

Domain f is Range of
$$f'$$

Range f is Domain of f'
Inverse of f is denoted by $f'(x)$
 $\vec{f}'(x) + \frac{1}{f(x)}$
 $\vec{f}(x) = \frac{1}{f(x)}$
 $\vec{f}(x) = f'(f(x)) = x \quad \forall x \in D(f)$
 $(\vec{f} \circ \vec{f})(x) = f(\vec{f}(x)) = x \quad \forall x \in D(f)$
 $(\vec{f} \circ \vec{f})(x) = f(\vec{f}(x)) = x \quad \forall x \in D(f)$
 $\vec{f}(x) = f(\vec{f}(x)) = x \quad \forall x \in D(f)$
 $\vec{f}(x) = \vec{f}(\vec{f}(x)) = x \quad \forall x \in D(f)$
 $\vec{f}(x) = \vec{f}(\vec{f}(x)) = x \quad \forall x \in D(f)$
 $\vec{f}(x) = \vec{f}(\vec{f}(x)) = x \quad \forall x \in D(f)$
 $\vec{f}(x) = \vec{f}(\vec{f}(x)) = x \quad \forall x \in D(f)$
 $\vec{f}(x) = \vec{f}(\vec{f}(x)) = x \quad \forall x \in D(f)$
 $\vec{f}(x) = \vec{f}(\vec{f}(x)) = x \quad \forall x \in D(f)$
 $\vec{f}(x) = \vec{f}(x)$
 $\vec{f}(x) = \vec{f}(x)$
 $\vec{f}(x) = \vec{f}(x)$
 $\vec{f}(x) = \vec{f}(x)$

Criven 1-1 function f(x) 1 How to Find I'(x)? D Replace f(x) by y 2 Solve for X voice [2] Solve for X [3] Replace x by y Replace y by X B) Replace y by f(x) Exp aven $f(x) = x^2$ () Find $\overline{f}(x)$ ′ X≥⁰ $\prod y = x^{2}$ =) $\sqrt{g} = 1 \times 1 = 3 \times \sqrt{g}$ $|2\rangle$ $\sqrt{y} = \sqrt{x^2}$

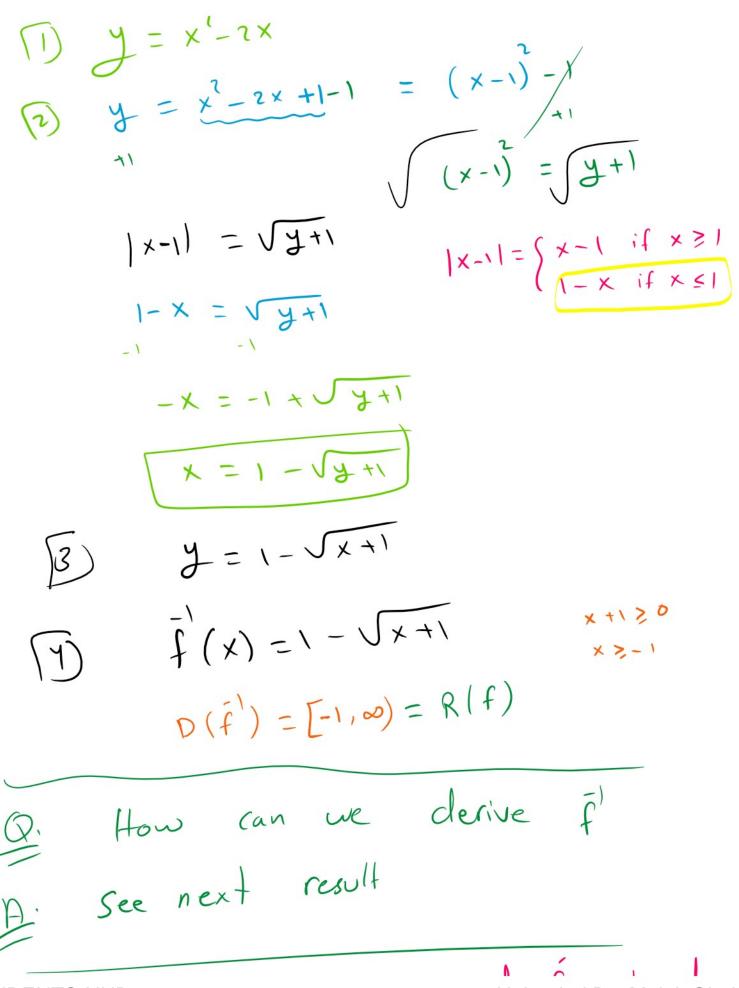
$$(\vec{f} \circ f)(x) = \vec{f}(f \circ f)(x), (f \circ f \wedge x)$$

