/h?,

dzy, 2 dy, (42 24> A24+JU+D)
R L e N LA ®
4, For p — «, the asymptotic equation derived from (3) is
dxy, AW
dez +T'pe"0, (4)
For which the proper solution is
]/ w
exp (-—A 5} Q)
hence
w
b= 4 1/3 )
On the other hand, for ¢ - 0, equation (3) is asymptotic to
d 2d A+ J(J+1
2% < gy ( )%zo, (6)

de* "¢ do 02

a second-order differential equation with constant coefficients. A discussion analogous to
that for the H atom shows that the solution of this equation must behave as p?, which gives
by substitution in (6), the equation

pPPHp—A2—J(J+1) = 0.
The only acceptable root is

p=—%+VL+{I+1) Q)
since p > —1.
Thus, the solution of (3) has the form required, namely

(@) = eP exp (—bo) f(0), ®)
where p is given by (7) and b by (5). By substituting (8) in (3), one finds the equation which

f(p) satisfies - .
f”+2f’(%—A 1/%) +—29£ [ALA V% (p+ 1)] =0.

5. By reasoning similar to that applied in the H atom problem (§ 14.5.1) one finds that
he must have

4l 2~ =n,
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n being a positive integer. The energy is given by

DAz
W =~ —_—. )]
1 1
[n+ 5+ a2+ (7 + 1)
6. If A2 > n and J, one has
— I J+L)2]
2 1y —_ {2
VAa+(+1) A(1+2 ( =
and the denominator of (9) becomes
1 1\2
o[tz 1 (”_z) ]
from which the energy approximation is
3 2An+ %) (J+ é)z]
W= —D[l =\
or:
W =—D+hw n+l + JAE-1 * (10
B ( 2) ( 7) 2ua )
by taking:

w_2__;,]/§
-2 -z

The first term of (10) represents the dissociation energy (calculated from a zero value of
energy, without taking into account the ground state vibrational energy) (§ 16.3.1). The
second term represents the harmonic vibrational energy (one should verify that w has the
dimensions of frequency). The third represents the rotational energy (§ 14.2).
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ATOMIC AND MOLECULAR SPECTRA

PROBLEM 69
Spectrum of the Hydrogen Atom

I

Quantum theory of spectral line emission. Bohr theory. Application to light hydrogen.
Calculate the Rydberg constant, R, in the case of a fixed nucleus and in the case where the
motion of the nucleus is taken into account.

Numerical application:

h=6625X10"3 Jsec, ¢ =2998X10°m/s, e = 1.602X1071? coulomb.
1

80 = Gax9x10°°

m = 9.108 X 1073 kg,
The ratio of the mass of the electron, m, to the mass of the nucleus of light hydrogen M is
equal to 1/1838.

II

Find the general relationship giving the number of waves per centimetre in the radiation
emitted by a light hydrogen atom when the electron passes from the level n to the level #".

Numerical application. Calculate the wavelength in dry air at 15°C and at atmospheric
pressure of the first four lines of the Balmer series (the lines H,, Hy, H,, H,). What is the
wavelength of the series limit? What are the resonance potentials and the ionization potential
for the light hydrogen atom?

Take as the index of dry air at 15°C and atmospheric pressure 1.000280 and for Ry the
experimental value 109,678 cm™.

11

The spectrum of ionized helium and deuterium. Rydberg and Pickering series

Numerical application. Calculate the Rydberg constant Ry, for deuterium (heavy hydrogen)
for the case of a fixed nucleus and in the case where the motion of the nucleus is taken into

account. The ratio of the mass of the electron to the mass of the deuterium nucleus is equal
to 1/3571.

288
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- Assuming that R = 109,707 cm™?, determine the wavelengths in dry air at 15°C and
atmospheric pressure of the first four lines of the Balmer series of deuterium analogous to
the H,, Hy, H,, and H, lines of light hydrogen.

v

One wants to study the two H, lines assumed to be emitted with the same intensity from
a mixture of light hydrogen and deuterium using a grating spectrograph with a plane
reflection grating. The grating is 5 cm long with 500 lines/mm and is illuminated by a
vanishingly narrow slit placed in the focal plane of an objective. The slit is parallel to the
lines on the grating.

The diffracted ray is observed with a telescope with a 40-cm focal length directed normally
at the grating.

What should be the angle of incidence so that the image of the slit, diffracted in third
order, is formed on the crosshairs of the telescope? What is the value of the angular dis-
persion? What is the linear separation in the focal plane of the objective of two lines 1 A
apart? What is the linear separation of the H, lines of the light hydrogen and deuterium?
What is the theoretical power of resolution? What should the power of the ocular be so
that the resolving power is effectively used? Assume that the eye can separate 1’ of arc and
the objective of the collimator and of the telescope have an opening sufficiently large so as
not to lessen the characteristic resolving power of the grating.

SOLUTION

1

In the primitive Bohr theory (§ 12.1) one assumes that the electron describes about the
nucleus in the ground state of hydrogen (or about the centre-of-mass), a circular orbit of
radius ro and that the Coulomb attraction

&2

™ Tneqt M
provides the required centripetal attraction for this orbit, viz. F* = mv?ro and thus
= 2
F— mv?. 2
The electrostatic potential energy is, using (1),
e?
Wr = lneary
and the total energy
e? my? e
Wo_Wp+Wk——4n8—oro+T_—W) 3)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



290 PROBLEMS IN OPTICS [PROBLEM 69

{in accordance with the virial theorem, § 12.2.1). Bohr fixed the radius ro by the condition
‘that the angular momentum be equal to A/2x, thus arbitrarily introducing quantization.
In (2) one replaces v with A/2zmre:

goh?
1= amet @
and using this latter value in (3),
W _ me‘ (5)
TN

Equations (4) and (5) are found to coincide with the equation for the ground state of
hydrogen found from quantum mechanics (§ 14.5). But the reasoning by which this is
.obtained here is not satisfactory since it is necessary to postulate a circular motion for the
electron so that it has angular momentum. However, one knows that the ground state, like
all s states, lacks angular momentum. The Bohr theory in addition fails when one tries to
extend it to apply to excited states of hydrogen or to atoms with more than one electron.

Using the definition of spectral term, one has (§ 12.2)

W1 =—hcR, (6)
hence
_ met 9.108X 10731 (1602 10" 198X 16X (3.14)2X 81X 101 3
R, = 83§h3c - 8X(6-625X10—34)3X2.998X 108 = 109,915.3 cm -,

This value is obtained under the assumption that the electron moves about a fixed nucleus.
To take into account the simultaneous motion of the electron and the nucleus with mass—
about the centre-of-mass it is necessary to replace the mass m by the reduced mass (§ 14.2)

_ Mm
B="M5m -
One then finds
_ ©_ 1 _ -1
Ry =R, o R.. T mil 109,855.5cm™1. _ @)
I

Using the fundamental Bohr postulates—whose validity has survived in spite of its elemen-
tary nature—the emission and absorption of radiation of frequency » and energy hv is
accomplished by transition between two stationary states whose quantum energies are given
for hydrogen by the expression

met 1
W,=—2% . 8
n 83 ()h2 n2 s ( )
where n is a positive integer. The conservation of energy in passing from level # to level n”
by emission (#' < n) is written
me4

1 1
hy = Wa—We = m(n—‘n—)

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



PROBLEM 69]

ATOMIC AND MOLECULAR SPECTRA

291

Taking equation (6) into account and the expression » = ¢#, between the frequency and the
spectroscopic wave number 7o = 1/, this becomes

1 i
Ao = R(F_?ﬁ)

Ao = 1/ is the wavelength in free space since equation (6) uses the velocity ¢. In a medium
with index N, the wavelength A = Ao/N. For the lines of the Balmer series n' = 2 thus

Fo = R(l_

Hs # =

4
H, = 109,678(-
: ( 4

1

Hy 7= 109 678(Z
1

H, = 109,678( :

At the series limit, n = o, hence

. R

'Vo——4——

1 o1
‘rTz) = 109,678(2—?).

1 5
_ 2 -1
9) = 109,678% = = 15233.1 cm
A, = 6562.8 A
1\ 3
_ o -1
1 6) = 109,678 X < = 20,5646 cm
Ap = 4861.3 A;
—21_5) = 109,678x0.21 = 23,032.4 cm~!
A, = 4340.5 A;
1 8 N
—3 6) 109,678 - = 24,3729 cm
Js = 4101.8 A.
- 10%733 = 274195 cm~1,
A = 3646.0 A.

The successive resonance potentials, multiplied by the charge e, represent the energy
necessary for the electron to pass from the ground state to the successive levels

n=12,...

, with n having a finite value.

For the first of these potentials, namely ¥1, one finds using (8) and (6)

eVl = W1—

hc

Vi=

W=

met

1 1 1
Seg (T‘z) = ""R(l‘z)’

6.625X 10734 2.998 X 108 1.096 78X 104X 3

3_
e 4

For the second resonance potential:

-

heR
[:4

V2=

STUDENTS-HUB.com

-

1.602X10-19% 4 = 10.198 eV.

heR 8

e X9~ 12.087 eV.
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The ionization potential ¥, is that potential through which the electron with charge e
must pass from the level no = 1 to the state n = -, where it is separated from the nucleus.

One has
eVi = W1 = hcR

from which, using the value calculated for ¥V,

_ R
T e

Vi = 13.598 eV.

One notes that the ionization energy hcR corresponds to the Lyman series limit, n’ = 1,
n = «, whose wave number is then #, = R.

III

The deuterium atom D has only one electron and a nucleus with the same charge and
twice the mass of that of light hydrogen. Its spectrum will be identical to that of H if one
neglects the motion of the nucleus. If one takes this motion into account, the value of the
reduced mass is modified and so is the Rydberg constant which now becomes:

1

Rp = R.. = 109,884.5 cm™1

The ionized helium atom He™* has one electron, a mass 4 times that of hydrogen and twice
the nuclear charge. The effect of the mass once again is given by (7). For the effect of the
charge difference it is necessary to make the force and the Coulomb potential twice as large
which leads to multiplication of the energy levels (8) by the factor 4. The helium lines as a
result have wave numbers given by

where

For the Rydberg series, no = 3 and for the Pickering no = 4.
The calculation of the lines in the Balmer series of deuterium is made in the same way
as for those of hydrogen

00 = 109,707( L1 )

4 n
One finds
D, 7o = 15,237.08 cm™1 Zo = 6561.1 A,
Dy 5o =20,570.06 cm™ 2o = 4860.1 A,
D, 7o = 23,038.47 cm™1 Ao = 43393 A,
Dy 7 =2437933cm™ A, = 4100.7 A.
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This calculation can be done directly by use of the equation (§ 15.4):
8 _ AR
7% R’

taking for #, the values found for H, for R the value 109,678 cm™! found for hydrogen
and for AR (109,707 —109,678) cm™1.

v

The assembly is shown in Fig. 69.1. The maximum of the third order is diffracted in the
direction i, = 0. The grating equation gives as the angle of incidence '

Assuming the desired image is relative to 4o = 0.6563 X102 mm with d = 0.002 mm

. 3X0.6563X1073

sini’ = 25103 = (0.98445, i = 79°52'.

The angular dispersion (§ 7.9) with cos i, = 1 is given by

K 3

D=7 =5%10%

= 1500 rad/mm.

The linear separation of two lines separated by 1 A = 10~7 mm is
fD-1074 = 400X 1500X 10”7 = 60 mm.
The linear separation of the H, lines is
400< 1500 (6562.8—6561.1)X1077 = 1.02 mm.

Theoretical resolving power (§ 7.9)

% = NK = 5000X5X3 = 75,000.

So that two lines will be separated, it is necessary that their images are separated by an
angle Ai = A/Nd (§ 7.8). This angle must be transformed by the telescope to an angle at
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least equal to 1’ (§ 5.13). The useful magnification of the telescope is

—4
3X1074XS

G = 06563%X10°T ~

Now G = 40/f’, hence 1/f’' = 23/40 = 0.57 diopters.

PROBLEM 70
Spectrum of Neutral Lithium

Recall that the lithium atom has one optical electron and that its ground state is an
S(I = 0) state.

1

1. Given that its ionization potential is ¥; = 5.390 V, find:

(a) The ground state term T in cm™2, taking the ionization limit as the origin of the

terms.
(b) The free space wavelength 1, of the limit of the principal series given e/hc = 8.0682X

105 (mKs units).

2. By electrical methods the first ionization potential is measured and found to be V; =
1.85 volts.

(a) Calculate the value of the corresponding term T in cm~1. What can one say about the
precision with which 7T is then fixed? Compare this with the precision which will be
found by spectroscopic methods.

(b) Combine this term with the ground state term and find the wavelength of the corre-
sponding emission line.

(c) By what symbol (S, P, D, F, . ..) should this term be designated?

11

1. One studies the emission treated above using a reflecting grating spectrograph. The
grating has 1200 lines/mm. The spectrum is formed in the focal plane of a lens L; with a
2-m focal length. The grating is used in a Littrow mounting (that is, the diffracted rays
coincide with the incident rays all assumed parallel).

(a) Calculate the sine of the angle i between the rays and the normal to the plane of the
grating for which the preceding conditions are satisfied in first order for the wave-
length 4.

(b) With the grating placed in this position, one sees two lines in the focal plane of L,
separated by 40 u.. Assuming that they form two lines in the first order, calculate their
difference in wavelength and in wave number.
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1. One studies the emission treated above using a reflecting grating spectrograph. The
grating has 1200 lines/mm. The spectrum is formed in the focal plane of a lens L; with a
2-m focal length. The grating is used in a Littrow mounting (that is, the diffracted rays
coincide with the incident rays all assumed parallel).

(a) Calculate the sine of the angle i between the rays and the normal to the plane of the
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length 4.

(b) With the grating placed in this position, one sees two lines in the focal plane of L,
separated by 40 u.. Assuming that they form two lines in the first order, calculate their
difference in wavelength and in wave number.
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(c) Assuming that the emission lines are vanishingly narrow, what is the minimal width
of the ruled grating that will allow resolution of these lines?

(d) How would one explain the doubling of the lines ? What is represented by their differ-
ence in wave number ?

