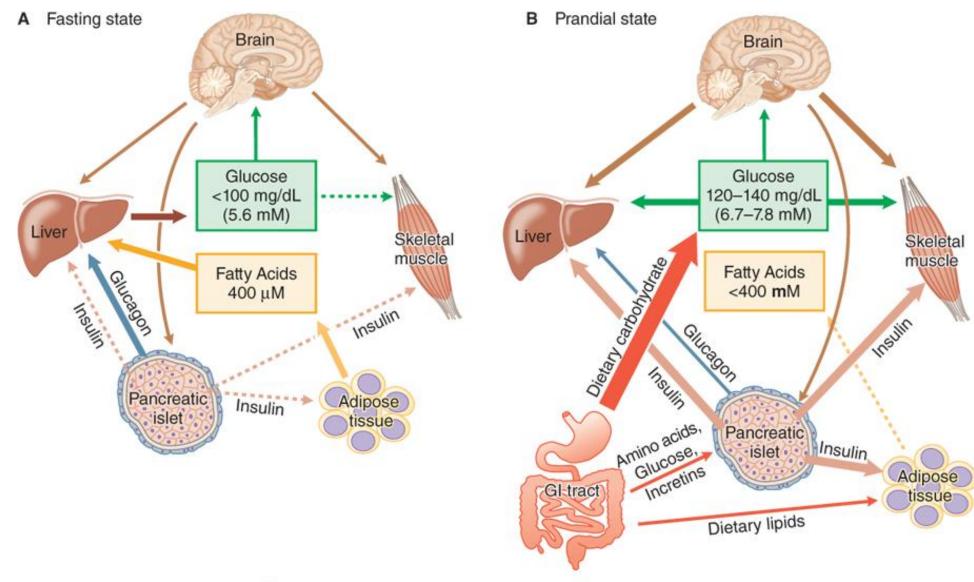
Drugs for Diabetes

Introduction


- The pancreas is both:
 - Exocrine gland that produces digestive enzymes
 - Endocrine gland that produces peptide hormones: insulin, glucagon, and somatostatin
- The peptide hormones are secreted from cells located in the islets of Langerhans
 - β cells produce insulin
 - A cells produce glucagon
 - δ cells produce somatostatin
- These hormones play an important role in regulating the metabolic activities of the body particularly the homeostasis of blood glucoses

Introduction

- Hyperinsulinemia (due for example, to an insulinoma) can cause severe hypoglycemia
- The inadequate release of insulin is commonly aggravated by an excess of glucagon
- A relative or absolute lack of insulin, such as in diabetes mellitus, can cause serious hyperglycemia
- If diabetes is left untreated, retinopathy, nephropathy, neuropathy, and cardiovascular complications may result
- Administration of insulin preparations or other injectable or oral glucose lowering agents can prevent morbidity and reduce mortality associated with diabetes

Source: Laurence L. Brunton, Björn C. Knollmann: Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 14e: Copyright © McGraw Hill. All rights reserved.

Introduction: Diabetes

- Diabetes is heterogeneous group of syndromes characterized by an elevation of blood glucose caused by relative or absolute deficiency of insulin
- There are four clinical classifications of diabetes:
 - 1. Type 1 diabetes (insulin dependent diabetes mellitus)
 - 2. Type 2 diabetes (non-insulin dependent diabetes mellitus)
 - 3. Gestational diabetes
 - 4. Diabetes due to other causes (genetic defects or medications, etc)

Introduction: Diabetes

- Gestational diabetes is defined as carbohydrate intolerance with onset or first recognition during pregnancy
 - It is important to maintain adequate glycemic control during pregnancy
 - Uncontrolled gestational diabetes can lead to fetal macrosomia (abnormally large body), shoulder dystocia (difficult delivery), and neonatal hypoglycemia
 - Diet, exercise, and or insulin administration are effective in this condition
 - Glibenclamide (glyburide US) and metformin may be safe alternatives to insulin therapy for gestational diabetes

	7
C (1)	100
	"L:

	Type 1	Type 2
Age at onset	Usually during childhood or puberty	Commonly over age 35
Nutritional status at time of onset	Commonly undernourished	Obesity usually present
Prevalence among diagnosed diabetics	5%-10%	90%-95%
Genetic predisposition	Moderate	Very strong
Defect or deficiency	β Cells are destroyed, eliminating the production of insulin	Inability of β cells to produce appropriate quantities of insulin; insulin resistance; other defects

Figure 24.2 Comparison of type 1 and type 2 diabetes.

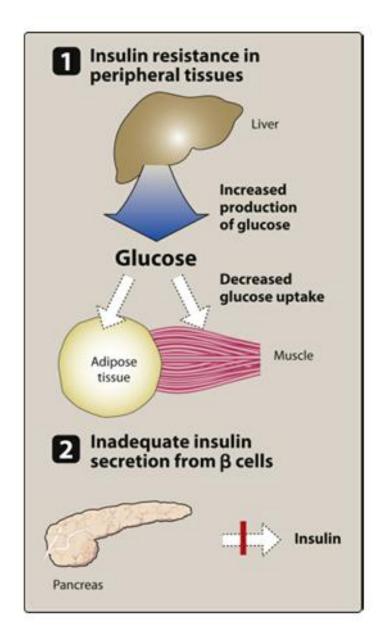
- Most commonly affects individuals in puberty or early adulthood
- Some latent forms can occur later in life
- Type 1.5 LADA latent autoimmune diabetes in adults

- Absolute deficiency of insulin caused by massive β-cell necrosis
- Loss of β -cell function is usually ascribed to autoimmune-mediated processes against the β cell
- May be triggered by an invasion of viruses or the action of chemical toxins
- Due to β-cell destruction pancreas fails to respond to glucose

- Shows classic symptoms of insulin deficiency (polydipsia, polyphagia, polyuria, and weight loss)
- Require exogenous (injected) insulin to control hyperglycemia and maintain blood glucose concentrations as close to normal as possible
- Treatment helps in avoiding the catabolic state that results from Type I diabetes which is characterized by hyperglycemia and life-threatening ketoacidosis

