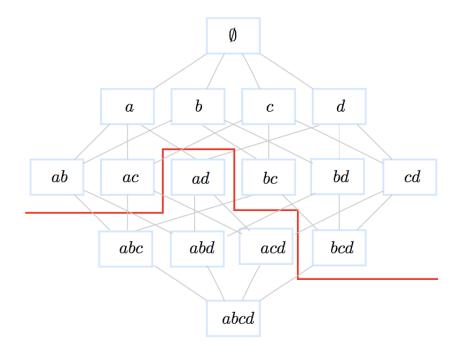
Artificial Intelligence Machine Learning Association Rules



Outline

- 1. Introduction
- 2. A two-step process
- 3. Applications
- 4. Definitions and examples
- 5. Frequent patterns: Apriori algorithm
- 6. Example
- 7. Representation of \mathcal{D}
- 8. Definitions cont'd
- 9. Association rules algorithm
- 10. Example
- 11. A probabilistic framework Association Rules
- 12. Support-confidence cons
- 13. Quantitative association rules

Introduction

- Unsupervised task.
- R. Agrawal, T. Imielinski and A.N. Swami Mining Association Rules between sets of items in large databases. Proceedings of SIGMOD 1993.
- Highly cited work because of its wide applicability.

Applications

- Market Basket Analysis: cross-selling (ex. Amazon), product placement, affinity promotion, customer behavior analysis
- Collaborative filtering
- Web organization
- Symptoms-diseases associations
- Supervised classification

A two-step process

Given a transaction dataset \mathcal{D}

- 1. Mining **frequent** patterns in \mathcal{D}
- 2. Generation of **strong** association rules

Example:

 $\{Bread, Butter\}$ is a frequent pattern (itemset)

 $Bread \rightarrow Butter$ is a strong rule

Definitions

- **Item**: an object belonging to $\mathcal{I} = \{x_1, x_2, ..., x_m\}$.
- **Itemset**: any subset of \mathcal{I} .
- k-itemset: an itemset of cardinality k.
- ullet We define a total order $(\mathcal{I},<)$ on the items.
- $\mathcal{P}(\mathcal{I})$ is a **lattice** with $\bot = \emptyset$ and $\top = \mathcal{I}$.
- Transaction: itemset identified by a unique identifier tid.
- \mathcal{T} : the set of all transactions ids. **Tidset**: a subset of \mathcal{T} .
- Transaction dataset: $\mathcal{D} = \{(tid, X_{tid}) / tid \in \mathcal{T}, X_{tid} \subseteq \mathcal{I}\}$

item	name
а	coffee
b	milk
С	butter
d	bread

\mathcal{D}		
tid	tid transaction	
1	a b	
2	a c	
3	c d	
4	b c d	
5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

$$T =$$

$$\mathcal{T}=$$

$$\mathcal{D}$$
=

item	name
а	coffee
b	milk
С	butter
d	bread

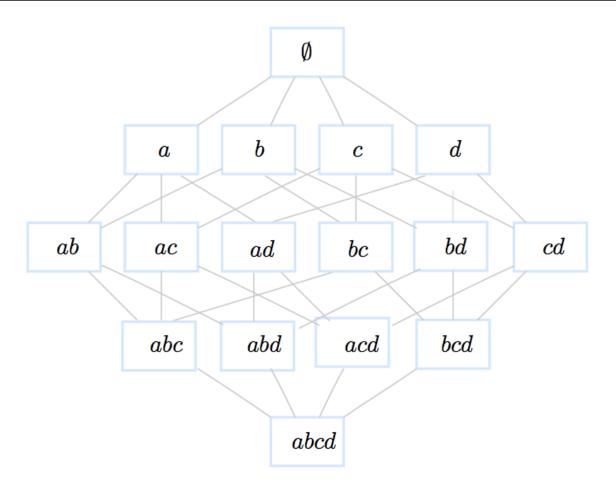
\mathcal{D}		
tid	transaction	
1	a b	
2	a c	
3	c d	
4	b c d	
5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

