E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Analyzing Algorithm Examples

General Rules of analyzing algorithm code:

Rule 1 — for loops:
The running time of a for loop is at most the running time of the statements inside the for loop

(including tests) times the number of iterations.

Rule 2 — Nested loops:
Analyze these inside out. The total running time of a statement inside a group of nested loops
is the running time of the statement multiplied by the product of the sizes of all the loops.

Rule 3 — Consecutive Statements:
These just add (which means that the maximum is the one that counts.

Rule 4 — if/else:
if(condition)
S1
else
S2

The running time of an if/else statement is never more than the running time of the test plus
the larger of the running times of S1 and S2.

Rule 5 — methods call:
If there are method calls, these must be analyzed first.

Sorting Algorithm

1- Bubble Sort (revision) =& O(n?)

public static void bubble(int[] arr){
int temp;
for (inti=0;i<arr.length-1; i++) {
for (intj =0;j <arr.length-i-1 ; j++) {
if(arr[j+1]<arr[j]{
temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
}

25

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

2- Selection Sort & 0O(n?): named selection because every time we select the smallest

item.
public static void selection (int[] arr){

int temp, minindex;
for (inti=0;i<arrlength-1; i++) {

minindex = i;
for (intj = i+1; j <arr.length ; j++) {

if(arr[jl<arr[minindex]){

minindex=j;
}
}
if(i!'= minIndex){
temp = arr|i];

arr[i] = arr[minindex];
arr[minindex] = temp;

}
}
}
3- Insertion sort & O(n?):
public static void insertion (int[] arr){
int j, current; p—
for (inti=1;i<arr.length; i++) { >y, =
current = arrfi]; ’%Q‘E\ﬁzz \.,‘
j=i-1; Az fow
Il /
while (j>=0 && arr[j]>current){ b AR ,;f-ir-
. _ 1. ".‘ Lﬁk :‘.
?rr[J+1] = arr[j]; |/>)(\\ \%__T?@.
] i)
} | o
arr[j+1]=current;
}
}
0(n?) sorting algorithms comparison:
(run demo @ http://www.sorting-algorithms.com/)
Bubble Sort Selection Sort Insertion Sort
e Better than bubble sort e Relatively good for small lists
Very inefficient e Running time is independent e Relatively good for partially
of ordering of elements sorted lists
26
Uploaded By: Jibreel Bornat

STUDENTS-HUB.com

E Data Structure: Lectures Note

Merge sort: recursive algorithm

Merge: take 2 sorted arrays and merge them together into one.

2020/2021

Prepared by: Dr. Mamoun Nawahdah

Step 1 - if it is only one element in the list it is already sorted, return.
Step 2 - divide the list recursively into two halves until it can no more be divided.

Step 3 - merge the smaller lists into new list in sorted order.

Example:
3812743 |3|9(82 |10
38127 43| 3 9182 |10
38 | 27 43 | 3 9| 82 10
Sy LN PN
38 27 43 3 9 82 10
27 | 38 3143 9182 10
3127 (38143 10 | 82

STUDENTS-HUB.com

27

38

43 | 82

27

Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note

Java code:
void sort (int nums|[],
if (left <
int m

}

void merge (int nums|[],

2020/2021 Prepared by: Dr. Mamoun Nawahdah
int left, int right) {
right) {

left,
m+ 1,
left,

int left,

(left + right)
sort (nums,
sort (nums,
merge (nums,

/ 2;// Find the middle point

m); // Sort first halve

right); // Sort second halve

m, right); // Merge the sorted halves
int m, int right) {

int nl = m - left + 1;
int n2 = right - m;
int Left arr[] = new int[nl];
int Right arr[] = new int[n2];
for (int 1 = 0; 1 < nl; ++1)
Left arr([i] = nums[left + i];
for (int 7 = 0; j < n2; ++73)
Right arr([j] = nums[m + 1 + J];
int 1 = 0, 7 = 0;
int k = left;
while (i < nl && J < n2) |
if (Left arr[i] <= Right arr[j]) {
nums [k] = Left arr([i];
i++;
} else ({
nums [k] = Right arr[j];
J++;
}
k++;
}
while (i < nl) {
nums [k] = Left arr[i];
i++;
k++;
1
while (j < n2) {
nums [k] = Right arr[j];
J++;
k++;

H.W: implement merge sort your own

STUDENTS-HUB.com

28

Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

Searching elements in an array:

af2l=5 : O(1)
find (8) : Ofn)
Case 1: unordered array: delete (item) : O(n)

3.l 7 20]32 45

find (60)
Finding Index

L2 = 5w a[3]=32

|_7T+3_J = 5 wemmp a[5] = 55

[Z2] = & mm [s1= 60

Case 2: ordered array: -Binary search-

First Search ©on find (item) = O(log,n)
2= = (i-1) = log,n
Third Search % 2 2 1
. 1024 10
L]
(i-1)™ Search 2 1048576 (Million) 20
ih Search e 1099511627776 (Trillion) 40

Inserting and deleting items from ordered array

Insert (52)

Insert (item) = O (n)
Search (item) = O (log.n)

Delete (55)
Delete (item) = O (n)

29

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