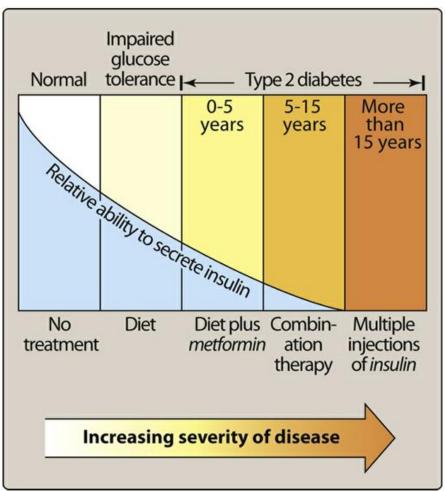
- In a normal post-absorptive period, low basal levels of circulating insulin are maintained through constant β -cell secretion which suppresses lipolysis, proteolysis, and glycogenolysis
- A burst of insulin secretion occurs within 2 minutes after a meal, in response to transient increases in circulating glucose and amino acids
- This lasts for up to 15 minutes and is followed by the postprandial secretion of insulin

- Having non-functional β cells in T1DM can neither maintain a basal secretion level of insulin nor respond to variations in circulating fuels
- The development and progression of neuropathy, nephropathy, and retinopathy are directly related to the extent of glycemic control (measured as blood levels of glucose and/or HbA1c)



- Most diabetic cases
- Influenced by genetic factors, aging, obesity, and peripheral insulin resistance, rather than autoimmune processes or viruses
- The metabolic alterations observed are milder than those described for type 1
- The long-term clinical consequences can be as devastating
- The pancreas retains some β-cell function, but variable insulin secretion is insufficient to maintain glucose homeostasis
- Frequently accompanied by the lack of sensitivity of target organs to either endogenous or exogenous insulin

- The pancreas retains some β -cell function, but variable insulin secretion is insufficient to maintain glucose homeostasis
- The β-cell mass may become gradually reduced in type 2 diabetes
- In contrast to patients with type 1, type 2 diabetes are often obese
- Frequently accompanied by the lack of sensitivity of target organs to either endogenous or exogenous insulin



Type II Diabetes: Treatment

- The goal in treating T2DM is to maintain blood glucose concentrations within normal limits and to prevent the development of long-term complications of the disease
- Weight reduction, exercise, and dietary modification decrease insulin resistance and correct the hyperglycemia of type 2 diabetes in some patients
- Most patients are dependent on pharmacologic intervention with oral glucose-lowering agents
- As the disease progresses, β -cell function declines and insulin therapy is often required

一类

Figure 24.5 Duration of type 2 diabetes mellitus, sufficiency of endogenous insulin, and recommended sequence of therapy.Modified from M. C.Riddle . *Postgrad. Med.* 92: 89 (1992).

Diabetes diagnosis

		Hyperglycemia		
		Pre-diabetes*	Diabetes Mellitus	
	Normal glucose tolerance	Impaired fasting glucose or impaired glucose tolerance	Insulin Insulin Not required required insulin for for requiring control survival	
			Symptoms of diabetes + random blood glucose concentration ≥11.1 mmol/L (200 mg/dL) ^a	
FPG	<5.6 mmol/L (100 mg/dL)	5.6–6.9 mmol/L (100–125 mg/dL)	≥7.0 mmol/L (126 mg/dL) ^b	
HbA1C	<5.6%	5.7-6.4%	≥6.5% ^c	
2-h PG	<7.8 mmol/L (140 mg/dL)	7.8–11.0 mmol/L (140–199 mg/dL)	≥11.1 mmol/L (200 mg/dL) ^d	

Source: Joseph Loscalzo, Anthony Fauci, Dennis Kasper, Stephen Hauser, Dan Longo, J. Larry Jameson: Harrison's Principles of Internal Medicine, 21e Copyright © McGraw Hill. All rights reserved.

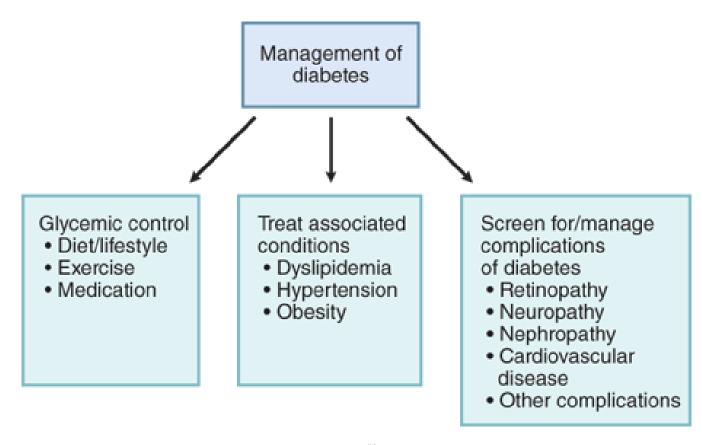
Diabetes: treatment targets

- Normal mean blood glucose ≤ 115 mg/dL with HbA1c content ≤ 5.7
- For patients with diabetes:
- Target mean blood glucose levels ≤ 154 mg/dL
- HbA1c ≤ 7%

GOALS OF THERAPY FOR DIABETES IN NONPREGNANT ADULTS

INDEX Glycemic control b	GOAL
Alc	<7.0%
Preprandial capillary blood glucose	4.4–7.2 mmol/L (80–130 mg/dL)
Peak postprandial capillary blood glucose	<10.0 mmol/L (<180 mg/dL) ^c
Time in range (as defined by CGM) 3.9–10.0 mmol/L (70–180 mg/dL)	>70%

STUDENTS-HUB.com



Diabetes: management

- Main objective: Glycemic control (maintain optimal plasma glucose levels and avoid hyper-or hypo- glycemia)
- Glycemic control minimizes the advancement of complications e.g. retinopathy, neuropathy, and nephropathy
- Glycemic control can be achieved by recombinant human insulin, oral antidiabetics in addition to lifestyle modifications e.g. nutrition
- Administration of insulin preparations or other injectable or oral glucose lowering agents can prevent morbidity and reduce mortality associated with diabetes

Diabetes: management

Source: Laurence L. Brunton, Björn C. Knollmann: Goodman & Gilman's: The Pharmacological Basis of Therapeutics, 14e: Copyright © McGraw Hill. All rights reserved.

