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Abstract The objective of this chapter is to introduce and to illustrate the frequent
and wide occurrence of non-Newtonian fluid behaviour in a diverse range of ap-
plications, both in nature and in technology. Starting withthe definition of a non-
Newtonian fluid, different types of non-Newtonian characteristics are briefly de-
scribed. Representative examples of materials (foams, suspensions, polymer solu-
tions and melts), which, under appropriate circumstances,display shear-thinning,
shear-thickening, visco-plastic, time-dependent and visco-elastic behaviour are pre-
sented. Each type of non-Newtonian fluid behaviour has been illustrated via experi-
mental data on real materials. This is followed by a short discussion on how to engi-
neer non-Newtonian flow characteristics of a product for itssatisfactory end use by
manipulating its microstructure by controlling physico-chemical aspects of the sys-
tem. Finally, we touch upon the ultimate question about the role of non-Newtonian
characteristics on the analysis and modeling of the processes of pragmatic engineer-
ing significance.

1 Introduction

Most low molecular weight substances such as organic and inorganic liquids, so-
lutions of low molecular weight inorganic salts, molten metals and salts, and gases
exhibit Newtonian flow characteristics, i.e., at constant temperature and pressure,
in simple shear, the shear stress(σ) is proportional to the rate of shear(γ̇) and the
constant of proportionality is the familiar dynamic viscosity (η). Such fluids are
classically known as the Newtonian fluids, albeit the notionof flow and of viscosity
predates Newton [40]. For most liquids, the viscosity decreases with temperature
and increases with pressure. For gases, it increases with both temperature and pres-
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2 R.P. Chhabra

sure [35]. Broadly, higher is the viscosity of a substance, more resistance it presents
to flow (and hence more difficult to pump!). Table 1 provides typical values of vis-
cosity for scores of common fluids [12]. As we go down in the table, the viscosity
increases by several orders of magnitude, and thus one can argue that a solid can
be treated as a fluid whose viscosity tends towards infinity,η → ∞ . Thus, the dis-
tinction between a fluid and a solid is not as sharp as we would like to think! Ever
since the formulation of the equations of continuity (mass)and momentum (Cauchy,
Navier-Stokes), the fluid dynamics of Newtonian fluids has come a long way dur-
ing the past 300 or so years, albeit significant challenges especially in the field of
turbulence and multi-phase flows still remain.

Table 1 Values of viscosity for common fluids at room temperature

Substance η (Pa.s)

Air 10−5

Water 10−3

Ethyl alcohol 1.2×10−3

Mercury 1.5×10−3

Ethylene glycol 20×10−3

Olive oil 0.1
100% Glycerol 1.5
Honey 10
Corn syrup 100
Bitumen 108

Molten glass 1012

During the past 50-60 years, there has been a growing recognition of the fact that
many substances of industrial significance, especially of multi-phase nature (foams,
emulsions, dispersions and suspensions, slurries, for instance) and polymeric melts
and solutions (both natural and man made) do not conform to the Newtonian postu-
late of the linear relationship between(σ) and(γ̇) in simple shear, for instance. Ac-
cordingly, these fluids are variously known as non-Newtonian, non-linear, complex,
or rheologically complex fluids. Table 2 gives a representative list of fluids which
exhibit different kinds and with varying severity of non-Newtonian flow behavior
[12]. Indeed so widespread is the non-Newtonian fluid behavior in nature and in
technology that it would be no exaggeration to say that the Newtonian fluid behav-
ior is an exception rather than the rule! This chapter endeavours to provide a brief
introduction to the different kinds of non-Newtonian flow characteristics, their char-
acterization and implications in engineering applications. The material presented
herein is mainly drawn from our recent books [11, 12]. The assumptions of material
isotropy and incompressibility are implicit throughout our discussion.
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Table 2 Examples of substances exhibiting non-Newtonian Fluid Behaviour

•Adhesives (wall paper paste, carpet ad-
hesive, for instance)

•Food stuffs (Fruit/vegetable purees and
concentrates, sauces, salad dressings,
mayonnaise, jams and marmalades, ice-
cream, soups, cake mixes and cake top-
pings, egg white, bread mixes, snacks)

•Ales (beer, liqueurs, etc.) •Greases and lubricating oils
•Animal waste slurries from cattle farms•Mine tailings and mineral suspensions
•Biological fluids (blood, synovial fluid,
saliva, etc.)

•Molten lava and magmas

•Bitumen •Paints, polishes and varnishes
•Cement paste and slurries •Paper pulp suspensions
•Chalk slurries •Peat and lignite slurries
•Chocolates •Polymer melts and solutions, reinforced

plastics, rubber
•Coal slurries •Printing colors and inks
•Cosmetics and personal care products
(nail polish, lotions and creams, lipsticks,
shampoos, shaving foams and creams,
toothpaste, etc)

•Pharmaceutical products (creams,
foams, suspensions, for instance)

•Dairy products and dairy waste streams
(cheese, butter, yogurt, fresh cream, whey,
for instance)

•Sewage sludge

•Drilling muds •Wet beach sand
•Fire fighting foams •Waxy crude oils

2 Classification of Fluid Behavior

2.1 Definition of a Newtonian Fluid

It is useful to begin with the definition of a Newtonian fluid. In simple shear (Fig. 1),
the response of a Newtonian fluid is characterized by a linearrelationship between
the applied shear stress and the rate of shear, i.e.,

σyx =
F
A

= ηγ̇yx (1)

Fig. 2 shows experimental results for a corn syrup and for a cooking oil confirming
their Newtonian fluid behavior; the flow curves pass through the origin and the vis-
cosity values areη = 11.6 Pa.s for corn syrup andη = 64 mPa.s for the cooking oil.
Fig. 1 and equation (1), of course, represent the simplest case wherein there is only
one non-zero component of velocity,Vx, which is a function of y. For the general
case of three dimensional flow (Fig. 3), clearly there are sixshearing and three nor-
mal components of the stress tensor,S. It is customary to split the total stress into
an isotropic part (pressure) and a deviatoric part as

S= −pI + σ (2)

Uploaded By: anonymousSTUDENTS-HUB.com



4 R.P. Chhabra

Fig. 1 Schematic represen-
tation of an unidirectional
shearing flow
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Whereσ is traceless, i.e.,tr · σ = 0, and pressure is consistent with the conti-

Fig. 2 Typical shear stress-
shear rate data for two New-
tonian fluids
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nuity equation. The tracefree requirement together with the physical requirement
of symmetryσ = σT imply that there are only three independent shear components
(off-diagonal elements) and two normal stress differences(diagonal elements) of the
deviatoric stress. Thus, in Cartesian coordinates, these are σxy(= σyx), σxz(= σzx),
σyz(= σzy)and the two normal stress differences defined as

Primary normal stress difference,N1 = σxx−σyy (3)

Secondary normal stress difference,N2 = σzz−σyy (4)

For Newtonian fluids, these components are related linearlyto the rate of deforma-
tion tensor components via the scalar viscosity. For instance, the three stress com-
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ponents acting on thex−face (oriented normal to thex−axis) in Fig. 3 are written
as follows

σxx = −2η
∂Vx

∂x
(5)

σxy = −η(
∂Vx

∂y
+

∂Vy

∂x
) (6)

σxz = −η(
∂Vx

∂z
+

∂Vz

∂x
) (7)

Similar sets of equations can be set up for the stress components relevant to they−

Fig. 3 Stress components in
three dimensional flow
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andz− planes. For a Newtonian fluid, in simple shear,σxx = σyy = σzz= 0, because
Vx only varies in they−direction. Thus, the complete definition of a Newtonian
fluid requires it to satisfy the complete Navier-Stokes equations rather than simply
exhibiting a constant value of shear viscosity.

