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Note to Students

This Student Solutions Manual and Study Guide for the fourth edition of Discrete Mathematics with
Applications contains complete solutions to every third exercise in the text that is not fully answered
in Appendix B. It also contains additional explanation, and review material.

The specific topics developed in the book provide a foundation for virtually every other mathe-
matics or computer science subject yon might study in the future. Perhaps more important, however,
is the book’s recurring focus on the logical principles used in mathematical reasoning and the tech-
niques of mathematical proof.

Why should it matter for you to learn these things? The main reason is that these principles and
techniques are the foundation for all kinds of careful analyses, whether of mathematical statements,
computer programs, legal documents, or other technical writing. A person who understands and
knows how to develop basic mathematical proofs has learned to think in a highly disciplined way, is
able to deduce correct consequences from a few basic principles, can build a logically connected chain
of statements and appreciates the need for giving a valid reason for each statement in the chain, is
able to move flexibly between abstract symbols and concrete objects, and can deal with multiple
levels of abstraction. Mastery of these skills opens a host of interesting and rewarding possibilities
in a person’s life.

In studying the subject matter of this book, you are embarking on an exciting and challenging
adventure. I wish you much success!

Acknowledgements

I am enormously indebted to the work of Tom Jenkyns, whose cagle eye, mathematical knowledge,
and understanding of language made an invaluable contribution to this volume. I am also most
grateful to my husband, Helmut Epp and my daughter, Caroline Epp, who constructed all the
diagrams and, especially, to my husband, who provided much support and wise counsel over many
years.

Susanna S. Epp

iv

© 2012 Cengage Leaming. All Rights Reserved. May not be scunned. copied or duplicated, or posted to a publiely accessible website, in whole or in part.

STUDENTS-HUB.com Uploaded By: anonymous



Chapter 1: Speaking Mathematically

The aim of this chapter is to provide some of the basic terminology that is used throughout the book.
Section 1.1 introduces special terms that are used to describe aspects of mathematical thinking and
contains exercises to help yvou start getting used to expressing mathematical statements both formally
and informally. To be successful in nathematics, it is important to be able comfortably to translate
from formal to informal and from informal to formal modes of expression. Sections 1.2 and 1.3
introduce the basic notions of sets, relations, and functions.

Section 1.1

6. a. s is negative  b. negative: the cube root of s is negative (Or: /s is negative)
c. is negative; /s is negative (Or: the cube root of s is negative)
9. a. have at most two real solutions b. has at most two real solutions ¢. has at most two real

solutions  d. is a quadratic equation; has at most two real solutions e. E has at most two
real solutions

Section 1.2

6. T> and T_3 each have two elements, and Ty and T each have one element.
Justification: Ty = {2,2%} = {2,4}, T-3 = {-3.(-3)%} = {-3,9},
Ty = {1,1?} = {1,1} = {1}, and Tp = {0,0%} = {0,0} = {0}.

9. ¢. No: The only clements in {1,2} are 1 and 2, and {2} is not equal to either of these.

d. Yes: {3} is one of the elements listed in {1, {2}, {3}}.
e. Yes: {1} is the set whose only element is 1.
g. Yes: The only clement in {1} is 1, and 1 is an element in {1,2}.
h. No: The only elements in {{1},2} are {1} and 2, and 1 is not equal to either of thesc.
4. Yes: The only element in {1} is 1, which is is an element in {1}. So every element in {1} is
in {1}.

12. All four sets have nine elements.
a. S x T ={(2.1).(2.3),(2,5), (4, 1), (4,3). (4,5),(6,1),(6,3). (6,5)}
b. T x S ={(1,2),(3,2), (5,2), (L, 4), (3.4), (5.4),(1,6),(3,6), (5,6)}
c. Sx8=1{(2,2).(2,4),(2,6),(4,2),(4,4), (4,6),(6,2),(6,4), (6,6)}
d. TxT=1{(1,1),(1,3),(1.5).(3.1),(3,3).(3,5).(5,1).(5,3), (5. 5) }

Section 1.3

6. a. (2.4) € R because 4 = 22,
(4,2) ¢ R because 2 # 42.
(—3.9) € R because 9 = (=3)2.
(9, =3) ¢ R because —3 # 9°.
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2 Chapter 1: Speaking Mathematically

b.
YA

! 9
T /

-

12. T is not a function because, for example, both (0,1) and (0, —1) are in T but 1 # —1. Many
other examples could be given showing that T does not satisfy property (2) of the definition
of function.

15. ¢. This diagram does not determine a function because 4 is related to both 1 and 2, which
violates property (2) of the definition of function.
d. This diagram defines a function; both properties (1) and (2) are satisfied.

e. This diagram does not determine a function because 2 is in the domain but it is not related
to any element in the co-domain.

18. W(-B) = =n(Z) =2
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Chapter 1 Review 3
Review Guide: Chapter 1

Variables and Mathematical Statements

What are the two main ways variables arc used? (p. 1)
What is a universal statement? Give one example. (p. 2)
What is a conditional statement? Give one example. (p. 2)
What is an existential statement Give one example. (p. 2)
Give an example of a universal conditional statement. (p. 3)
Give an example of a universal existential statement. (p. 3)

Give an example of an existential universal statement. (p. 4)

Sets

What does the notation x € S mean? (p. 7)
What does the notation & ¢ S mean? (p. 7)
How is the set-roster notation used to define a set? (p. 7)

What is the axiom of extension? (p. 7)

What do the symbols R, Z, and Q stand for? (p. 8)

What is the sct builder notation? (p. 8)

o If S is a set and P(x) is a property that elements may or may not satisfy, how should the
following be read out loud: {z € S| P(x)}? (p. 8)

Subsets

o If A and B are sets, what does it mean for A to be a subset of B? What is the notation that
indicates that A is a subsct of B? (p. 9)

e What does the notation A ¢ B mean? (p. 9)

e What does it mean for one set to be a proper subset of another? (p. 9)

e How are the symbols € and € different from each other? (p. 10)

Cartesian Products

e What does it mean for an ordered pair («a,b) to equal an ordered pair (¢,d)? (p. 11)

e Given sets A and B, what is the Cartesian product of A and B.? What is the notation for the
Cartesian product of A and B? (p. 11)

e What is the Cartesian plane? (p. 12)

Relations
e What is a relation from a set A to a set B? (p. 14)
o If R is a relation from A to B, what is the domain of R? (p. 14)
e If R is a relation from A to B, what is the co-domain of R? (p. 14)
e If R is a relation from A to B, what does the notation 2 Ry mean? (p. 14)
o How should the following notation be read: @ Ry? (p. 14)
e How is the arrow diagram for a relation drawn? (p. 16)

Functions

e What is a function F from a set A to a set B? (p. 17)
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4 Chapter 1. Speaking Mathematically

e What are less formal/more formal ways to state the two properties a function F must satisfy?

(p. 17)
e Given a function F' from a set A to a set B and an element z in A, what is F(z)? (p. 17)

¢ What is the squaring function from R to R? (p. 20)

e What is the successor function from Z to Z? (p. 20)

e Give an example of a constant function. (p. 20)

e What is the difference between the notations f and f(z)? (pp. 17, 20)

e If f and g are functions from A to B, what does it mean for f to equal g? (p. 20)
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Chapter 2: The Logic of Compound Statements

The ability to reason using the principles of logic is essential for solving problemns in abstract math-
ematics and computer science and for understanding the reasoning used in mathematical proof and
disproof. In this chapter the various rules used in logical reasoning are developed both symbolically
and in the context of their somewhat limited but very important use in everyday language.
Exercise sets for Sections 2.1-2.3 and 3.1-3.4 contain sentences for you to negate, write the
contrapositive for, and so forth. These are designed to help you learn to incorporate the rules of logic
into your general reasoning processes. Chapters 2 and 3 also present the rudiments of symbolic logic
as a foundation for a variety of upper-division courses. Symbolic logic is used in, among others, the
study of digital logic circuits, relational databases, artificial intelligence, and program verification.

Section 2.1

9 (nVE)A~(nAE)

15. When you are filling out a truth table, a convenient way to remember the definitions of ~
(not), A (and), and V (or) is to think of them in words as follows.

(1) A not statcment has opposite truth value from that of the statement. So to fill out a
column of a truth table for the negation of a statement, you look at the column representing
the truth values for the statement. In each row where the truth value for the statement is 7T,
you place an F in the corresponding row in the column representing the truth value of the
negation. In each row where the truth value for the statement is F, you place a T in the
corresponding row in the column representing the truth value of the negation.

(2) The only time an and statement is true is when both components are true. Thus to fill
out a column of a truth table where the word and links two component statements, just look
at the columns with the truth values for the component statements. In any row where both
columns have a T', you put a T in the same row in the column for the end statement. In every
other row of this column, you put a F.