Insulin

- Insulin is a storage hormone:
 - It promotes anabolism
 - inhibits catabolism of carbohydrates, fatty acids and protein
- In the absence of insulin:
 - most tissues cannot use glucose
 - fats/proteins are broken down to provide energy

• Insulin binds to insulin receptors on the plasma membrane and activates tyrosine kinase – primarily in adipose tissue, liver and skeletal muscle

- Liver:
- Insulin increase the storage of glucose as glycogen in the liver
- It inserts the GLUT-2 glucose transport molecule in the cell membrane
- It inhibits gluconeogenesis thus significantly \downarrow glucose output by the liver
- It decreases protein catabolism

- Muscles:
- Insulin stimulates glycogen synthesis and protein synthesis
 - Glucose transport into the cells is facilitated by GLUT-4 into the cell membrane
- Insulin inhibits the protein catabolism

- Adipose tissue:
- Insulin facilitates the storage of triglyceride by:
 - Activating plasma lipoprotein lipase
 - Inhibiting intracellular lipolysis
- It increases the glucose uptake by GLUT- 4 insertion into the cell membrane

Insulin and its analogs

- Insulin is a polypeptide hormone consisting of two peptide chains connected by disulfide bonds
- Synthesized as a precursor (proinsulin) that undergoes proteolytic cleavage to form insulin and C-peptide
- Undergoes significant hepatic extraction
- Measurement of circulating C-peptide provides a better index of insulin levels

Insulin secretion

- Insulin secretion is regulated by blood glucose levels, certain amino acids, other hormones, and autonomic mediators
- Secretion is most commonly triggered by high blood glucose
- In the pancreas, glucose is phosphorylated by glucokinase
- The products of glucose metabolism enter the mitochondrial respiratory chain and generate ATP
- The rise in ATP levels causes a block of K+ channels, leading to membrane depolarization and Ca influx
- The increase in intracellular Ca2+ causes pulsatile insulin exocytosis
- Sulfonylureas and glinides act by inhibition of K+ channels

Insulin secretion

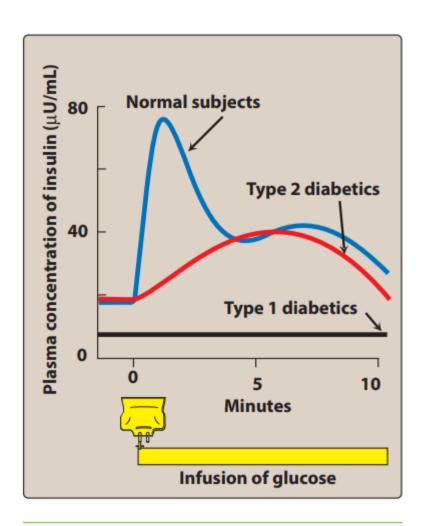


Figure 24.3

Release of insulin that occurs in response to an IV glucose load in normal subjects and diabetic patients.

Insulin secretion

- Glucose given by injection has a weaker effect on insulin secretion than oral glucose
- When given orally, glucose stimulates production of incretin hormones by the gut, which, in turn, stimulate insulin secretion by the pancreas

Sources of insulin

- Human insulin is produced by recombinant DNA technology using E.
 coli or yeast altered genetically to contain the human insulin gene
- Modifications of the amino acid sequence of human insulin have produced insulins with different PK properties
 - The 3 insulins lispro, aspart, and glulisine have a faster onset and shorter duration of action than regular insulin
 - Insulins glargine and detemir and degludec are long- acting and show prolonged flat levels following injection

Insulin administration

Insulin is degraded in the GIT if taken orally

Insulin is administered by subcutaneous injection

In a hyperglycemic emergency, regular insulin is injected IV

 Continuous subcutaneous insulin infusion (insulin pump) does not require multiple daily injections

Insulin administration

 Insulin preparations vary in their onset of activity and in duration of activity due to differences in their amino acids

 Dose, site of injection, blood supply, temperature, and physical activity can affect the duration of action of the various preparations

 Insulin is inactivated by insulin-degrading enzyme which is found mainly in the liver and kidney

Adverse reactions to Insulin

- Symptoms of hypoglycemia in excessive dose
- Weight gain
- Lipodystrophy
- Allergic reactions
- Local injection site reactions
- Diabetics with renal insufficiency may require adjustment of the insulin dose

igure 24.6

Adverse effects observed with insulin. [Note: Lipodystrophy is a local atrophy or hypertrophy of subcutaneous fatty tissue at the site of injections.]

Insulin preparation and treatment

 Caution should be paid when making any change in insulin treatment and dose

Insulin preparations

Rapid acting and short acting insulin

Intermediate acting insulin

Long acting insulin

Insulin combinations

Insulin preparations

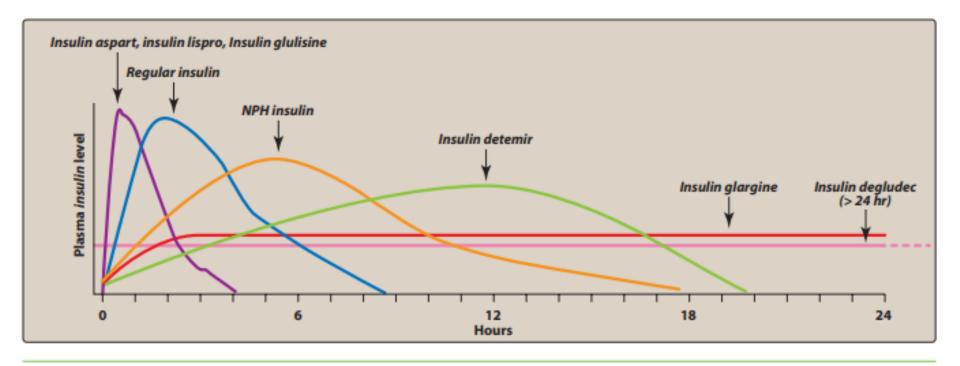


Figure 24.8

Onset and duration of action of human *insulin* and *insulin* analogs. NPH = neutral protamine Hagedorn. Modified from I. R. Hirsch. Insulin analogues. N. Engl. J. Med. 352: 174 (2005).