2.2 Non-Newtonian Fluid Behaviour

The simplest possible deviation from the Newtonian fluid behavior occurs when the
simple shear dataσ − γ̇ does not pass through the origin and/ or does not result
into a linear relationship betweenσ and γ̇. Conversely, the apparent viscosity, de-
fined asσ/γ̇, is not constant and is a function ofσ or γ̇. Indeed, under appropriate
circumstances, the apparent viscosity of certain materials is not only a function of
flow conditions (geometry, rate of shear, etc.), but it also depends on the kinematic
history of the fluid element under consideration. It is convenient, though arbitrary
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(and probably unscientific too), to group such materials into the following three
categories:

1. Systems for which the value ofγ̇ at a point within the fluid is determined only
by the current value ofσ at that point; these substances are variously known
as purely viscous, inelastic, time-independentor generalized Newtonian fluids
(GNF);

2. Systems for which the relation betweenσ and γ̇ shows further dependence on
the duration of shearing and kinematic history; these are called time-dependent
fluids, and finally,

3. Systems which exhibit a blend of viscous fluid behavior andof elastic solid-like
behaviour. For instance, this class of materials shows partial elastic recovery,
recoil, creep, etc. Accordingly, these are calledvisco-elasticor elastico-viscous
fluids.

As noted earlier, the aforementioned classification schemeis quite arbitrary,
though convenient, because most real materials often display a combination of two
or even all these types of features under appropriate circumstances. For instance,
it is not uncommon for a polymer melt to show time-independent (shear-thinning)
and visco-elastic behavior simultaneously and for a china clay suspension to ex-
hibit a combination of time-independent (shear-thinning or shear-thickening) and
time-dependent (thixotropic) features at certain concentrations and /or at appropri-
ate shear rates. Generally, it is, however, possible to identify the dominant non-
Newtonian aspect and to use it as basis for the subsequent process calculations.
Each type of non- Newtonian fluid behavior is now dealt with inmore detail.

3 Time-Independent Fluid Behaviour

As noted above, in simple unidirectional shear, this sub-set of fluids is characterized
by the fact that the current value of the rate of shear at a point in the fluid is deter-
mined only by the corresponding current value of the shear stress and vice versa.
Conversely, one can say that such fluids have no memory of their past history. Thus,
their steady shear behavior may be described by a relation ofthe form,

γ̇yx = f (σyx) (8)

Or, its inverse form,
σyx = f−1(γ̇yx) (9)

Depending upon the form of equation (8) or (9), three possibilities exist:

1. Shear- thinning or pseudoplastic behavior
2. Visco-plastic behavior with or without shear-thinning behavior
3. Shear- thickening or dilatant behavior.
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Non-Newtonian Fluids: An Introduction 7

Fig. 4 shows qualitatively the flow curves (also called rheograms) on linear coor-
dinates for the above- noted three categories of fluid behavior; the linear relation
typical of Newtonian fluids is also included in Fig. 4.

Fig. 4 Qualitative flow curves
for different types of non-
Newtonian fluids

3.1 Shear-Thinning Fluids

This is perhaps the most widely encountered type of time-independent non-Newtonian
fluid behavior in engineering practice. It is characterizedby an apparent viscosityη
(defined asσyx/γ̇yx) which gradually decreases with increasing shear rate. In poly-
meric systems (melts and solutions), at low shear rates, theapparent viscosity ap-
proaches a Newtonian plateau where the viscosity is independent of shear rate (zero
shear viscosity,η0).

lim
γ̇yx→0

σyx

γ̇yx
= η0 (10)

Furthermore, only polymer solutions also exhibit a similarplateau at very high shear
rates (infinite shear viscosity,η∞ ), i.e.,

lim
γ̇yx→∞

σyx

γ̇yx
= η∞ (11)
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In most cases, the value ofη∞ is only slightly higher than the solvent viscosityηs.
Fig. 5 shows this behavior in a polymer solution embracing the full spectrum of
values going fromη0 to η∞ . Obviously, the infinite-shear limit is not seen for poly-
mer melts and blends, or foams or emulsions or suspensions. Thus, the apparent
viscosity of a pseudoplastic substance decreases with the increasing shear rate, as
shown in Fig. 6 for three polymer solutions where not only thevalues ofη0 are seen
to be different in each case, but the rate of decrease of viscosity with shear rate is
also seen to vary from one system to another as well as with theshear rate interval
considered. Lastly, the value of shear rate marking the onset of shear-thinning is
influenced by several factors such as the nature and concentration of polymer, the
nature of solvent, etc for polymer solutions and particle size shape, concentration
of solids in suspensions, for instance. Therefore, it is impossible to suggest valid
generalizations, but many polymeric systems exhibit the zero-shear viscosity region
belowγ̇ < 10−2 s−1. Usually, the zero-shear viscosity region expands as the molec-
ular weight of polymer falls, or its molecular weight distribution becomes narrower,
or as the concentration of polymer in the solution is reduced.