(3) The only time an or statement is false is when both components are false. So to fill out a
column of a truth table where the word or links two component statements, you look at the
columns with the truth values for the component statements. In any row where both columns
have a F, you put a F in the same row in the column for the or statemnent. In every other
row of this column, you put a T

plaglr ] ~q|~qvr||pA(~gVvr)
T|T|T| F T T
T|T|F| F F F
T|\F|T| T T T
T|F|F{| T T T
F|T |T| F T F
F{T|F| F F F
F{F|T| T T F
F|F|F| T T F

The truth table shows that p A (qVr) and (p A q) V (p Ar) always have the same truth values.
Thercfore they are logically equivalent. This proves the distributive law for A over V.

K
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6 Chapter 2: The Logic of Compound Statements
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different truth values

The truth table shows that (pV ¢) vV (pAr) and (pV q) A r have different truth values in rows
2, 3, and 6. Hence they are not logically equivalent.

30. The dollar is not at an all-time high or the stock market is not at a record low.
33. -10>2zorz>2

39. The statement’s logical form is (p A ¢) V ((r A 8) A t), so its negation has the form

~((pAg)V((ras)At)) ~(pAgGA~((rAs)At))
(~vpV A~ A(~ (P As)V ~t))

(~pV~ @ A((~ 7V~ )V~ i),

Thus a negation is (num.orders > 50 or num_instock < 300) and ((50 > num_orders or
num-orders > 75) or num.instock < 500).

42.
plalri~p|~q|~prq|agAr | ((~pAgdAgAT)) || (~pA@A(gAT)A~q
T|T|T| F | F F T F F
Ti{T|F| F| F F F F F
T|(F|T| F | T F F F F
T|F|F| F| T F F F F
FlT|T|| 7| F T T T F
FlT|Fr|| 7| F T F F F
FlFlT| 7| T F F F F
FIFI|F| T ]| T F F F F
all F's

Since all the truth values of ((~pA @) A{gAT))A~gare F, (~pAgA{gAT))A~qisa
contradiction.

45. Let b be “Bob is a double math and computer science major,” m be “Ann is a math major,”
and a be “Ann is a double math and computer science major.” Then the two statements can
be symbolized as follows: a. (bAm)A ~a and b. ~ (bAa)A (mADb). Note: The entries
in the truth table assume that a person who is a double math and computer science major is
also a math major and a computer sciecnce major.
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Section 2.2 7

b [m|al|~a|bAam]|mAb|bAra|~@GAa) || @AmMA~a | ~(bAa)A(mAD)
T|ITI|T F T T T F F F
T|T|F T F T F T T T
T|F|T| F T F T F F F
T | F{F T F F F T F F
F|T|T F F F F T F F
F|T|F T F F F T F F
FlF|T F F F F T F F
F|F|F T F F F T F F

same tru‘;h values
The truth table shows that (b A m)A ~ a and ~ (b A a) A (m A b) always have the same truth
values. Hence they are logically equivalent.

51. Solution 1: pA(~qVp) pA(pV ~y¢q) commutative law for V

P absorption law
Solution 2: pA(~qVp) = (pA~q)V(pAp) distributive law
= (pA~q@Vyp identity law for A
= p by exercise 50.

54. (pA(~(~pV@)V(PAg) (pA(~(~pA~q)V(pAg) De Morgan’s law

= (pA(pA~q)VI(pAQ) double negative law

= ((pApA~@Q))V(pAg) associative law for A
= (pA~Q)V(PAQ) idempotent law for A
= pA(~gVY) distributive law

= pA(gv~gq) commutative law for Vv
= pAt negation law for v

= p identity law for A

Section 2.2

6.
pla|~p|~pAg|pvg| @V Vi~pAg) || (Ve VI(~pAg) —aq
T(T | F F T T T
T|F|| F F T T F
F|T| T T T T T
FI\F| T F F F T
15.
pla|r|ag—=r|poaglp=(@—r)|p—ag)—r
TIT (T T T T T
T|T|F F T F F
T|F|T T F T T
T|F|F T F T T
F|T|T T T T T
F|T|F F T T F —
F|F|T T T T F —
F|F|F T T T F —

different truth values

The truth table shows that p — (¢ — ) and (p — ¢) — r do not always have the same truth
values. (They differ for the combinations of truth values for p, ¢, and r shown in rows 6, 7,
and 8.) Therefore they are not logically equivalent.
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8 Chapter 2: The Logic of Compound Statements

18. Part I: Let p represent “It walks like a duck,” ¢ represent “It talks like a duck,” and r represent
“It is a duck.” The statement “If it walks like a duck and it talks like a duck, then it is a duck”
has the form pA ¢ — r. And the statement “Either it does not walk like a duck or it does not
talk like a duck or it is a duck” has the form ~pVv ~ gV .

~pVeg | p Agor || (~pVY~g)Vr

2
3
2
e
=
-

T N N N N
CECEE R
SRR T
NNNNT YT
NRmTNN T
CECECECIUEU RS IS
NNNSNSYT
NNNNSSTS
NNNSSNTS

same truth values

The truth table shows that p Ag — 7 and (~ pV ~ ¢) V r always have the same truth values.
Thus the following statements are logically equivalent: “If it walks like a duck and it talks like
a duck, then it is a duck” and “Either it does not walk like a duck or it does not talk like a
duck or it is a duck.”

Part 2: The statement “If it does not walk like a duck and it does not talk like a duck then
it is not a duck” has the form ~ pA ~ g —~ 7.

pla|r|~p|~a|~r|pAg|~pA~q| pAg—oT || (~pA~g)—~T
T|T|T F F F T F T T

T|T|F Ia F T T F F T —
T|F|T F T r F '3 T T

TV F | F F T T F F T T

F|T|T T F F F F T T

F|T,|F T F T F F T T

FIF}|T T T F F T T F —
F|F|F T T T F T T T

different truth values

The truth table shows that p Aq¢ — r and (~ pA ~ g) =~ 7 do not always have the same
truth values. (They differ for the combinations of truth values of p, g, and r shown in rows 2
and 7.) Thus they are not logically equivalent, and so the statement “If it walks like a duck
and it talks like a duck, then it is a duck” is not logically equivalent to the statement “If it
does not walk like a duck and it does not talk like a duck then it is not a duck.” In addition,
because of the logical equivalence shown in Part 1, we can also conclude that the following
two statements are not logically equivalent: “Either it does not walk like a duck or it does not
talk like a duck or it is a duck™ and “If it does not walk like a duck and it does not talk like a
duck then it is not a duck.”

21. By the truth table for —, p — ¢ is false if, and only if, p is true and q is false. Under these
circumstances, (b) pV ¢ is true and (¢) ¢ — p is also true.
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Section 2.2 9

27.
pla|~p|~ala—p|~p—~y
T|T| F | F T T
T|F| F | T T T
F|T| T | F F F
Fl|FI|l T | T T T

same truth values

The truth table shows that ¢ — p and ~ p —~ ¢ always have the same truth values, so they
are logically equivalent. Thus the converse and inverse of a conditional statement are logically
equivalent to cach other.

30. The corresponding tautology isp A (V7)< (p AQ)V(p Ar)

plaglr gvr | pAaglpAr|pAave) | pAgVip AT pA{gVT) e
(pAg)V(pAr)
T|T|T T T T T T T
T|\T I F T T F T T T
T|F|T T F T T T T
T|F|F I3 F F 3 F T
F|T|T T r F 1 2 T
F|T|F T F F o F T
FlIFT T F F I F T
FIF|F F F F F F T
[ —
all T’s

The truth table shows that p A(qVr) < (p Aq)V(p Ar) is always true. Hence it is a tautology.

33. If this integer is even, then it equals twice some integer, and if this integer equals twice some
integer, then it is cven.

36. The Personnel Director did not lic. By using the phrase “only if,” the Personnel Director set
forth conditions that were necessary but not sufficient for being hired: if you did not satisfy
those conditions then you would not be hired. The Personnel Director’s statement said nothing
about what would happen if you did satisly those conditions.

39, b. If a sccurity code is not entered, then the door will not open.
45. If this computer program produces error messages during translation, then it is not correct.
If this computer programn is correct, then it does not produce error messages during translation.
48. a. pV~q—1r Vg = ~(pV~gV(rVvy) [an acceptable answer|
= (~pA~(~qg)V(rVg) by DeMorgan’s law
[another acceptable answer/

(~p Aq)V(rvyg by the double negative law
[another acceptable answer/

Il

(~pAg)V(rvyg) by part (a)
~(~{~p AQA~ (V) by De Morgan’s law
~{(~{(~pAgA(~rA~gq)) by DeMorgan's law

b. pV~q—1r Vg

e e m

The steps in the answer to part (b) would also be acceptable answers for part (a).