$$(\vec{f} \circ f)(x) = \vec{f}(f \circ x) = \vec{f}(x^{2}) = \sqrt{x^{2}} = |x|$$

$$(f \circ \vec{f})(x) = f(\vec{f}(x)) = f(\sqrt{x}) = (\sqrt{x})^{2} = x$$

$$(f \circ \vec{f})(x) = f(\vec{f}(x)) = f(\sqrt{x}) = (\sqrt{x})^{2} = x$$

$$(f \circ \vec{f})(x) = f(\vec{f}(x)) = f(\sqrt{x}) = (\sqrt{x})^{2} = x$$


$$(f \circ \vec{f})(x) = f(\vec{f}(x)) = f(\sqrt{x}) = (\sqrt{x})^{2} = x$$

$$(f \circ \vec{f})(x) = f(\vec{f}(x)) = (\sqrt{x})^{2} = x$$

$$(f \circ \vec{f})(x) = f(\vec{f})(x) = x^{2} - x, x = x$$

$$(f \circ \vec{f})(x) = (-\infty, \vec{f}) = R(\vec{f})$$

$$(f \circ \vec{f})(x) = x^{2} - x$$

The f: D
$$\rightarrow$$
 R is 1-1 and f exists and
The f: D \rightarrow R is diff on R with
 $df' = 1$ $f'(f'(b)) = f'(f(a))$
 $f'(b) = f'(f(a))$
 $f'(b) = a$
 $f'(c)$
 $f'(c) = a$
 $f'(c) = a$

 $(\vec{f}) : R \longrightarrow D \qquad |(f)(p) \\ (\vec{f})'' : R \longrightarrow D \qquad (\vec{f})''(b)$ × >, 0 y = xFind $(\bar{f})(y)$ Exp f(a) = b $\frac{1}{f(a)} = \frac{1}{f(a)}$ = = 2 (4) = t (x) = (2)f(x) = 2Xa=f(b) 2(2) $f(x) = \sqrt{x}$ $(-\dot{f}) = \frac{1}{\sqrt{x}}$ (-1)(...)

$$(f)'(y) = \frac{1}{2\sqrt{y}} = \frac{1}{2(2)} - \frac{1}{y}$$
Exp Led $f'(x) = 3x^{2}$ $f(a) = b$
Find $\frac{df'}{dx} = f(\sqrt{z})$ $a = \sqrt{z}$
 $\frac{df'}{dx} = \frac{1}{f(a)} = \frac{1}{f(\sqrt{z})} = \frac{1}{3(\sqrt{z})^{2}}$
 $\frac{df'}{dx} = \frac{1}{f(a)} = \frac{1}{f(\sqrt{z})} = \frac{1}{3(\sqrt{z})^{2}}$
 $= \frac{1}{3(2)} = \frac{1}{6}$
Find $(f')'(1)$ $f(a) = 1$
 $\frac{df'}{dx} = \frac{1}{f(a)} = \frac{1}{f(a)} = \frac{1}{6}$
 $f(a) = b$
 $f(a) = 1$
 $\frac{df'}{dx} = \frac{1}{f(a)} = \frac{1}{f(a)} = \frac{1}{6}$
 $\frac{df'}{dx} = \frac{1}{f(a)} = \frac{1}{f(a)} = \frac{1}{6}$
 $\frac{df'}{dx} = \frac{1}{f(a)} = \frac{1}{f(a)} = \frac{1}{6}$
 $\frac{df'}{dx} = \frac{1}{f(a)} = \frac{1}{f(a)} = \frac{1}{f(a)} = \frac{1}{f(a)}$
STUDENTS-HUB.com Uploaded By: Malak Obaid