III
Assume that:

the preceding doublet has been obtained by excitation of lithium vapour in thermal
equilibrium at temperature T

the resolving power of the spectroscope is much greater that that considered above;

under these experimental conditions the spectral line width comes only from the Doppler-
Fizeau effect.

(a) Find the line profile, that is, the intensity distribution as a function of the wavelength
(or wave number).

(b) Give explicitly their half-width.

(c) Towhat temperature can one heat the lithium vapour without destroying the resolution
of these components (that is, that the width of each of them should at most be equal
to the distance between the two lines calculated above)?

Note. Recall that the fraction dN/N of atoms whose velocity component in a given
direction lies between # and #+du is given by:

dN — Mu?
T =4 €xXp (—W) du
where A is a constant whose value need not be explicitly known. M is the atomic mass (for
lithium 73X 1072 kg), R is the ideal gas constant (8.32 joules).

Take Iog, 2 = 0.69 and ¢ = 3X10® m/s.

v

Now work with an atomic beam of lithium (Fig. 70.1) travelling in the x'Ox direction
coming from a small opening cut in the side of an oven and collimated by a hole cut in
a screen. Assume that the diameter of both openings are vanishingly small. The lithium

’

4

Electrons

Oven Lithium atoms

S
b
3
e}
&7
&

Noommemoon

FiG. 70.1
20 R & M: PIO
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atoms are excited by collision with an electron beam travelling in the z’Oz direction normal
to x’Ox and accelerated by a potential difference slightly greater than V. Collectin a spectro-
graph the radiation emitted in a direction Oy normal to both beams.

(a) Explain why here one gets much finer lines.

(b) If one assumes that all other causes of broadening are eliminated (resolving power of
the spectrograph, influence of the electric and magnetic fields, etc.) one again finds
that the two lines have a width of the order of 0.003 cm™1.

What is the source of this residual width? What characteristic can be deduced about one
of the two levels involved in this transition ? To what level does it apply ?

\%

Set aside consideration of the doublet and examine the lines of the “sharp” series 2P—nS
series).

(a) Why are all of the lines in this series doublets? What can one say about the wave
number separation of the two lines of one of the doublets of this series?

(b) In studying the first line of the sharp series, one discovers that it is a double and that
the higher of the two lines has the wavelength

Az = 8128.75 A.

Derive the value in cm™! of the first term T’z of the corresponding transition and the
separation in angstroms of the two components.

SOLUTION

I

1. The ionization energy eV, corresponds to the difference between the energy origin and
the ground-state level. The energy of a term having the value Tincm™is W = heT (§ 12.1).

(a) Hence, for the ground state:

eV; = hCTo,
e
T = e Vi.

The value of e/hc is given in S.I. units and thus ¥, will be given in m™1:

To = 8.0682X 105X 5.390 = 4348,700 m™! = 43,487 cm™!

() Ao= TL = 2299X 1078 cm = 2299 A.
0

2. (a) The first excitation potential involves the energy necessary for the electron to be
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excited from the ground state T’ to the level 1. Thus one has

To—T, = 8.0682X 105X 1.85 = 14,920 cm™!
and
T = 43,487 14,920 = 28,567 cm™1.

If one is given ¥; = 1.85 volts, this implies, in the absence of other indication, an uncertainty
of 10.005 volt and thus an uncertainty in T of

8.0682X 105X 5X 1073 ~ 4000 cm™,

thus a relative uncertainty of the order of 0.1 (on the ground-state level). This uncertainty
is much greater than that which can be obtained spectroscopically where one can get
commonly a precision in wavelength of 0.1 A and thus a relative uncertainty of the order of
10~%to 1075,

1

(b) A
This line is the first of the principal series and is homologous to the D-line of sodium. It is
situated in the red and gives that characteristic coloration to flames charged with lithium
salts.

(c) The ground-state term is S (/ = 0) and this can only combine with a P (/ = 1) term
as a result of the selection rule / = 1(§ 15.3). The term T, is therefore a P term.

I
1. (a) The grating equation (§ 7.8) gives with i = i’ in first order:

.. A . . 671010771200
2siniy=— or sini= 3

g = 0.40.

(b) The distance ! which separates the two lines in the focal plane is bound to their angular
separation &i by 8/ = f-8i, where f is the focal length of L;, hence

_ 4x1078

di1 3 rad.
On the other hand, one has (§ 7.9)
on 1
84 dcosiy’
therefore _
-5
04 = dXcos i1 X di; = %X0.9165X—4§—;0— =0.153X10"?mm or 0.153A.

One has # = 1/, hence 8% = —84/A?

0.153 0.153

—. = — -8 -1 . -1
= GTI0F = 04500108 = 0339X107 A7t or 0340 cm

18]

20*
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(c) In the assumption taken, the width of the lines is only due to diffraction and the finite
width of the grating (§ 7.8). The theoretical resolution is defined by

A
i NK
allowing one to calculate N and therefore the width of the ruled grating. For K = 1, one
has
N A 6710108
L= = ax®& = T200%0.153x 105~ o6 mm-

(d) The doublet is due to spin-orbit interaction (§ 15.7). The separation in wave numbers
multiplied by hc represents the difference between two spin energy levels of the optical elec-
tron in the magnetic field caused by its orbital motion.

I11

(a) The transverse Doppler effect is negligible (§ 9.10) and the spreading of the line is due
only to the Doppler effect produced by the velocity » along the observational direction. For
an atom, the variation in wave numbers which results is given by

A Ay u
e A Wt 1)
> =yl )
the + sign relating to the case where the atom is moving toward the observer. In a perfect.
gas (which is assumed for lithium vapour) the distribution of atomic velocities is statistical
and the number of atoms of mass m whose velocity in a given direction and interval lying
between u and u+ du at the equilibrium temperature T, is given by

ﬁ‘_) du @)

dN = Cexp(—ZkT

C being a constant and & Boltzmann’s constant (§ E.3). This expression is a result of the
Maxwell-Boltzmann velocity distribution. With

?

m _ m M
k= gk Tk

7 being Avogadro’s number, equation (2) can be written

dN = Cexp ( _MM) du, Gy

which is the expression given in the problem.

To find the intensity distribution in a line as a function of the wave number, one notes:
that the emitted intensity in an interval d# is proportional to the number of atomic emitters.
whose wave number lies within that interval, since the emission is incoherent. Additionally,
the interval d# is related to the interval du of atomic velocities. Putting in (3) the value of u
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derived in (1), one gets the expression for the relative intensity I(%)
Mc?
1) = Toexp [ Sxt 7 0F ] @)
vo is the wave number of the centre of the line corresponding to zero velocity. The curve

(Fig. 70.2) representing I(#) is symmetric about % as a result of the random distribution of
velocities. This is a gaussian curve.

1] et PR

7

Qlennaao

=)
2

Fi1G. 70.2

(b) The intensity at half the maximum I, has wave number f’ such that

_1~ = eX| __‘Mi("’_" )2
3 p[ 2RTR ”"]'

2RT#2
e 20 In 2.

hence

(7" —Po)2 =

The half-width is given by the wave-number interval:

2| (7 —po)| = 2A¥%,

spy — 20 1[2RTIn2

- W &)

(c) The two components considered in part II cease to be resolved when the width of each
of them is greater than the wave number interval by which they are separated, so that, using
the results of question I1.1 (b) of 0.34 cm ™1, one has

14920 2Xx8.32Tx0.59

0.34 = 2X 35708 TX10-3

hence, the maximal temperature which allows resolution

AT =838, T=17022°K
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v

(a) The atoms 1n an atomic beam (§ E.4) have a velocity variable about a mean but the
direction is well defined. Since this is perpendicular to the observational direction the longi-
tudinal Doppler effect is eliminated, it does not exist for the transverse Doppler effect as a
cause of line spreading and the effects of collision and atomic interaction are small in the
rarified gas which constitutes the beam. Hence the lines are narrow.

(b) If the preceding causes of spreading, those associated with the apparatus, are elimi-
nated there remains only the residual natural line width, a consequence of the uncertainty
relationship AW X At~ h. The energy uncertainty is, using the parameters from the problem

statement,
AW = h X ¢ XA% = hX3X101°X3X 1073,

One therefore has a uncertainty in the period of the corresponding transition

At ~ ATW ~ 9X1077s.

Since the transition returns the lithium atom to its ground state, its lifetime is infinite in the
absence of perturbation. The interval Az characterizes the upper level and is its mean life-
time.

\Y

(a) The lines of the sharp series are emitted by transitions from an nS level (n = 3,4, ...)
to the 2P level. Moreover, this latter level is doubled as a result of spin—orbit interaction
into the levels 2P’ and 2P" as seen in II (d) (Fig. 70.3); however, the S levels are not since

3S

Fine series

Principal series

Fic. 70.3

25

their orbital moment is zero. The wave number separation of the sharp series doublets is
A% = (2P'—nS)—(2P" —nS) = 2P'—2P".

This value is constant. On the other hand, the lines of the principal series arising from tran-
sitions between the nP (n = 2, 3, 4, ...) levels and the ground state 28 level of the optical
electron lead to

A% = (nP'—2S8)— (nP" —28) = nP'—nP"

and this separation is variable since it decreases as n increases.
(b) The wave number of the radiation studied is

1 1
e~ 8128.75

Ve = = 12,302 cm™1,
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The separation of the two components of this line is the same as that of the components of
the first line of the principal series (Fig. 70.3) that is, to the separation calculated in question
II.1 (b), namely A% = 0.34 cm™2. This is, in wavelength,

|AZ] = |AF|X A2 = 0.34X(8130)2 = 0.223 A.

PROBLEM 71
Doppler Effect. Spectral Line Width

I

The first spectral lines of the first two series of the hydrogen atom have the wavelengths
respectively (in A):
Lyman: 1215.7...
Balmer: 6563.07; 4861.33...
In addition the limit of the Balmer series is 3645.9.

1. Recall the expression which leads to the calculation of these wavelengths and briefly
explain its significance.

2. Calculate the ionization potential ¥; of the hydrogen atom.

3. Calculate the wavelength of the first line of the third (Paschen) series of hydrogen using
the combination principle.

11

1. Hydrogen atoms, excited by an electric discharge in a low-pressure tube, escape through
a channel in the cathode C (Fig. 71.1) and move into an evacuated space along the Cx
direction. Examine with a spectroscope placed first at Oy and then at O, the Hy-line. One

Fic. 71.1

will find two different values for the wavelength, at O, 4; = 4855.45 A and at O, A =
4861.33 A. Briefly interpret these results. Calculate the velocity of the atoms along Cx using
the Lorentz transformation. Use a coordinate system S(xyz) fixed to the atoms moving
with constant velocity # with respect to the laboratory system S'(x'y’z’).

The argument of the sinusoidal frequency function, sin 2z¥(t— x/c) is an invariant in the
Lorentz transformation. Neglect #2/c? in finding u.
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2. The slit of the spectroscope is placed at O¢ and receives light emitted normally to Cx
by the atoms in a segment of the atomic beam lying between x and x+dx. By displacing the
spectroscope parallel to Cx one sees an exponential decrease in the intensity of the H,
radiation which follows the law, I = I exp(—Kx) with K = 138 m™'. I, is the intensity
at the exit of the cathode. Calculate the mean lifetime 7 of the hydrogen atom in the excited
state, that is, the time required for the emitted intensity to fall to 1/e of its initial value. Derive
the natural line width of Hy assuming the lifetime of the lower level is very much longer than
that of the excited state.

II1

Now observe the emission of H, by the atoms in an ordinary discharge tube at 27°C.
Analyse the light using a Fabry-Pérot interferometer where the plate separation has been
increased to the point where the fringe visibility goes to zero. The limiting interference order
is 50,000. What is the width of the line if one assumes the line profile to be rectangular?
One finds a width much greater than the natural width. Assuming that the atoms all move
with the same velocity, their mean thermal velocity (v), calculate the line width due to the
Doppler effect and compare this to the experimental value.

Recall that in the kinetic theory of gases, (v) = 4/8RT/nA, where R is the ideal gas
constant, T the absolute temperature, and 4 the atomic mass.

SOLUTION
I
1 1 1
7= R(mw) O

R is the Rydberg constant, no is an integer which characterizes the spectral series (1o = 1 for
the Lyman series, no = 2 for the Balmer series, etc.), and n is a member of the infinite series
of integers which characterize the lines of each series and which begin with the integer
immediately greater than n,.

2. The ionization energy is that energy which must be given to the H atom to remove the
electron situated in the ground state from the field of the nucleus to infinity and place it
there without kinetic energy. One has

W,' = eV,‘ = hv,

e is the electron charge, »; the frequency limit of the Lyman series, so that, using (1) with
ne=1and n = oo,
V= th/e.

R can be calculated from the series limit of the Balmer series given above, with ny = 2 and
n = oo, equation (1) yields

1 R
A 4
hence
6.62X 107344 X3 X 108

Vi= 3645.9X 109X 1.60 X 10~ 19 =136V.
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3. The first line in the Paschen series (1o = 3) has wavelength

1 1 1
T R(?‘T@)

since the first two lines of the Balmer series have wavelengths

%1= R(—;——é) and %2= R(%——ll—é)
one sees that
r_1.1
AT A A
hence
A= ﬁfzz _ §563 ‘?%236133 = 18,748.0 A.

II

1. The H* ions accelerated by the electric field between 4 and C capture electrons at C
and exit into the vacuum with their acquired velocity. In the coordinate system of the emit-
ting atoms the frequency of the Hjy radiation is #, in the laboratory it is #'. The monochro-

matic wave propagating along Cx is given by the expression in the S system

E=E,exp [anv (t—%)]

Its phase »(t— x/c) is an invariant (§ 9.10) and thus

S, X x
v (t ——) = v(t——).
¢ ¢
the primed letters referring to the system S’. The Lorentz expressions
x' =y (x—ut) t = y(t—g)
with
_ 1
Y= u2 >
=
give
t'—i, = t_,uj — i u_t = ]+l t—-i
== %) (e E) = E) ()
hence
v=vy(1+2
= (1)

(2
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The frequency is higher for the observer at O; due to the longitudinal Doppler effect. If one
neglects u2/c?, and thus if y = 1, the transverse Doppler effect, which exists in principle for
the observer Oz although always very small (§ 9.10), vanishes. Thus

v = ¢y, v = ¢[As,

Ay = 2.1( 1 +1)
c
from which

_ (Aa=—Ai\ _ (4861.33—4855.45)3X 108
"—c( IR )_ 4855.45

and

= 3.635X105 m/s.