51. Yes. As in exercises 47-50, the following logical equivalences can be used to rewrite any
statement form in a logically equivalent way using only ~ and A:

p—=a=~p Vg p—q={(~pVgAr{~qVp)
pNVGg=~(~pA~q) ~(~p)=p

S T‘Lgi 2 %écﬂming. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly ucctsjiblc website, in whole ar in part.
TUDENTS: .com ploaded BY: anonymous



10 Chapter 2: The Logic of Compound Statements

The logical equivalence p Ag= ~ (~ pV ~ ¢) can then be used to rewrite any statement form
in a logically equivalent way using only ~ and V.

Section 2.3

9. premises conclusion

plal|lr|~g[~r[pAq||pAgqo~r [ pv~rg][~g—p ~T

T|T|T F F T F T T

T|T|F F T T T T T T ~——eritical row
T|F | T T F F T T T F <——critical row
T|F|F T T F T T T T <—critical row
F|T|T F F F T F T

F|T]|F F T F T F T

F|F|T T F F T T F

F|F|F T T F T T F

Rows 2, 3, and 4 of the truth table are the critical rows in which all the premises are true, but
row 3 shows that it is possible for an argument of this form to have true premises and a false
conclusion. Hence the argument form is invalid.

12. b. premises conclusion
——
plaijfp—q|~p ~q
T|T T F
T|F F F
F T T T I +«——— critical row
F|F T T T <—— critical row

Rows 3, and 4 of the truth table represent the situations in which all the premises are true,
but row 3 shows that it is possible for an argument of this form to have true premises and a
false conclusion. Hence the argument form is invalid.

15. premise  conclusion
Pl q q pvyq
T|T T T <«—1— critical Tow
T|F F
F|T T T <—1— critical row
FI|F F

The truth table shows that in the two situations (represented by rows 1 and 3) in which the
premise is true, the conclusion is also true. Therefore, the the second version of generalization

is valid.
21. premises conclusion

pla|r|pVYg|p—or|g—or T

T{T|T T T T T <—— critical row
T|T|F T F F

T|F|T T T T T <+—— critical row
T|F|F T F T

F|T|T T T T T <—— critical row
F|T|F T T F

F|F|T F T T

F|F|F F T T

¢ Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly :tcTSﬁ
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Section 2.4 11

The trusth table shows that in the three situations (represented by rows 1, 3, 5) in which all
three premises are true, the conclusion is also true. Therefore, proof by division into cases is
valid.

30. form: p— ¢ invalid, converse error

q
D

33. A valid argument with a false conclusion must have at least one false premise. In the following
example, the second premise is false. (The first premise is true because its hypothesis is false.)

If the square of every real number is positive, then no real number is negative.
The square of every real number is positive.
Therefore, no real number is negative.

42. (1) g—r premiseb

~T premise d
~q by modus tollens

(2) pVg premisea

~q  by(l)
P by elimination

(3) ~g—uAs premisee
~q by (1)
uUNS by modus ponens

(4) uns by(3)

8 by specialization
(3 » by (2)
5 by (4)

p As by conjunction

(6) pAs—t premisec
pAs by (5)
t by modus ponens

Section 2.4

6. The input/output table is as follows:

Input | Output
P Q R
1 1 0
1 0 1
0 1 0
0 0 0
12. (PVQ)V~(QAR)
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12 Chapter 2: The Logic of Compound Statements

15.

OR

AND

0 NOT

27. The Boolean expression for circuit (a) is ~ P A(~ (~ P AQ)) and for circuit (b) it is ~ (P VQ).
We must show that if these expressions are regarded as statement forms, then they are logically
equivalent. But

~PA(~(~PAQ) ~P A(~(~P)V~Q) by De Morgan’s law

= ~PA(PV~Q) by the double negative law
= (~PAP)V(~PA~Q) by the distributive law
= cV(~PA~Q) by the negation law for A
= ~PA~Q by the identity law for Vv
= ~(PVQ) by De Morgan’s law.
33. a.
PIQI(PIQ) = ~[(PIQ)A(P|Q)] by definition of |
= ~(P|Q) by the idempotent law for A
= ~[~(PAQ) by definition of |
= PAQ by the double negative law.
b.
PA(~QVR) = (Pl(~QVR)|(P|(~QVR)

by part (a)

(Pl(~ @r QIRIRDI(P|[(~ Q@ Q)| (R R)])
by Example 2.4.7(b)

PRI NQIQNRIRD(PI(QI QLN (R[R)])
by Example 2.4.7(a)

i

Section 2.5

3. 287=256+16+8+4+2-+1=100011111,
6. 1424 = 1024 + 256 + 128 + 16 = 10110010000,

9. 110110, =32+ 16+ 4 + 2 = 5449

11010,
18. — 1101,
1101,

21.b. §=0,T=1 ¢ §=0,T=0

24. 6710 = (64 + 2 + 1);0 = 01000011, — 10111100 — 10111101.
So the two’s complement is 10111101.

30. 10111010 — —(01000101 + 1) — —01000110; = —(64 + 4 + 2)10 = —7010
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Section 2.5 13

36. 12350 = (64 + 32+ 16 + 8 + 2 + 1);0 = 01111011,
—9419 = —(64 + 16 + 8 + 4 + 2);p = —01011110; — (10100001 + 1) — 10100010

So the 8-bit representations of 123 and —94 are 01111011 and 10100010. Adding the 8-bit
representations gives
01111011
+ 10100010
100011101

Truncating the 1 in the 28th position gives 00011101. Since the leading bit of this number is
a 0, the answer is positive. Converting back to decimal form gives

00011101 — 111015 = (16 + 8 + 4 + 1)19 = 2910.
So the answer is 29.
39. EODg = 14-16% + 0+ 13 = 359710
42. B53DF8;s = 101101010011 1101 1111 1000,
45. 10110111110001012 = B7C516

q PIFTIRY
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14 Chapter 2: The Logic of Compound Statements
Review Guide: Chapter 2

Compound Statements

o What is a statement? (p. 24)

If p and g are statements, how do you symbolize “p but ¢” and “neither p nor ¢"7 (p. 25)
What does the notation @ < @ < b mean? (p. 26)

What is the conjunction of statements p and ¢? (p. 27)

What is the disjunction of statements p and q? (p. 28)

What are the truth table definitions for ~ p, pAgq, pVq. p — g, and p « ¢? (pp. 26-28,39,45)
¢ How do you construct a truth table for a general compound statement form? (p. 29)

What is exclusive or? (p. 29)

What is a tautology, and what is a contradiction? (p. 34)

What is a conditional statement? (p. 40)

Given a conditional statement, what is its hypothesis (antecedent)? conclusion (consequent)?
(p. 39-40)

What is a biconditional statement? (p. 45)

What is the order of operations for the logical operators? (p. 46)

Logical Equivalence

What does it mean for two statement forms to be logically equivalent? (p. 30)

How do you test to sec whether two statement forms are logically equivalent? (p. 30)

How do you annotate a truth table to explain how it shows that two statement forms are or
are not logically cquivalent? (p. 30-81)

What is the double negative property? (p. 31)

e What are De Morgan’s laws? (p. 32)

e How is Theorem 2.1.1 used to show that two statement forms are logically equivalent? (p. 36)

e What are negations for the following forms of statements? (pp. 32,42)
- PAg
-pVag
— p—q (if p then ¢)
Converse, Inverse, Contrapositive

e What is the contrapositive of a statement of the form “If p then ¢”? (p. 43)

e What are the converse and inverse of a statement of the form “If p then ¢"7 (p. 44)

e Can you express converses, inverses, and contrapositives of conditional statements in ordinary
English? (pp. 43-44)

e If a conditional statement is true, can its converse also be true? (p. 44)

e Given a conditional statement and its contrapositive, converse, and inverse, which of these are
logically equivalent and which are not? (p. 44)

Necessary and Sufficient Conditions, Only If

o What does it mean to say that something is true only if something else is true? (p. 45)

e How are statements about only-if statements translated into if-then form.? (p. 45)

e What does it mean to say that something is a necessary condition for something else”? (p. 46)
o What does it mean to say that something is a sufficient condition for something else? (p. 46)
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Chapter 2 Review 15

e How are statements about necessary and suflicient conditionus translated into if-then form.?(p.

