AVL Trees

Binary Search Tree
Best Time

» All BST operations are O(h), where d is
tree height.
» maximum h is h=|log,N |for a binary tree
with N nodes
» What is the best case tree?
» What is the worst case tree?

» S0, best case running time of BST
operations is O(log N)

4/10/2017 2

STUDENTS-HUB.com Uploaded By: anonymous1

Binary Search Tree
Worst Time

» Worst case running time is O(N)

» What happens when you Insert elements in
ascending order?

* Insert: 2, 4, 6, 8, 10, 12 into an empty BST
» Problem: Lack of “balance”:

« compare heights of left and right subtree
» Unbalanced degenerate tree

4/10/2017

Balanced and unbalanced BST

Is this “balanced”?

4/10/2017

STUDENTS-HUB.com Uploaded By: anonymous2

Balancing Binary Search
Trees

» Many algorithms exist for keeping
binary search trees balanced

» Adelson-Velskii and Landis (AVL) trees
(height-balanced trees)

» Splay trees and other self-adjusting trees
» B-trees and other multiway search trees

4/10/2017 5

Perfect Balance

« Want a complete tree after every operation
» tree is full except possibly in the lower right
» This is expensive

» For example, insert 2 in the tree on the left and
then rebuild as a complete tree

a Q Insert 2 & 5 e
complete tree
©® ©6G ©® WG O
6

4/10/2017

STUDENTS-HUB.com Uploaded By: anonymous3

AVL - Good but not Perfect

Balance
» AVL trees are height-balanced binary
search trees
» Balance factor of a node
» height(left subtree) - height(right subtree)
* An AVL tree has balance factor calculated
at every node

» For every node, heights of left and right
subtree can differ by no more than 1

» Store current heights in each node

4/10/2017 7

Node Heights

Tree A (AVL) Tree B (AVL)
height=2 BF=1-0=1

height of node = h
balance factor = higq-Nyign
empty height = -1

4/10/2017 8

STUDENTS-HUB.com Uploaded By: anonymous4

Node Heights after Insert 7

Tree A (AVL)

Tree B (not AVL)

balance factor

height of node = h
balance factor = hieq-Nyign
empty height = -1

4/10/2017 9

Insert and Rotation in AVL
Trees

* Insert operation may cause balance factor
to become 2 or —2 for some node
» only nodes on the path from insertion point to
root node have possibly changed in height
» So after the Insert, go back up to the root
node by node, updating heights

» If a new balance factor (the difference h-
hiigne) IS 2 Or —2, adjust tree by rotation around
the node

4/10/2017 10

STUDENTS-HUB.com Uploaded By: anonymous5

Single Rotation in an AVL Tree

4/10/2017 11

Insertions in AVL Trees

Let the node that needs rebalancing be a.

There are 4 cases:
Outside Cases (require single rotation) :
1. Insertion into left subtree of left child of a.
2. Insertion into right subtree of right child of a.
Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of a.
4. Insertion into left subtree of right child of a.

The rebalancing is performed through four
separate rotation algorithms.

4/10/2017 12

STUDENTS-HUB.com Uploaded By: anonymous6

AVL Insertion: Qutside Case

Consider a valid
AVL subtree

4/10/2017 13

AVL Insertion: Outside Case

Inserting into X
destroys the AVL
property at node j

4/10/2017 14

STUDENTS-HUB.com Uploaded By: anonymous7

AVL Insertion: Qutside Case

N

Do a “right rotation”

4/10/2017 15

Single right rotation

Do a “right rotation”

4/10/2017 16

STUDENTS-HUB.com Uploaded By: anonymous8

Outside Case Completed

“Right rotation” done!
(“Left rotation” is mirror
symmetric)

AVL property has been restored!

4/10/2017 17

AVL Insertion: Inside Case

Consider a valid
AVL subtree

4/10/2017 18

STUDENTS-HUB.com Uploaded By: anonymous9

AVL Insertion: Inside Case
N

Does “right rotation”
restore balance?

Inserting into Y
destroys the

AVL property
at node j

4/10/2017

AVL Insertion: Inside Case

“Right rotation”
does not restore
balance... now Kk is
out of balance

4/10/2017

STUDENTS-HUB.com Uploaded By: anonymoui,0

AVL Insertion: Inside Case

Consider the structure
of subtree Y...

4/10/2017 21

AVL Insertion: Inside Case

Y = node i and
subtrees V and W

4/10/2017 22

STUDENTS-HUB.com Uploaded By: anonymoui,1

AVL Insertion: Inside Case

- ~

/’ 1

/’ We will do a left-right
“double rotation” . . .