$$\mathcal{I} = \{a, b, c, d\}$$

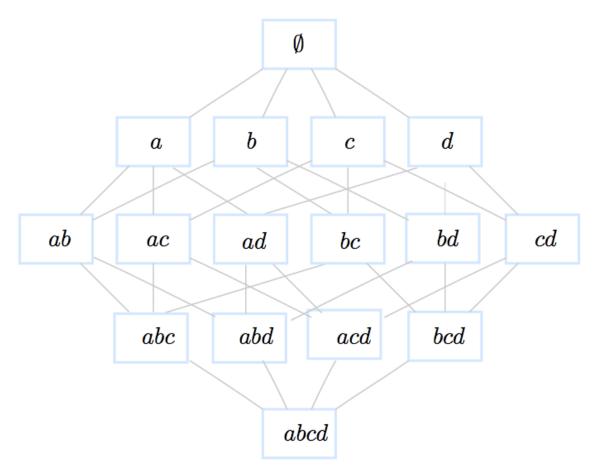
$$\mathcal{T} = \{1, 2, 3, 4, 5\}$$

$$\mathcal{D} = \{(1, ab), (2, ac), (3, cd), (4, bcd), (5, abcd)\}$$

E.g., $\{b,c\}$ is a 2-itemset, for writing simplification we will give up the braces and write bc. $\{3,4,5\}$ is a tidset similarly let's abandon the braces here too and write 345.



Lattice of itemsets of size ...



Lattice of itemsets of size $2^{|\mathcal{I}|} = 16$.

Definitions cont'd

• Mapping *t*:

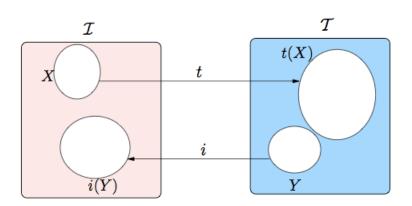
$$t: \mathcal{P}(\mathcal{I}) \to \mathcal{P}(\mathcal{T})$$

 $X \mapsto t(X) = \{tid \in \mathcal{T} | \exists X_{tid}, (tid, X_{tid}) \in \mathcal{D} \land X \subseteq X_{tid} \}$

• Mapping *i*:

$$i: \mathcal{P}(\mathcal{T}) \to \mathcal{P}(\mathcal{I})$$

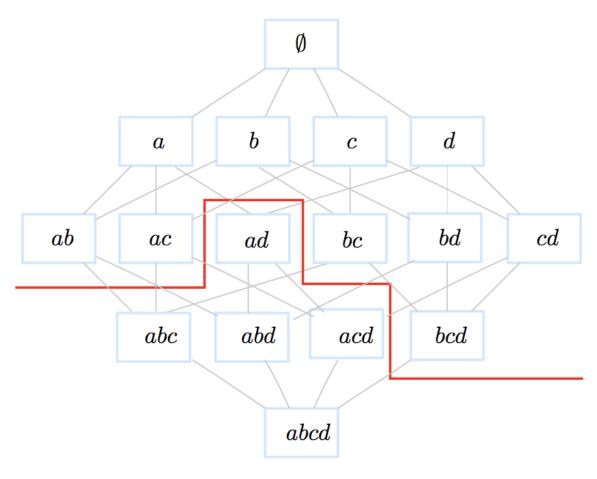
 $Y \mapsto i(Y) = \{x \in \mathcal{I} | \forall (tid, X_{tid}) \in \mathcal{D}, \ tid \in Y \Rightarrow x \in X_{tid} \}$



Definitions cont'd

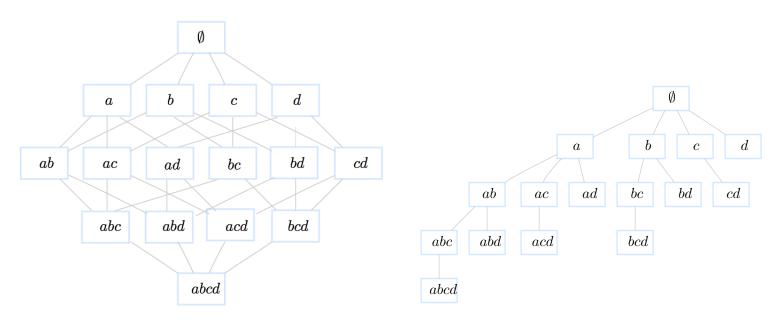
- Frequency: $freq(X) = |\{(tid, X_{tid}) \in \mathcal{D}/X \subseteq X_{tid}\}| = |t(X)|$
- Support: $supp(X) = \frac{|t(X)|}{|\mathcal{D}|}$
- Frequent itemset: X is frequent iff $supp(X) \ge MinSupp$
- Property (Support downward closure) : if an itemset is frequent then all its subsets also are frequent.
- Mining Frequent Itemsets:

$$\mathcal{F} = \{ X \subseteq \mathcal{I} | \operatorname{supp}(X) \ge MinSupp \}$$