Rapid and short acting insulin preparations

- Include 4 preparations:
 - Regular insulin
 - Insulin lispro
 - Insulin aspart
 - Insulin glulisine

Rapid acting insulins

• Lispro, aspart and glulisine forms are classified as rapid-acting insulins because of their rapid onset and short duration of action

 Rapid acting insulins offer more flexible treatment regimens and may lower the risk of hypoglycemia

Rapid and short acting insulin preparations

 Regular insulin, insulin lispro, and insulin aspart are pregnancy category B

Insulin glulisine is pregnancy category C

Rapid and short acting insulin preparations

 Peak levels of insulin lispro are seen at 30 to 90 minutes after injection, as compared with 50 to 120 minutes for regular insulin

Insulin lispro also has a shorter duration of activity than regular insulin

Regular insulin

• A short-acting, soluble, crystalline zinc insulin

Given subcutaneously

Given IV in emergencies

Rapidly lowers blood glucose

Rapid and short acting insulin preparations

- Insulin lispro is more rapidly absorbed after subcutaneous injection than regular insulin
- Insulin aspart and insulin glulisine have pharmacokinetic and pharmacodynamic properties similar to those of insulin lispro
- Administered to mimic the prandial release
- Usually not used alone but with a longer-acting insulin to ensure proper glucose control
- Administered SC

Rapid acting insulin preparations

 Insulin lispro is usually administered 15 minutes prior to a meal or immediately following a meal

 Insulin glulisine can be taken either 15 minutes before a meal or within 20 minutes after starting a meal

 Insulin aspart should be administered just prior to the meal or up to 15 minutes following the meal

Rapid and short acting insulin preparations

 All of the rapid-acting formulations are suitable for IV administration, although regular insulin is most commonly used when the IV route is needed

• Insulin lispro, insulin aspart, and insulin glulisine may also be used in external insulin pumps

Intermediate acting insulin preparations

- Neutral protamine Hagedorn (NPH) insulin suspension of crystalline zinc insulin combined at neutral pH with the positively charged polypeptide protamine
- Insulin NPH is also called insulin isophane
- Its duration of action is intermediate
- NPH insulin should only be given subcutaneously (never IV)

Intermediate acting insulin preparations

 Useful in treating all forms of diabetes except diabetic ketoacidosis and emergency hyperglycemia

 Used for basal control and is usually given along with rapid- or shortacting insulin for mealtime control

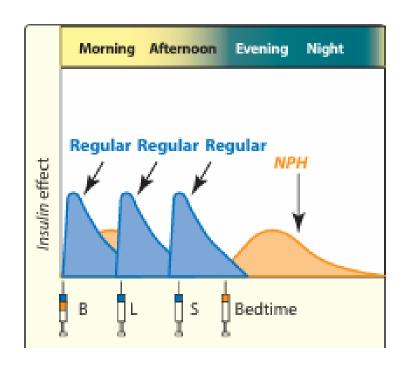
 A similar compound called neutral protamine lispro (NPL) insulin has been prepared and is used only in combination with insulin lispro (Humalog Mix ®)

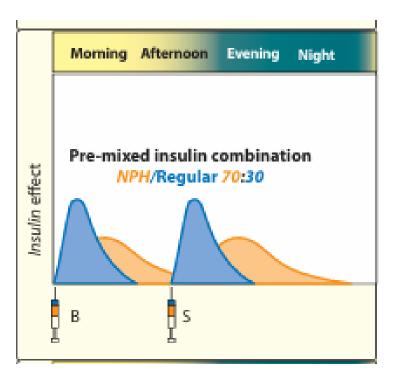
Long acting insulin preparations

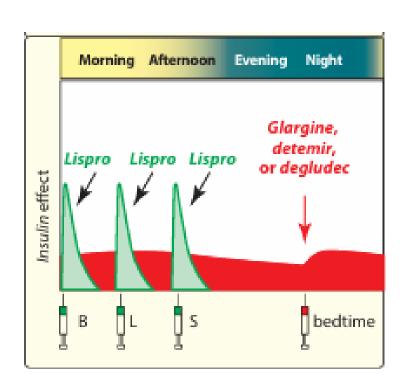
- Insulin glargine (Lantus®)
 - It is slower in onset than NPH insulin and has a flat, prolonged hypoglycemic effect with no peak
 - Given SC
- Insulin detemir
 - Has a fatty-acid side chain which enhances association to albumin
 - Slow dissociation from albumin results in long-acting properties
- Insulin Degludec
 - Insulin detemir and insulin glargine should not be mixed in the same syringe with other insulins

Insulin combinations

Various premixed combinations of human insulins are available


70% NPH insulin plus 30% regular insulin (Humulin 70/30®)


• 50% NPH insulin plus 50% regular insulin


• 75% NPL insulin plus 25% insulin lispro (Humalog Mix®)

Insulin regimens examples

Standard vs. Intensive Insulin treatment

Standard treatment involves injection of insulin twice daily

 Intensive treatment seeks to normalize blood glucose through more frequent injections of insulin (three or more times daily in response to monitoring blood glucose levels)

Standard vs. Intensive Insulin treatment

Normal mean blood glucose ≤ 115 mg/dL with HbA1c content
 ≤5.7

- For patients with diabetes:
 - Target mean blood glucose levels ≤ 154 mg/ dL
 - HbA1c ≤ 7%

• This is more likely to be achieved with intensive treatment

Standard vs. Intensive Insulin treatment

- The frequency of hypoglycemic episodes, coma, and seizures is higher with <u>intensive treatment</u>
- Patients on intensive therapy show a significant reduction in long-term complications of diabetes as retinopathy, nephropathy, and neuropathy
- Intensive therapy has not been shown to significantly reduce the macrovascular complications of diabetes
- Intensive therapy is not recommended for patients with longstanding diabetes, significant microvascular complications, advanced age, and hypoglycemic unawareness

Figure 24.9 A. Effect of tight glucose control on hypoglycemic episodes in a population of patients with type 1 diabetes receiving intensive or standard therapy. **B.** Effect of standard and intensive care on the long-term complications of diabetes. Data from O. B.Crofford . Diabetes control and complications. *Annu. Rev. Med.* 46: 267 (1995).