47)

Validity and Invalidity

How do you identify the logical form of an argument? (p. 24)
What does it mean for a form of argument to be valid? (p. 51)

How do you test to see whether a given form of argument is valid? (p. 52)

How do you annotate a truth table to explain how it shows that an argument is or is not valid?
(pp. 52, 59, A9-A10)

e What does it mean for an argument to be sound? (p. 59)
e What are modus ponens and modus tollens? (pp. 52-53)
e Can you give examples for and prove the validity of the following forms of argument? (pp.
54-56)
- P , q
PV and o pvg
Phg and PAg
P Soq
- pVg pVa
~q and ~p
P Sooq
- p—q
qg—r
p—=r
- Pvq
p—r
q—r

-
What are converse error and inverse error? (pp. 57-58)
Can a valid argument have a lalse conclusion? (p. 58)
Can an invalid argument. have a true conclusion? (p. 59)

e o o o

Which of modus ponens, modus tollens, converse error, and inverse error are valid and which
are invalid? (pp. 53,58)
What is the contradiction rule? (p. 59)

How do you use valid forms of argnment to solve puzzles such as those of Raymond Smullyan
about knights and knaves? (p. 60)

Digital Logic Circuits and Boolean Expressions

o Given a digital logic circuit, how do you
— find the output for a given set of input signals (p. 68)
— construct an input/output table (pp. 08-69)
— find the corresponding Boolean expression? (pp. 69-70)

[ ]

What is a recognizer? (p. 70)

Given a Boolean expression, how do yon draw the corresponding digital logic circuit? (pp.
70-71)

Given an input/output table, how do you draw the corresponding digital logic circuit? (p. 72)

What is disjunctive normal formn? (p. 72)
What does it mean for two circuits to be equivalent? (p. 74)
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16 Chapter 2: The Logic of Compound Statements

e What are NAND and NOR gates? (p. 74)
e What are Sheffer strokes and Peirce arrows? (p. 74)

Binary and Hexadecimal Notation

¢ How do you transform positive integers fromn decimal to binary notation and the reverse? (pp.
79-80)

e How do you add and subtract integers using binary notation? (p. 81)

e What is a half-adder? (p. 82)

e What is a full-adder? (p. 83)

e What is the 8-bit two’s complement of an integer in binary notation? (p. 84)

e How do you find the 8-bit two’s complement of a positive integer a that is at most 2557 (p.
85)

¢ How do you find the decimal representation of the integer with a given 8-bit two’s complement?
(p. 86)

How are negative integers represented using two’s complements? (p. 87)
How is computer addition with negative integers performed? (pp. 87-90)
How do you transform positive integers from hexadecimal to decimal notation? (p. 92)

e o o o

How do you transform positive integers from binary to hexadecimal notation and the reverse?
(p. 93)

e What is octal notation? (p. 95)
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Chapter 3: The Logic of Quantified Statements

Ability to use the logic of quantified statements correctly is necessary for doing mathematics because
mathematics is, in a very broad sense, about quantity. The main purpose of this chapter is to
familiarize you with the language of universal and existential statements. The various facts about
quantified statements developed in this chapter are used extensively in Chapter 4 and are referred
to throughout the rest of the book. Experience with the formalism of quantification is especially
useful for students planning to study LISP or Prolog, program verification, or relational databases.

One thing to keep in mind is the tolerance for potential ambiguity in ordinary language, which is
typically resolved through context or inflection. For instance, as the “Caution” on page 111 of the
text indicates, the sentence “All mathematicians do not wear glasses” is one way to phrase a negation
to “All mathematicians wear glasses.” (To see this, say it out loud, stressing the word “not.”) Some
grammarians ask us to avoid such phrasing because of its potentially ambiguity, but the usage is
widespread even in formal writing in high-level publications (“All juvenile offenders are not alike,”
Anthony Lewis, The New York Times, 19 May 1997, Op-Ed page), or in literary works (“All that
glisters is not gold,” William Shakespeare, The Merchant of Venice, Act 2, Scene 7, 1596-1597).

Even rather complex sentences can be negated in this way. For instance, when asked to write a
negation for “The sum of any two irrational numbers is irrational,” many people instinctively write
“The sum of any two irrational numbers is not irrational.” This is an acceptable informal negation
(again, say it out loud, stressing the word “not”), but it can lead to genuine mistakes in formal
situations. To avoid such mistakes, tell yourself that simply inserting the word “not” is very rarely
a good way to express the negation of a mathematical statement.

Section 3.1

6. a. When m = 25 and n = 10,the statement “m is a factor of 72” is true because n? = 100 and

100 = 4- 25. But the statement “m is a factor of n” is false because 10 is not a product of 25
times any integer. Thus the hypothesis is true and the conclusion is false, so the statement as
a whole is false.

b. R(m,n) is also false when m = 8 and n = 4 becausc 8 is a factor of 42 = 16, but 8 is not a
factor of 4.

¢. When m = 5 and n = 10, both statements “m is a factor of n%” and *m is a factor of n* are
true because =10 =52 = m-2 and n® = 100 = 5 - 20 = - 20. Thus both the hypothesis
and conclusion of R(m,n) are true, and so the statement as a whole is true.

d. Here are examples of two kinds of correct answers:

(1) Let m = 2 and n = 6. Then both statements “m is a factor of n?” and “m is a factor of n”
are true because n =6 =2-3 =m-3 and n? = 36 = 2- 18 = m- 18. Thus both the hypothesis
and conclusion of R(m.n) are true, and so the statement as a whole is true.

(2) Let mm = 6 and n = 2. Then both statements “m is a factor of n?” and “m is a factor of
n” are false because n = 2 # 6- k, for any integer k, and n® = 4 # 6- j, for any integer j. Thus
both the hypothesis and conclusion of R(m,n) are false, and so the statement as a whole is
true.

12. Counterexample: Let 2 = 1 and y = 1, and note that
vrt+y=v1+1= V2

whereas
Va+ i=vVi+Vli=1+1=2,
17
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18 Chapter 3: The Logic of Quantified Statements
and

2 # V2.

(This is one counterexample among many. Any real numbers 2 and y with zy # 0 will produce
a counterexample.)

15. a. Some acceptable answers: All rectangles are quadrilaterals. If a figure is a rectangle then
that figure is a quadrilateral. Every rectangle is a quadrilateral. All figures that are rectangles
are quadrilaterals. Any figure that is a rectangle is a quadrilateral.

b. Some acceptable answers: There is a set with sixteen subsets. Some set has sixteen subsets.
Some sets have sixteen subsets. There is at least one set that has sixteen subsets.

18. c. Vs, if C(s) then ~ E(s).
d. 3z such that C(s) A M(s).

21. b. The base angles of T" are equal, for any isosceles triangle T'.

d. f is not differentiable, for some continuous function f.

24. b. 3 a question z such that z is easy.
dz such that z is a question and z: is easy.

27. c. This statement translates as “There is a square that is above d.” This is false because the
only objects above d are a (a triangle) and b (a circle).
d. This statement translates as “There is a triangle that has f above it,” or, “f is above some
triangle.” This is true because g is a triangle and f is above g.

30. a. This statement translates as “There is a prime number that is not odd.” This is true. The
number 2 is prime and it is not odd.

c. This statement translates as “There is a number that is both an odd number and a perfect

square.” This is true. For example, the number 9 is odd and it is also a perfect square (because
9 =32).

33. c. This statement translates as “For all real numbers a and b, if ab=0thena=0o0r b=0,"
which is true.

d. This statement translates as “For all real numbers a, b, ¢, and d, if a < b and ¢ < d then
ac < bd,” which is false.

Counterexample: Let a = -2, b=1,¢c= -3, and d = 0.

Then a < b because —2 < 1 and ¢ < d because —3 < 0, but ac £ bd because ac = (-2)(-3) =6
andbd=1-0=0and 6 £ 0.

Section 3.2

3. b.  a computer C such that C' does not have a CPU.

d. V bands b, b has won fewer than 10 Grammy awards.

6. b. Formal negation: 3 a road r on the map such that r connects towns P and Q.

Some acceptable informal negations: There is a road on the map that connects towns P and
Q. Some road on the map connects towns P and Q. Towns P and @ are connected by a road
on the map.

12. The proposed negation is not correct. Correct negation: There are an irrational number x
and a rational number y such that wy is rational. Or: There are an irrational number and a
rational number whose product is rational.
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Section 3.3 19

15. b. True d. True
e. False: x = 36 is a counterexample because the ones digit of x is 6 and the tens digit is
neither 1 nor 2.

21. 3 an integer n such that n is divisible by 6 and »n is not divisible by 2 and n is not divisible by
3.

24. b. If an integer greater than 5 ends in 1, 3, 7, or 9, then the integer is prime.
If an integer greater than 5 is prime, then the integer ends in 1, 3, 7, or
9.