2. The luminous intensity observed is proportional to the number of atoms contained
in the volume limited by planes dx apart and which de-excite per unit time (since the emis-
sion is incoherent). This number is also proportional to the number of atoms still excited
in the same volume (§ 15.1). The spontaneous emission decreases with time according to the
law

1= TIoexp (-é)

and comparison with the expression given in the statement of the problem shows that

Kx = t/t
or

ot 1 1 N .
= kx T Ka = 138X3635x105 © 0 <107 Hz.

In solution of the Schrédinger equation, one assumes that the excited levels of the atom have
a precise energy. The uncertainty relationship AW -At ~ h shows that since AW = 0,
At = - and these states are stationary. However, only the ground state has an infinite life-
time. The preceding experiment shows that the lifetime z imposes on the excited energy
level an uncertainty AW ~ h/v. Since AW = h Av, the natural line width of H, is

1

Av«w?% 5x10% Hz

or
0.236 X5

3 X107 m = 0.39X 1073 A.

1821 =2 ) =

111

Fringe visibility vanishes when for the path difference & = pA the interference order p
varies by 1 unit for the extremes of the radiation contained in the ray (§ 6.10), so that

Ad = p AL = AAp,
A 4861.33
p 50,000

This width is much greater than the preceding natural line width.

Al = = 0.097 A.
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- In calculating the broadening produced by the Doppler effect taking as the velocity
equation (2) given in the problem for the thermal motion, one finds

8RT V8x8.32><103><300 — 2530 mjs.

@O=V-a= 3.14

The velocity (v}, unlike the velocity 4 considered in part II, is related both to the motion of
the atom toward the observer and away from him. The line width is therefore

Av _ 2(v) Al
v ¢ 1

hence

2X2530

~ 2 X0 _

= 0.082 A,

a value much closer to the experimental value than the natural line width.

PROBLEM 72
Polarization of Resonance Radiation

I

The resonance radiation 2 = 2537 A emitted by a mercury atom is produced when an
electron drops from the 6P, excited state to the 615, ground state. This latter level is nor-
mally occupied by two electrons.

1. Explain the significance of the symbols representing the two levels. Give the values of
their Lande factors.

2. Consider the gas '33Hg (in order to avoid certain complications due to nuclear spin)

contained in a transparent tube at a sufficiently low pressure that atomic interactions are
negligible and placed in a uniform magnetic field B. Show the splittings of the 3P; and 1S,
states produced by the Zeeman effect, the statistical weight of each of the sublevels and the
transitions permitted by the selection rules.

3. Emission of the resonance line is excited in the gas discussed above and this radiation
is observed with an apparatus capable of separating the various components of the radiation
spectrum. Assume that the separation of the levels produced by B is small with respect to
the thermal energy of the atoms. Determine the frequencies, the polarization states, and the
relative intensities of the radiation observed in the following cases: (a) normal to the field
lines B; (b) parallel to these lines; and (c) at 30° to them.
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To do this, make use of the analogy between a quantum emitter of dipole radiation and a
Hertzian oscillator. Recall that a circular oscillator is composed of two linear oscillators of
the same amplitude.

Compare the power emitted in the various transitions and derive the relative probabilities
for these spontaneous transitions.

11

Mercury vapour, subject to no excitation and held at a temperature sufficiently low that
all the atoms can be thought of as being in their ground state, is now illuminated by a paral-
lel beam of A = 2537 A radiation propagating in the Ox direction. One can linearly polarize
this beam to give the electric field of the wave a fixed direction in the yOz plane. One observes
the re-emitted radiation from the resonance in the Oz direction through an analyser. The
gas is placed in a uniform magnetic field B, with adjustable direction and an intensity such
that the Zeeman splitting is small compared to the thermal energy and with respect to the
resonance line width formed by the excitation source. One observes the radiation along the
Oz direction using a non-dispersive analyser. Determine the polarization state for the radia-
tion with the following orientations:

E: Oy Oy Oy Oz Oz
B: Oy Ox Oz Oy Ox

When B is parallel to Oy, determine the angle, 6, which E must take with B in the yO
plane so that the radiation observed along Oz will be depolarized.

m

Now consider sodium vapour. With the knowledge that the transition of the single optical
electron which gives rise to the D, transition is produced for the 32P, , to 325, transition,
draw the emission diagram for these levels when they are subjected to a Zeeman field.
Determine the relative intensity of the emission lines and the relative probabilities of the
lines which are produced. Note that when B = 0, the emitted radiation contains only a
single non-polarized line and, reasoning by continuity, show that for transverse observation
there exists a simple relationship between the sum of the intensities of the  components and
those of the o components. Take into account in addition that the Zeeman spectra are
symmetric in both intensity and frequency about the frequency vo.

Place the sodium vapour in an arrangement analogous to that of the mercury vapour in
part I and illuminated by a parallel beam of D; radiation propagating along Oy. What is the
polarization state of the resonance radiation in the presence of a B field directed along Oy ?

If the exciting radiation is circularly polarized, all things being equal, show that the
irradiation of the vapour leads, after an unlimited time, to all of the sodium atoms populat-
ing the m; = + % sublevel of the lower state.
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SOLUTION
I

1. Using the nomenclature of spectral terms (§ 15.8), the number # designates the electron
shell of the optical electron. In the ground state, the two valence electrons of the mercury
atom occupy the 65 subshell. They have an orbital angular momentum of zero, [/ = 0(S state)
and the total orbital angular momentum L is zero. They have opposite spins s = + and
the total spin angular momentum S is zero. The total angular momentum J = L+ is zero.
The general symbol 2°+1L, is 1S, for the ground-state term. In the excited state, one of the
electrons remains in the initial s (/ = 0) state; the other moves into the state [ = 1, since
the total angular momentum L = 1 and the symbol is P; the spins of the two electrons are
parallel and the resultant spin, S = 1,since 2§+ 1 = 3. The total angular momentum, which
can take on the values L+ 1, L,and L—11is 1.

The Lande factor is given by (§ 15.11)

n JU+D)+SES+1)—-LL+1)

g=1 27+ 1)

In the ground state J = S =L =0,g = 1.
In the excited state, =S =L =1,g = 2.

2. The magnetic field does not act on the ground state which lacks angular momentum
and thereby a magnetic moment. The projection of the moment J = 1 of the excited state
on the B direction can take the values m; =+1, 0, or —1. The degeneracy of the level
corresponding to the various values of m;, for a given J is removed by the action of B and
each sublevel has the same statistical weight.

The allowed transitions obey the rule (§ 15.10)

Amy=+1 or O or -—1.

Figure 72.1 shows the diagram for these transitions. The Grotrian diagram (Fig. 72.1a)
shows the energy levels. The Heisenberg diagram (Fig. 72.1b) displays on the same
horizontal the levels with the same m,, but allows immediate distinction to be made between
the vertical @ (Am,; = 0) transitions and the o, (Am,; =+1)and o_ (Am; =—1).

™
3 K "y
6°R o} .
-1 0_
o = o
)
6 S, Qo m, 0
FiG. 72.1a FiG. 72.1b
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3. Figure 72.1 a and b shows that the decay of the 3P state to the 1S state corresponds to
the emission of the normal Zeeman triplet: one line () whose frequency o is the same as in
the absence of the field and two others (¢) which are symmetrically displaced by an amount

e

iAV = a’;ﬁ—eB. (1)

Normal to the direction of the field one observes three linearly polarized lines: the n-line
vibrating parallel to B and the o, and o_ lines normal to B. Parallel to the field the 7 line
disappears and the o lines are circularly polarized in opposite senses. These results, which
follow from quantum theory (§ 15.10.4) can, in simple cases be tied to the classical theory
of electric dipole emission. The vibration of a linear sinusoidal dipole d can in effect (Fig-
72.2) be decomposed into a vibration 7 along a general Oz axis and a vibration ¢ in the xOy
plane. This latter vibration can be thought of as the resultant of two circular vibrations in
opposite senses ¢, and o_ (see the Fresnel theory on Optical rotary power).

Z
e
T ‘\
\‘d
:
. ]
K —r
. o
Fig. 72.2

The preceding resolution is shaped to the symmetry of the field B, an axis of revolution and
a plane normal to that axis. Take the direction of B for the Oz axis. The vibration along Oz
is not affected by the field B which is parallel to the displacement of the charge of the dipole.
The circular vibrators are subjected to the Lorentz force in opposite senses for o, and o_.
One therefore concludes that their frequencies must change by an amount symmetric with
respect to the unaltered m-radiation. (The classical calculation which gives rise to equation
(1) is not of interest here.)

If one now considers a large set of dipole oscillators oriented at random, the three com-
ponents 7, 0,, and o, (Fig. 72.2) or elsex, 6, and ¢_—have equal values. If one observes
the radiation emitted in a given direction when the dipoles are subjected to some directed
action, one observes the transverse electric field emitted by the two components normal to
the direction of observation while the component directed along this direction is zero
(§ 10.3). The observed intensity is thus 27, where I is the maximal radiation intensity emit-
ted by each of the three components.

If the oscillators are placed in a uniform magnetic field, by observing in the direction Oz
of the field lines, one observes the radiation emitted by the o, and o_ components but not
that of the z component. The intensity is then 2/. By observing normally to the field lines, for
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example along Ox, one see the maximal radiation with intensity / from the z component and
the linear components parallel to Oy of each of the ¢ components which have then the
intensity I/2. The total observed intensity is then 27 (Fig. 72.3).

When one observes in a direction OP making an angle 6 with Oz and situated, for example,
in the zOx plane (Fig. 72.3), one sees the intensity 7 sin? § of the z-component, the intensity
1/2 cos? 6 of the components of ¢ parallel to Oy, and the intensity 7/2 cos? 8 of the compo-
nents of o parallel to Ox. The = radiation appears linearly polarized in the xOz plane and
normal to OP. The o radiation is elliptically polarized and the ratio of the elliptical axes
has the value cos 6.

For 6 = 30°,sin? 6 = 4, cos? 6 = 3 The line with frequency v, has intensity 7/4 and each
of the lines with frequency vo+ Av have intensity:

i.*_ixi—l]
2727487
x P
(4]
Yy
z
FiG. 72.3
The ratio

L _2
I, 1

The total intensity is therefore 21.

One has seen that the statistical weight of the Zeeman sublevels are equal. If in addition
the magnetic energies are small compared to the thermal energy kT, all of the sublevels are
equally populated. The orientation of the orbital cannot affect the velocity of the emission
of energy and the power radiated in the transition from any Zeeman sublevel is the same,
whatever may be the number m; which characterizes the level. On the other hand, a o-radia-
tion corresponds, all things being equal, to a power emission twice that of a m-radiation
since it has two linear components. Since the intensities of the z-line and each of the o-lines
are equal, the relative transmission probabilities are

As
7;_1'
II

The exciting radiation has a width which by hypothesis contains all of the Zeeman com-
ponents. The action of the B field separates all of the Zeeman sublevels of the 6 3P, level in
the absorbing vapour. If the B and E fields are both parallel to Oy and normal to the
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direction of observation Oz, only the m-component of the resonance line is absorbed and
only the m; = O sublevel of the 6 3P; level is excited. The light re-emitted by the transition
between this sublevel and the ground state is a m-vibration (Fig. 72.1) and the resonance
radiation is then linearly polarized parallel to Oy.

If E = E, and B = B,, this time the two o-components are absorbed and re-emitted and
the resonance radiation is circularly polarized with Ox as the axis. One sees in addition
linear polarization parallel to Oy for observations made along Oz.

If E = E, and B = B,, one no longer observes the @ component, but together the com-
ponents o, and o_, the light is not polarized.

IfE = E, and B = B, only the levels m; = +1 are excited, the o, and o_ components
are re-emitted. One sees a linearly polarized radiation parallel to Ox. Likewise one sees a
vibration parallel to Oy if E = E, and B = B,.

When in the yOz plane E makes an angle 8 with B (along Oy), one sees, in comparison to
the first and fourth cases which have been studied, that the energies of excitation of the
s-component and the o-components are respectively proportional to E2 cos? § and E2 sin? 6.
Consequently, for sin? § = cos? 6, the linear components relative to Ox and Oy are equal
when observed along Oz and the light is not polarized. For this § = 54°44’.

III

The optical electron has a spin+ with the result that the 35 and 3P levels are doublets
(25+1 = 2). For the S level, /=0 and j = 1. For the Plevel, /=1 and j =1 or 2. The
transition Py, — S, produces the D, line and the P;,, — S, transition the D, line. Here
we are interested with the first of these. Since the Lande factor is equal to 2 for the S level
and to % for the P level, the four possible transitionsallowed by the selection rules give four
lines of different frequency numbered 1, 2, 3, and 4 on the diagram in Fig. 72.4a.

m; -1/2 +1{2
, 12 34 ;;é !
p +
3 Wg -1/2
|G| T|C kil
323 g e } ]
la‘ -2 m -1/2 +1/2
FiG. 72.4a Fi1G. 72.4b

The n-component and the g-components each appear in transverse observation as linearly
polarized with two perpendicular azimuths. As at the limit for B = 0, the radiation is not
polarized and it is necessary that the intensity of the set of m-components is equal to that
of the g-components:

2L, = 21,. 9))
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The result obtained in I.3 is consistent with this. For the D;-line, since Zeeman spectra
are symmetric, one has

11=13 and 12=I4.
On the other hand, equation (2) gives

Ii+1s = 13+I4.

One gets
11:—[2=I3=I4.

The probabilities of the spontaneous transitions are thus in the ratio
Ai:Ag:Az: Ay =1:2:1:2

since 1 and 3 are=-lines and 2 and 4 are o-lines.

When the sodium vapour is illuminated by an E, radiation in a B, field, the #-transitions
are excited. The two upper sublevels are populated equally and the reradiation to the ground
state occurs through m- and o-transitions of the same intensity. Therefore the observed
radiation is not polarized.

Excitation by circularly polarized light with a given sign, right for example, excites the
atoms of the m; = — % sublevel of the S level to the m; =+ sublevel of the upper state.