MinSupp=40%

BFS and DFS



Breadth First Search

Depth First Search

Apriori pseudo-algorithm

Level-wise algorithm – lattice explored with a Breath First Search approach (BFS). Start at level 1 in the lattice: k=1

• Generate candidates of size k

$$C_k = \{(c_k, supp(c_k)) | \forall X \subset c_k, X \neq \emptyset, support(X) \geq MinSupp \}$$

 Scan the dataset to compute the support of each candidate and keep the frequent ones

$$\mathcal{F}_k = \{(l_k, supp(l_k)) | supp(l_k) \ge Minsupp\}$$

ullet Go the the next level k = k + 1 and redo the process.

Minsupp=2/5 (40%)

\mathcal{D}		
tid	transaction	
1	a b	
2	a c	
3	c d	
4	b c d	
5	$a\ b\ c\ d$	

\mathcal{C}_1
Itemset
a
b
c
d

	$ \mathcal{F}_1 $	
	Itemset	Support
	a	3/5
\rightarrow	b	3/5 4/5
	c	
	d	3/5

\mathcal{C}_2
Itemset
ab
ac
ad
bc
bd
cd

	\mathcal{F}_2	
	Itemset	Support
	ab	2/5
\rightarrow	ac	2/5
	bc	2/5
	bd	2/5
	cd	3/5

\mathcal{C}_3	
Itemset	
abc	
bcd	

$$\xrightarrow[of \ \mathcal{D}]{Scan}$$

\mathcal{C}_3	
Itemset	Support
abc	1/5
bcd	2/5

	\mathcal{F}_3	
>	Itemset	Support
	bcd	2/5

Apriori bottleneck

Characteristics of real-life datasets:

- 1. Billions of transactions,
- 2. Tens of thousands of items,
- 3. Tera-bytes of data.

This leads to:

- 1. Multiple scans of the dataset residing in the disk (costly I/O operations)
- 2. A HUGE number of candidates sets.

Representation of \mathcal{D}

Row-wise

1 <i>a b</i>	
--------------	--

$$4 \mid b \mid c \mid d$$

Column-wise

5

5

Boolean

	a	b	c	d
1	1	1	0	0
2	1	0	1	0
2 3	0	0	1	1
4	0	1	1	1
5	1	1	1	1

Definitions cont'd

- ullet Given ${\mathcal F}$ and a Minimum confidence threshold MinConf
- Generate rules:

$$(l-C) \to C$$

$$conf((l-C) \to C) = \frac{supp(l)}{supp(l-C)} \ge MinConf$$

• From a k-itemset (k>1), one can generate 2^k-1 rules.

Property

Let l be a large (frequent) itemset:

$$\forall C \subset l, \ C \neq \emptyset, \ [(l-C) \to C] \ is \ strong \ \Rightarrow \forall \tilde{C} \subset C, \ \tilde{C} \neq \emptyset, \ [(l-\tilde{C}) \to \tilde{C}] \ is \ strong$$

Minconf=60%

Itemset	Rule#	Rule	Confidence	Strong?
ab	1	$a \rightarrow b$	2/3 = 66.66%	yes
ab	2	$b \rightarrow a$	2/3 = 66.66%	yes
0.0	3	$a \rightarrow c$	2/3 = 66.66%	yes
ac	4	$c \rightarrow a$	2/4 = 50.00%	no
bc	5	$b \rightarrow c$	2/3 = 66.66%	yes
000	6	$c \rightarrow b$	2/4 = 50.00%	no
bd	7	$b \rightarrow d$	2/3 = 66.66%	yes
	8	$d \rightarrow b$	2/3 = 66.66%	yes
cd	9	$c \to d$	3/4 = 75.00%	yes
$\lfloor \frac{ca}{} \rfloor$	10	$d \rightarrow c$	3/3 = 100.00%	yes