Fig. 5 Demonstration of zero shear and infinite shear viscosities for a polymer solution

The next question which immediately comes to mind is that howdo we approxi-
mate this type of fluid behavior? Over the past 100 years or so,many mathematical
equations of varying complexity and forms have been reported in the literature;
some of these are straightforward attempts at curve fitting the experimental data
(σ − γ̇) while others have some theoretical basis (blended with empiricism) in sta-
tistical mechanics as an extension of the application of kinetic theory to the liquid
state, etc. [9]. While extensive listing of viscosity models is available in several
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books e.g., see, Ibarz and Barbosa-Canovas [23] and Govier and Aziz [19], a repre-
sentative selection of widely used expressions is given here.
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Fig. 6 Representative shear stress and apparent viscosity behaviour for three pseudoplastic poly-
mer solutions

3.1.1 Power Law or Ostwald de Waele Equation

Often the relationship between shear stress(σ)− shear rate(γ̇) plotted on log-log
co-ordinates for a shear-thinning fluid can be approximatedby a straight line over
an interval of shear rate, i.e.,

σ = m(γ̇)n (12)

or, in terms of the apparent viscosity,

η = m(γ̇)n−1 (13)

Obviously, 0< n < 1 will yield (dη/dγ̇) < 0, i.e., shear-thinning behaviour fluids
are characterized by a value ofn (power-law index) smaller than unity. Many poly-
mer melts and solutions exhibit the value ofn in the range 0.3-0.7 depending upon
the concentration and molecular weight of the polymer, etc.Even smaller values
of power-law index(n∼ 0.1−0.15) are encountered with fine particle suspensions
like kaolin-in-water, bentonite-in-water, etc. Naturally, smaller is the value ofn,
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more shear-thinning is the material. The other constant,m, (consistency index) is a
measure of the consistency of the substance.

Although, eq. (12) or (13) offers the simplest approximation of shear-thinning
behaviour, it predicts neither the upper nor the lower Newtonian plateaus in the
limits of γ̇ → 0 or γ̇ → ∞. Besides, the values ofm andn are reasonably constant
only over a narrow interval of shear rate range whence one needs to knowa priori
the likely range of shear rate to be encountered in an envisaged application.

3.1.2 The Cross Viscosity Equation

In order to rectify some of the weaknesses of the power-law, Cross [14] presented
the following empirical form which has gained wide acceptance in the literature. In
simple shear, it is written as

η −η∞

η0 −η∞
=

1
1+m(γ̇)n (14)

It is readily seen that forn < 1, this model also predicts shear-thinning behavior.
Furthermore, the Newtonian limit is recovered here whenm→ 0. Though initially
Cross[14] proposed thatn= 2/3 was satisfactory for numerous substances, it is now
thought that treating it as an adjustable parameter offers significant improvement in
terms of the degree of fit [4]. Evidently, eq. (14) correctly predictsη = η0 and
η = η∞ in the limits of γ̇ → 0 andγ̇ → ∞ respectively.

3.1.3 The Ellis Fluid Model

While the two viscosity models presented thus far are examples of the form of eq.
(9), the Ellis model is an illustration of the inverse form, eq. (8). In unidirectional
simple shear, it is written as

η =
η0

1+( σ
σ

1/2
)α−1 (15)

In eq. (15),η0 is the zero shear viscosity and the remaining two parametersσ
1/2

andα > 1 are adjusted to obtain the best fit to a given set of data. Clearly, α > 1
yields the decreasing values of shear viscosity with increasing shear rate. It is readily
seen that the Newtonian limit is recovered by settingσ

1/2
→ ∞. Furthermore, when

(σ/σ
1/2

) ≫ 1, eq. (15) reduces to the power-law model, eq. (12) or (13).
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3.2 Visco-plastic Fluid Behavior

This type of non-Newtonian fluid behavior is characterized by the existence of a
threshold stress (called yield stress or apparent yield stress,σ0) which must be ex-
ceeded for the fluid to deform (shear) or flow. Conversely, such a substance will
behave like an elastic solid (or flowen masselike a rigid body) when the externally
applied stress is less than the yield stress,σ0. Of course, once the magnitude of
the external yield stress exceeds the value ofσ0, the fluid may exhibit Newtonian
behaviour (constant value ofη) or shear-thinning characteristics, i.e.,η(γ̇). It there-
fore stands to reason that, in the absence of surface tensioneffects, such a material
will not level out under gravity to form an absolutely flat free surface. Quantita-
tively this type of behavior can be hypothesized as follows:such a substance at rest
consists of three-dimensional structures of sufficient rigidity to resist any external
stress less than

∣

∣σ0

∣

∣ and therefore offers an enormous resistance to flow, albeit it still
might deform elastically. For stress levels above

∣

∣σ0

∣

∣, however, the structure breaks
down and the substance behaves like a viscous material. In some cases, the build-up
and breakdown of structure has been found to be reversible, i.e., the substance may
regain its (initial or somewhat lower) value of the yield stress.

A fluid with a linear flow curve for|σ | >
∣

∣σ0

∣

∣ is called a Bingham plastic fluid,
and is characterized by a constant value of viscosityηB. Thus, in one-dimensional
shear, the Bingham model is written as:

σyx = σ
B

0
+ ηBγ̇yx

∣

∣σyx
∣

∣ >
∣

∣

∣
σ

B

0

∣

∣

∣
(16a)

γ̇yx = 0
∣

∣σyx
∣

∣ <
∣

∣

∣
σ

B

0

∣

∣

∣
(16b)

On the other hand, a visco-plastic material showing shear-thinning behavior at stress
levels exceeding

∣

∣σ0

∣

∣ is known as a yield-pseudoplastic fluid, and their behavior is
frequently approximated by the so-called Herschel-Bulkley fluid model written for
1-D shear flow as follows:

σyx = σ
H

0
+m(γ̇yx)

n
∣

∣σyx
∣

∣ >
∣

∣

∣
σ

H

0

∣

∣

∣
(17a)

γ̇yx = 0
∣

∣σyx
∣

∣ <
∣

∣

∣
σ

H

0

∣

∣

∣
(17b)

Another commonly used viscosity model for visco-plastic fluids is the so-called
Casson model, which has its origins in modeling the flow of blood, but it has been
found a good approximation for many other substances also [4, 7]. It is written as:

√

∣

∣σyx
∣

∣ =
√

∣

∣σC

0

∣

∣+
√

ηC

∣

∣γ̇yx
∣

∣

∣

∣σyx
∣

∣ >
∣

∣

∣
σ

C

0

∣

∣

∣
(18a)

γ̇yx = 0
∣

∣σyx
∣

∣ <
∣

∣

∣
σ

C

0

∣

∣

∣
(18b)

While quantitative flow curves for a Bingham fluid and for a yield-pseudoplastic
fluid are included in Fig. 4, experimental data for a synthetic polymer solution and a
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meat extract are shown in Fig 7. The meat extract (σ0 = 17 Pa) conforms to eq. (16)
whereas the carbopol solution (σ0 = 68 Pa) shows yield-pseudoplastic behavior.
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Fig. 7 Shear stress-shear rate data for a meat extract and for a carbopol solution displaying Bing-
ham plastic and visco-plastic behaviours respectively

Typical examples of yield-stress fluids include blood, yoghurt, tomato puree,
molten chocolate, tomato sauce, cosmetics, nail polishes,foams, suspensions, etc.
Thorough reviews on the rheology and fluid mechanics of visco-plastic fluids are
available in the literature [3, 7].