Hence, decay to the ground state is made between the two sublevels, but, as indicated by
the transition probability, two-thirds of the excited atoms decay to the original sublevel with
emission of a ¢ line and one-third to the m, = + sublevel with emission of a w-line. These
latter atoms can never be re-excited by the incident radiation and in principle their number
continually increases.

PROBLEM 73
Spectral Terms of Two-electron Atoms

Consider an atom which has several electrons each of which has an orbital angular

p— A
momentum G, and a spin angular momentum G,. Allow the orbital moments, on one
hand, and the spin moments, on the other, to combine to give the total angular momenta
\/ A . - L] -
G, and G. Significantly different atomic energy states correspond to the different values
A ~A
of Land S. Again the moments G, and G4 combine to give the total angular momentum

A

G ;. Each atomic energy level—or each spectral term—is designated by a symbol 25*+1L,.

I

Determine the possible terms for two “non-equivalent” electrons, that is, electrons whose
quantum numbers # and / are different and which belong to different subshells as a result.
Consider the various cases where each of the two electrons can be s, p, or d.

21 R & M: P1IO
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21 R & M: P1IO

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



312 PROBLEMS IN OPTICS [PROBLEM 73

II

Determine the possible term symbols for two “equivalent” electrons, that is, electrons
having the same values of 7 and [. Take into account the Pauli principle. Consider the cases
where the electrons are s, then p.

111

Determine the symbols of the ground state terms for the elements from H(Z = 1) to Ne
(Z = 10). Do this taking into account the following empirical rules due to Hund: (a) the
lowest terms correspond to the maximal value of S and the maximal value of L compatible
with the preceding value of S taking into account the Pauli principle, and (b) J = L—-S§
for the elements having less than half the electrons of a group of equivalent electrons and
J = L+ S for those having more than half.

SOLUTION

The angular momentum couphng 1S Russell—Saunders couplmg (§ 15.12.3).
R

The resultants G, s = ZGS, G ZG,, and G =G, + G follow the Russell-Saunders
scheme and the results are quantized.

I

In the case where n and / are different for the two electrons, all the combinations are
possible. For example, for two d-electrons (/1 = lp = 2), the possible values of L are different
integers and lie between /1 — /2 = 0 and /1 + /2 = 4. The possible terms are S, P, D, Fand G.

~_A

Figure 73.1 shows the results in the inexact vector representation of G.
One finds without any difficulty that for all of the electron couplings considered the L
values are as follows:

ss:0; sp:l; sd:2; pp:0,1,2; pd:1,2,3.

1 L=0 l Az 1 lz lz L=4
_2 L=3 !
S P D G

Fic. 73.1

As to the spin momentum, since s; = :}:l and sg =+ ; , S = 1 or 0* and the multiplicity
of each of the terms is 25+ 1 = 1 (singlet states) or3 (trlplet states)

It remains to determine J. In the singlet states G =0, G;= GL and J = L. For the
triplet states, S = 1, whatever the value of L may be, a diagram similar to Fig. 73.1 shows
that J can only take on the values L—1, L, and L+1.

* One must be careful not to confuse S with the symbol for the L = O state.
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The possible terms symbols are collected in Table 73.1.

TasBLE 73.1
Electrons { Singlet term Triplet term
i

55 1S, 38

sp P, 8P¢ 3P, 3P,

sd 1D, 3D, %D, 3D,

pp 1Sy 1Py 1D, 88, %P, *Py *P, °D, *D, Dy

pd P, D, 'F, 3Py %P, %P, *D, 3D, 3Dy °F, °F, °F,

dd 18, 1P, 1D, 'F; 1G, 38, 3Py %P, 3P, 3D, 3D, 3D, 3F, 3F; 3F, 3G %G, 3G

I

The two equivalent electrons having the same quantum numbers n and / must differ either
in their quantum number m or in s.

For s-electrons, / = 0 and m = 0 thus the quantum numbers s of the two electrons under
consideration are + 3 and — and therefore S = 0 and since L = 0 the only term possible
is 1So. The triplet state is not permitted.

For two p-electrons the situation is more complex. Table 73.2 lists the quantum cases of
an np subshell and the possible distributions of two electrons taking into account their spin.
The configurations t} and |t are equivalent.

TABLE 73.2

Configu-

ration m=+1 m=20 m=-1 | M=3YYm

195
I
™
21
h
=
g
8

H +2
4 -2
t } +1
-1

—_———_—c 00000
—mENNNNNO
—
o

W& WN—
-
-

One has,asin I, L = 0, 1, or 2thus S, P, or D states. The quantum number M = Zm

is associated with the projection of \GJ; on the z-axis.

For L = 0, M = O can only be obtained for m; = ma = 0. Therefore the spins are op-
posed and one has a 1S state (configuration number 1).

For L = 2, the possible values of M are +2, +1,0, —1, and —2. The first is obtained
from my = m» = + 1 (configuration 2) and the last by my = m» = —1 (configuration 3).
Thus the spins are opposed and one has a 1D; state.

21+
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This same term arises again with opposing spins for M =+1 by the combination
my =+1 and ms = 0 (no. 4), for M =0 with m; =+1 and ms =—1 (no. 6), and for
M =—1by m; =—1and ms = 0 (no. 5).

For L = 1, the values of M are + 1, 0, and — 1. The configurations 7, 8, and 9 correspond
to this with S = 1 this time and thus 3P terms which subdivide into 3P, 3P, and 3P; as has
been seen in part I.

Figure 73.2 shows the geometric construction relative to the number M.

Fic. 73.2 Fic. 73.3

I

For H with one 1s electron, the ground state is 2S.

For He, the two 1s electrons form a complete K-shell with ground state 1S.

For Li the third electron is 2s and the ground state 2S.

For Be the two 2s electrons have opposing spins and the term is LS.

For B the fifth electron is 2p hence a 2P term.

For C which has two 2p electrons, the possible terms have been determined in part IL
Hund’s rules give a triplet term for the ground state, thus 3P.

For N the maximum value of S is % corresponding to parallel spins for the three 2p elec-
trons, which as a result each occupy one of the three 2p quantum states. The G is then zero
(Fig. 73.3). The ground state term is 4S.

For O the fourth p-electron can only occupy one of the p-levels which already has an
electron hence S = 1. The total orbital angular momentum is due to the fourth electron
since, as has been seen, the other three give a result of zero. The ground state term is 3P.

To treat F it is best first to examine Ne which has a complete p sublevel and thus both the
orbital angular momentum and the spin angular momentum are zero and the ground state

TABLE 73.3
|
Element H He Li Be B C N 6] F | Ne
i |
Atomic number 1 2 3 4 S 6 7 8 9 10
s 1 0 1 0 L 1 2 1 1 0
L 0 0 0 0 1 1 0 1 1 0
J 3 0 1 0 3 0 g 2 3 0
Ground-state
term 2Sl/z 18, 2Sx/z 1So 2P1/2 P, 4Sa/z 3P, 2Pa/z 18,
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is 1S. If one then removes one electron to return to the F structure, one sees that L = [ = 1
and S = s = 7 and thus the ground state is 2P.

The value of J is equal to S for the first four elements since L = 0. From B to Ne where
the 2p shell is being completed, J is given by the second of Hund’s rules, for B and C
J=L—-SandforOandF,J=L+S.

Finally, one gets the symbols shown in Table 73.3 for the ground state terms (Fig. 73.4):

0] l ] lml l_l_l_l me UIHM lulnrﬂ

FiGc. 73.4

PROBLEM 74
Zeeman Effect in a Two-electron Atom

In the many-electron atoms discussed in the previous question, the angular momentum
~A A
components follow the Russell-Saunders rules. Use § and L forthe spin and orbital an-

A
gular momenta and J for the total angular momentum. The magnetic moment of the atom
is related toits total angular momentum, just as in the case where there is only oneelectron,
through the Lande factor whose existence results in the magnetic spin anomaly.

1

Give the general expression for the magnetic moment of an atomin a fixed stationary state.
Find, taking the Bohr magneton as unity, the magnetic moment of the following atoms
in their ground state: H, He, Li, Ne, and Na. How can one verify these values experimen-
tally ?

I

1. Study the emission spectrum of strontium (the atom homologous to Be with the two
optical electrons in the O-shell) when it is placed in a weak magnetic field. Show graphically
the Zeeman levels for the following transitions and the permitted transitions:

(@) A=4678 A 10 .F3 — 71D,
(b) 4962 83D3 — 6 3P,,
(©) 4892 83Fy — 73%Ds.
Recall that the selection rules for the quantum number m, are the same as for a one elec-

tron atom but that AJ cannot be zero. Among the transitions considered are those which
give a normal Zeeman effect?

One finds that the structure of the Zeeman spectra line (c) is very close to that of (a) but
not to that of line (b). Give the reason for this.
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2. Calculate the separation in wave numbers of the n- and o-components of line (c)
in a magnetic field of 30,000 oersteds. The speed of light is ¢ = 3X 108 m/s and e/m, =
1.67X 10" C/kg.

SOLUTION
I

A A A A ~A o A
In Russell-Saunders coupling, one has § =)'s, L =) I and J =S + L. The
modulus of J is vV J(J+14. Thus

A

M =g\IJ+1) jis (1)

g is the Lande factor and \‘d;, the Bohr magneton.
Refer to Problem 73 which gives the ground states of the atoms and calculate g using the

expression
_ JU+D+SES+D)-LL+1)
g=1+ 270 +0) . 2
One finds (§ 15.11)
TABLE 74.1

Atom H He Li Be Na
V4 1 2 3 4 11
s 3 0 H 0 H
L 0 0 0 0 0
J 1 0 1 0 3
TCI'_IP— Sl/Z ISO ZSILZ lSo ZSU_‘.!
VIU+1) 3 0 V3 0 V3
g 2 1 2 1 2
M V3 0 V3 0 V3

In the calculation for Na, take into account the fact that the L-shell is complete and its

N A

moments S, L, and 7 are zero as has been shown for the K-shell of He (§ 15.12).
The Stern-Gerlach experiment (and its modern variation due to Rabi) allows one to

~A
measure M in the ground state.

I

1. J, m;, and g have the values shown in Table 74.2 for the levels under consideration
(the principal quantum number is not important).

The number of Zeeman sublevels is the same as the number of values of m; and their
splitting is proportional to g. The upper parts of Fig. 74.1, 74.2, and 74.3 show these levels
graphically for the three lines under consideration.

The allowed transitions obey the selection rules

Am;=0 or +1 or -1
The three lines behave differently.
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TABLE 74.2
|
Level 1F, 1p, 3p, 3D, SF,
|
J 3 2 2 3 4
my —3to +3 —2to +2 —2to +2 ~3to +3 —4to +4
g 1 1 3 | I 5
m_g.m
= 39
mJ;g.mJ - +3 +4
] :2 +2 +84
3 +1 +4
A +! 2 0 o
3 0 .
1 g== -1 - 4/3
g= -1 3 4
2 -2 - /3
"3 -3 -4
+2 +3
+2 3 +1 43
1D +1 A 0 2
2 0 3
gm1 _1 9=5 -1 =3,
-2 A/ﬂ = + 0 - -2 -3
Am=+1 0 -1 J
6, ® O G T O
fo123  3io12 33ion
AV AV 2i012 23012 21017
- -
y v
FiG. 74.1 Fic. 74.2

For line (a), the Lande factor is the same for both levels with the result that the splitting
of the Zeeman levels is the same. As a result the five transitions permitted by the selection
rules have the same wave number and one observes a normal triplet. Each of the Am; = +1
lines are split symmetrically about the Am; = 0 line by a number of cm™? equal to

A% = 0.467B, 3

where B is the magnetic field acting on the atom.
For the lines (b) and (c), the initial and final states have different Lande factors. All of
the lines corresponding to permitted transitions are distinct. The 0 — O line is not shifted
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+4 +5
+3 +15/4

+2 +5/2

+1 +5/4

-1 -5/

-2 —52

-3 -15/4
-4 -5

+3 +4

+2 +8;

+1 +443

-1 -4/

-2 -8

-3 -4

[=]
»~

FiG. 74.3

by the presence of the magnetic field. The wave number splitting of a Zeeman line relative
to the 0 — O line (measured taking the normal splitting (3) as unity) is obtained by taking the
difference between the numbers written to the right of the transition levels in the figures.

For example, for the line (b) one finds

Am=0 1~ li-dtd=d 220 —343=13
Am; =+1 3-2:4-3=%; 2-1:2-3%=170
1-0:4-0=3;
0—~1:04+5=79; 1->2:—343=%
One can easily verify that the splittings for Am; = —1 are symmetrical with those for

Am; = +1. On the whole, to each of the three permitted values of m, there corresponds a
group of five lines separated by one-sixth the normal splitting.

For the line (¢), one also finds a symmetric distribution in three groups of seven lines
with the splitting of two lines of a group being one-twelfth the normal splitting (3). The struc-
ture of this line is very close to that of line (b) of the normal triplet since the Lande factors
of the levels involved are close to unity.
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2. The splitting of the = and ¢ components of the (c) line is 5 of the normal splitting.
In a field of 0.3 tesla, equation (3) gives

A = 0.467X0.3X 15 = 0.0117 cm™1

a splitting difficult to detect.

PROBLEM 75
X-ray Spectra

Here one looks at the molybdenum absorption and emission spectra in the X-ray region.
Assume for this purpose an X-ray spectrograph.

I

Describe briefly the construction and function of an X-ray spectrograph.

II

1. Explain the mechanism of X-ray absorption in an element with high atomic number Z.
Why does one require a screening constant ? Find the wave numbers of the first three absorp-
tion limits {or discontinuities) for molybdenum. Initially neglect the fine structure of the
limits and take the Rydberg constant to be approximately R = 1.1X10% cm™!. For X-ray
absorption one can assume in the calculation the screening constant to be C = 3.5 for the
K limit, C; = 14 for the L limit, and C,, = 25.4 for the M limit.

2. Give the theory for line emission in the X-ray region for atoms of high atomic number.
Set up the Moseley equation. Find the wave number of the K, - and K-lines in molybdenum.
With the Moseley law one assumes for a transition from an M or L-level to the K-level one
can take a single mean screening constant C, = 1.

Show that one gets approximately the same values for the wave numbers of the K, - and
K-lines when one takes the wave number differences of the K, L, and M absorption edges
(neglecting the fine structure).