4/10/2017 23

Double rotation : first rotation

left rotation complete

4/10/2017 24

STUDENTS-HUB.com Uploaded By: anonymou%

Double rotation : second

rotation

Now do a right rotation

4/10/2017 25

Double rotation : second
rotation

right rotation complete

Balance has been
restored

4/10/2017 26

STUDENTS-HUB.com Uploaded By: anonymou%

Implementation

balance (1,0,-1)
key

left right

No need to keep the height; just the difference in height,
i.e. the balance factor; this has to be modified on the path of
insertion even if you don’t perform rotations

Once you have performed a rotation (single or double) you won'’t
need to go back up the tree

4/10/2017 27

struct AviNode; o
typedef struct AvIiNode *Position;
typedef struct AviNode *AviTree;

/% Place in the implementation file */
struct AviNode

{ L
Element; static 1At .
ClemencTope e s
AviTree Right; { $E(P == NULL)
int Height; return -1;
. else
b return P->Height;

4/10/2017 }

STUDENTS-HUB.com

Uploaded By: anonymou§4

private int height{ AviNode<AnyType= t)
{
1 return t == null 7 -1 : t.height;
J/ Constructors]
AvlNode(AnyType theElement)

{ this{ theElement, null, null }; }

private static class AvlNode<AnyType>

AviNode(AnyType theElement, AviNocde<AnyType= 1t, AvINode<AnyType> rt)
{ element = theElement; left = 1t; right = rt; height = 0; }

AnyType glement // The data in the node
AviNode<BnyType= left; J/ Left child
AviNode<BnyType> right; S/ Right child
int height; J/ Height
]
4/10/2017 29

Single Rotation

static Position ; .
SingleRotateWithteft(Position KZ)

Position K1;

K1 = K2->Left;
K2-»Left = K1->Right;
K1->Right = K2;

K2->Height = Max(Height(K2->Left),]
Height(K2->Right).,

K1->Height = Max(Height(Ki->Left), KZ->Height

o

return K1; /* New root */

30

4/10/2017

STUDENTS-HUB.com Uploaded By: anonymou§5

private AvIiNode<AnyType> rotateWithLeftChild({ AviMNode<AnyType= k2)
{
AviNode<AnyType= kl = k2.left;
k?.left = kl.right;
kl.right = k2;
kZ2.height = Math.max{ height{ k2.left)}, height{ kZ.right })} + 1;

kl.height = Math.max(height(kl.left)}, kZ.height) + 1;
return kl;

4/10/2017 31

Double Rotation

* Implement Double Rotation in two lines.

DoubleRotateFromRight (n : reference node pointer) {
27727
272727 n

}

4/10/2017 ‘ 32

STUDENTS-HUB.com Uploaded By

: anonymous
16

Double Rotation

static Position .
DoubleRotatewithieft(Position K3)

* Rétate between X1 and K2 */
43->Left = Sing1eRotatew1thRight(K3->Left); .

/% Rotate between K3 and K2 */
return SingleRotateWit Left(K3)

“riuvicUL -

private AviNode<AnyType= doublekithLeftChild{ AviNode=AnyType= k3)
{

k3.left = rotateWithRightChild{ k3.left);

return rotateWithLeftChild(k3);

4/10/2017 -

STUDENTS-HUB.com Uploaded By: anonymou%

Insertion in AVL Trees

* Insert at the leaf (as for all BST)

» only nodes on the path from insertion point to
root node have possibly changed in height

» So after the Insert, go back up to the root
node by node, updating heights

» If a new balance factor (the difference h.4-
hiigne) IS 2 or —2, adjust tree by rotation around

4/10/2017
35
. AVITree o\
Insert{ ElementType X, AviTree T)
{
FFC T == NULL D
{ .
/* Create and return a one-node tree */ =
T = matlocC sizeof(struct AviNode) 3; . (
CHFC T == NULL D - :
FatalError("Out of spacelf!!"™ J; IR AN
else i . . oot
{ -
T->Element = X; VTV:‘:-HE'ight = 0;
T-s>Left = T->Right = NULL;
}
}
else
if(X < T->Element)
{
T-»Left = Insert(X, T->teft J;
if(Height(T-»Lefr) - Height(T->Right) == 2)
el iFC X < T->Left->Element)
e SingleRotatewithiLeft(T J:
else 777 Tttt st s e -
T = DoubleRotateWithlLeftr(T b
}
else
if¢ X > T->Element b
{
T-»Right = Insert(X, T->Right J;
if¢ Height(T->Right) - He‘ight(-T—>Left I == 2 D)
if(¢ X > T->Right->Element) \\'l
T = 51‘ng1eRotateWithR1’ghtC T 2 Ly Y
else - ey o
T = DoubleRotateWithRight(T)
}
/* Else X is 1in the tree already; we'll do nothing */
4/10y'2m|-’e-ight — Max(Height(T->Left), Height(T->Right 2 > o+ 1
return T; 36
)