Minconf=60%

Itemset	Rule#	Rule	Confidence	Strong?
	11		2/3 = 66.66%	yes
bcd	12	$bd \rightarrow c$	2/2 = 100.00%	yes
	13	$bc \rightarrow d$	2/2 = 100.00%	yes

Itemset	Rule#	Rule	Confidence	Strong?
	14	$d \rightarrow bc$	2/3 = 66.66%	yes
bcd	15	$c \to bd$	2/4 = 50.00%	no
	16	$b \rightarrow cd$	2/3 = 66.66%	yes

Probabilistic Interpretation

Brin et al. 97

$$R: A \longrightarrow C$$

- ullet R measures the distribution of A and C in the finite space \mathcal{D} .
- The sets A and C are 2 events
- P(A) and P(C) the probabilities that events A and C happen resp. estimated by the the frequency of A and C resp. in \mathcal{D}

$$supp(A \to C) = supp(A \cup C) = P(A \land C)$$

$$conf(A \to C) = P(C|A) = \frac{P(A \land C)}{P(A)}$$

Support-Confidence: cons

• Example (Brin et al. 97)

	coffee	\overline{coffee}	$\sum rows$
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	20	5	25
\overline{tea}	70	5	75
$\sum columns$	90	10	100

$$tea \rightarrow coffee \quad (supp = 20\%, conf = 80\%)$$

Strong rule?

Support-Confidence: cons

• Example (Brin et al. 97)

	coffee	\overline{coffee}	$\sum rows$
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	20	5	25
\overline{tea}	70	5	75
$\sum columns$	90	10	100

$$tea \rightarrow coffee \quad (supp = 20\%, conf = 80\%)$$

Strong rule? Yes but a misleading one!

Support(coffee) = 90% is a bias that the confidence cannot detect because it ignores support(coffee).

Other evaluation Measures

• Interest (Piatetsky-Shapiro 91) or Lift (Bayardo et al. 99)

$$Interest(A \to C) = \frac{P(A \land C)}{P(A) \times P(C)} = \frac{supp(A \cup C)}{supp(A) \times supp(C)}$$

Interest is between 0 and $+\infty$:

- 1. If $Interest(\mathcal{R}) = 1$ then A and C are independent;
- 2. If $Interest(\mathcal{R}) > 1$ then A and C are positively dependent;
- 3. If $Interest(\mathcal{R}) < 1$ then A and C are negatively dependent.

$$Interest(A \to C) = \frac{conf(A \to C)}{supp(C)} = \frac{conf(C \to A)}{supp(A)}$$

Other evaluation Measures

	coffee	\overline{coffee}	$\sum rows$
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	20	5	25
\overline{tea}	70	5	75
$\sum columns$	90	10	100

$$Interest(tea \to coffee) = \frac{P(tea \land coffee)}{P(tea) \times P(coffee)} = \frac{0.2}{0.25 * 0.9} = 0.89 < 1$$

	coffee	\overline{coffee}
\overline{tea}	0.89	2
\overline{tea}	1.03	0.66

Multi-dimensional rules

• One-dimensional rules:

$$buy(x, "Bread") \longrightarrow buy(x, "Butter")$$

Multi-dimensional rules:

$$buy(x, "Pizza") \land age(x, "Young") \longrightarrow buy(x, "Coke")$$

- Construct k-predicatesets instead of k-itemsets
- How about numerical features?

$$buy(x, "Pizza") \land age(x, "18 - 22") \longrightarrow buy(x, "Coke")$$

Post-processing of AR

- AR framework may lead to a large number of rules.
- How one can reduce the number of rules?
 - 1. Use many evaluation measures
 - 2. Increase minimum support
 - 3. Increase minimum confidence
 - 4. use rule templates (define constraints on max rule length, exclude some items, include in the rules specific items) (Agrawal et al. 1995, Salleb et al. 2007)

Implementations

- **FIMI** Frequent Itemset Mining Implementations Repository http://fimi.cs.helsinki.fi/ FIMI'03 and FIMI'04 workshop, Bayardo, Goethals & Zaki
- **Apriori** http://www.borgelt.net/apriori.html developed by Borgelt
- Weka http://www.cs.waikato.ac.nz/ml/weka/ by Witten & Frank
- **ARMADA** Data Mining Tool version 1.3.2 in matlab available at Mathworks, by Malone