3. Show how one can perfect the preceding theory explaining the fine structure of the
emission lines and the X-ray edge absorption. Show that one can represent the fine-structure
energy levels by the expression

w __ [(Z—C)2 +oc2(Z—-C;)4( 1 3 )]

Rch n? nd J+5 C4n

M

where C and C,, are empirical screening constants which depend on the quantum numbers
of the transitions involved. In this expression « is the fine-structure constant and the other
notations have their usual significance.
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Diagram the K, L, and M levels of molybdenum. Give the selection rules for transitions
between these levels and indicate the permitted transitions on the diagram.
4. Find the wave numbers of the L;, Ly;, and Ly; molybdenum absorption limits. Take

C=14, Cj =2, Cippy=35 o =53x1075,

Explain the origin of the screening doublet.

5. Find the splitting of the spin doublet in molybdenum:
AvKa,Kug - vKul_vKaz .

To do this make use of the fine-structure equation.

111

Explain the origin of the anode continuous emission spectrum of X-rays.

Consider a flux of electrons accelerated by a 100 kV potential difference falling on a
molybdenum anode. Find the wave-number limit of the continuous emission spectrum
under these conditions.

SOLUTION
I. See § 7.15.

II

1. When the atomic number Z is large the K, L, M, . . ., electron shells corresponding to
the values 1, 2, 3, ... of the principal quantum number » are filled in accordance with the
Pauli principle. The absorption of an X-ray photon with considerable energy Av of the order
of 104 eV does not lead to a transition of an electron from a deep level to an already occupied
higher level, but to the removal of this electron, that is, to the ionization of the atom. The
work necessary to accomplish this is equal to the coulomb energy of the electron in the
nuclear field if there are no other electrons and this is given by the hydrogen atom energy
level expression (Problem 69):

oo Bz 1 chZ’R
"7 Beh® @ n®

u is the reduced mass of the electron-nucleus system. This is roughly the same as the
electron mass, m,, when the atomic number—and therefore the mass number—is high. The
Rydberg constant takes the value R, as a result.

In practice, the electrons present in deeper and shallower energy levels create a potential
which detracts from that of the nucleus and lessens the value of W,, a quantity which
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depends essentially on ». This is taken into account by using

_chr

’
Wi 2

(Z-Cyy. 2

C, is the screening constant which depends on the level » in a first approximation neglecting
the fine structure which will be considered in question 4.

Use the Hartree method (§ 14.7) to evaluate the constant C,. The potential energy of an
electron at a distance ro from the atomic nucleus is given by

Ze?2  4me?

4
4eoWp(ro) = ST

ro 2 oo
f w¥(r)r2 dr— Zg f yA(ryr2 dr.
0 To

ro

The last two terms give the screening effect assuming that the density of electronic charge
o(r) has a symmetric spherical distribution about the nucleus. The second term gives the
internal screening effect which follows from the well-known electrostatics theorem which
states that the potential does not depend on the details of the internal distribution of charges.
The third term, relative to the external screening, has a different dependence. It is always
much smaller than the second. For example, for a K-electron, the screening effect of the
other electron in the K-shell is less than 1 (in units of Z) which it would be equal to if its
charge were concentrated at a distance less than ro. As to the eight L-electrons, since their
mean distance (r) to the nucleus is of the order of 4r, their contribution to the screening
effect (§ 14.6), which would be zero if their distance remained always beyond ro and their
symmetry spherical, is small. The same is true for the eighteen M electrons, etc.
The wave numbers are given by the expression

P 1 _RZ-CyP
S n?
Using the given numerical values

5, — 2
iy = LDXOPE2=39 6 3065 10t eme1,

K — 12 =
5 _ 2

5y = 1.1><102(242 147 _ 51s6x 10t cm™1,
5 - 2

VM=1.1><10(;1;? 254 _ 313%10% cm-? .

2. The K,-line arises in the transition L -~ K (n, = 2 - n, = 1) and the Ky in the transi-
tion M - K (n, = 3 ~ n, = 1). Thus, with Cx = 1,

i) = 1.1><105><(42~1)2><(1—%) — 13,868 10* cm™?

1
5 — — 24
VKG‘ = R(Z CK) (n2 "

ks = LIX10°X (42— 122 (1—5) = 16,436 10* cm™2.
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Also, one finds
Pr—7¥ = 14,146 X104 cm™1,

Px—Pp = 15,989 104cm™1.
Thus one gets similar values for #, and #x—7, and for F; and ¥, —7,, (§ 15.13.3).

3. Proving the expression given in the statement of the problem is extremely difficult.
Here we limit ourselves to the statement that the first term between the brackets comes
from the energy (2) and the second is a correction term. This is introduced when one takes
into account simultaneously the relativistic form of the equations of motion and the spin-
orbit interaction (§ 15.7). The various values of the internal quantum number J correspond-
ing to a given value of the orbital quantum number L are in effect due to this latter interac-
tion.

In the actual problem, the calculation of the energy of an atom lacking an electron is
analogous to that of an atom having an electron with quantum numbers n, /, and j = 1 i%.
The fine structure consists of a doubling of the levels for which / # 0 (since for / = 0,
Jj= +%, the total angular momentum which depends on j cannot be negative).

The diagram of the K, L, and M levels is presented in Fig. 75.1.

Term symbols

1 jOpticalx
2 3 3dg, My
23 3d M
n=3 1}5 by, MI
11 3 M
ll t 0}5 381 MI‘I
LO‘ LB Lq L(P.
lLa Lel" L4
? ‘e 132 L
2 “Papy il
n=2 T 141 2P1/2 lg
T 0f2 2s L
Ty
n=|] ‘ “3 0—;- 1s K

Fic. 75.1

The selection rules A/ = +1 and Aj = 0, 1 only permit the transitions indicated by the
vertical arrows.

4. For the L level, of which there are three, n = 2. The differences between levels is
accounted for by the corrective terms in equation (1). One finds for these terms

1 207 4
L (1: 0,j=, Ci= 2) :51(;—2)—(%—%) = 116.5X 10% cm-1,
2 —_ 4
Lu (1= 1j=5, Ci=35) :’E(Zz‘ii(%_%) = 100X 10* cm-1,
2 _ 4
Lm(l= 1,j= % C, = 3.5) :IE‘(ZT&S)— (%—i) = 0.20% 10% cm-1,
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These values are added to the value of 7, = 2156 10* cm™! obtained in question II.1.

For given n and /, the differences in j are the origin of the spin doublet. For given # and j,
the variation of the screening constant with / produces the screening doublet. For large Z,
the spin doublet splitting is greater than the screening doublet splitting.

5. The K, line is due to the Lj;, -~ K transition and the K, line is due to the L;; -~ K
transition. These lines form the spin doublet. One has (n = 2, j = 3 or 1)
. ReXZ-Cpt (l_ 1

AF = Ty = Ty = g i 5) = 0.80X 10* cm-.

I

See § 11.3. The conservation of energy in the transformation of the kinetic energy, eV,
of an electron into a single photon gives the frequency limit

v = eV,
eV _ 1.60X10-%x10°
he — 3X108X6.5X 10734

¥ = = 82X10°cm™1,

A= -:_ = 1.22X10~1 m = 0.122 A.
1

PROBLEM 76
Mbossbauer Effect

By radioactive transformation, the 32Co nucleus yields the j;Fe nucleus in an excited
state with a mean lifetime 7 = 1.45X 1077 sec, 14.4 keV above the ground state. The decay
of the excited state occurs with the emission of a y-photon.

1. Find the width AW of the excited state as well as the relative natural width A»/» of
the emitted y-ray.

2. Assuming that the emitting nucleus is free and at rest, calculate the relative variation
(Aw/), resulting from recoil during emission at the given frequency.

3. Natural iron contains 2% of 3iFe. This nucleus is capable, in principle, of absorbing
the y-radiation by a process analogous to optical resonance. If the absorbant like the emitter
is free and at rest, is the resonant absorption observable?

4. To demonstrate this absorption, one places between the 3'Co source and a y-detector>
an iron screen which can move either toward or away from the source. Calculate the relative
velocity of the screen and the source which corresponds to the natural line width, the fre-
quency variation Av which corresponds to a relative velocity of 1 mmy/s, and the relative
velocity which must be given to the screen in order to observe the resonance.
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5. Calculate the relative spreading (A /). of the line due to thermal motions at T = 300°C
using the hypothesis of equal partition of thermal energy as well as the corresponding
relative velocity.

6. In solid cobalt (mass density p = 7.8 X 10% kg/m?) the elastic waves transfer a mechan-
ical motion at velocity» = 3 km/s and, in particular, that due to nuclear recoil. Estimate the
number of atoms which participate in the recoil and show that the relative frequency varia-
tion (Awv/), is then negligible with respect to the natural line width of the »-line.

7. At the top of a 23-m tower one places a 32Co source which emits y-photons toward
the base where they are detected. Calculate the frequency variation (A»/v), as a function
of H, ¢, and the gravitational acceleration g = 9.81 m/s2. Is it detectable?

SOLUTION

1. Since the ground state is stable indefinitely, the energy uncertainty is due only to the
limited lifetime of the excited state. The uncertainty relation relating time to energy gives

(§ 12.9)

AW =~

—34
% = 8O2XI0TH _  s6x10-27 ) (1

T 1.45%1077

or 2.85X 1078 eV. (If one takes AW -7 ~ #, AW = 4.5X 1072 eV.)
The relative natural line width of the y line is

Av hAy AW  285x1078

v by T W 144X10°

= 1.98X 1012 2

(with W = 4.5X107? eV, Ap/y = 3.14X10713),

2. The nucleus with mass m receives a recoil momentum p equal to the momentum hv/c
carried by the emitted photon. The recoil kinetic energy p?/2m subtracts from the transition
energy W, with the result that the energy balance is

h2v? hy
Wo=hts = hv(l +§%§). 3)

The relative frequency variation of the emitted photon is

- (%)

3. The preceding frequency with a change of sign is produced in the photon absorption
which gives its momentum to the nucleus with the result that the energy available to modify
the internal state in this transition from the ground state to an excited state is equal to the
photon energy less the kinetic energy acquired by the nucleus. The relative separation be-
tween the absorbed and emitted frequency is then

hy 144x103x 1.6 10719

me = -7,
mc? 57x1.67x10-2x9x 108 2.69x10 (5)
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This is more than 10° times larger than the natural relative width. As a result, the emission
and absorption lines do not overlap and one cannot observe resonant absorption.

4. The motion of the iron screen leads to a variation in the frequency of absorption result-
ing from the Doppler effect. The frequency variation corresponding to a speed of 1 mm/s is

Ay = iv = uh—v =u—AK = 11.60 MHz.
c he he

To compensate for the frequency variation due to the recoil given by equation (5), the
screen must approach the source with a velocity

u= 2c(évf) = 3X 108X 2.69X10~7 = 81 m/s.

5. The spreading due to thermal motion is given by (§ 12.9)

(M) _> 1/ 2KkTlog2 _ 1/ IX4 14X 10~ 2.3X0.301
v/ me 5TX167X10-7X9X 10°

= 16.36X1077.

v

It is of the order of 108 times larger than the natural width. The relative velocity to which
it corresponds is

Ay
"= 0(7) = 3X10°X 16.36X 107 = 491 m/s.
T
6. During the y emission mean lifetime 7, the recoil motion takes place over a distance
v7 in the metal and the momentum is transmitted to a volume
V = §avdtd.
The number of atoms per cubic metre is

Mo 6X10%X7.8X10°
4 - 57 '

The number which receive momentum is

_ 4X3.14X(3X 103X 1.45X 10-7X 6 X 7.8 10%

N 3X57

~ 2.83x10%,

The momentum is then received by a mass equal to N times that of the emitter nucleus
and the recoil kinetic energy, which arises in equation (3), is, as a result, negligible with
respect to the energy hv. One can then observe resonance absorption, the target participating
in the same way as the absorbing nucleus.

7. One of the fundamental principles of general relativity is the equivalence between
a gravitational field and an inertial force field resulting from an accelerated motion. Now
the earth’s gravitational field produces, when it acts alone, a uniformly accelerated motion
and the speed acquired by a mass m after falling through a vertical height H in this field is
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given by the kinetic energy theorem

imv? = mgH,
hence
v? = 2gH.

For an observer situated on the earth, the time interval Az becomes At in the system
moving with velocity v and one finds (§ 9.9.2)

2
At = At ‘/1—%: At l—zgf
(4 C

H
c
If the interval At represents the period of a clock (which can be an atomic nucleus), the
relative variation due to changing the reference system has the value

T-T' _gH
T -
This is also the relative frequency variation (Av/v),, which one calls the “gravitational

Doppler effect”.
With the given parameters

Ay 12X9.81 1
7 — W ~ 1.3X 10 .
and this is difficult to observe.
PROBLEM 77

Vibrational and Rotational Spectrum of the Hydriodic Acid Molecule

Consider a diatomic hydriodic acid molecule HI at ordinary temperature. It has a
rotational motion about an axis passing through the centre of gravity G.

I

1. Calculate the reduced mass g of the molecule and its moment of inertia I about G.
The interatomic distance is given as r = 1.6X1071® m, the mass of the electron as
m=9.11X10"3 kg, and the respective mass of the two atoms as my = 1836m and
M; = 127Tmy.

2. Given the laplacian in spherical coordinates as

1 @ G 1 o /. ,0® 1 o2
== % 2%\, - © Sy, =+ _°
A= 1 or (r 6r)+ r?sin 6 o6 (sm 686)+r2 sin? § 9¢? )
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write the time independent Schridinger equation for the stationary states of rotation of the
molecule. Calculate the values of its rotational energy W, given that the equation has a
solution in the form ¢ = e"*(sin 6)’.

II

1. What is the structure of the rotational spectrum of gaseous HI? What is the frequency
of the radiation emitted or absorbed in a transition between state W, and an adjacent state
W,..?Find W,, W,, W,, W,, and the wavelengths emitted in the transitions0 = 1,1 = 2,
and 2 > 3. What frequency domain to they belong to? h = 6.62X 10734 joule-s.