Finally, before leaving this sub-section, it is appropriate to mention here that it
has long been a matter of debate and discussion in the literature whether a true yield
stress exists or not, e.g., see the trail blazing paper of Barnes and Walters [5] and the
review of Barnes [3] for different viewpoints on this matter. Many workers view the
yield stress in terms of a transition from solid-like behavior to fluid-like behavior
which manifests itself in terms of an abrupt decrease in viscosity (by several orders
of magnitude in many substances) over an extremely narrow range of shear rate [43].
Evidently, the answer to the question whether a substance has a yield stress or not
seems to be closely related to the choice of a time scale of observation. In spite of
this fundamental difficulty, the notion of an apparent yieldstress is of considerable
value in the context of engineering applications, especially for product development
and design in food, pharmaceutical and healthcare sectors [3, 36].
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3.3 Shear-Thickening or Dilatant Behaviour

This class of fluids is similar to pseudoplastic systems in that they show no yield
stress, but their apparent viscosity increases with the increasing shear rate and hence
the nameshear-thickening. Originally this type of behavior was observed in con-
centrated suspensions, and one can qualitatively explain it as follows: At rest, the
voidage of the suspension is minimum and the liquid present in the sample is suf-
ficient to fill the voids completely. At low shearing levels, the liquid lubricates the
motion of each particle past another thereby minimizing solid-solid friction. Con-
sequently, the resulting stresses are small. At high shear rates, however, the mixture
expands (dilates) slightly (similar to that seen in sand dunes) so that the available
liquid is no longer sufficient to fill the increased void spaceand to prevent direct
solid-solid contacts (and friction). This leads to the development of much larger
shear stresses than that seen in a pre-dilated sample at low shear rates. This mech-
anism causes the apparent viscosityη(= σ/γ̇) to rise rapidly with the increasing
rate of shear. Fig. 8 shows the representative data for TiO2 suspensions of various
concentrations[30]. For reference, the lines of slope unity (Newtonian behaviour)
are included in this figure. Evidently, these suspensions exhibit both shear-thinning
and shear-thickening behavior over different ranges of shear rate and/or at different
concentrations.

Of the time-independent fluids, this sub-class has generated very little interest
and hence very few reliable data are available. Indeed, until up to about early 1980s,
this type of flow behavior was considered to be rare, but, however, with the recent
growing interest in the handling and processing of systems with high solids loadings,
it is no longer so, e.g., see the works of Barnes [1], Boersma et al.[8], Goddard
and Bashir [17], for instance. Typical examples of fluids showing shear-thickening
behavior include thick suspensions and pastes of kaolin, TiO2, corn flour in water,
etc.

The currently available limited information (mostly restricted to simple shear)
suggests that it is possible to approximateσ − γ̇ data for these systems also by the
power law model, eq. (12), with the power-law index(n) taking on values greater
than unity. Notwithstanding the paucity of rheological data on such systems, it is
not yet possible to say with confidence whether these materials also display limiting
viscosities in the limits oḟγ → 0 andγ̇ → ∞.

4 Time Dependent Behaviour

Many substances, notably in food, pharmaceutical and personal care product manu-
facturing sectors display flow characteristics which cannot be described by a simple
mathematical expression of the form of eq. (8) or (9). This isso because their appar-
ent viscosities are not only functions of the applied shear stress(σ ) or the shear rate
(γ̇), but also of the duration for which the fluid has been subjected to shearing as well
as their previous kinematic history. For instance, the way the sample is loaded into
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Fig. 8 Typical shear stress-shear rate data for TiO2 suspensions displaying shear-thickening be-
haviour

a viscometer, by pouring or by injecting using a syringe, etc. influences the result-
ing values of shear stressσ or shear ratėγ. Similarly, for instance, when materials
such as bentonite-in-water, coal-in-water suspensions, red mud suspensions (a waste
from alumina industry), cement paste, waxy crude oil, hand lotions and creams, etc.
are sheared at a constant value ofγ̇ following a long period of rest, their viscosities
gradually decrease as the internal structures present are progressively broken down.
As the number of such structural linkages capable of being broken down reduces, the
rate of change of viscosity with time approaches zero. Conversely, as the structure
breaks down, the rate at which linkages can re-build increases, so that eventually
a state of dynamic equilibrium is reached when the rates of build-up and of break
down are balanced. Similarly, there are a few systems reported in the literature in
which the imposition of external shear promotes building upof internal structures
and consequently their apparent viscosities increase withthe duration of shearing.

Depending upon the response of a material to shear over a period of time, it
is customary to sub-divide time-dependent fluid behavior into two types, namely,
thixotropy and rheopexy (or negative thixotropy). These are discussed in some detail
in the next section.
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Fig. 9 Typical experimental data showing thixotropic behaviour in a red mud suspension [33]

4.1 Thixotropic Behaviour

A material is classified as being thixotropic if, when it is sheared at a constant rate,
its apparent viscosityη = σ/γ̇ (or the value ofσ becausėγ is constant) decreases
with the duration of shearing, as shown in Fig. 9 for a red mud suspension con-
taining 59% (by wt) solids [33]. As the value ofγ̇ is gradually increased, the time
needed to reach the equilibrium value ofσ is seen to drop dramatically. For instance,
at γ̇ = 3.5 s−1, it is of the order of∼ 1500 s which drops to the value of∼ 500 s
at γ̇ = 56 s−1. Conversely, if the flow curve of such a fluid is measured in a single
experiment in which the value oḟγ is steadily increased at a constant rate from zero
to some maximum value and then decreased at the same rate, a hysteresis loop of
the form shown schematically in Fig. 10 is obtained. Naturally, the height, shape
and the area enclosed by the loop depend on the experimental conditions like the
rate of increase/decrease of shear rate, the maximum value of shear rate, and the
past kinematic history of the sample. It stands to reason that, the larger the enclosed
area, more severe is the time-dependent behavior of the material under discussion.
Evidently, the enclosed area would be zero for a purely viscous fluid, i.e., no hys-
teresis effect is expected for time-independent fluids. Data for a cement paste [38]
shown in Fig. 11 confirms its thixotropic behavior. Furthermore, in some cases, the
breakdown of structure may be reversible, i.e., upon removal of the external shear
and following a long period of rest, the fluid may regain (rebuilding of structure)
the initial value of viscosity. The data for a lotion shown inFig. 12 illustrates this
aspect of thixotropy. Here, the apparent viscosity is seen to drop from∼ 80 Pa.s
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to ∼ 10 Pa.s in about 5− 10 s when sheared atγ̇ = 100 s−1 and upon removal of
the shear, it builds up to almost its initial value in about 50−60 s. Barnes [2] has
written a thorough review of thixotropic behavior encountered in scores of systems
of industrial significance.