FP algorithms

According to the strategy to traverse the search space:

- Breadth First Search (ex: Apriori, AprioriTid, Partition, DIC)
- Depth First Search (ex: Eclat, Clique, Depth project)
- Hybrid (ex: AprioriHybrid, Hybrid, Viper, Kdci)
- Pattern growth, i.e. no candidate generation (ex: Fpgrowth, HMine, Cofi)

Uniform notion of item

• Apriori has been initially designed for **boolean tables** (transactional datasets) thus propositional logic was sufficient to express: items, itemsets and rules.

$$milk \rightarrow cereals$$

 For relational tables, one need to extend the notion of items to literals:

$$item \equiv (attribute, value)$$

An attribute could be:

- 1. categorical, for ex. (color, blue),
- 2. quantitatif with a few numerical values, for ex. (#cars, 2),
- 3. quantitatif with a large domain values, for ex. (age, [20, 40]).

${\mathcal D}$: people			
id	age	married?	#cars
1	23	no	1
2	25	yes	1
3	29	no	0
4	34	yes	2
5	38	yes	2

Examples of frequent itemsets		
itemset	support	
(age, 2029)	3	
(age, 3039)	2	
(married?, yes)	3	
(married?, no)	2	
(#cars, 1)	2	
(#cars, 2)	2	
(age, 3039),(married?, yes)	2	

Examples of rules			
rule	support	confidence	
(age, 3039) et (married?, yes) \longrightarrow (#cars, 2)	40%	100%	
(age, 2029) \longrightarrow (#cars, 1)	60%	66.6%	

Quantitative AR

Question: Mining Quantitative AR is not a simple extension of mining categorical AR. why?

- Infinite search space: In Boolean AR, the Ariori property allows to prune the search space efficiently, but we do explore the whole space of hypothesis (lattice of itemsets), which is IMPOSSIBLE for Quantitative AR.
- The support-confidence tradeoff: Choosing intervals is quite sensitive to support and confidence.
 - intervals too small, not enough support;
 - intervals too large, not enough confidence.
- What is the difference between supervised and unsupervised discretization?

- Discretization-based approaches
- Distribution-based approaches
- Optimization-based approaches

Discretization-based approaches

- A pre-processing step
- Use equi-depth, equi-width, domain-knowledge
- Lent et al., 1997; Miller and Yang, 1997; Srikant and Agrawal, 1996; Wang et al., 1998
- Discretization combined with clustering or interval merging.
- Problems: univariate, sensitive to outliers, loss of information.

Distribution-based approaches

 $Sex = female \rightarrow Height : mean = 168 \land Weight : mean = 68$

- Aumann and Lindell, 1999, Webb 2001.
- Restricted form of rules:
 - 1. A set of categorical attributes on the left-hand side and several distributions on the right-hand side,
 - 2. A single discretized numeric attribute on the left-hand side and a single distribution on the right-hand side.

Optimization-based approaches

- Numerical attributes are optimized during the mining process
- Fukuda et al., 96, Rastogi and Shim 99, Brin et al. 2003. Techniques inspired from image segmentation.

$$Gain(A \rightarrow B) = Supp(AB) - MinConf * Supp(A)$$

Form of the rules restricted to 1 or 2 numerical attributes.

 Mata et al. 2002 Use genetic algorithms to optimize the support of itemsets with non instantiated intervals.

Fitness =
$$cov - (\psi * ampl) - (\omega * mark) + (\mu * nAtr)$$

Apriori-like algorithm to mine association rules.

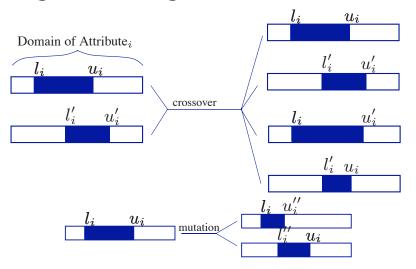
Optimization-based approaches

Ruckert et al. 2004 use half-spaces to mine such rules like:

$$x_1 > 20 \rightarrow 0.5x_3 + 2.3x_6 \ge 100$$

Cannot handle categorical attributes.

• Salleb et al 2007: QuantMiner Optimize the *Gain* of rules templates using a genetic algorithm.



Optimization-based approaches: QuantMiner cont'd.