2. Assume now that the molecule has a vibrational motion independent of the rotational
motion. When the two.atoms are separated by a distance r different from r, they are subject
to a restoring force F = —kos where s = |r—ro|. Making the change of variable g = s Vb,
Schrodinger’s equation relative to this motion takes the form

dZy a o\
g (5-e)p=0 @
where
8 42 uy
a= -hz—y W, and b hy 0

In these expressions W, represents the vibrational energy of the molecule and

1 1/ko
a7 @
its vibrational frequency.

(a) Given that (2) has acceptable solutions only if a/b = 2v+ 1 (where v is a positive inte-
ger), give the equation for the vibrational energy levels of the molecule. What is the asymp-
totic solution of (2)? To what quantum principle can one appeal to justify the fact that the
minimal vibrational energy is not zero?

Recall that the dipole moment associated with all transitions n > m giving rise to radia-

tion has the value
+ o0
(Dnm = € f qynym dq.

Calculate (D,)y; and (D,)y, knowing that (to within a normalization constant)

Yo = e~ 2, Y1 =qe 2, y, = (2¢%— 1) xe—92,
Show that in this way one can verify the selection rule Av = +1 between stationary vibra-
tional states.

3. Assume that the total energy of the molecule W is the sum of its rotational and
vibrational energy. Give the value of W,. What are the wave numbers of the radiation ¥
emitted and absorbed by the molecule assuming that only one vibrational level but a large

22 R & M: PIO
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number of rotational levels are excited? This set of wave numbers can be put in the form
# = Fotm A¥. Give the numerical value of A#. Find %, vo, and k, [defined by (3)], given
7=2332cm L form=7.

SOLUTION

1. Reduced mass:

mamy 127 127

= mtmr 128 TH T 128 -3 = -2
B= tmr — 1288 = 125X 1836X9.11x10 1.66 X 102 kg.

The moment of inertia (§ 14.2):
I=pri=166xX10"%x2.56x 10720 = 425X 10~ kg/m?.

2. Schrddinger’s equation relative to the stationary states of motion of the mass u:
2u
Ay+ s W =Wy =0

here is, where W, = 0, 4 is the given expression, and rq is constant during rotation,

2
! a(sinﬂaw)-l—l % 2y =0

rZsinf 96 06) " rZsin20 o4 A2
or
oy oy 1 &% 2w
W‘Fcoteﬁ-}-m égz—"}-—ﬁ—z—‘(/)—o. G

Substituting the assumed solution in this latter equation, one has

J(J —1) cos? B(sin 6)7~2— J(sin 6)” +J cos? (sin 6)” 2 — J(sin e)f—2+22?/ (sin 6)7 = 0,
so that
ﬁ2
W, =TT+ )

Note that the assumed solution
v = exp (i) (sin 6)Y
is a special case of the general solution of equation (1)
y = Cexp (jm¢) P7(cos 6)

when J = m. This can be verified using the definition of the associated Legendre poly-
nomials P7.
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I

1. Hydriodic acid, as all polar diatomic molecules, has a dipole emission and absorption
rotational spectrum. The selection rule for the permitted transitions is AJ = 1. Using
(5), the first four energy levels are given by

A 342 612
Wo=0 W1~T’ Wz_T, Ws—‘f.
With
2 (6.622x107% .
T T iX98Txasxi0E - 22X,
one has

Woe=0, W;i=25X1072], W,=7T5X10"2), W;=150x10"22},

The absorption frequency for a transition between an energy level and the next higher level
is given by
y — Wiii—W;y
h

h
= 47l +1D.

hence

Z_£_4n2cl 1 _(2._7_5)(10_3
Ty T TR T+l T U+I o,

Aot = 075 mm, Ay =037 mm, A3 = 0.25 mm.

These lines are in the microwave region. They have been widely studied since their discovery
in 1945.

2. (a) Equation (2) is the harmonic oscillator expression (§ 14.4). One finds

2w,

a
2U+1 __5_ h'Vo ’

thus
W, = (v+5)hvo.
The asymptotic solution of (2) for large values of # (and therefore of ¢) is found by neglecting
a/b relative to g2. The equation is written
dY _ er

ag /=0
and has the solution

f= Aexp(—¢*/2).

The existence of a residual energy Wo = +-hv for » = 0 is a consequence of uncertainty (see
Problem 57).

22¢
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(b) Write the transition dipole expression between the first two energy levels and use the
values for the wavefunctions given

+oo +oo
Dgor = ef qyoy1dg = ej g exp (—¢?) dq.

The integration is done by parts:

+eo Hoo L e
f qzexp(—qz)dq=[—qZCXp(—qz)] +?f exp (—¢?) dq.

oo — o0

The quantity between the brackets is zero and the last integral is equal to v/z. Thus

eN/n

-

Dgo1 =
The transition 0 - 1, with non-zero dipole moment is thereby allowed

+oo
Doz = e j 424>~ 1) exp (—g?) dg

-— oo

+ oo =+ oo
=2ef q3exp(—q2)dq—ef g exp (—g*) dg.

The last integral is zero and one finds

+ oo + oo + oo
f 2q3exr>(—q2)dq=[-qzexp(—qz)] +2f g exp (—g?dg.

oo

From what has been done above these integrals are zero. Thus (D,),, is zero and the transi-
tion 0 — 2 is forbidden.

3. One has
2 1
Wr= Wit W, = o JU+1)+ (v+§)hvo

hence, the wave numbers of the emitted and absorbed lines, using only the vibrational
transition v = 0 - » = 1

S AW@"I‘AW} _ Yo ey #2
If, in addition, one takes the selection rule AJ = +1 into account, one finds

forJ' = J+1:

~ Yo B h

= —c~+(J+ D dle

forJ' =J-1:

soto_j;_h

T 4n?c °
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All of the allowed values of # can be represented by the expression

¥ = Fotm (m a positive integer)

B
4n2lc
Thus one has

o 6.62X10~3¢
dmlc ~ 4X98TX4.25X 10~ 73X 10°

A = = 131X103 m™1.

The problem gives # = #,4-7 A%, thus

Fo = 2332—-7X13.1 = 2230 cm™1,
Vo = C¥g = 6.69X 1013 571,
ko = 4m?uv3 = 293X 102 Nm™1t.

PROBLEM 78
Calculation of the Velocity of Light

One precisely measures with a grating the wavelengths of the lines in the vibration—
rotation band of carbon monoxide gas *C%0 found near 4.67 y. and gets for the six lines
surrounding the centre of the band, the following wave numbersin cm™! in vacuum:
2131.635, 2135.550, 2139.430, 2147.084, 2150.858, and 2154.599.

These values (and those of other lines in this band) are accurately described by the

expression
7 = FoBm—Cm?, M

where m is an integer (m = 1,2, 3, ...), and B and C are constants.

In addition, electromagnetic millimeter waves produced by a klystron oscillator are
absorbed when they are incident on the gas with the absorption frequency being
v = 114,737X 108 Hz which corresponds to the first line in the pure rotational spectrum
J=0-1).

With this information find the velocity of light in vacuum.

SOLUTION

When one compares a diatomic molecule to an oscillator and assumes that the vibrational
and rotational energies are independent, the wave numbers of a rotation-vibration band

are given by the expression (§ 16.3)

T h
P=pEm 4nlc &)

where », is the vibration frequency, m a positive integer, and / the moment of inertia about
an axis passing through the center of mass of the molecule and normal to the internuclear
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and rotational energies are independent, the wave numbers of a rotation-vibration band
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T h
P=pEm 4nlc &)

where », is the vibration frequency, m a positive integer, and / the moment of inertia about
an axis passing through the center of mass of the molecule and normal to the internuclear
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line. Equation (1) in the problem statement is derived from (2) with #, = »,/c and
B = hf4n?Ic. It also contains an additional term, Cm?, due to the interaction of the rotations
and vibrations.

Note that the first three given values differ in # pairwise by 4 cm™1 as do the last three but
that the difference between the third and the fourth is 8 cm™1. The pure rotational line #o
which does not appear in absorption (§ 16.35) is therefore situated between the third and
fourth lines of the series. The values of m for the various lines can then be assigned. One

finds
§1 = 2147.084 = %+ B—C,
Ps = 2150.858 = $,+2B—4C,
P3 = 2154.599 = #,+3B—9C, 3
51 = 2139.430 = #—B—C,
P_g = 2135.550 = $y—2B—4C,
5_3 = 2131.635 = #,—3B-9C.
The first and the fourth equations give
B+F_1 = 25— 2C. ©)
The second and fifth
172+ 17_2 = 250—8C.
hence
C = Y(#1+9_1) —(Fo+7_2) = 0.0176. &)
One finds from (4)
o = ¥(F1+7_1)+C = 2143.274, (6)
also the first equation in (3) gives
B = 5,— #,+C = 3.8270. @)

Putting the values (5), (6), and (7) in (1) one gets the following values:

#3 = 2154.597 F_g = 2131.635

on good agreement with the given values.
Also, the frequency of the first rotation line of CO is given by (§ 16.2)
Wi—Wo h
Yy =

h T 47 T ¢B.

Hence

v 114737X1010 o
¢ =5 = —3erme— = 299792X10° cmps.

With more precise measurements using refinements not taken account of here, this
method has been very effectively applied (Plyler et al., J. Opt. Soc. Amer., 45, 1955).
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PROBLEM 79
Spectroscopy and Specific Heat

The internal energy of a mole of a perfect gas can be thought of as being made up of
four parts:

U= W +W,+W,+W,).

W, is the mean value of the molecule’s translational energy, W, the mean rotational energy,
W, the vibrational energy, W, the electronic energy and ( is Avogadro’s number. The
molar heat capacity at constant volume is given by C = (6U/eT), where T is the absolute
temperature. One wants to find U(T)and C(T) in the region 0°K to 2500°K using spectro-
scopic data.

The mean value of an energy W, can be found from the Boltzmann distribution law
using the equation

;giW,- exp (—BW )

W, ity

gg: exp (—BW»)

B = 1/kT where k is Boltzmann’s constant. The sum is taken over all the quantized energy
states. g, is the statistical weight, the number of distinguishable quantum states having the
same energy. In the case where the number of energy levels in a given energy interval is
large, the sums in (1) can be replaced by integrals.

I

Show that at a very low temperature, 1°K for example, the translational energy of a
molecule ¥, enclosed in a volume of the order of 1 cm? has reached the value T, which
is given it by the prequantum principle of equipartition of energy.

I

Consider a diatomic molecule 4B made up of two different atoms 4 and B (complications
due to symmetry arise in the case where 4 and B are the same). Derive the expression for
the mean value W, of the rotational energy. Take as a variable the dimensionless ratio
x = T,/T where T, = #2/2kI (I = moment of inertia of the molecule about an axis passing
through its centre of mass normal to AB) is a characteristic rotational temperature and
study the behaviour for the function W, (T'). Examine two limiting cases: first, T < T, where
few rotational levels are excited and one can consider the first two alone, then secondly,
where T = T, where a great many levels are excited. Calculate the relative number of

r
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r

STUDENTS-HUB.com Uploaded By: Jibreel Bornat



334 PROBLEMS IN OPTICS [PROBLEM 79

molecules in the first eight levels when T = 10T,. Give an expression for the rotational
heat capacity and determine its behaviour with variation in temperature.

Numerical application. Calculate T, for the molecules HD, H*Cl, and *N*¢O for which
the values of AB = r are respectively 0.75, 1.27, and 1.15 A.

111

By comparing a diatomic molecule to a linear harmonic oscillator, derive the expression
for the mean vibrational energy W,. Taking as a variable y = T, /T where T,, = hv/k is the
characteristic vibrational temperature, study the behaviour of the function W,(T) and the
corresponding molecular heat.

Numerical application. Calculate T, for HD, HCI, and NO given that the wave numbers
of their Raman vibrational lines are respectively 3630, 2886, and 1880 cm™1.

1v

Given the first electronic excitations of HD, HCl, and NO as 90,400 cm™1, 75,000 cm™!
and 45,000 cm™, respectively, show that it is not necessary to take W, into account in the
calculation of molecular heat up to 2500°K.

SOLUTION

1

The study of the translational motion of a particle confined in a given volume (§ 13.10)
shows that the lowest energy level corresponds to a de Broglie wavelength of the order of
the linear dimensions of the container. The quantum translational energy is:

2 —68
I _ 44>EIO . inO‘” ],
8mL — 8X1.6X107F¥XxMX10"2 M

W =
M being the mass number of the molecule. This energy is much less than AT = 1.4X 1072 ]

for T = 1°K. At this temperature a very large number of levels are excited and one can
write for one of their three translational degrees of freedom, x for example, whose energy

is gmo?:
= mv?
1 X
f 5 mv?exp (—/3 > ) do,
0

W:

Taking ¢* = fmv?/2, one gets:

1 f g*exp(—g%)dg
W=— =—2VT_ T
A f exp(—qydg B V@ 2B 2
0
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The total translational kinetic energy:

muv? m
o = (o)

2

has the value W, = %kT and the molar heat capacity corresponds to the constant value:

C = GU-3k = 3R.

II

The rotational energy of a free rotor which the diatomic molecule represents can take
the values (§ 14.2):

2
W;=JJ+1) % (J positive integer or zero)

The statistical weight of one of these states is 2J+ 1, since the angular momentum
G=+ J(J+ DA can take m = 2J+1 different orientation with respect to a fixed axis.
These values have the same energy in the absence of an external field acting on the molecule
but can be separated in the presence of such a field. The selection rule for the rotational
quantum number is AJ = 1.

Thus, the expression for the mean rotational energy is:

o P J(J+ 2
) SIU+D@I+1) 5 exp (—5—(27—2—)

= BIT+ 12
;(2]+1) exp (_T)

W,

or, taking x = T,/T and T, = #2/2Ik,

T J(J+ 1)@J + Dexp[— I+ 1)x]
W, = kT, *— . (2)
Y (2J+1)exp [-J(+1)x]
1)

The rotational molar heat capacity is:

= . )
,=6)Zd_?=R%r2 ;J(:'*‘l) (2J+1)8xp[ J(J+1)x]

0

S IU+1) @I+ 1) exp [— I+ |
_| 5 , 3)
;(2J+l)exp[—J(J+l)x]
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For T <« T,, if one only considers the levels J/ = 0 and J = 1, one has:

. T,
W, = 6kT, exp (—27),

T, T,
C, = 2R (7) exp (—27).