Synthetic amylin analog: Pramlintide

- Used as an adjunct to mealtime insulin therapy in patients with type 1 and type 2 diabetes
- Acts as amylinomimetic, delaying gastric emptying, decreasing postprandial glucagon secretion, and improving satiety
- Administered SC and should be injected immediately prior to meals
- When pramlintide is initiated, the dose of rapid- or short-acting insulin should be decreased by 50% prior to meals to avoid a risk of severe hypoglycemia
- Pramlintide may not be mixed in the same syringe with any insulin preparation

Synthetic amylin analog: Pramlintide

- Adverse effects
 - Nausea
 - Anorexia
 - Vomiting
- Pramlintide should not be given to patients with diabetic gastroparesis, cresol hypersensitivity, or hypoglycemic unawareness

Incretin mimetics

- Oral glucose results in a higher secretion of insulin than occurs with IV glucose "incretin effect"
- Incretin effect is markedly reduced in type 2 diabetes
- The incretin effect occurs because the gut releases incretin hormones, notably GLP-1 and glucose dependent insulinotropic polypeptide after a meal
- Incretin hormones are responsible for 60%-70% of postprandial insulin secretion

Incretin mimetics

- Dulaglutide (Trulicity ®)
- Semaglutide (Ozempic ®)
- Liraglutide (Saxenda®, Victoza®)
- Exenatide (Bydureon®, Byetta®)
- Injectable incretin mimetics are used for the treatment of patients with type 2 diabetes
- These agents may be used as adjunct therapy in patients who have failed to achieve adequate
- glycemic control on a sulfonylurea, metformin, a glitazone, or a combination of them

Incretin mimetics: Mechanism of action

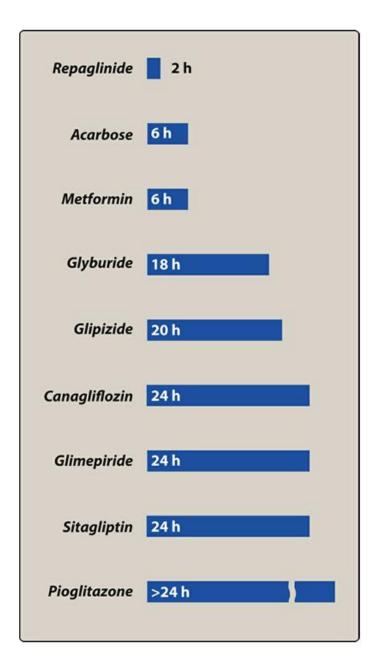
- The incretin mimetics are analogs of GLP-1 that act as GLP-1 receptor agonists
- Improve glucose- dependent insulin secretion
- Slow gastric emptying time, decrease food intake
- Decrease postprandial glucagon secretion
- Promote β-cell proliferation
- Weight gain and postprandial hyperglycemia are reduced
- HbA1c levels decline

Incretin mimetics: Mechanism of action

- Administered subcutaneously
- Abliglutide, Dulaglutide, Semaglutide (long acting, administered once weekly)
- Liraglutide is highly protein bound and has a long half life allowing for once-daily dosing
- Exenatide should be injected twice daily within 60 minutes prior to morning and evening meals Once daily (extended release)
- Exenatide should be avoided in patients with severe renal impairment

Incretin mimetics: Adverse effects

- Nausea, vomiting, diarrhea, constipation
- Patients may form antibodies to these agents, in most cases the antibodies do not result in adverse effects
- Have been associated with pancreatitis


Oral glucose-lowering agents

- Useful in the treatment of patients who have type 2 diabetes and cannot be managed by diet alone
- Patients who have developed diabetes after age 40 and have had diabetes less than 5 years are most likely to respond well to oral glucose-lowering agents
- Patients with long-standing disease may require combination of glucose-lowering drugs/insulin
- Insulin is added because of the progressive decline in β cells that occurs due to the disease or aging
- Oral glucose-lowering agents should not be given to patients with type 1 diabetes

Oral glucose-lowering agents

- Insulin secretagogues
 - Sulfonylureas
 - Meglitinides
- Insulin sensitizers
 - Biguanides: Metformin
 - Thiazolidinediones
- α-Glucosidase inhibitor
- Dipeptidyl peptidase-IV inhibitors
- SGLT2 inhibitors

Figure 24.10 Duration of action of some oral hypoglycemic agents.

Insulin sensitizers

Insulin sensitizers improve insulin action

 Lower blood sugar by improving target-cell response to insulin without increasing pancreatic insulin secretion

Biguanides

Thiazolidinediones

Biguanides

- Metformin (Glucomet[®], Glucophage[®], Diamet[®])
- Increases glucose uptake and use by target tissues, decreasing insulin resistance
- Does not promote insulin secretion (hyperinsulinemia is not a problem)
- The risk of hypoglycemia is less than with sulfonylureas

Metformin: Mechanism of action

- Reduces hepatic glucose output by inhibiting hepatic gluconeogenesis
- Slows intestinal absorption of sugars and improves peripheral glucose uptake and utilization
- Reduce hyperlipidemia (LDL and VLDL cholesterol concentrations fall, and HDL cholesterol rises)
- The patient commonly loses weight because of loss of appetite than with sulfonylureas

Metformin

 The ADA recommends metformin as the drug of choice for newly diagnosed type 2 diabetics

 Metformin may be used alone or in combination with one of the other agents as well as with insulin

Hpoglycemia may occur when metformin is taken in combination with insulin

Metformin

Metformin is well absorbed orally

Not bound to serum proteins

Not metabolized

Excreted via the urine

Metformin: Adverse effects

- Gl adverse effects
- Metformin is contraindicated in diabetic patients
- with renal and/or hepatic disease and in those with diabetic ketoacidosis
- Should be discontinued in cases of acute MI, exacerbation of CHF, and severe infection
- Rarely fatal lactic acidosis has occurred
- Long-term use may interfere with vitamin B12 absorption

Metformin

Metformin is effective in the treatment of polycystic ovary disease

 Its ability to lower insulin resistance in these women can result in ovulation and possibly pregnancy

Thiazolidinediones (glitazones)

- Insulin sensitizers
- Insulin is required for their action
- Do not promote insulin release
- Hyperinsulinemia is not a risk
- Troglitazone (withdrawn after deaths from hepatotoxicity)
- Pioglitazone (Actos®)
- Rosiglitazone (Avandia®)

Thiazolidinediones (glitazones): MoA

- The exact mechanism by which the TZDs lower insulin resistance is unknown
- TZDs target the PPARγ
- Ligands for PPARγ regulate adipocyte production and secretion of fatty acids and glucose metabolism, resulting in increased insulin sensitivity in adipose tissue, liver, and skeletal muscle
- Hyperglycemia, hyperinsulinemia, hypertriglyceridemia, and elevated HbA1c levels are improved
- LDL levels are not affected by pioglitazone
- LDL levels have increased withrosiglitazone
- HDL levels increase with both drugs

Thiazolidinediones (glitazones)