Fig. 10 Qualitative shear
stress-shear rate behaviour
for thixotropic and rheopectic
materials

Fig. 11 Thixotropy in a
cement paste
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4.2 Rheopectic Behaviour

The relatively few fluids which show the negative thixotropy, i.e., their apparent
viscosity (or the corresponding shear stress) increases with time of shearing are
also known as rheopectic fluids. In this case, the hysteresisloop is obviously in-
verted (Fig. 10). As opposed to thixotropic fluids, externalshear fosters the build
up of structure in this case. It is not uncommon for the same fluid to display both
thixotropy as well as rheopexy under appropriate combinations of concentration and
shear rate. Fig. 13 shows the gradual onset of rheopexy for a saturated polyester at
600C [37]. Note that it exhibits time-independent behaviour upto aboutγ̇ ≈ 1377
s−1 and the first signature of rheopexy appears only at aboutγ̇ ∼ 2755 s−1 which
intensifies further with the increasing value of the externally applied shear. Other
examples where rheopexy has been observed include suspensions of Ammonium
oleate, of Vanadium pentoxide at moderate shear rates, coal-water slurries and pro-
tein solutions.

Fig. 12 Breakdown and buildup of structure in a proprietary body lotion

Owing to the frequent occurrence of thixotropic behavior ina range of industrial
settings, much research effort has been devoted to the development of mathemat-
ical frameworks to model this type of rheological behaviour[15, 16, 32]. Broadly
speaking, three distinct approaches can be discerned, namely, continuum, micro-
structural and structural kinetics. Within the framework of the continuum approach,
existing viscosity models (such as Bingham plastic, eq. (16), Herschel-Bulkley, eq.
(17), or the Reiner-Rivlin, etc.) are amended by postulating the viscosity, yield stress
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Fig. 13 Rheopectic behaviour in a saturated polyester [37]

to be functions of time. This, in turn, leads to the power-lawconsistency and flow
behavior indices to be functions of time. Obviously, the details of micro-structure
and changes thereof are completely disregarded in this approach; consequently it is
not at all possible to connect the model parameters to the underlying physical pro-
cesses responsible for the structural changes in the material under shear and for the
subsequent buildup of structure upon the removal of shear. On the other hand, the
modeling approach based on the consideration of micro-structure requires a detailed
knowledge of inter-particle forces which unfortunately are seldom available for sys-
tems of practical significance thereby severely hampering the advancements in this
direction. Finally, the thixotropy models based on the structural kinetic arguments
hinge on the validity of a single scalar parameter,ξ , which is some how a measure
of the state of the structure in a system. Obviously, it ranges from being zero (com-
pletely broken down structure or structure-less!) to beingunity (complete buildup
of structure). This approach thus comprises two equations:σ − γ̇ relationship for a
fixed value ofξ andξ − t variation, akin to the rate equation for a reversible chemi-
cal reaction. This approach is exemplified by the following form of equation due to
Houska [22] which has been fairly successful in approximating thixotropic behavior
of scores of systems:

σyx = (σ0 + σ01)+ (m0+ ξ m1)γ̇n (19a)

ξ̇ = a(1− ξ )−bξ γ̇ε (19b)
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whereσ0 andm0 are the so-called permanent values of the yield stress and con-
sistency coefficient respectively;σ01 andm1 are the corresponding time-dependent
contributions which are assumed to be linearly dependent onthe current value of
ξ . Thus eq. (19a) is valid for a fixed value of the structure parameterξ . Eq. (19b)
is the kinetic relation which governs theξ − t relationship. The first term, namely
a(1− ξ ), gives the rate of structure buildup (assumed to occur underrest state, i.e.,
γ̇ = 0) whereas the second term on the right hand side of eq. (19b) gives the rate
of breakdown which is a function of bothξ andγ̇. Altogether, this model contains
8 parameters, three(a,b,ε) are kinetic constants and the remaining 5 are material
parameters. Clearly, their evaluation warrants experimental protocols which are far
more complex than that needed to characterize the behavior of time-independent
fluids even in one-dimensional shear. Some guidelines in this regard are available in
the literature [10, 15, 16].

5 Visco-elastic behavior

For an ideal elastic solid, stress in a sheared state is directly proportional to strain.
For tension, the familiar Hookes law is applicable, and the constant of proportion-
ality is the usual Young’s modulus,G, i.e.,

σyx = −G
dx
dy

= G(γyx) (20)

When an ideal elastic solid is deformed elastically, it regains its original form on
removal of the stress. However, if the applied stress exceeds the characteristic yield
stress of the material, complete recovery will not occur andcreepwill take place-
i.e., the solid will have flowed! Table 3 presents typical values of the Young’s mod-
ulus G for a range of materials including metals, plastics, polymer and colloidal
solutions, foodstuffs, etc. and these values provide a basis to label some of the sub-
stances assoft solids.

At the other extreme is the Newtonian fluid for which the shearing stress is pro-
portional to the rate of shear, eq. (1). Many materials of engineering importance
show both elastic and viscous effects under appropriate circumstances. In the ab-
sence of thixotropy and rheopexy effects, the material is said to be visco-elastic.
Obviously, perfectly viscous flow and perfectly elastic deformation denote the two
limiting cases of visco-elastic behavior. In some materials, only these limiting con-
ditions are observed in practice. Thus, for example, the viscosity of ice and the
elasticity of water may generally go unnoticed!! Furthermore, the response of a ma-
terial is not only governed by its structure, but also by the kinematic conditions it
experiences. Therefore, the distinction between asolid and afluid, and between an
elasticand aviscousresponse is to some extent arbitrary and subjective whence is
far from being clearcut. Conversely, it is not uncommon for the same material to
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exhibit viscous fluid-like behavior in one situation and elastic solid-like behaviour
in another situation.

Table 3 Representative (approximate) values of Young’s modulus [29, 36]

Material Value ofG

Glass 70 GPa
Aluminium, Copper and alloys 100 GPa
Steel 200 GPa
High modulus oriented fibers >300 GPa
Concrete 10−20 GPa
Stones 40−60 GPa
Wood 1−10 GPa
Ice 10 GPa
Engineering Plastics 5−20 GPa
Leather 1−100 MPa
Rubber 0.1−5 MPa
Polymer and colloidal solutions 1−100 Pa
Dry spaghetti 3 GPa
Carrots 20−40 MPa
Pears 10−30 MPa
Potatoes 6−14 MPa
Peach 2−20 MPa
Raw apples 6−14 MPa
Gelatin Gel 0.2 MPa
Banana 0.8−3 MPa