These expressions tend to zero with T.
For T > T,, expression (2) becomes:

oo

2J3 exp (—J%x)dx

N

= kT,

0
fm 2J exp (—J%x) dx
0

so that, taking J2x = g¢:

f gexp (—q) dq
Wr = kT 2 = kT

fm exp (—q) dq
0

and:
C, =R

One finds again the values corresponding to equipartition, because the linear rotor, which
has only kinetic energy, has only two degrees of rotational freedom about axes normal to
the line AB. In fact, the moment of inertia about the axis 4B is not zero but only very small
with the result that the corresponding quantum of rotation, inversely proportional to
this moment of inertia, is so large that the molecule has no rotational energy about this axis
except at very high temperature.

The variation of equation (3) is not simple. Starting at 0, it passes the value R for T near
0.6T,, approaches a maximum of the order of 1.1R for T near 0.8T,, then tends asymptotically
toward the value R to which it is very close for T = 2T, (Fig. 79.1).

The relative number of molecules in a given state J is

27+ Dexp [-J(J+ Dx]

= @
Y (2J+1)exp [-J(J+ Dx]
0
N
O { l ] J
=
FiG. 79.1 FiG. 79.2
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For x = 0.1, the numerators N of (4) are as follows for J from 0 to 7:

J=0 N=1
1 3exp (—0.2) = 2.457
2 5exp (—0.6) = 2.75
3 Texp (—1.2) = 2.10
4 9exp (—2.0) = 1.22
5 11 exp (—3.0) = 0.55
6 13 exp (—4.2) = 0.19
7 15 exp (—5.6) = 0.05

Such a distribution explains the relative intensity of the pure rotational spectral lines or
vibration-rotation spectra (Fig. 79.2).
Numerical application:

T = B 3.96X107% C I= o, g MM
82kl I mi+ms
w is the reduced mass.
For HD:
= 2X1.67X107% kg, I= %X1.67X10"2x(0.752X 10" kg/m?,
T, = 64°K.
For HCI:
p=8xX167x10"7kg, I=33X1.67X10"27X(1.27)2X 10720 kg/m?,
T, = 15°K.
For NO:
p=2x%16x10""kg, I=2X1.6X10"27x(1.15)2x1072 kg/m?,
T, = 24°K.

111

The quantized energy of the harmonic oscillator is (§ 14.4):
Wy = (v+3)hv
v is the oscillation frequency and v a positive integer or zero. The mean value of the vibra-
tional energy is

i (w+3Hhvexp[—Bv+3)hv] hy i exp (—pBvhv)+ i vhv exp (—Bvhy)

W = 0 — 2 0 0
i exp [—B(v+35)hv] g exp (— Buvhw)

n i vhy exp (— Svhy)

Wy— = —— . %)

Y exp (—Bvhy)

0
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Note that the numerator of (5) is equal except for the sign, to the derivative of its denomi-
nator D with respect to 8 and thus one can write

W,,—hz—v = —% 3_? = _g(lzlggD) = ;ﬁ log Z exp (—Bvhy).
D is the sum of a geometric series and has the value
1
~ 1—exp (—Bhv)’
hence
hy

- 1 h kT,
W, ) d P ©

P dﬁ( 8 T exp (—phv)) ~ exp (Bw)—1  exp (To/T)—1

For T < T,, the one is negligible with respect to the exponential and one gets

- h T
W,,—i- ~ kT,exp (—7,”—)

For T > T, one can expand the exponential as a series and one obtains

Wo 2 hy M

2 ﬂhv(l-&-ghv-{- )

which tends toward 1/8 = kT for high temperatures. This latter value corresponds to the
equipartition of energy because the linear oscillator has only one degree of freedom, but at
the same time potential and kinetic energy as quadratic functions of the coordinates and
velocity respectively.

One finds from (6) the equation for the molar vibrational heat capacity
aw, _ T, exp (T/T)

Co=W g7 =Ry [exp (To/T)— 11

®)
This expression tends to zero with T and to R at high temperatures. Figure 79.3 shows
the behaviour of the function.

Numerical application:
hy h
= — § = 25
T, % 7 1.44< 10725,
For HD: T, = 1.44X1072x3630x10%? = 5227°K.
For HCl: T, = 1.44X1072x2886X 10% = 4266°K.

For NO: T, = 144X10"2X1880X10? = 2607°K.
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v

Look at the ratio Na/N; of the number of molecules excited into the first electronic level
to the number in the ground state by applying the Boltzmann distribution and assuming
the statistical weights of the levels are unity (since this can only introduce a change of the

order of unity):
Ny o (_WaW
N, _ P ( kT )

One has kT = 1.38X10728X25X10% = 3.45X10720 ],
Wo—W1 = hei = 19.96 X 10727,

For HD: W.—W.: = 182X107%, % = exp (—52) = 0.26 X 10722,
1

For HCl: W,—W; = 150X1072, %2— = exp (—43) = 0.21X 1078,
1

For NO: We—W;

90X 10720, % = exp (—26) = 0.51X1071%,
1

The number of excited molecules is thus very small and the electronic energy does not
contribute to the specific heat of the molecules under consideration.

The general behavior of C(T) is given by the solid line in Fig. 79.4, and the translational,
rotational, and vibrational contributions by the dotted curves. At ordinary temperatures
the limiting value of the vibrational heat is not reached except for heavier molecules than
those considered here.
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APPENDIX A

THE FOURIER TRANSFORMATION

THE Fourier transformation is a mathematical operation which is frequently applied in
optics. This integral arises in many different problems (spatial coherence, temporal co-
herence, diffraction, structure factors for X-rays, uncertainty relations, ...).

This treatment will not be rigorous. It is presented simply as a tool for the opticist in order
to help simplify his calculation.

A. Definitions and General Properties of the Fourier Transformation

1. Notation and definitions

Let x be a real variable lying between —<o and + <, and f(x) a function of x having real
or complex values. f(x) must be a summable function, that is, it must never go to « for
x — oo, This is always the case in optics.

By definition:

FT.f(0)] = Fu) = f 7 ) e dx., (1)
One writes
) =% Fu). )

One says that F(u) is the Fourier transform (F.T.) of f(x) or the spectrum of f(x). # and x
are called conjugate variables.
Consider, for example, the propagation equation of:
electromagnetic waves: E = E,, exp [27 j(vt—ox)],

v and ¢

o and x} are conjugate variables; 3

the wave associated with a particle,
27j
Y = Y €Xp [TJ (Wt—px)],

W and ¢t

pand x } are conjugate variables. @)

340
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I1. Reciprocal property of the F.T.

If F(u) is a known function, one can obtain f(x) by the following operation:
+oo .
f(x) = f F(u) e~24ux dy, &)

(Note the change in sign of the exponential in equation (5) compared to that in equation (1).)
The equation with dimensions of (5) is

[f1=[F][u];

while for equation (1) one has

[F] = [f11x];

hence
[u] [x] = 1. 6)

This latter relation leads to an easy introduction of the Heisenberg uncertainty relations.
Note. Some other authors write these equations in the form

1 J‘+°° .
Fu) = — x)elx dx
()] Vi) Jx)
and
f0) = —— r“F() s g
X)) = — u)ye—¥x du.
\V2r J o
I11. Properties
1. Linearity

If one lets the two functions fi(x) and f2(x) have for their F.T., Fi(x) and Fa(u), respec-
tively, and if a; and a; are constants, one finds:

Hoo +oo +oo
f [a1fi(x)+asfa(x)] €2 dx = a; f fi(x) eri“x dx+ay f So(x) e?ux dx @)

oo

or
[a:1/1(x)+ aafa(x)] =% [a1F3(u)+axFa(u)]. ®)

The F.T. of a linear combination of functions is the linear combination of the F.T. of these
functions.

2. Translation

Translate the function f(x) by the constant x":

+ 0o + oo
f Fx—x")e¥inr dx = f F(X) x4, )
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by taking X = x—x’, (9) can be written

+o0
e2miux’ f F(X) e2iX dX = exiux'F(u), (10)
Flx—x") ET. F(u) e2inx’, {an

2njux’

If one translates f(x) by the constant amount x’, its F.T. is multiplied by €

3. Symmetry property
Taking the F.T. of f(x) e ~2"** with «’ constant:

+oo +oo
f S(x) e~ 2iw'x g2riux dx = f f(x) e¥i—u)x dx = Fu—u'), (12)
e~ (x) EL Flu—u). (13)

Note the analogy between equations (11) and (13).
These results can be applied to various examples.

Jx+x)+f(x—x") F(u) e—24ux’ . F(u) e t274x" = 2F(u) cos 2mux’,
(14)
Jx—x)—f(x+x") F(u) e+2iux’ — F(u) e—2mux" = 2jF(u) sin 2mux’,
(15)
2f(x)—f(x—x)—f(x+x") 2F(u) [1 —cos 2aux’] = 4F(u) sin?mux’, (16)
f(x) cos 2mu'x = Lf(x) [e¥*+e~2iwx]  L[Fu+u)+Fu—u), (17)
f(x) sin 2mu'x = 2Ljf(x) [e2riw'x — g —2niu'x] %[F(u-{—u’) —Fu—u)], (18)
f(x) sin?au'x = L£(x) [1 —cos 2mu'x] 12F(u)—Fu+u)—Fu—u)]. (19)

4. Expansion

Let a be a real constant. The F.T. of f(ax) is desired. Make the change of variable y = ax.

ifa=0:
Foo . 1 [+ . 1 u
flaxyerirax = o [y evimieay = (%) (20)
. al_ a \a
ifa<0:
1 [ . 1 u
. 2njuyla = —_ -
2] Soeey aF(a). 1)
In general one can write
1
flan) BT F(%) (22)
In the special case where a = — 1, equation (22) is written:

f(—x) 2L F(—u).
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5. Symmetries

Taking the F.T. of f*(x), one finds

+oo + oo *
f £2(x) e2inx dx = [ f F(x) -2 dx] = F*(—u). (23)
f1x) 5 Fr(—u). (24)

One often has occasion to examine functions with a special kind of symmetry. Assume
that f(x) is made up of an even function p(x) and an odd function i(x).
One can write
fx) = p(x)+i(x) (25)
where p(x) and i(x) may be complex.
The F.T. of f(x) reduces to

F(u) = 2f

+oo +eo
p(x) cos 2mux dx +2j f i(x) sin 27ux dx. (26)
0

(1}
The following general results are found:

f(x) real, even ET. F(u) real, even; @27
f(x) real, odd ET. F(u) imaginary, odd; (28)
f(x) imaginary, even £ F(u) imaginary, even. 29)

The following table summarizes these results. (Re designates the real part of and Im the
imaginary part of.)

) = px)+ i(x) = Re [p(x)]+] Im [p(x)]+ Re [i(x)]+] Im [i(x)] (30)
F(u) = P(u)+1(u) = Re [P(w)]+]j Im [P(u)]+ Re [Iw)]+] Im [I(u)]. 31D

The arrows indicate the correspondences between the F.T.

IV. Extension to two variables

Taking F(u, v) as the F.T. of f(x, y), one states

+ oo + o0
F(u,v) = f f f(x, y) ezritx+m dx dy 32)

reciprocally,

oo + oo
Fx,p) = f * f Flu, v) e-2ix+m) dy do, (33)

The functions f and F play symmetric roles, one being the spectrum of the other.

These relationships arise, for example, in Huygen’s principle where, if one has an ampli-
tude distribution on a wave surface, the F.T. allows one to calculate the spectrum F(u, v)
of f(x, y) and thereby to get the diffraction patterm. Inversely, if one knows a diffracted
amplitude F(u, v), one can calculate the structure of the wave surface which gave rise to it.
23 R & M: PIO
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V. Various useful F.T.

In the table at the end of this appendix is given a limited number of F.T. which the reader

will encounter (see examples 1 to 9).
In graphical representation the functions are normalized.

B. Convolution

1. Definition

Let the two functions f(x) and g(x) be limited and summable (Figs. A.10a and A.10b).
The convolution of these two functions is h(x):

+oo
hx) = f £0) gx—y) dy. (34)

This is often written using the notation
h(x) = f(x) ® g(x). (35)

Figures A.10c and A.10d illustrate the operations which give the convolution: the function
g(— ) is translated by an amount x. The product f(y) g(x—y) is then formed. The ordinate
h(x) in Fig. A.10d is then equal to the shaded area in Fig. A.10c.

fx)
/0 v FiG. A.10a
g(x)
/ \ FiG. A.10
5 < 1G b
- o1~ s,\"\\.-g(;\'-}')
fy) . y N-9(x-y)
= ] = ¥ Fic. A.10c
hlx)
0 v Fic. A.10d

11. Properties
A. The convolution product is commutative

In equation (34) let x—y =Y
+oo +oo
Hx) = f fx—Y)g¥)d(~¥) = f fxe—T) g(¥) dY

h(x) =g @ f. (36)
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B. Fourier transform of the convolution product

ELF
f(x) . (@) 37)
g(x) = G(u).
Equation (34) can be written
+ oo + oo
w0 = [ o) [T oweren audy 38)
thus, by reversing the order of integration,
+oo . +oo .
h(x) = f G(uw) e‘*’l“xf f() e dy du
+oo .
h(x) = f F(u)-G(u) e—274x du, 39)
In summary one has the following reciprocal theorem:
F.T
®Rg —— F.G
foe . (40)
fg—F®H
This theorem is known as Parseval’s theorem.
II1. Special cases
(a) If x = 0 in equation (34), one gets
+ oo + oo
w0 = [ “rors-nay = [ rw-cwau )
For f = g, one finds
+ oo + oo
f ) f(=x) dx = f Fu) du. 42)
(b) Correlation
Taking
+ oo
W) =f0@g"-0 = [ F0) £ 0-0 . @3
Now
fx) =% F),
e, @4
¢(-0EE ¢ |
Equation (43) becomes
+ oo
K(x) = f F(u)-G*(u) e~ 2%« du. (45)

23*
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In the special case where x = 0

() = J'+°°F(u) G*() du. (46)
(c) Autocorrelation
f(x) = g(x) 47
B (x) = f(x) @ f*(—x). - (48)
Equation (48) becomes .
K(x) = f T | F e dus (49)
The convolution f(x) ® f*(—x), called the autocorrelation function of f(x) its F.T. is
[Fu)]>.
For x = 0:

; + oo + oo
| f(x)2dx = [FQ)[? du. (30)
IR

This theorem expresses the conservation of energy, independent of the plane where this is
applied. (Rayleigh’s theorem.)
Applications of the autocorrelation

As a standard example, find the autocorrelation of the slit function and then the F.T. of
this autocorrelation function. f(x) is a real, even function. One has

- fof % P . (51)

The various functions are shown in Fig. A.11.
The autocorrelation function of the pupil, known as the transfer function, plays a very
important role in optical instruments illuminated with incoherent light (see Problems 35 and

3.
F
Flx) ()
1
0 1/a
-agqi+ala X 0 u
"% Fw) \'/_'
1 Fx)Of (x)
’-77475—7: 0 Va ]

Fic. A.11
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One can represent the general distribution of luminance of an object by a superposition
of an infinity of sinusoidal variations, each of which is characterized by

a characteristic direction, that of the wave vector;

a spatial frequency proportional to the inverse of the wavelength (this is the frequency

of the sinusoidal component under consideration);

an amplitude and a phase.