STUDENTS-HUB.com Uploaded By: anonymous
18

private AviNode<AnyType= insert({ AnyType x, AvIiNode<AnyType= t)
{
if{ t == null}
return new AvINode=={ x, null, null };

int compareResult = x.compareTo| t.element };

if{ compareResult =0)

t.left = insert| x, t.left);
else if(compareResult = 0)

t.right = insert{ x, t.right };
else

; f/ Duplicate; do nothing
return balance(t);

]

4/10/2017 37

private static final int ALLOWED IMEALAMCE = 1;

J/ Assume t is either balanced or within one of being balanced
private AviNode<AnyType> balance(AvlNode<AnyType= t)
{
if{ t == null)
return t;

if{ height{ t.left) - height{ t.right) = ALLOWED IMBALANCE }
if(height{ t.left.left) == height({ t.left.right))
t = rotateWithLeftChild(t);
else
t = doubleWithLeftChild(t);
else
if{ height{ t.right) - height{ t.Teft) = ALLOWED_ IMEALANCE)
if{ height({ t.right.right) == height{ t.right.left) }
t = rotateWithRightChild{ t };
else
t = doubleWithRightChild{ t };

t.height = Math.max{ height{ t.left }, height{ t.right })} + 1;
return t;

4/10/20: ! 38

STUDENTS-HUB.com Uploaded By: anonymou%

Example of Insertions in an
AVL Tree

Insert 5, 40

4/10/2017 39

Example of Insertions in an
AVL Tree

4/10/2017 40

STUDENTS-HUB.com Uploaded By: anonymougo

Single rotation (outside case)

4/10/2017 41

Double rotation (inside case)

3
P)
(5Imbalance @ @ &5)
& B B
Insertion of 34 0 @

4/10/2017 42

STUDENTS-HUB.com Uploaded By: anonymoug1

* |Insert 15

4/10/2017 43

* |nsert 14

before :t:f'n after

4/10/2017 44

STUDENTS-HUB.com Uploaded By: anonymoug2

* Insert 13

f\/f;
g ¢
®

b

before

4/10/2017 45

* |lnsert 12

®
before Ql_} after

4/10/2017 46

STUDENTS-HUB.com Uploaded By: anonymoug3

AVL Tree Deletion

» Similar but more complex than insertion

» Rotations and double rotations needed to
rebalance

» Imbalance may propagate upward so that
many rotations may be needed.

4/10/2017 47

void remove(const Comparable & x, AvIiNode * & t)
{
if{ t == nullptr)
return; /S Item mot found; do mothing

if{ x = t-=element)
remove(=, t-=left);
else if{ t-=element =< x)
remove| x, t-=right);
else if{ t-»left 1= nullptr &4 t-=right != nullptr) // Two children
{
t-=element = findMin{ t-»right)-=element;
remove| t-=alement, t-=right);

elsa

{
AviNode *oldNode = t;
t = { t-=left 1= nullptr) ? t-=left : t-»right;
delete oldNode;

balance{ t);
4/10/2037 48

STUDENTS-HUB.com Uploaded By: anonymoug4

private AviBode<AnyType= remove(AnyType x, AviNode<AnyType= t)
{
if{ t == mll)}
return t; S/ Item not found; do nothing -

int compareResult = x.compareTo| t.element);

if{ compareResult <0 }
t.left = remove| x, t.left);
glse if{ compareResult =0)
t.right = removel x, t.right);
glse if{ t.left I= null && t.right != null) // Two children
(

t.element = findMin{ t.right).zlement;
t.right = remove(t.element, t.right);
}
glse
t = t.left I=pull } 7 t.left : t.right;
4no/2a%urn balance(t); 49

!

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. Searchis O(log N) since AVL trees are always balanced.

2. Insertion and deletions are also O(logn)

3. The height balancing adds no more than a constant factor to the
speed of insertion.

Arguments against using AVL trees:

1. Difficult to program & debug; more space for balance factor.

2. Asymptotically faster but rebalancing costs time.

3. Most large searches are done in database systems on disk and use
other structures (e.g. B-trees).

4. May be OK to have O(N) for a single operation if total run time for
many consecutive operations is fast (e.g. Splay trees).

4/10/2017 50

STUDENTS-HUB.com Uploaded By: anonymoug5

