
 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

25

 Analyzing Algorithm Examples
General Rules of analyzing algorithm code:

Rule 1 — for loops:
The running time of a for loop is at most the running time of the statements inside the for loop
(including tests) times the number of iterations.

Rule 2 — Nested loops:
Analyze these inside out. The total running time of a statement inside a group of nested loops
is the running time of the statement multiplied by the product of the sizes of all the loops.

Rule 3 — Consecutive Statements:
These just add (which means that the maximum is the one that counts.

Rule 4 — if/else:
if(condition)
 S1
else
 S2

The running time of an if/else statement is never more than the running time of the test plus
the larger of the running times of S1 and S2.

Rule 5 — methods call:
If there are method calls, these must be analyzed first.

Sorting Algorithm

1- Bubble Sort (revision)  O(n2)

public static void bubble(int[] arr){
 int temp;
 for (int i = 0; i < arr.length-1; i++) {
 for (int j = 0; j < arr.length-i-1 ; j++) {
 if(arr[j+1]<arr[j]){
 temp = arr[j];
 arr[j] = arr[j+1];
 arr[j+1] = temp;
 }
 }
 }
}

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

26

2- Selection Sort  O(n2): named selection because every time we select the smallest
item.

public static void selection (int[] arr){
 int temp, minIndex;
 for (int i = 0; i < arr.length-1; i++) {
 minIndex = i;
 for (int j = i+1; j <arr.length ; j++) {
 if(arr[j]<arr[minIndex]){
 minIndex=j;
 }
 }
 if(i!= minIndex){
 temp = arr[i];
 arr[i] = arr[minIndex];
 arr[minIndex] = temp;
 }
 }
}

3- Insertion sort  O(n2):
public static void insertion (int[] arr){
 int j, current;
 for (int i = 1; i < arr.length; i++) {
 current = arr[i];
 j=i-1;
 while (j>=0 && arr[j]>current){
 arr[j+1] = arr[j];
 j--;
 }
 arr[j+1]=current;
 }
}

O(n2) sorting algorithms comparison:
(run demo @ http://www.sorting-algorithms.com/)

Bubble Sort Selection Sort Insertion Sort

Very inefficient
 Better than bubble sort
 Running time is independent

of ordering of elements

 Relatively good for small lists
 Relatively good for partially

sorted lists

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

27

Merge sort: recursive algorithm

Merge: take 2 sorted arrays and merge them together into one.

Step 1 − if it is only one element in the list it is already sorted, return.
Step 2 − divide the list recursively into two halves unƟl it can no more be divided.
Step 3 − merge the smaller lists into new list in sorted order.
Example:

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

28

Java code:

void sort(int nums[], int left, int right) {
 if (left < right) {
 int m = (left + right) / 2; // Find the middle point
 sort(nums, left, m); // Sort first halve
 sort(nums, m + 1, right); // Sort second halve
 merge(nums, left, m, right); // Merge the sorted halves
 }
}

 void merge(int nums[], int left, int m, int right) {
 int n1 = m - left + 1;
 int n2 = right - m;

 int Left_arr[] = new int[n1];
 int Right_arr[] = new int[n2];

 for (int i = 0; i < n1; ++i)
 Left_arr[i] = nums[left + i];
 for (int j = 0; j < n2; ++j)
 Right_arr[j] = nums[m + 1 + j];

 int i = 0, j = 0;

 int k = left;
 while (i < n1 && j < n2) {
 if (Left_arr[i] <= Right_arr[j]) {
 nums[k] = Left_arr[i];
 i++;
 } else {
 nums[k] = Right_arr[j];
 j++;
 }
 k++;
 }

 while (i < n1) {
 nums[k] = Left_arr[i];
 i++;
 k++;
 }

 while (j < n2) {
 nums[k] = Right_arr[j];
 j++;
 k++;
 }
 }

H.W: implement merge sort your own

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

29

Searching elements in an array:

Case 1: unordered array:

Case 2: ordered array: -Binary search-

Inserting and deleting items from ordered array

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