Many materials of pragmatic significance (particularly polymeric melts and so-
lutions, soap solutions, gels, synovial fluid, emulsions, foams, etc.,) exhibit visco-
elastic behavior. Thus, for instance, such materials have some ability to store and
recover shear energy. One consequence of this type of fluid behavior is that shearing
motion gives rise to stresses (the so-called normal stresses) in the direction normal
to that of shear. The resulting normal stresses or normal stress differencesN1 and
N2, defined by eq. (3) and (4), are also proportional to shear rate in simple shear.
Fig. 14 and Fig. 15 show representative data on the first and second normal stress
differences for polystyrene-in-toluene solutions at 298K. Sometimes, it is custom-
ary to introduce the first (primary) and second (secondary) normal stress difference
coefficientsψ1 andψ2 defined as follows:

ψ1 =
N1

(γ̇)2 (21a)

ψ2 =
N2

(γ̇)2 (21b)

Though the actual rates of variation ofN1 andN2 with shear rate vary from one
system to another, some general observations can be made here. Generally, the rate
of decrease ofψ1 with γ̇ is greater than that of the apparent viscosity. At very low
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Fig. 14 Typical first normal stress difference data for Polystyrenein toluene solutions [26]

Fig. 15 Typical second normal stress difference data for polystyrene in toluene solutions [26]
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shear rates,N1 is expected to vary aṡγ2, i.e.,ψ1 will approach a constant value in this
limit, as is borne out by some of the data shown in Fig. 14. The ratio(N1/σ) is often
taken to be a measure of the severity of visco-elastic behavior, specifically(N1/2σ)
is called the recoverable shear (its values> 0.5 are not uncommon for polymeric
systems which are highly visco-elastic). Generally, experimental determination of
N1 is more difficult than that of shear stress,σ . On the other hand, the measurements
of the second normal stress difference are even more difficult than that of the first
normal stress difference. In most cases,N2 is typically 10% ofN1 in its magnitude
and it is negative. Untill mid 1970’s,N2 was assumed to be zero, but it is no longer
known to be correct.

Thus, in simple shear, a visco-elastic material is characterized in terms ofN1 (γ̇),
N2 (γ̇) andσ (γ̇); furthermore, the normal stress differences are as such used to clas-
sify a fluid as inelastic(N1 ≪ σ) or as visco-elastic (N1 ≫ σ).

So far the discussion has been restricted to the simple unidirectional shearing
flow, now we turn our attention to the two other model flow cofigurations, namely,
oscillatory shear flow and elongational flow. While the first one offers a convenient
method to characterize linear visco-elastic behaviour, the latter denotes idealization
of several industrially important flows.

6 Oscillatory shear motion

Another common form of motion used to characterize visco-elastic fluids is the so-
called oscillatory shearing motion. It is useful to consider here the response of a
Newtonian fluid and of a Hookean solid to a shear strain which varies sinusoidally
with time as:

γ = γmsinωt (22)

whereγm is the amplitude andω is the frequency of applied strain. For an elastic
Hookean solid, the stress is related linearly to strain, i.e.,

σ = Gγ = Gγmsinωt (23)

Thus, there is no phase shift between the shear stress and shear strain in this case.On
the other hand, for a Newtonian fluid, the shear stress is related to the rate of shear,
i.e.,

γ̇ =
dγ
dt

= γmω cosωt = γmω sin(
π
2

+ ωt) (24)

and here
σ = ηγ̇ = ηγmω sin(

π
2

+ ωt) = σmsin(
π
2

+ ωt) (25)

Obviously in this case, the resulting shear stress is out of phase by(π/2) from the
applied strain. Thus, the measurement of the phase angleδ which can vary between
zero (purely elastic response) and(π/2) (purely viscous response) provides a con-
venient means of quantifying the level of viscoelasticity of a substance. Needless
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to add here that small values ofδ represent predominantly elastic behavior whereas
large values ofδ correspond to viscous behaviour. For the linear visco-elastic re-
gion, one can define the complex viscosityη∗ as follows:

η∗ = η ′ + iη ′′ (26)

where the real and imaginary parts,η ′ andη ′′, in turn, are related to the storage(G′)
and loss(G′′) modulii as:

η ′′ =
G′

ω
andη ′ =

G′′

ω
(27)

The storage and loss moduliiG′ andG′′ are defined as:

G′ =
σm

γm
cosδ (28)

G′′ =
σm

γm
sinδ (29)

Many of the commercially available instruments are equipped for oscillating shear
tests [28].

7 Elongational flow

This model flow is also known as extensional or stretching flow. In this type of flow,
a fluid element is stretched in one or more directions, similar to that encountered
in fiber spinning and film blowing. Other examples where this type of flow oc-
curs include coalescence of bubbles, enhanced oil recoveryusing polymer flooding.
There are three forms of elongational flows: uniaxial, biaxial and planar, as shown
schematically in Fig. 16.

Fig. 16 Schematic representation of uniaxial (a), biaxial (b) and planar (c) extension

Fiber spinning is an example of uniaxial extension (but the rate of stretching
varies along the length of the fiber). Tubular film blowing which entails extrusion
of molten polymers through slit die and pulling the sheet forward and sideways is
an illustration of biaxial stretching. Another example is the manufacture of plastic
bottles which are made via extrusion or injection molding, followed by heating and
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blowing it to the desired size using a high pressure air stream. Due to symmetry, the
blowing step is an example of biaxial extension with equal stretching rates in the
two directions.

Fig. 17 Uniaxial extensional flow

Naturally, the mode of extension influences the way in which the fluid resists
deformation and this resistance can be referred to loosely as being quantified in
terms of an elongational viscosity which depends not only upon the rate of stretching
but also on the type of extensional flow. For the sake of simplicity, we consider the
uniaxial extension of a fluid element at a constant rateε̇ in thex-direction as shown
in Fig. 17. For an incompressible fluid, the volume of the fluidelement is conserved,
i.e., if it is being stretched in thex−directions at the rate oḟε, it must shrink in
the other directions at the rate ofε̇/2 if the element is symmetrical iny− andz−
directions. Under these conditions, the velocity vectorV is given by:

V = ε̇ xî − (ε̇/2) yĵ − (ε̇/2) zk̂ (30)

And the rate of elongatioṅε in thex− direction is given by:

ε̇ =
∂Vx

∂x
(31)

The extensional viscosityηE is, in turn, defined as:

ηE =
σxx−σyy

ε̇
=

σxx−σzz
ε̇

(32)

Early experiments of Trouton [42] on uniaxial elongation bystretching a fiber or a
filament of liquid and subsequent studies confirmed that at low elongation rates, the
elongational viscosityηE was three times the corresponding shear viscosityη , and
the ratio of the two values is called the Trouton ratio,Tr , i.e.,

Tr =
ηE

η
(33)
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The value of three for the Trouton ratio for an incompressible Newtonian fluid is
valid for all values oḟε andγ̇. By analogy, when this definition of the Trouton ratio,
Tr , is extended to include non-Newtonian fluids, one runs into aconceptual diffi-
culty. This is simply due to the fact that for a non-Newtonianfluid the shear viscos-
ity is a function of the shear rate,η(γ̇) and the elongational viscosity is a function of
the rate of stretching,ηE(ε̇). Therefore, one needs to adopt a convention for estab-
lishing the equivalence betweenγ̇ andε̇. Jones et al. [24] proposed the equivalence
asγ̇ =