27. Converse: ¥V integers d, if d = 3 then 6/d is an integer.
Inverse: V integers d, if 6/d is not an integer, then d # 3.
Contrapositive: V integers d, if d # 3 then 6/d is not an integer.
Theconverse and inverse of the statement are both true, but both the statement and its con-
trapositive are false. For example, when d = 2, then d # 3 but 6/d = 3 is an integer.
33. Converse: If a function is continuous, then it is differentiable.
Inverse: If a function is not differentiable, then it is not continuous.
Contrapositive: If a function is not continuous, then it is not differentiable.

The statement and its contrapositive are true, but both the converse and inverse are false. For
example, take the function f defined by f(2) = |x| for all real numbers z. This function is
continuous for all real numbers, but it is not differentiable at 2 = 0.

36. b. One possible answer: Let P(x) be *z%2 # 2" The statements “Vz € Z, 22 # 2" and
“Yr € Q, x2 # 2" are true, but the statement vz € R, 22 # 2" is false.

42. If a person does not pass a comprehensive exam, then that person cannot obtain a master’s
degree. Or: If a person obtains a master’'s degree then that person passed a comprehensive
exan.

Section 3.3

3. c. Let y = é Then xy = (% )(—:) = 1.

6. True.
| Given 2 = | Choose y = | Is y a circle above z, with a different color from z?
e a, b orc ves v’
g aorc ves v’
h aorc yes v’
J b yes v’

9. b. True. Solution 1: Let x = 0. Then for any real number r, x + 7 = r + 2 = r because 0 is
an identity for addition of real numbers. Thus, because every element in E is a real number,
Vye E,x+y=y.

Solution 2: Let @ = 0. Then 2 + ¢ = y is true for each individual element y of E:

| Choose z =0 | Giveny = | sz +y =y? |

-2 yes: 04+ (—2)=-2Vv
-1 yes: 0+ (-1)=-1v
0 yes: 04+0=0V
1 ves: 0+1=1V
2 ves: 04+2=2V
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20 Chapter 3: The Logic of Quantified Statements

12. c. first version of negation: 3 z in D such that ~ (3 y in £ such that zy > y).
final version of negation: 3 2 in D such that V y in E, 2y # y. (Or: A in D such that ¥ y
in E, 2y <y.)

The statement is true. For each number x in D, you can find a y in D so that xzy > y. Here is
a table showing one way to do this: how all possible choices for z could be matched with a y
so that zy > y.:

[ Given = = | you could take y = | Is zy > y? |

—2 —2 (—2) (—2)=4> —2¢
1 0 (-1)-0=0>-1v
0 1 001=0>0v

1 1 I 1=1>17

2 2 22=4>27

d. first version of negation: Vax in D, ~ (Vyin E,z <y).

final version of negation: ¥z in D, 3y in E such that z £ y. (Or: Yz in D, 3y in E such that
x>y.)
The statement is true. It says that there is a number in D that is less than or equal to every

number in D. In fact, —2 is in D and —2 is less than or equal to every number in D (-2, —1,
0, 1, and 2).

21. c. Statement (1) is true because x? — 2y +y* = (x — y)2. Thus given any real number z, take
y =z, then z —y = 0, and so 2% — 2zy + y% = 0.
Statement (2) is false. Given any real number z, choose a rcal number y with y # «. Then
2 —2zy+yi=(z -y #£0.
d. Statement (1) is true because no matter what real number z might be chosen, y can be
taken to be 1 so that (z —5)(y — 1) = (2 —5)-0=0.
Statement (2) is also trne. Take & = 5. Then for all real numbers y, (x—5)(y—1) = 0(y—1) = 0.
e. Statements (1) and (2) are both false because all real numbers have nonnegative squares

and the sum of any two nonnegative real munbers is nonnegative. Hence for all real numbers
zand y, 22 + 9% # —1.

24. 5. ~ 3z e D(ye E(P(r.y) Vo € D (~(Iy € E (P(z,y))))

Vz € D (Vy € E (~ P(z,y)))

30. a. Yz € R, Jy € R~ such that x > y.

b. The original statement says that there is a real number that is greater than every negative
real number. This is true. For instance, 0 is greater than every negative real number.

The statement with interchanged quantifiers says that no matter what real number might be
given, it is possible to find a negative real number that is smaller. This is also true. If the
number z that is given is positive, y could be taken to be —1. Then z > y. On the other hand,
if the number = that is given is 0 or negative, y could be taken to be 2 — 1. In this case also,
x>y

36. a. 3 a person x such that V people y, x trusts y.
b. Negation: ¥V people 2, 3 a person y such that x does not trust y.
Or: Nobody trusts everybody.

45. 3z € D such that P(x) = 3z € D such that (P(z) A (Vy € D, if P(y) then y = z))
Or: There exists a unique x in D such that P(x).

Or: There is one and only one 2 in D such that P(x).
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Section 3.4 21

54. a. The statement is falsc. It says that there are a circle and a triangle that have the same
color, which is false because all the triangles are blue, and no circles are blue.

b. Jz(Circle(z) A (Jy (Triangle(y)A SameColor(z,y))))
¢. Vz(~Circle(z)V ~ (3y (Triangle(y)A SameColor(z,y))))
= Vz(~Circle(z) V (Vy (~Triangle(y)V ~ SameColor(z, y))))
57. These statements do not necessarily have the same truth values. For example, let D = Z, the
set of all integers, let P{x) be “z is even,” and let Q(z) be “z is odd.” Then the statement
“z € D,(P(z)V Q(z))" can be written “V integers z, x is even or z is odd,” which is true.

On the other hand, “(Vo € D, P(x)) Vv (Ve € D, Q(z))” can be written “All integers are even
or all integers are odd,” which is false.

60. a. No b No c¢. X=g

Section 3.4

[=7]

. This computer program is not correct.
12. invalid, inverse error

15. invalid, converse error

18. valid, universal modus tollens

24. Valid. The only drawing representing the truth of the premises also represents the truth of

the conclusion.

People who eat \

l/‘
@] / ‘\ meat j

27. Valid. The only drawing representing the truth of the premises also represents the truth of
the conclusion.

Vegetarians

things that puzzie me
things that ‘
{
[}

are intelligible

things that make up
the subject of logic
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22 Chapter 3: The Logic of Quantified Statements

30. 3. If an object is black, then it is a square.
2. (contrapositive form) If an object is a square, then it is above all the gray objects.
4. If an object is above all the gray objects, then it is above all the triangles.
1. If an object is above all the triangles, then it is above all the blue objects.

.. If an object is black, then it is above all the blue objects.

36. The universal form of elimination (part a) says that the following form of argument is valid:

Vz in D, P(z) v Q(z). — major premise
~ Q(c) for a particular ¢ in D. « minor premise
P(c)

Proof of Validity:

Suppose the major and minor premises of the above argument form are both true.
[We must show that the conclusion P(c) is also true.]

By definition of truth value for a universal statement, Va: in D, P(x) vV Q(x) is true if, and only
if, the statement “P(z) V Q(z)” is true for each individual element of D.

So, by universal instantiation, it is true for the particular element c.
Hence “P(c) V Q(c)” is true.

And since the minor premise says that ~ Q(c), it follows by the elimination rule that P(c) is
true.

[This is what was to be shown.]
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Review Guide: Chapter 3

Quantified Statements

What is a predicate? (p. 97)

What is the truth sct of a predicate? (p. 97)

What is a universal statement, and what is required for such a statement to be true? (p. 98)

What is required for a universal statement to be false? (p. 98)

What is the method of exhaustion? (p. 99)

What is an existential statement, and what is required for such a statement to be true? (p.

99)

e What is required for a existential statement to be false? (p. 99)

o What are some ways to translate quantified statements from formal to informal language? (p.
100)

o What are some ways to translate quantified statements from informal to formal language? (p.