- Pioglitazone and rosiglitazone can be used as monotherapy or in combination with other glucose- lowering agents or insulin
- The dose of insulin required for adequate glucose control in these circumstances may have to be lowered
- ADA recommends pioglitazone as a tier 2 alternative for patients who fail or have contraindications to metformin therapy
- Rosiglitazone is not recommended due to concerns regarding cardiac adverse effects

Thiazolidinediones (glitazones)

- Extensively bound to serum albumin
- Both undergo extensive metabolism by CYP450
- Some metabolites of pioglitazone have activity
- Elimination of pioglitazone and its metabolites is mainly in the bile
- The metabolites of rosiglitazone are primarily excreted in the urine

Thiazolidinediones (glitazones): A/Es

- Very few cases of liver toxicity with rosiglitazone or pioglitazone
- Because of deaths due to hepatotoxicity from troglitazone it is recommended that liver enzyme are periodically checked
- Weight increase can occur
- Osteopenia and increased fracture risk
- Increased risk of myocardial infarction and death from cardiovascular causes with rosiglitazone
- Headache
- Anemia
- May cause resumption of ovulation in some women who have been anovulatory
- Premenopausal women should be counseled about the need for adequate contraception while taking TZDs

Insulin secretagogues

- \bullet Insulin secretagogues: Promote insulin release from the β cells of the pancreas
- Sulfonylureas
 - Glibenclamide= Glyburide (US) (Glucocare®, Gluconil®, Declamide®, Daonil®)
 - Glimepiride (Amaryl®)
 - Glipizide(Gluco-Rite®)
- Meglitinides
 - Repaglinide (Novonorm®)
 - Nateglinide

Sulfonylureas

- Promote insulin release from the β cells of the pancreas
- The primary drugs used today are the second- generation drugs glibenclamide, glipizide, and glimepiride

Mechanism of action:

- Stimulation of insulin release from the β cells of the pancreas by blocking the ATP-sensitive K+ channels, resulting in depolarization and Ca2+ influx
- Reduction in hepatic glucose production
- Increase in peripheral insulin sensitivity

Sulfonylureas: Adverse effects

- Weight gain
- Hyperinsulinemia
- Hypoglycemia
- Should be used with caution in patients with hepatic or renal insufficiency, because drug accumulation may cause hypoglycemia
- Renal impairment is a particular problem in the case of agents metabolized to active compounds like glibenclamide
- Glibenclamide has minimal transfer across the placenta and may be a safe alternative to insulin therapy in pregnancy

Sulfonylureas: Drug interactions

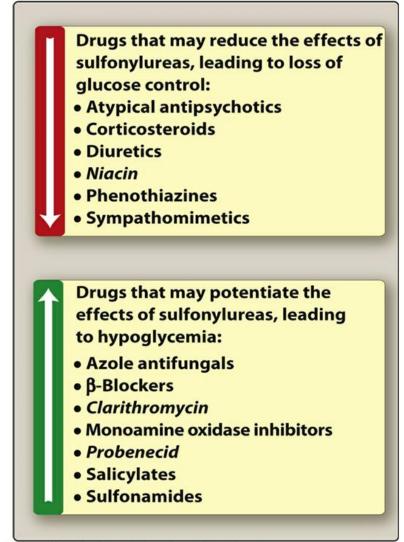


Figure 24.12 Drugs interacting with sulfonylureas.

- Repaglinide
- Nateglinide

Mechanism of action:

- Like the sulfonylureas, their action is dependent on functioning pancreatic β cells
- They bind to ATP-sensitive potassium channels leading to release of insulin
- Categorized as postprandial glucose regulators; they are particularly effective in early release of insulin after a meal

The glinides have a rapid onset and a short duration of action

 Combined therapy of these agents with metformin or the glitazones is better than monotherapy in improving glycemic control

 Glinides should not be used in combination with sulfonylureas (overlapping MOA)

 Well absorbed orally after being taken 1 to 30 minutes before meals

Metabolized to inactive products by CYP3A4

Excreted through the bile

- Drugs that inhibit CYP3A4 (ketoconazole, itraconazole, fluconazole, erythromycin, and clarithromycin) may enhance the glucose-lowering effect of repaglinide
- Drugs that increase levels of CYP3A4 (barbiturates, carbamazepine, and rifampin) may decrease their glucose lowering effect
- Repaglinide concurrent use with gemfibrozil is contraindicated due to reports of severe hypoglycemia

Glinides: Adverse effects

- Hypoglycemia
 - (lower incidence than sulfonylureas)

- Weight gain
 - (less than with sulfonylureas)
- Must be used with caution in patients with hepatic impairment

α -Glucosidase inhibitors

- Acarbose (Acrose[®], Prandase[®])
- Miglitol

Oral drugs for the treatment of patients with type 2 diabetes

α -Glucosidase inhibitors: MoA

- Taken at the beginning of meals
- Act by delaying the digestion of carbohydrates lowering postprandial glucose levels
- \bullet Reversible inhibitors of membrane-bound α glucosidase in the intestine
- This enzyme is responsible for hydrolysis of oligosaccharides to glucose and other sugars
- Acarbose also inhibits α -amylase, interfering with the breakdown of starch to oligosaccharides
- The postprandial rise of blood glucose is blunted

α -Glucosidase inhibitors: A/Es

- Flatulence, diarrhea, and abdominal cramping
- Patients with IBD, colonic ulceration, or intestinal obstruction should not use these drugs
- No hypoglycemia if used alone
- Hypoglycemic patient should be treated with glucose rather than sucrose, because sucrase is also inhibited by these drugs

Dipeptidyl peptidase-IV (DPP-4) inhibitors

- Sitagliptin (Januvia®)
- Saxagliptin (Onglyza®)
- Alogliptin
- Linagliptin (Tradjenta®)
- Orally active DPP-4 inhibitors used for the treatment of patients with type 2 diabetes
- Combinations with metformin are available
 - Sitagliptin + metformin (Januet®)
 - Vildagliptin + metformin (Eucreas®)

DPP-4 inhibitors: Mechanism of action

 Inhibit the enzyme DPP-4, which is responsible for the inactivation of incretin hormones such as GLP-1

 Prolonging the activity of incretin hormones results in increased insulin release in response to meals and reduction in glucagon secretion

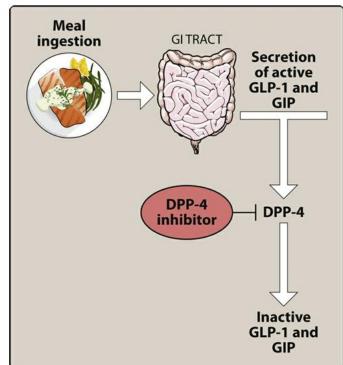


Figure 24.13 Mechanism of action of DPP-4 inhibitors.DPP-4 = dipeptidyl peptidase-4. GIP = glucose-dependent insulinotropic peptide: GLP-1 = glucagon-like peptide-1.