$$= \frac{1}{5+2\theta} = \frac{1}{5+2(1)} = \frac{1}{5+2} = \frac{1}{7}$$

$$= \frac{1}{5+2\theta} = \frac{1}{5+2(1)} = \frac{1}{5+2} = \frac{1}{7}$$

$$\Rightarrow Find R(f') = D(f) = (0, \infty)$$

$$\Rightarrow Find \bar{f}' = D(f) = (0, \infty)$$

$$\frac{1}{2} = 1 - \frac{1}{2}$$

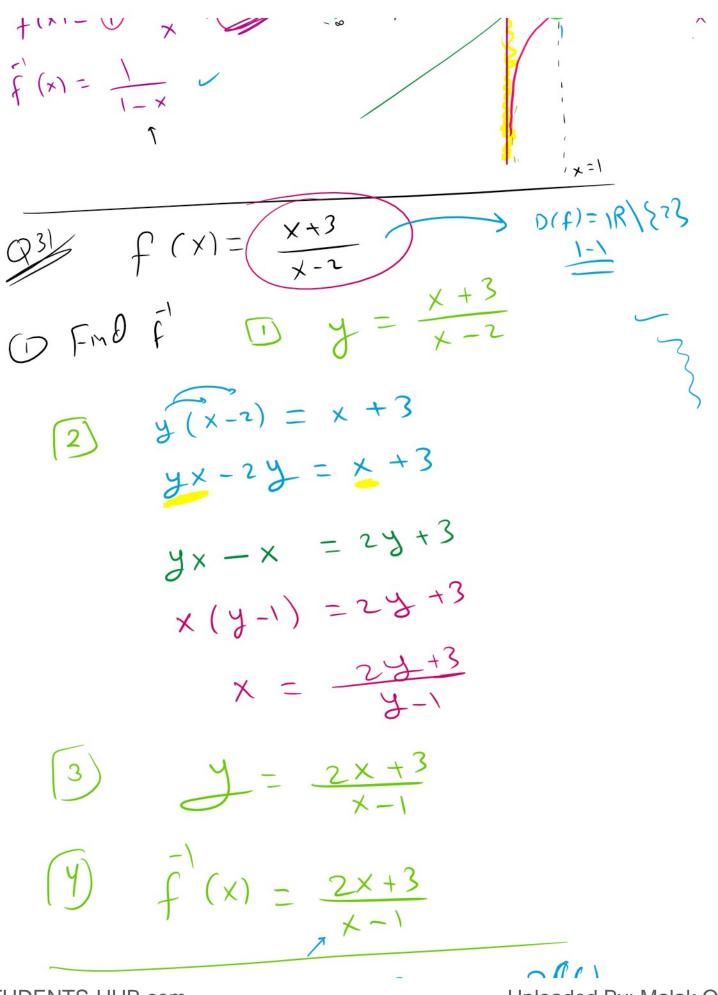
$$x = \frac{1}{1-2}$$

$$x = \frac{1}{1-2}$$

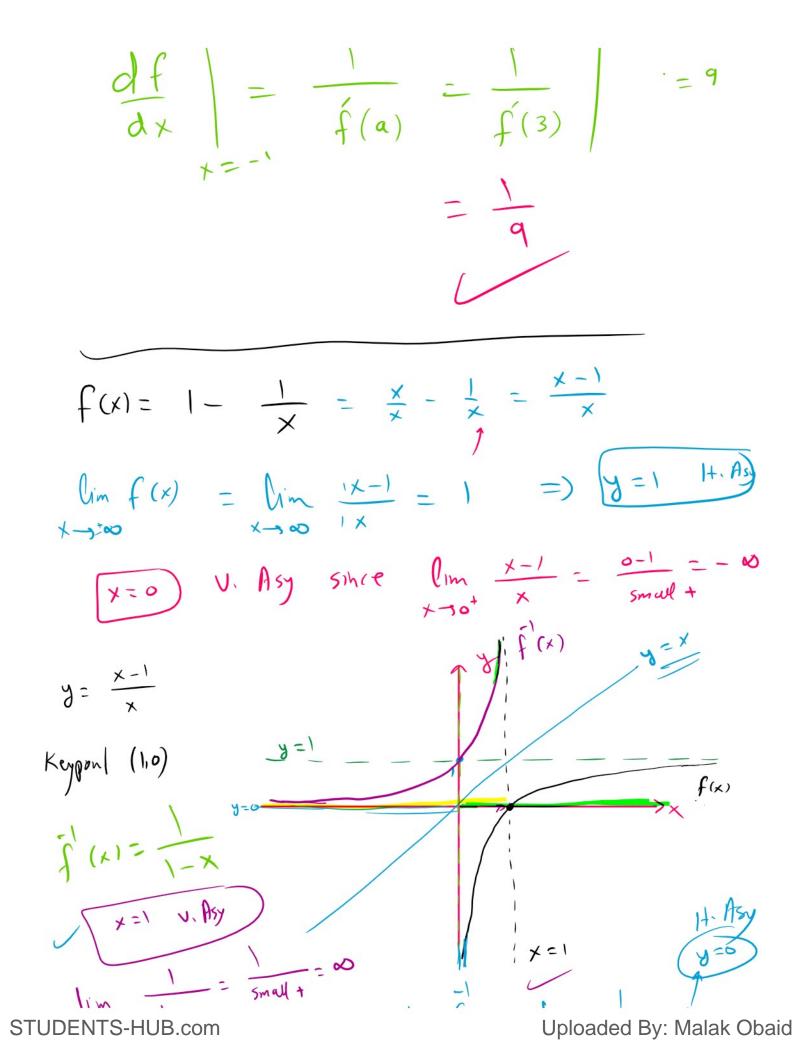
$$x = \frac{1}{1-2}$$

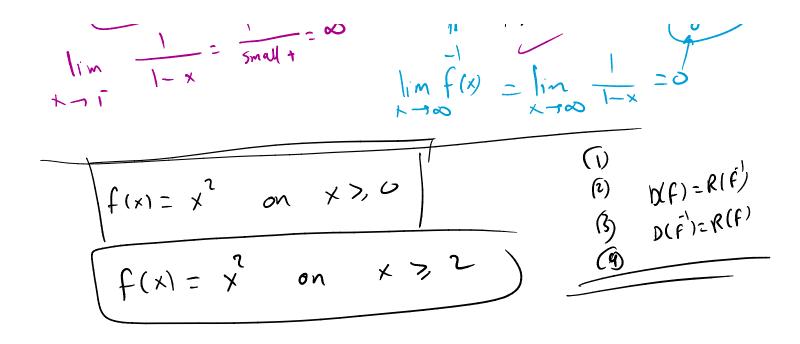
$$\Rightarrow \frac{1}{5+2\theta} = \frac{1}{1-2}$$

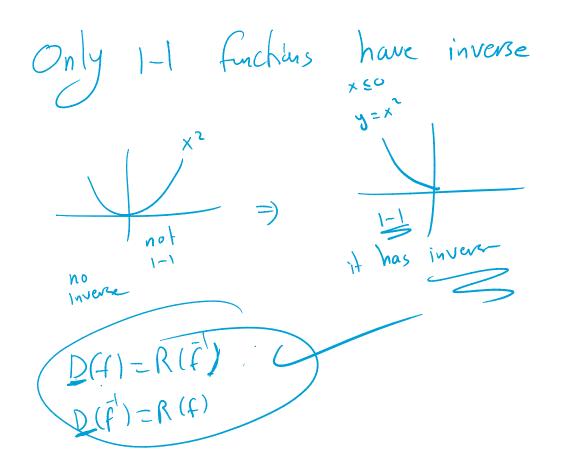
$$x = \frac{1}{1-2}$$


$$(3) Find R(f)$$

$$R(f) = D(\bar{f}') = (-\infty)$$