101)

What is a universal conditional statement? (p. 101)

What are equivalent ways to write a universal conditional statements? (pp. 101-103)

What are equivalent ways to write existential statements? (p. 103)

What is a trailing quantifier? (p. 101)

What does it mean for a statement to be quantified implicitly? (p. 103)

What do the notations = and < mean? (p. 104)

What is the relation among V, 3, A, and v? (p. 112)

What does it mean for a universal stateinent to be vacuously true? (p. 112)

What is the rule for interpreting a statement that contains both a universal and an existential

quantifier? (pp. 118-119)

e How are statements expressed in the computer programming language Prolog? (pp. 127-128)

Negations: What are negations for the following forms of statements?

o Yz, Q(x) (p. 109)

Ja such that Q(x) (p. 109)

Vi, if P(z) then Q(x) (p. 111)
Va, Jy such that P(z,y) (p. 123)
3z such that vy, P(z,y) (p. 123)

Variants of Conditional Statements

e What arc the converse, inverse, and contrapositive of a statement of the form “Vz, if P(x)
then Q(z)"? (p. 113)

e How arc quantified statements involving nccessary and sufficient conditions and the phrase
only-if translated into if-then form? (pp. 114-115)

Validity and Invalidity

e What is universal instantiation? (p. 132)

o What are the universal versions of modus ponens, modus tollens, converse error, and inverse
error, and which of these forms of argument are valid and which are invalid? (pp. 133-135,
158-139)

e How is universal modus ponens used in a proof? (p. 134)

o How can diagrams be used to test the validity of an argument with quantified statements?
(rp. 136-139)
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Chapter 4: Elementary Number Theory and Methods of Proof

One aim of this chapter is to introduce you to methods for evaluating whether a given mathematical
statement is true or false. Throughout the chapter the emphasis is on learning to prove and disprove
statements of the form “Vx in D, if P(z) then Q(x).” To prove such a statement directly, you suppose
you have a particular but arbitrarily chosen element 2 in D for which P(z) is true and you show
that Q(z) must also be true. To disprove such a statement, you show that there is an element z
in D (a counterexample) for which P(x) is true and Q(z) is false. To prove such a statement by
contradiction, you show that no counterexample exists, that is, you suppose that there is an z in D
for which P(z) is true and Q(z) is false and you show that this supposition leads to a contradiction.
Direct proof, disproof by counterexample, and proof by contradiction can, therefore, all be viewed
as three aspects of one whole. You arrive at one or the other by a thoughtful examination of the
given statement, knowing what it means for a statement of that form to be true or false.

Another aim of the chapter is to help you obtain fundamental knowledge about numbers that
is needed in mathematics and computer science. Note that the exercise sets contain problems of
varying difficulty. Do not be discouraged if some of them are difficult for you.

Proofs given as solutions should be regarded as samples. Your instructor will probably discuss
with you the particular range of proof styles that will be considered acceptable in your course.

Section 4.1
3. a. Yes, because
4rs = 2-(2rs)
and 2rs is an integer since r and s are integers and products of integers are integers.

b. Yes, because
6r+4s2 +3=2(3r+2s2+1)+1

and 3r + 252 + 1 is an integer since r and s are integers and products and sums of integers are
integers.

c. Yes, because
12 4 2rs + 8% = (r + s5)?

and r+ s is an integer that is greater than or equal to 2 since both r and s are positive integers
and thus each is greater than or equal to 1.

6. For example, let a =1 and b = 0. Then
va+b= \/I =1

and also

Va+vb=v1+V/0=1.

Hence for these values of ¢ and b,

Va+b=va+ Vb

In fact, if a is any nonzero integer and b = 0, then
Va+ =\/(),—:-= \/(7,: \/5+0=\/5+\/(_)=\/5+\/5.

12. Counterexample: Let n = 5. Then

which is not odd.
24
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Section 4.1 25
15. According to the order of operations for real numbers, —a™ = —{a"). The following table
shows that the property is true for some values of a and n and false for other values.
a |n —a" (—a)" Does —a™ = (—a)™?
2 —02=—-0=0 (-0)2=02=0 Yes
2 -32=—(3%) = -9 (=3)? = (=3)(-8) =9 No
-2 |3 -2 =—((-2)=-(-8) =8| (-(-2)*=2"=38 Yes
-3 |2 —(-3)*=—((-3)}) =-9 (-(-3))3=32=9 No

18.

12 — 1 + 11 = 11, which is prime.
32 — 3+ 11 = 17, which is prime.
52 — 5+ 11 = 31, which is prime.
72 — 7+ 11 = 53, which is prime.
92 — 9 + 11 = 83, which is prime.

22 — 2 + 11 = 13, which is prime.
4% — 4 4 11 = 23, which is prime.
62 — 6 + 11 = 41, which is prime.
82 — 8 4+ 11 = 67, which is prime.
10% - 10 + 11 = 101, which is prime.

21. If a real number is greater than 1, then its square it greater than itself.

Start of Proof: Suppose x is any [particular but arbitrarily chosen] real number such that
z>1.

Conclusion to be shoun: =2 > z.

27. Proof 1:

Suppose m and n are any [particuler but arbitrarily chosen] odd integers. [We must show that
m+n is even./

By definition of odd, there exist integers 7 and s such that m = 2r + 1 and n = 2s + 1. Then

m+n = (2r+1)+(2s+1) by substitution
= 2r4+2s+2
= 2(r+s+1) by algebra.

Let u=r+s+1.
Then u is an integer because r, s, and 1 are integers and a sum of integers is an integer.

Hence m + n = 2u, where u is an integer, and so by definition of even, m + n is even
[as was to be shown).

Proof 2:

Suppose m and n are any [particular but arbitrarily chosenf odd integers. [We must show that
m+n is even./

By definition of odd, there exist integers r and s such that m = 2r + 1 and n = 2s + 1. Then

m+n = (2r+1)+4(2s+1) by substitution
= 2r+25+2
= 2(r+s+1) by algebra.

But 7+ s+ 1 is an integer because r, s, and 1 are integers and a sum of integers is an integer.

Hence m + n equals twice an integer, and so by definition of even, m + n is even [as was to
be shown).

30.

Proof:

Suppose m is any [particular but arbitrarily chosen] even integer./We must show that 3m + 5
s odd.]
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26 Chapter 4: Elementary Number Theory and Methods of Proof

By definition of even, m = 27 for some integer r. Then

3m+5 = 3(2r)+5 by substitution

= O6r+4+1

= 2(3r+2)+1 by algebra.
Let t =3r + 2.
Then t is an integer because products and sums of integers are integers, and 3m + 5 = 2t + 1.
Hence 3m + 5 is odd by definition of odd fas was fo be shown/.

36. To prove the given statement is false, we prove that its negation is true. The negation of the
statement is “For all integers n, 6n2 + 27 is not prime.”
Proof:
Suppose n is any integer. [We must show that 6n? + 27 is not prime.]
Note that 6n2 + 27 is positive because n? > 0 for all integers n and products and sums of
positive real numbers are positive. Then
6n +27 = 3(2n° +9),

and both 3 and 2n2 + 9 are positive integers each greater than 1 and less than 6n? + 27.
So 6n2 + 27 is not prime.

42. The mistake in the “proof” is that the same symbol, k, is used to represent two different
quantities. By setting both m and n equal to 2k, the "proof” specifies that m = n, and,
therefore, it only deduces the conclusion in case m = n. If m # n, the conclusion is often false.
For instance, 6 + 4 = 10 but 10 # 4k for any integer k.

48. The statement is true.

Proof:
Let m and n be any even integers.
By definition of even, m = 2r and n = 2s for some integers r and s.
By substitution,
m-—n=2r—2s=2(r—s).
Since r — s is an integer (being a difference of integers), then
m — n equals twice some integer, and so

m — n is even by definition of even.

51. The statement is false.
Counterexample: Let n = 2. Then n is prime but

(1" =(-1)"=1#-1

57. The statement is false.

Counterexample: Let m = n = 3. Then mn = 3.3 = 9, which is a perfect square, but neither
m nor n is a perfect square.

60. The statement is false.
Counterexample: When a =1 and b =1,

Va+b=v1+1=+v2 and Va+vb=vVi+V1=2

But
V2 #£2, andso  Va+b#+a+ Vb
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Section 4.2 27

63. Counterexample: Let n = 5. Then
22" 41 =2%2 4 1=4,294,967,297 = (641)- (6700417),

and so 22" + 1 is not prime.

Section 4.2

18. The statement is true.
Proof: Suppose r and s are any two distinct rational numbers. [We must show thatr—;—‘-s- is
rational.|
By definition of rational, r = ¢ and s = 5 for some integers e, b, ¢, and d with b # 0 and
b d g
d # 0.
By substitution and the laws of algebra,

a ¢ ad + be
'r+s_5'a_ od _ ad+be
2 2 2  2d

Now ad + be and 2bd are integers because a, b, ¢, and d are integers and products and sums of
integers are integers. And 2bd # 0 by the zero product property.

Hence 752 is a quotient of integers with a nonzero denominator, and so £ is rational fas

was to be shown/.

30. Let the quadratic equation be
224+br+e=0

where b and ¢ are rational numbers. Suppose one solution, r, is rational. Call the other
solution s. Then
2+brte=(@x—r)(x—s5) =22—(r+s)z+rs.

By equating the coefficients of x,
b=—(r+s).
Solving for ¢ yields
s=—-r—b=—(r+0b).
Because s is the negative of a sum of two rational numbers, s also is rational (by Theorem
4.2.2 and exercise 13).
33. a. Note that (z — r)(z — s) = 2° — (r + 8)z +rs.
If both r and s are odd integers, then r + s is even and rs is odd (by properties 2 and 3).
If both r and s are even integers, then both r + s and rs are even (by property 1).