DPP-4 inhibitors

- DPP-4 inhibitors may be used as monotherapy or in combination with a sulfonylurea, metformin, glitazones, or insulin
- Sitagliptin and saxagliptin are excreted in urine
- Dosage adjustments for both DPP-4 inhibitors are recommended for patients with renal dysfunction
- Saxagliptin is metabolized by CYP450
- Strong inhibitors of CYP3A4/5, such as nelfinavir, atazanavir, ketoconazole, and clarithromycin, may increase levels of saxagliptin

DPP-4 inhibitors: Adverse effects

- Nasopharyngitis
- Headache
- Pancreatitis has occurred with sitagliptin
- Alogliptin and saxagliptin increase the risk of heart failure hospitalization

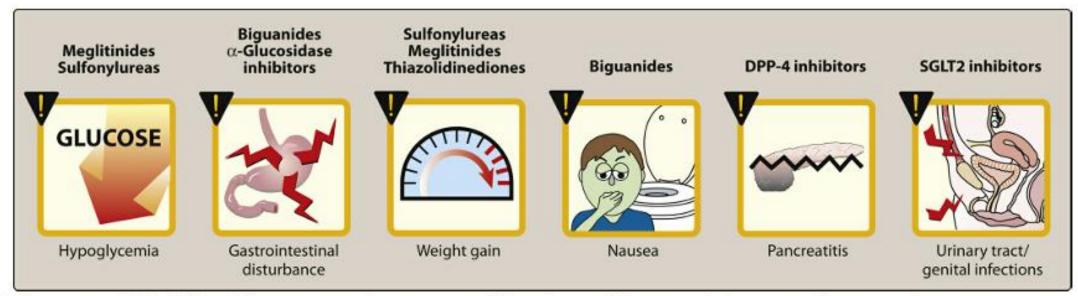
Sodium-glucose cotransporter 2 inhibitors

- Dapagliflozin (Farxiga®)
- Canagliflozin

Mechanism of action:

- SGLT2 is responsible for reabsorbing filtered glucose in the tubular lumen of the kidney
- By inhibiting SGLT2, these agents decrease reabsorption of glucose, increase urinary glucose excretion, and lower blood glucose
- Decreases reabsorption of sodium and causes osmotic diuresis reducing systolic blood pressure

SGLT2 inhibitors


- Given once daily in the morning
- Canagliflozin should be taken before the first meal of the day
- Metabolized by glucuronidation to inactive metabolites
- Should be avoided in patients with renal dysfunction

SGLT2 inhibitors: Adverse effects

- Female genital mycotic infections urinary tract infections, and urinary frequency
- Hypotension

Figure 24.11 Some adverse effects with oral hypoglycemic agents.DPP-4 = dipeptidyl peptidase-4; SGLT2 = sodium–glucose cotransporter 2.

Other agents

- Bromocriptine and colesevelam produce modest reductions in HbA1c
- The mechanism of action of glucose lowering is unknown
- Indicated for type 2 diabetes
- Modest efficacy, adverse effects limit their use in clinical practice

DRUG CLASS	MECHANISM OF ACTION	RISK OF HYPOGLYCEMIA	COMMENTS	
Biguanides Metformin	Decreases hepatic production of glucose	No	Preferred agent in type 2 diabetes. Monitor renal function and vitamin B12 levels. Avoid in severe renal impairment.	
Sulfonylureas Glimepiride Glipizide Glyburide	Stimulates insulin secretion	Yes	Weight gain can occur. Hypoglycemia most common with this class of oral agents. Avoid glyburide in renal impairment.	
Meglitinides Nateglinide Repaglinide	Stimulates insulin secretion	Yes (rarely)	Taken with meals. Short action with less hypoglycemia. Postprandial effect.	
Thiazolidinediones Pioglitazone Rosiglitazone	Binds to peroxisome proliferator-activated receptor-yin muscle, fat and liver to decrease insulin resistance	No	Effective in highly insulin-resistant patients. Once- daily dosing for <i>pioglitazone</i> . Check liver function before initiation. Avoid in liver disease or heart failure.	
DPP-4 inhibitors Alogliptin Linagliptin Sitagliptin Saxagliptin	Increases glucose- dependent insulin release; decreases secretion of glucagon	No	Once-daily dosing. May be taken with or without food. Well tolerated. Risk of pancreatitis. All require renal dose adjustment, except <i>linagliptin</i> . Do not combine with GLP-1 receptor agonists	
SGLT2 inhibitors Canagliflozin Dapaglifozin Empagliflozin Ertugliflozin	Increases urinary glucose excretion	No	Once-daily dosing in the morning. Risk of hypotension, genitourinary infections. Avoid in severe renal impairment. Canagliflozin and empagliflozin are approved to reduce cardiovascular mortality in patients with type 2 diabete. Dapagliflozin and empagliflozin are also indicated for the treatment of HFrEF.	
α-Glucosidase inhibitors Acarbose Miglitol	Decreases glucose absorption	No	Taken with meals. Adverse gastrointestinal effects. Not a preferred therapy. Reserve for patients unable to tolerate other agents.	
GLP-1 receptor agonists Dulaglutide Exenatide Liraglutide Lixisenatide Semaglutide	Increases glucose- dependent insulin release; decreases secretion of glucagon; slows gastric emptying; increases satiety	No	Injectable formulation. Liraglutide and lixisenatide are dosed once daily. Dulaglutide and semaglutide are dosed once weekly. Semaglutide is also available in an oral formulation. Exenatide is dosed twice daily and extended-release exenatide is dosed once weekly. Dulaglutide, liraglutide, and semaglutide are approved to reduce cardiovascular events in patients with type 2 diabetes. Weight loss may occur. Risk of pancreatitis. Contraindicated in patients with a history of medullary	