√
3ε̇ and hence the Trouton ratio for a non-Newtonian (incompressible) fluid

can now be defined as:

Tr =
ηE (ε̇)

η(ε̇
√

3)
(34)

Furthermore, Jones et al. [24] proposed that for inelastic isotropic fluids,Tr = 3 is
applicable for all values oḟε andγ̇, and any departure from the value of 3 can un-
ambiguously be ascribed to visco-elastic nature of the substance. For an inelastic
shear-thinning fluid, this argument predicts tension-thinning in elongation also. On
the other hand, the values ofTr as large as 1000 have been documented in the litera-
ture for visco-elastic shear-thinning fluids. In other words, such a fluid thins in shear
but thickens in tension (strain hardening). Therefore, except in the limits ofγ̇ → 0
and ε̇ → 0, there does not appear to be any simple way enabling the prediction of
ηE from a knowledge ofη (or vice versa), and the determination ofηE rests entirely
on experiments. Fig. 18 shows representative results on extensional viscosity of a
polymer solution at a range of values ofε̇.

Fig. 18 Extensional be-
haviour of a PIB solution
[41]

While the foregoing discussion shows how a visco-elastic substance displays a
blend of fluid-like and solid-like response under appropriate conditions, the mathe-
matical equations need to be quite complex in order to adequately describe the be-
havior of a real fluid. However, the early attempts are based on the use of mechan-
ical analogues involving different combinations of springs (elastic) and dashpots
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(viscous) in series, or in parallel, or a combination thereof, three common possibili-
ties are shown in Fig. 19. One distinct feature of visco-elastic fluids is the so-called
memory effects. For instance, viscous fluids have no memory whereas an ideal elas-
tic solid has a perfect memory as long as the stress is within the linear limit. Thus,
visco-elastic fluids are characterized by using a relaxation time, or a spectrum of re-
laxation times which is roughly a measure of the span of theirmemory. The relevant
dimensionless parameter is the well known Deborah number,De:

De=
Relaxation time of fluid(λ )

time scale of process
(35)

For the purpose of illustration here, let us consider the flowof a polymer solution

Fig. 19 Schematic represen-
tation of the Maxwell model
(a) the Kelvin-Voigt model (b)
the Burgers model (c)

(with a relaxation time of 10ms) in a packed bed of spheres where a fluid element
experiences acceleration and deceleration as it flows through the interstices of the
bed. For a particle size of 25 mm in an industrial scale packedcolumn and fluid
velocity of 250 mm/s, the time scale of process is of the orderof 25/250∼ 0.1 s
which is much larger than the fluid relaxation time of 10 ms. Therefore, the fluid el-
ements are able to adjust to the changing flow area and one would not expect to see
the visco-elastic effects in this case. The corresponding value of the Deborah num-
ber isDe= 0.1. On the other hand, in a laboratory size smaller column comprising
250 µm diameter spheres at the same fluid velocity, the time scale of the process
is 250×10−6/250×10−3 = 10−3 s which is much shorter than the fluid relaxation
time of 10 ms whence under these conditions, a fluid element isnot able to adjust
to the changing flow area and hence, visco-elastic effects will manifest. The value
of Deborah number in this case is 10×10−3/10−3 = 10. This reinforces the point
made earlier that the response of a substance is not governedsolely by its structure,
but also in conjunction with the type of flow. This section is concluded by noting
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thatDe→ 0 represents purely viscous response andDe→ ∞ denotes purely elastic
response, and most interesting applications occur in between these two limits.

8 Origins of Non-Newtonian Behaviour

The foregoing discussion clearly establishes that not onlyin most cases non-
Newtonian characteristics are observed in the so-called structured fluids, but there
is a direct link between the type and extent of non-Newtonianfluid behavior and
the influence of the externally applied stress on the state ofthe structure. Therefore,
the measurement of non-Newtonian characteristics is frequently used to ascertain
the state of structure in a fluid. Conversely, one can engineer the structure of a sub-
stance to impart the desired rheological properties to a product. However, before
examining the role of structure, it is useful to review two key assumptions implicit
in the concept of shear or elongational or complex viscosity, and the other material
functions likeη , σ0, N1, N2, G, etc. Firstly, the validity of continuum hypothe-
sis is implicitly assumed, i.e., micro structural details are deemed unimportant in
evaluating the gross flow characteristics, albeit no real fluids are truly structureless
continua. Hence, the use of viscosity as a space-and time-averaged physical prop-
erty poses no problems for low molecular weight substances (molecular dimensions
∼ 1−10 nm). Similarly, concentrated polymer solution or melts,colloidal systems,
foams, worm-like micellar systems, etc. all possess ”micro-structures” of a size ap-
proaching 1-2µm which can be approximated as a continuum, except during their
flow in very fine and/or twisted flow channels. This, in turn, allows the average prop-
erties to be defined and assigned values which are not influenced by the dimensions
of flow passages. Therefore, as long as the size of micro-structures in much smaller
than the characteristic linear scales of the apparatus, onecan safely invoke the con-
tinuum hypothesis. The second issue concerns the assumption of spatial homogene-
ity (isotropy?) of a substance so that the space-averaging is meaningful. Finally, as
noted here, if all fluids are ”structured” to varying extents, what is so special about
substances exhibiting non-Newtonian characteristics? The main distinguishing fea-
ture is that the structures present in the rheologically complex systems are not only
transient in nature, but can easily be perturbed by the application of relatively low
stresses. For instance, the structure of cyclohexane remains unperturbed by the ap-
plication of stresses up to about 1 MPa. In contrast, the corresponding value is of the
order of 100 Pa for a polymer of moderate molecular weight andabout 200 mPa for
a colloidal dispersion containing flow units of the order of 100 nm. It is this degree
of ease with which the structure can be perturbed that gives rise to non-Newtonian
flow characteristics in a system.

Fig. 20 and Fig. 21 show schematically the various types of micro-structures
encountered in rheologically complex systems in a rest state (relevant to storage
conditions) and how these get perturbed under the action of shear (in a flowing
condition). Most systems contain irregularly shaped particles with size distribu-
tion (drops and bubbles in emulsions and foams respectively), or branched and/or
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Fig. 20 Schematics of struc-
tures in non-Newtonian dis-
persions at rest and under
shear

entangled molecules in case of polymeric systems, or loosely formed clusters of
particles in suspensions, etc. At rest, micro-structured units are oriented randomly
corresponding to their minimum energy state. At low levels of shearing, the system
resists any deformation by offering a very high resistance either by exhibiting a very
high value of viscosity or a yield stress. As the magnitude ofexternal shear stress
is gradually increased, the structural units (also known as”flow units”) respond by
aligning themselves with the direction of flow, or by deforming to orient along the
streamlines, or by way of disintegration of aggregates intosmall flow units or into
primary particles. Polymer molecules which are coiled and entangled at low shear
rates gradually become disentangled, and finally fully straighten out (Fig. 21). All
these changes in micro-structures facilitate flow, i.e., these lead to the the lowering
of their apparent viscosity with shear which leads to shear-thinning behavior.