Example UCI Iris dataset:

$$\begin{array}{ll} \texttt{Species=} \\ \texttt{value} \end{array} \Rightarrow \left\{ \begin{array}{ll} \texttt{PW} \in [l_1, u_1] & \texttt{SW} \in [l_2, u_2] \\ \texttt{PL} \in [l_3, u_3] & \texttt{SL} \in [l_4, u_4] \end{array} \right\} \begin{array}{ll} \texttt{supp\%} \\ \texttt{conf\%} \end{array}$$

$$\begin{array}{lll} \text{Species=} \\ \text{setosa} \end{array} \Rightarrow \left\{ \begin{array}{l} \text{PW} \in [1,6] \ \text{SW} \in [31,39] \\ \text{PL} \in [10,19] \ \text{SL} \in [46,54] \end{array} \right\} \begin{array}{l} 23\% \\ \text{70\%} \end{array}$$

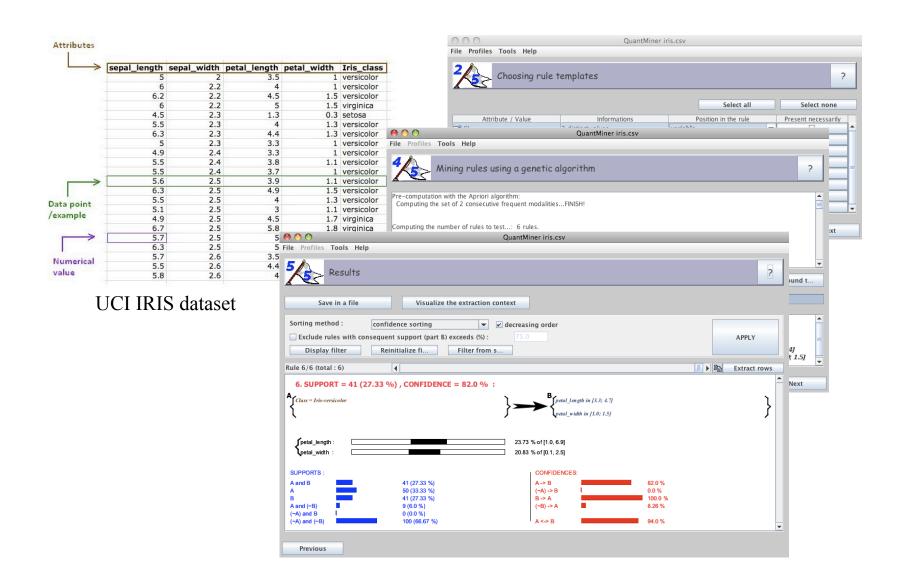
$$\begin{array}{l} \text{Species=} \\ \text{versicolor} \end{array} \Rightarrow \left\{ \begin{array}{l} \text{PW} \in [10,15] \ \text{SW} \in [22,30] \\ \text{PL} \in [35,47] \ \text{SL} \in [55,66] \end{array} \right\} \begin{array}{l} 21\% \\ \text{64\%} \end{array}$$

$$\begin{array}{l} \text{Species=} \\ \text{virginica} \end{array} \Rightarrow \left\{ \begin{array}{l} \text{PW} \in [18,25] \ \text{SW} \in [27,33] \\ \text{PL} \in [48,60] \ \text{SL} \in [58,72] \end{array} \right\} \begin{array}{l} 20\% \\ \text{60\%} \end{array}$$

QuantMiner

http://quantminer.github.io/QuantMiner/

QuantMiner



References

- R. Agrawal, T. Imielinski and A.N. Swami "Mining Association Rules between sets of items in large databases". SIGMOD 1993.
- R. Agrawal, R. Srikant "Fast algorithms for mining association rules" VLDB 1994.
- B. Goethals "Survey on Frequent Pattern Mining" Technical report, Helsinki Institute for Information Technology, 2003.
- S. Brin et al. "Beyond Market Baskets: Generalizing Association Rules to Correlations". SIGMOD 1997.
- R. Agrawal et al. "Mining association rules with item constraints". KDD 1997.
- A. Salleb et al. "QuantMiner: A Genetic Algorithm for Mining Quantitative Association Rules", IJCAI 2007.
- U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. "From Data Mining to Knowledge Discovery: An Overview". In Advances in Knowledge Discovery and Data Mining, 1996.