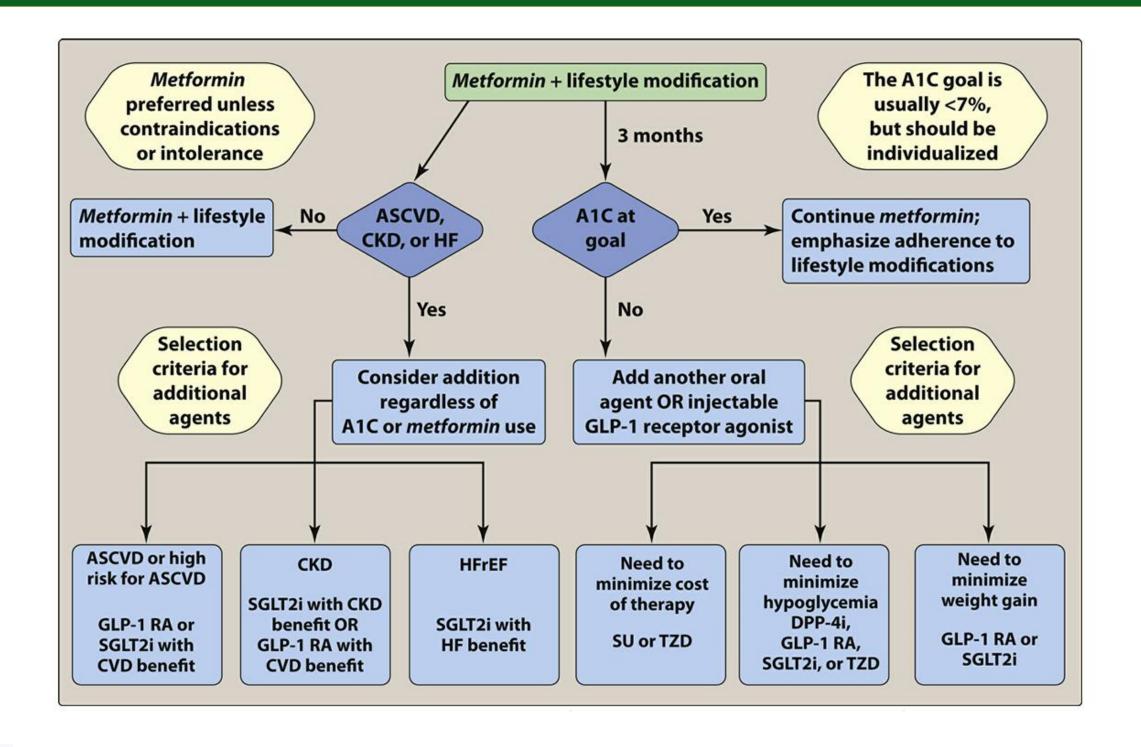


TABLE 51-6

COMPARISON OF AGENTS USED FOR TREATMENT OF DIABETES

TYPE AND AGENT	MECHANISM OF ACTION	HbA _{1c} REDUCTION (%)	AGENT-SPECIFIC ADVANTAGES	AGENT-SPECIFIC DISADVANTAGES	CONTRAINDICATIONS AND PRECAUTIONS
Oral					
Biguanides	→ Hepatic glucose production, ↑ insulin sensitivity, influence gut function	1-2	Weight neutral, do not cause hypoglycemia, inexpensive	Diarrhea, nausea, vitamin B ₁₂ deficiency, lactic acidosis	GFR <30 mL/min, CHF, radiographic contrast studies, seriously ill patients, acidosis
Dipeptidyl peptidase 4 inhibitors	Prolong endogenous GLP-1 action	0.4-0.8	Do not cause hypoglycemia		↓ Dose with renal disease
α-Glucosidase inhibitors c	↓ GI glucose absorption	0.5-0.8	↓ Postprandial glycemia	GI flatulence, elevated liver function tests	Renal/liver insufficiency
Insulin secretagogues— sulfonylureas	↑ Insulin secretion	1-2	Inexpensive	Hypoglycemia, weight gain	Renal/liver insufficiency
Insulin secretagogues— nonsulfonylureas	↑ Insulin secretion	1-2	Rapid onset of action, lower postprandial glucose	Hypoglycemia, precautions for elderly and renal impairment	Renal/liver insufficiency
SGLT2 inhibitors (the gliflozins)	↑ Renal glucose excretion	0.5-0.8	Mild weight loss and BP reduction; do not cause hypoglycemia; CV and heart failure benefit	↑ Rate of lower urinary tract and genital mycotic infections; exacerbate tendency to hyperkalemia and DKA; see text for canagliflozin	Renal insufficiency
Thiazolidinediones (the glitazones)	↓ Insulin resistance, ↑ glucose utilization	0.5-1.2	Lower insulin requirements	Peripheral edema, CHF, weight gain, fractures in females, macular edema	CHF, liver or renal insufficiency

Parenteral					
Insulin	\uparrow Glucose utilization, \downarrow hepatic glucose production, and other anabolic actions	Not limited	Well-known safety/adverse effect profile from much clinical experience	Injection, weight gain, hypoglycemia	Hypoglycemia
GLP-1 receptor agonists c,d	↑ Insulin, ↓ glucagon, slow gastric emptying, satiety	0.5-1.5	Weight loss, do not cause hypoglycemia, ↓ CV events	Injection, nausea, pancreatitis	Renal disease, agents that also slow GI motility, pancreatic disease, medullary carcinoma of thyroid
Amylin agonists b,c	Slow gastric emptying, ↓ glucagon	0.25-0.5	Reduce postprandial glycemia; weight loss	Injection, nausea, ↑ risk of hypoglycemia with insulin	Agents that also slow GI motility
Other					
Medical nutrition therapy and physical activity	↓ Insulin resistance, ↑ insulin secretion	1–3	Weight loss, improved CV health	Compliance difficult, long-term success low	
Inhaled insulin	\uparrow Glucose utilization, \downarrow hepatic glucose production, other anabolic actions	0.25-0.5	Rapid onset of action	Limited clinical experience	Pulmonary disease, smoking

Hyperglycemic emergencies

- Include diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS).
- Characterized by significant elevations in blood glucose.
- Treatment includes:
 - Fluids
 - Insulin
 - Potassium
 - Bicarbonate (only in severe cases of DKA)

Agents that increase blood glucose (hyperglycemics)

Glucagon:

- Uses
- First aid in cases of severe hypoglycemia when the victim is unconscious or for other reasons cannot take glucose orally
- Treatment of overdose with beta blockers
- It has positive inotropic action and chronotropic action on the heart