These various sinusoidal components are transmitted through the optical instrument.
They are then acted upon by a filtering law given by the transfer function.

The transfer function specifies the quality of the instrument. This provides information
on all spatial frequencies. For this reason it is preferable to characterize an instrument
by its transfer function rather than by its limit of resolution which gives the limiting frequency
transmitted by the instrument, but no information regarding intermediate frequencies (see

Problems 35 and 37).
C. Dirac Distribution. Poisson Distribution
Certain functions such as f(x) = 1, f(x) = cos x, ... do not satisfy the conditions for

application ofthe F.T. Inthese cases it is only possible to define a F.T. by a limiting process.
The Fourier series can only be put within the framework of the F.T. through use of distri-
butions. We are not going to deal with the theory of distributions here, but only give some
useful definitions and properties.
1. Dirac distribution
1. Definition

Consider an impulse 8(x) with very narrow width and very large height such that its
area is unity:
fx)=0 for x=0 (52)

f_”a(x)dx =1 (53)

oo

2. Representation

The impulse 8(x) is represented by a spike with its height normalized to one (Fig. A.12a).

3. Convolution

One can write

f 7 80 £(x) dx = £(0) (54)
or
+o0
[T s-asw ax = s (55)
f " 800 f(x—a) dx = f(—a). (56)
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Extending this to convolution one gets

f "7 80) fx—y) dy = f " o= f0) dy = f(x) 57)

oo —00

4(x) ® f(x) = f(x) ® &(x) = f(x). (38)

The Dirac function is the unit element for convolution (just as zero is the unit element for
addition and one is the unit element for multiplication).

4. Translation

Starting with the preceding equation, one can write
f(x—a) = f(x) ® d(x—a). (39)

Translation can be thought of as a convolution operation.

5. Fourier transformation

Call A(u) the F.T. of 8(x):

8(x) £ Au). (60)
Applying the convolution theorem to (58) gives
Aw)X F(u) = F(u). 61)
hence
Adw) = 1. (62)
In summary:
8x) EL Am)=1  (Fig. A.12.b). (63)
with
+ oo
o(x) = f e—2Hux dy, (64)

If one translates the Dirac function by an amount a, one finds

8(x—a) £5 eiua, (65)
6. Properties
B(ax) = T 8x), (66)
&(—x) = §(x), (67)
S(x),8(x) = £(0) &(x). (68)
Or
f(x) 8(x—a) = f(a) d(x—a). (69)
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Taking f(x) = x, one finds

f X6 =0 or x8(x)=0. (70)

—o0

I1. Fourier series

1. Fourier transform of a Poisson distribution (or a Dirac “comb” series)

We state, without proof, that the F.T. of a Poisson distribution of period p is a Poisson
distribution of period 1/p (Fig. A.13), in other words that

k:zl 8(x—kp) FT z 6(;;-%). 1)

2. F.T. of an unbounded periodic function

Let A(x) be an unbounded function of period p.

One can assume that h(x) is obtained by translating by integral multiples of p the simple
convergent function f(x) (Figs. A.14a and A.14a’). Since translation is a convolution process,
one can take

ho) =f)® 3 dx—kp) 72)

Taking the F.T. of each side, one gets

H() = F(u)kf 6(u——;‘—) (73)

=—o00

u can only take on discrete values of k/p so that
[k k
Hu) =Y F(;) xa(u—;) (74)

(Figs. A.14b and A.14b").

In summary:

the F.T. of an unbounded periodic function is a distribution;

if the period of h(x) is p, the period of H(u) is 1/p;

the uniformly spaced Dirac weightings are equal to F(k/p), where F(u) is the F.T. of f(x)

and F(k/p) is the value of F(u) at point u = k/p.

Reversibility. By substituting equation (73) in equation (72), one can see that the F.T.
of and unbounded periodic distribution is an unbounded periodic function. This is only
the case where the Dirac weightings have equal weight so that the F.T. of a distribution is a
distribution.
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Note. The special case of a function (or distribution) which is periodic and bounded can
be easily treated by using previously obtained results. One can always assume that the bounded
function (or distribution) is the product of a function g(x) with a periodic unbounded
function (or distribution) (Fig. A.15). Most commonly g(x) is a slit function.

If
H(x) = h(x)Xg(x) (the order of the factors must be retained) (75)
H'(u) = Hu) ®G(x), (76)
H'@) = Fiu)- 3 8(u—%).c 77
®=F@-3 (u—;)- (®). W)
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THE FOURIER TRANSFORMATION

APPENDIX A
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APPENDIX B

THE DEGREE OF COHERENCE BETWEEN
TWO POINTS ILLUMINATED BY AN
EXTENDED MONOCHROMATIC SOURCE

TAKE:

a finite, extended, monochromatic source whose points are represented by their reduced
coordinates u and »;
a pupil having two identical openings P; and P, (Fig. B.1).

F1G. B.1

If a; and a2 are the amplitudes transmitted by P; and P, the energy at an arbitrary point
Q in the interference field is:

(AA*Y = {(a1+az e¥¥) (al + a3 e ¥)) ¢))

¢ being the phase difference between the paths P1Q and P.Q.
Equation (1) can also be written:

(AA*) = (mal)+{a:a3)+ 2Re [(a1a5e~#)] ¥3]

(where Re implies the real part of).
¢ being time independent, one only needs to make use of the mean for the variables,

hence:
(AA*y = (aat)+ (aza3)+ 2Re [(a1a8) e—7¥]. 3)
Taking:
aa; = |aaz| e ¥;
358
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APPENDIX B: THE DEGREE OF COHERENCE 359

equation (3) becomes:

(AA*) = (a1al)+{asa3)+2(]a1a3|) cos (¢ + 6). 4
One finds:

maximal illumination (for ¢ +6 = 2kmn),
Imax = (@1a1)+(az2a2) +2(| a103 |) &)
minimal illumination (for ¢ +8 = 2K+ 1)m),
Imin = (@1a1)+{aza3)—2(| 143 |). (6)
If one takes as the definition of the contrast

Tnax— Im;
F — max min
Imax+Imin ’ (7)
I can be written as:
_ X aa))
(a1a1)+(aza3) ~

®)

Consider an atom having coordinates 4 and » which emits a vibration a(f). These vibrations
falling on P; and P, can be written respectively as:

a(t) e~izn@xitwy)  gand  g(f) e—RmErators), ®

Characterize by the index i the various atoms in the source. Their contribution to the fields

at Pyand Py is:
a = Z'a;(t) e—i28(ux1+viy1) (10)
as = Jayt) e~ izt oy,
One can take:
(@1a8) = Zay(t) e-iznwxitvir) Zg(f) e+i2rwixe+vive), (11)

One distingnishes between the products relative to a single atom and those relative to two
different atoms (these latter are zero since the atoms involved will radiate incoherently).
One has:

<a1a;> = Z'<a‘a;.'> e—i2nau(xr—x2)+ vi(y1—y9)] (12)

Since the density of atoms is large, the sum can be replaced by an integral and:
<a1a§> = ff I(u’ v) e—2nlu(x1—x)+v(r1-y2)l du dv, (13)
s

where I(u, v) is the energy contributed by the element of the source characterized by u, ».
Additionally,

(a1al) = (aza3) = ff I(u, v) du dw. (14
s

24 R & M: PIO
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360 PROBLEMS IN OPTICS
The degree of partial coherence between P; and P, can thus be written:
jj I(u, v) e—i2nfuler—x)+v(1—ydl dy do
s

I'(x1—x2, y1—y2) =
jj I(u, v) du dv

135)

Van Cittert—Zernike theorem

The degree of coherence between a fixed point P, and a variable point P, illuminated by
an extended monochromatic source is equal to the complex amplitude, normalized at P,
of a diffraction pattern centred on P,. This artificial diffraction pattern is obtained by
replacing the source by a pupil having the same dimensions and form as the source and
with an amplitude distribution in the pupil equal to the intensity distribution in the source.
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Abbe’s experiment 159
Absorption 80ff
Absorption edge, X-ray 319
Achromatic fringes 12

Airy disc 154

Ammonia inversion 261
Angular momentum operators 262
Anomalous dispersion 216
Antennas 70

Apodization 149, 156
Atmospheric scattering 225
Atomic spectra 288 ff
Autocorrelation 345

Babinet’s principle 155
Balmer series 288, 301
Band spectra 106, 216
Bessel functions 150
Birefringence 95ff
electrical 123
Birefringent monochromator 111
Birefringent prism 101
Black bodies 88
Bohr postulates 290
Boltzmann factor 268

Born-Oppenheimer approximation 284

Bragg formula 196

Circular dichroism 125

Circular function 356

Circular pupil, diffraction by 147
Classical atom, scattering model 221
CO 331

Coherence 358

Coloured bodies 88

Compton effect 263

Compton wavelength 241
Contrast 20, 187, 359
Convolution 344

Correlation 345

de Broglie waves 241
Deuterium spectrum 292
Deuteron 253

24+
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Diatomic molecules
Stark effect 276
vibrational-rotational energy 284
Dichroism 125
Diffraction 133ff
 X-ray 194
Dirac impulse 356
Dirac’s distribution 347
Dispersion 199 ff, 242
for classical metals 222
Sellmeier equation 208
with weak absorption 213
Doppler effect 202, 203, 301
Doppler-Fizeau effect 295
Double potential well 256

Electrical birefringence 123
Electromagnetic optics 47ff
Electromagnetic waves 241
in plasmas 236
Emission 80ff

Ethane 279

Fabry-Perot etalon 31
Fabry-Perot spectroscopy 38
Faraday effect 130

Far-field diffraction 133
Focusing defects 149
Foucault grating 138, 181
Fourier series 349

Fourier spectroscopy 15
Fourier transforms 340 ff
Fresnel-Arago experiments 112
Fresnel formulas 49, 52, 101
Fringe visibility see Visibility

Gaussian function 351
Germanium, optical constants 82
Glan polarizer 106

Glazebrook prism 105

Grating

echelette 179

Fraunhofer 183

irregular 183

361

Uploaded By: Jibreel Bornat



362

Grating (cont.)
phase 186
reflection 178
sinusoidal 171

Group velocity 199

Half-wave plate 113, 117
Harmonic oscillator 246
Heisenberg microscope 241
Heisenberg relationships 241
Helium ground state 272
Hertzian dipoles 70, 74, 224
Hertzian waves 47
Holography 170

Huygen’s construction 118
Hydrogen atom spectrum 288
Hydroiodic acid 326

Index of refraction, complex 232
Infrared dispersion of ionic crystals 228
Instrument function 11

Interference 1ff, 47

Interference contrast 116

Interference filters 30

Ionic crystals, dispersion, infrared 228

Kastler-Montaral apparatus 192
Kirchhoff’s law 91

Lande g-factor 307

Laser
energy 82
spectra 82

Lenses, holographic 175
Lithium spectrum 294
Littrow spectrograph 179
Lyman series 301

Mach interferometer 20
Michelson interferometer 24
Molecular spectra 288 ff
Monochromator 111
Moseley law 319
Mossbauer effect 323
Muller matrices 96

Newton’s rings 55

Object restoration 173
Optical density 1
Oscillator strength 208
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INDEX

Parseval’s theorem 163, 345
Partial coherence 360
Permittivity, complex 227
Perturbation

first order 272

second order 276
Phase contrast 187
Phase plate 158
Phase velocity 199
Pickering series 288
Planck radiation formula 266
Plasma 236
Plasma oscillation 238
Poincaré sphere 95
Poisson distribution 347
Polarization
interferometry 116
resonance radiation 305
Polarizing prisms 104
Potential

barrier 249

double well 256

in ethane 279
intramolecular 279
Poynting vector 71

Quantum mechanics 241 ff
Quarter-wave plate 109

Radiation pressure 68

Raman spectra 334
Ramsauer effect 252
Rayleigh-Jeans law 267
Refraction 199 ff

Resolving power 161
Resonance radiation 305
Resonant cavities 65

R.f. waves see Hertzian waves
Rotary power 125

Rotational quantum number 285
Rotational spectrum, HI 326
Rydberg constant 288
Rydberg series 288

Savart plate 120
Scattering of radiation 221
Schlieren photography 193
Screening 320
Selimeier equation 208, 217
Slit function 351
Specific heat 333
Spectra 288 ff
line width 295, 301
Raman 334
terms 294, 307, 311
X-ray 319
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Spectrometer, X-ray 197
Stark effect 276
Stefan’s law 267
Stoke’s vector 95
Stratified media 55

Thin films 52
absorbing 234
transmission by 234
Tin vapor, dispersion 219
Tolansky method 34
Transfer function 164, 345
Two-electron atoms
ground state 271
spectral terms 311
Zeeman effect 315

Uncertainty 245
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INDEX 363

Van Cittert-Zernike theorem 7, 165, 360
Velocity of light 331
Foucault method 200
in moving water 203
Verdet constant 130
Vibrational spectrum, HI 326
Visibility 1
Waves
in plasmas 236
propagation of, in discontinuous media 205
Wein’s constant 267

X-rays 194
X-ray spectra 319

Young’s fringes 1, 12

Zeeman effect 305, 315
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