Many other possibilities exist which contribute to micro-structural changes de-
pending upon the relative magnitudes of various forces at play. For instance, in
sub-micron (large surface area) particle suspensions, thevan der Waals attraction
forces between particles can cause them to stick to each other. This is responsible
for coagulation in colloidal systems (particle size∼ 1µm). Similarly, repulsion be-
tween like charges on the surface of a particle produces a repulsive force which
prevents coagulation. The rheological behavior of aqueouskaolin suspensions thus
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Fig. 21 Schematic representation of uncoiling of a macromolecule under the influence of shear

can be modified by adjusting the pH of a system or by adding a surfactant solution.
The kaolin consists of plate-like particles and depending upon the type of surface
charges, it can form different types of aggregates like edge-face or face-face type in
nonflowing conditions (e.g., see Fig. 22). As expected, these two possibilities result
in completely different rheological behavior, e.g., see Fig. 23.

The preceding short discussion is included here to give the reader a feel that it is
possible to impart desirable non-Newtonian characteristics by tuning the physico-
chemical factors. More detailed treatments of property-structure links for suspen-
sions, surfactant and polymeric systems are available in the literature [12, 20, 21,
27]. Suffice it to say here that the ultimate goal is to be able to predicta priori the
type of micro-structure needed for a product to have the desirable rheological char-
acteristics for its satisfactory end use.

9 Implications in Engineering Applications

It is natural to ask the question that how does it all impact onthe engineering appli-
cations involving flow, heat and mass transfer with non-Newtonian fluids? In order
to answer this question, for the sake of simplicity, let us restrict our discussion to
the flow part only. In principle, one can always set up the equation of continuity and
Cauchy’s momentum equations (written in their compact formfor an incompress-
ible fluid) as follows:

∇ ·V = 0 (36)

ρ
DV
Dt

= −∇p+ ρg+ ∇ ·σ (37)

For Newtonian fluids, the deviatoric stress tensorσ is related to the rate of de-
formation tensor by equations similar to that given by equations 5 to 7. Significant
research effort has been expended in seeking a similar expression forσ for non-
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Fig. 22 Possible forms of
agglomerates in kaolin sus-
pensions

Fig. 23 Effect of the shape
of agglomerates on the steady
shear behaviour of Kaolin
suspensions [18]
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Newtonian fluids which should be able not only to predict shear-dependent viscos-
ity, yield stress, visco-elastic effects in shear and extensional flows, rheopexy and
thixotropy but should also satisfy the requirements of frame indifference, material
objectivity, etc. [6]. Given the diversity of the materialsranging from homogeneous
polymer solutions to liquid crystalline polymers, worm-like micellar solution, sus-
pensions, foams, for instance, this is indeed a tall order toexpect that a single con-
stitutive equation will perform satisfactorily under all circumstances for all types of
materials. Notwithstanding the significant advances made in this field, the choice of
an appropriate constitutive relation is (and will continueto be) guided by intuition
and by experience is so far to identify the dominant characteristic of the material at
hand in conjunction with the type of flow (shear dominated, strongly extensional,
mixed, etc.). Critical appraisals of the current state of the art and useful guidelines
for the selection of an appropriate expression forσ (constitutive equation) are avail-
able in the literature, e.g., see Graessley [20], Kroger [25], Morrison [31], Tanner
[39] amongst others. Therefore, if one were able to develop an appropriate consti-
tutive equation and/or to choose one from the existing selection, it is possible to set
up the governing differential equations together with suitable boundary conditions,
albeit there are situations in which the prescription of boundary conditions is also
far from obvious, particularly in flows with a free surface, slip etc.

Furthermore, even when the non-linear inertial terms (corresponding to zero
Reynolds number flow) are neglected altogether in the momentum equation, the
resulting equations are still highly non-linear due to the constitutive equation (shear-
dependent viscosity, other non-linear effects due to visco-elasticity, etc.) Therefore,
except for the simple flows like the fully developed 1-dimensional flow in circular
and planar ducts, one frequently resorts to numerical solutions which themselves
pose enormous challenges in terms of being highly resource intensive and in terms
of acute convergence difficulties thereby breaking down forlarge values of Debo-
rah and Weissenberg numbers [34]. Finally, experimentalists also confront similar
challenges both in terms of material characterization (rheometry) as well as in terms
of the interpretation and representation of data using dimensionless groups, e.g. see
Coussot [13] and Macosko [28] for rheometry.

In summary, the analysis of transport phenomena problems ofengineering sig-
nificance involving non-Newtonian fluid behavior is far morechallenging than that
entailing the simple Newtonian fluids. Indeed, it is such an easy task to produce
an experimental effect using a non-Newtonian fluid in laboratory, which cannot be
explained even qualitatively with the help of Newtonian fluid model. It is also ap-
propriate to mention here that it is not always possible to justify the assumptions
of incompressibility (think of foams, gas-liquid dispersions) and isotropy (think of
fiber-reinforced plastics, liquid crystalline polymers, nano composites, etc.) implicit
in the discussion presented in this introductory chapter.
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10 Concluding Remarks

In this chapter, consideration has been given to the different types of non-Newtonian
characteristics displayed by pseudo-homogeneous mixtures including foams, emul-
sions, suspensions and pastes, macro-molecular systems (polymer melts and solu-
tions, protein solutions), surfactants (soap solutions),reinforced plastics and poly-
mers in their molten state. The discussion here is restricted primarily to the response
of such structured fluids in unidirectional steady shearingmotion (with limited refer-
ence to oscillatory shear and elongational flows) which leads to the manifestation of
shear-thinning, shear-thickening, visco-plastic, thixotropic, rheopectic, visco-elastic
characteristics. Each of these is described in some detail supported by representa-
tive experimental data on real materials. Qualitative explanation for each type of be-
haviour is advanced to provide some insights into the natureof underlying physical
processes. This, in turn, provides some ideas on how to manipulate the microstruc-
ture of a system to realize desirable non-Newtonian features. Conversely, the mea-
surement and monitoring of viscosity, yield stress etc. is frequently used to control
product quality in food and personal care product sectors, for instance. The chap-
ter is concluded by emphasizing the influence of non-Newtonian flow properties in
modeling engineering processes.
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