If one of r and s is even and the other is odd, then r + s is odd and rs is even (by properties
4 and 5).

b. It follows from part (a) that 22 — 1253z + 255 cannot be written as a product of the form
(z —7)(x — 5) because if it could be then r + s would equal 1253 and rs would equal 255, both
of which are odd integers. But for none of the possible cases (both r and s odd, both ~ and s
even, and one of » and s odd and the other even) are both r 4+ s and rs odd integers.

Note: In Section 4.4, we establish formally that any integer is either even or odd. The type of
reasoning used in this solution is called argument by contradiction. It is introduced formally
in Section 4.6.
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28 Chapter 4: Elementary Number Theory and Methods of Proof

36. This incorrect proof just shows the theorem to be true in the one case where one of the rational
numbers is 1/4 and the other is 1/2. It is an example of the mistake of arguing from examples.
A correct proof must show the theorem is true for any two rational numbers.

39. This incorrect proof assumes what is to be proved. The second sentence asserts that a certain
conclusion follows if 7 + s is rational, and the rest of the proof uses that conclusion to deduce
that r + s is rational.

Section 4.3

(94

. Yes: 0=0-65.
9. Yes: 2a-34b = 4(17ab) and 17eb is an integer because e and b are integers and products of
integers are integers.
21. The statement is true.
Proof: ‘
Let m and n be any two even integers. [We must show that mn is a multiple of 4.]
By definition of even, m = 2r and n = 2s for some integers » and s. Then

mn = (2r)(2s) by substitution
= 4(rs) by algebra.

Since rs is an integer (being a product of integers), mn is a multiple of 4 (by definition of
divisibility).
27. The statement is false.
Counterexample:
Leta=2,0=3,and c=1. )
Then a | (b+ cj because b+ ¢ =4 and 2 | bu at b because 21 3 and a{ ¢ because 21 1.

30. The statement is false.
Counterexample:
Let a =4 and n = 6.
Then a | n? and a < n because 4 | 36 and 4 < 6, but a{ n because 4 1 6.
33. No. The values of nickels, dimes, and quarters are all multiples of 5. It follows from exercise

15 that a sum of numbers each of which is divisible by 5 is also divisible by 5. So since $4.72
is not a multiple of 5, $4.72 cannot be obtained using only nickels, dimes, and quarters.

Note: The form of reasoning used in this answer is called argument by contradiction. It is
discussed formally in Section 4.6.
36. b. Let N = 12,858, 306,120, 312.

The sum of the digits of & is 42, which is divisible by 3 but not by 9. Therefore, N is divisible
by 3 but not by 9.

The right-most digit of N is neither 5 nor 0, and so N is not divisible by 5. .
The two right-most digits of N'are 12, which is divisible by 4. Therefore, N is divisible by 4.
c. Let N = 517,924, 440,926, 512.

The sum of the digits of N is 61, which is not divisible by 3 (and hence not by 9 either).
Therefore, N is not divisible by either 3 or 9.

@ 2012 Cengage Leaming. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

STUDENTS-HUB.com Uploaded By: anonymous



Section 4.3 29

The right-most digit of N is neither 5 nor 0, and so N is not divisible by 5.
The two right-most digits of N are 12, which is divisible by 4. Therefore, N is divisible by 4.
d. Let N = 14,328,083, 360, 232.

The sum of the digits of N is 45, which is divisible by 9 and hence also by 3. Therefore, N is
divisible by 9 and by 3.

The right-most digit of N is neither 5 nor 0, and so N is not divisible by 5.
The two right-most digits of & are 32, which is divisible by 4. Therefore, N is divisible by 4.

3eqp

b. To solve the problem, find the smallest powers of the factors 2, 3, 7, and 11 by which to

multiply the given number so that the exponent of each factor becomes a multiple of 3. The
value of k that works is k = 22 3- 7% 11. Then

24.35 7.11% k= 26306 73 119 = (2232 7. 11)3 = 27723,

3eq

39. a.a® = pi py

42. b. 20! = 20-19- 18- 17-16- 15-14-13-12-11-10-9-8-7-6-5-4.3-2- 1
=2%25-19.-2-3%217-2+3.5-2.7-13-2%23-11-2-5-3%2%.7.2.3.5.22.3. 2
=218.385%7211.13-17-19

¢. Squaring the result of part (b) gives

(2012 = (2'%3%5%7211-13-17- 19)?
= 236 316,58 74.112. 132 172 192

When (20!)? is written in ordinary decimal form, there are as many zeros at the end of it as
there are factors of the form 2-5 (= 10) in its prime factorization.

Thus, since the prime factorization of (20!)? contains cight 5’s and more than eight 2’s, (20!)?

contains eight factors of 10 and hence eight zeros.
45. Proof:
Suppose n is a nonnegative integer whose decimal representation ends in 5.
Then n = 10m + 5 for some integer m.
By factoring out a 5, n = 10m+ 5 = 5(2m + 1), and 2m + 1 is an integer since m is an integer.
Hence n is divisible by 5 by definition of divisibility.
48. Proof:
Suppose n is any nonnegative integer for which the sum of the digits of n is divisible by 3.

By definition of decimal representation, n can be written in the form
n = dil0F + dp_110°7" + -+ + d210? + d110 + do

where & is a nonnegative integer and all the d; are integers from 0 to 9 inclusive. Then

n = dk(999+1)+dk_1(999 +1)++d2(99+1)+d1(9+1)+d0

k9's (k—1)9's

= di-99...94+dp_1-99...9 4+ +d2- 99+ d)- 9+ (dp+ dp—1+ -+ do+ di + dp)
k9’s (k-1)9's

= 9(dg-11... 1 4+dp—1-11...1 - +dy- 11 +d|)+(dk+dk_1+-'-+d2+d1-|—do)

k1's (k=1) 1’8
= 3[3(dp-11... 1 4dp_1- 11 L+ +dp- 11+ dy)] + (de+dp—1+ - - + do+ d1+ do)
k1's (k-1 1U's

= (an integer divisible by 3) + (the sum of the digits of n).
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30 Chapter 4: Elementary Number Theory and Methods of Proof

Since the sum of the digits of n is divisible by 3, n can be written as a sum of two integers
each of which is divisible by 3.

It follows from exercise 15 that n is divisible by 3.

Section 4.4
6. q=-4,r=5
9.a.50. 3

12. Let the days of the week be numbered from 0 (Sunday) through 6 (Saturday) and let DayT
and DayN be variables representing the day of the week today and the day of the week N days
from today. By the quotient-remainder theorem, there exist unique integers g and r such that

DayT+ N=T7¢q+rand 0<r < 7.

Now DayT + N counts the number of days to the day N days from today starting last Sunday
(where “last Sunday” is interpreted to mean today if today is a Sunday). Thus DayN is the
day of the week that is DayT + N days from last Sunday. Because each week has seven days,

DayN is the same as the day of the week DayT + N — 7q days from last Sunday.

But
DayT +N —-T7g=r and 0<r<7.

Therefore,
DayN =r = (DayT + N) mod 7.

15. There are 13 leap year days between January 1, 2000 and January 1, 2050 (once every four
years in 2000, 2004, 2008, 2012, . . . , 2048). So 13 of the years have 366 days and the
remaining 38 years have 365 days. This gives a total of

13- 366 + 37- 365 = 18,263

days between the two dates. Using the formula DayN = (DayT + N) mod 7, and letting
DayT = 6 (Saturday) and N = 18,263 gives

DayN = (6 + 18263)mod 7 = 18269mod 7 = 6,

which is also a Saturday.

21. Given that b is an integer and b mod 12 = 5, it follows that 8b mod 12 = 4.

Proof: When b is divided by 12, the remainder is 5. Thus there exists an integer m so that
b = 12m + 5. Multiplying this equation by 8 gives

8b

8(12m + 5) by substitution
= 96m +40

= 96m+36+4

12(8m +3) +4 by algebra.

Since 8m + 3 is an integer and since 0 < 4 < 12, the uniqueness part of the quotient-remainder
theorem guarantees that the remainder obtained when 8b is divided by 12 is 4.

24. Proof:
Suppose m and n are any [particular but arbitrarily chosen] integers such that m mod 5 = 2
and n mod 5 = 1.

hiliel hei
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Section 4.4 31

Then the remainder obtained when m is divided by 5 is 2 and the remainder obtained when n
is divided by 5 is 1, and so m = 5¢ + 2 and n = 5r + 1 for some integers q and r.

If

mn (5g +2)(5» + 1) by substitution
25¢qr + 5g + 10r + 2

5(5gr +q+2r) +2 by algebra.