$$\frac{1}{5} = \frac{1}{5+2} = \frac{1}{5+2}$$


$$\frac{1}{5+2} = \frac{1}{5+2} = \frac{1}{5+2} = \frac{1}{5+2}$$


$$\frac{1}{5+2} = \frac{1}{5+2} = \frac{1}{5+2$$

(2)
$$D(\bar{f}^{1}) = |R \setminus \{1\} = R(\bar{f})$$

(3) $R(\bar{f}^{1}) = D(\bar{f}) = |R \setminus \{2\}$
(4) Show that $f(\bar{f}(x)) = X$
 $f(\frac{2x+3}{x-1}) = \frac{\frac{2x+3}{x-1} + 3}{\frac{2x+3}{x-1} - 2} = \frac{2x+3+3(x-1)}{x-1}$
 $= \frac{2x+5+3x-3}{2x+3-3x+2} = \frac{5x}{5} = x$
(4) $f(x) = x^{3} - 3x^{2} - 1$, $x \ge 2$
 $F \ln d \frac{d\bar{f}^{1}}{dx} \Big|_{x=(1)} = f(3)$
 $x = (1)^{2} f(3) = \frac{1}{2} (3)^{2} - 6x$
 $f(3) = 3(3)^{2} - 6(3)$
 $= 3(9) - 18$
STUDENTS-HUB.com
Uploaded By: Malak Obaid