Because products and sums of integers are integers, 5gr 4+ ¢ 4+ 2r is an integer, and hence
mn = 5- (an integer) + 2.

Thus, since 0 < 2 < 5, the remainder obtained when mn is divided by 5 is 2, and so mn mod 5 =
2. ‘

30. a. Proof: Suppose n and n + 1 are any two consecutive integers. By the quotient-remainder
theorem with d = 3, we know that n = 3¢, or n = 3¢ + 1, or n = 3¢ + 2 for some integer gq.
Case 1 (n = 3q for some integer g): In this case,

n(n+1) = 3¢(3¢+1) by substitution
= 3[g(38¢+1)] by algebra.

Let & = g(3¢g + 1). Then & is an integer because sums and products of integers are integers.
Hence n(n + 1) = 3k for some integer k.
Case 2 (n = 3q + 1 for some integer q): In this case,

n{n+1) = (3¢+1)(3¢+2) by substitution

= 9¢°+9¢+2
= 3(3¢°+3¢)+2 Dby algebra.

Let & = 3¢> + 3¢g. Then k is an integer because sums and products of integers are integers.
Hence n(n + 1) = 3k + 2 for some integer k.
Case 3 (n = 3q for some integer q): In this case,

n(n+1) = (3¢g+2)(3¢g+3) by substitution

= 3[(3¢+2)(¢g+1)]
= 3[(3¢+2)(g+1)] by algebra.

Let ¥ = (3¢ +2)(g + 1). Then k is an integer because sums and products of integers are
integers. Hence n{n + 1) = 3k for some integer k.

Conclusion: In all three cases, the product of the two consecutive integers either equals 3k
or it equals 3k + 2 for some integer &k [as was to be shown/.

b. Given any integers m and n, mn mod 3 =0 or mn mod 3 = 2.

(Or, equivalently, Given any integer n, mn mod 3 # 1.)

33. Given any integers a, b, and ¢ if a — b is odd and b — ¢ is even, then a — ¢ is odd.

Proof: Suppose a, b, and ¢ arc any integers such that @ — b is odd and b — ¢ is even. Then
(@ —b) + (b—¢) is a sum of an odd integer and an even integer and hence is odd (by property
5 in Example 4.2.3). But (a — b) + (b — ¢) = a — ¢, and thus a — ¢ is odd.

36. Proof:
Suppose 7 is any integer. [We must show that 8 | n{n + 1)(n + 2)(n + 3)./

By the quotient-remainder theorem with d = 4, there is an integer & such that

n=4k or n=4k+1 or n=4k+2 or n=4k+3.
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32 Chapter 4: Elementary Number Theory and Methods of Proof

Case 1 (n = 4k for some integer k): In this case,

n(n+1)(n+2)(n+3) = 4k(4k+1)(4k+2)(4k+3) by substitution
8[k(4k + 1)(2k + 1)(4k + 3)] by algebra,

I

and this is divisible by 8 (because & is an integer and sums and products of integers are
integers).

Case 2 (n = 4k + 1 for some integer k): In this case,

nn+1)(n+2)(n+3) = (4k+1)4k+2)(4k+3){(4k +4) by substitution
8((4k + 1)(2k + 1)(4k + 3)(k + 1)] by algebra,

and this is divisible by 8 (because k is an integer and sums and products of integers are
integers).

Case 8 (n = 4k + 2 for some integer k): In this case,

nn+1)(n+2)(n+3) (4k + 2)(4k + 3)(4k + 4)(4k +5) by substitution

8((2k + 1)(4k + 3)(k + 1)(4k + 5)] by algebra,

It

and this is divisible by 8 (because k is an integer and sums and products of integers are
integers).

Case 4 (n = 4k + 3 for some integer k): In this case,

n(n+1)(n+2){n+3) (4k + 3)(4k + 4)(4k + 5)(4k + 6) by substitution

8((4k + 3)(k + 1)(4k + 5)(2k + 3)] by algebra,

and this is divisible by 8 (because %k is an integer and sums and products of integers are
integers).

Conclusion: In all four possible cases, 8 [ n(n + 1)(n + 2)(n + 3) [as was to be shown/.

Note: One can make use of exercise 17 to produce a proof that only requires two cases: n is
even and 7 is odd. Then, since both n(n + 1) and (n + 2)(n + 3) are products of consecutive
integers, by the result of exercise 17, both products are even and hence contain a factor of 2.
Multiplying those two factors shows that there is a factor of 4 in n(n + 1)(n + 2)(n + 3).

39. Proof: Consider any four consecutive integers. Call the smallest n. Then the sum of the four

integers is
n+n+1)+n+2)+(n+3)=4n+6=4n+1)+2.
Let k = n+ 1. Then £ is an integer because it is a sum of integers. Hence n can be written in

the required form.

42. Proof: Let p be any prime number except 2 or 3. By the quotient-remainder theorem, there is
an integer k so that p can be written as

p=6k or p=6k+1 or p=6k+2 or p=6k+3 or p=6k+4 or p=6k+5.
Since p is prime and p # 2, p is not divisible by 2. Consequently, p # 6k, p # 6k + 2, and
p # 6k + 4 for any integer k [because all of these numbers are divisible by 2/.

Furthermore, since p is prime and p # 3, p is not divisible by 3. Thus p # 6k + 3 [because this
number is divisible by 3.

Therefore, p = 6k + 1 or p = 6k + 5 for some integer k.
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Section 4.4 33

45. Proof: Let ¢ be any positive real number and let » be any real number. Suppose that —c <
r < c.(*) By the trichotomy law (sce Appendix A, T17), either r > 0 or r < 0.
Case 1 (r > 0): In this case |r| = r, and so by substitution into (*), —¢ < |r| < ¢. In
particular, |r| < ec.

Case 2 (r < 0): In this case |r| = —r, and so r = —|r|. Hence by substitution into (*),
—¢ < —|r| € ¢. In particular, —¢ < —|r|. Multiplying both sides by —1 gives ¢ > |r], or,
equivalently, |r| < c.

Therefore, regardless of whether » > 0 or r < 0, |r| < ¢ fas was to be shown/.

48. Solution 1: We are given that M is a matrix with n rows and n columns, stored in row
major form at locations N + k, where 0 < k < mn. Given a value for k, we want to find
indices » and s so that the entry for A in row 7 and column s, a,s, is stored in location
N + k. By the quotient-remainder theorem, k = nQ + R, where Q and R are integers and
0 < R < n. The first Q rows of M (cach of length n) are stored in the first nQ locations:

N+0,N+1,...,N+nQ -1 with ag, stored in the last of these. Consider the next row.
When r=Q + 1,

a,1 will be in location N + nQ
a,» will be in location N + n@ + 1
a,3 will be in location N + n@Q + 2

ars will be in location N +n@Q + (s — 1)

and  @q, will be in location N +nQ+ (n—-1)=N+n(Q+1) - L.
Thus location N + k contaius a,, whercr =Q+1land R=s-1.But Q=kdivnand R=%
mod n, and hence r = (k div n) + 1 and s = (k mod n) + 1.
Solution 2: [After the floor notation has been introduced, the following solution can be consid-
ered as an alternative.] To find a formula for r, note that for 1 <a <m,

when (a—-1)n<k<an, then r=a.

Dividing through by n gives that
k
when (a—-1) < -~ <a, then r=a
(A

or, equivalently,

k
when l—J =a-1, then r=a.
n

But this implies that
k
when o= l—} +1=p, then r=a.
n
and since

k
[;J =k div n, we have that r = (k div n) + 1.
To find a formula for s, note that

when &k =n-(an integer) +b and 0<b<n, then s=0b+41

Thus by the quotient-remainder theorem, s = (k mod n) + 1.
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34 Chapter 4: Elementary Number Theory and Methods of Proof

51. Answer to the first question: not necessarily
Counterexample: Let m=n=3,d=2,a=1, and b = 1. Then

mmodd = nmodd =3mod2 =1=a=0
But a +b=1+41=2, whereas (m +n)modd = 6mod 2 =0.
Answer to the second question: yes.

Proof: Suppose m, n, a, b, and d are integers and m mod d = a and nmod d = b. By definition
of mod, m = dgq; + a and n = dgy + b for some integers q; and g2. Then

Il

m+n (dg1 + a) + (dgz2 + b) by substitution

dlgi +q2) + (a+b) (¥) by algebra.

Apply the quotient-remainder theorem to a + b to obtain unique integers g3 and r such that
a+b=dgz+r (**) and 0 < r < d. By definition of mod, » = (a + b) mod d. Then

dlgi +q2) + (@ +b) by (¥
d{qi +g2) + (dgs +1) by (*%)
dlgi+q +q3) +r by algebra,

m+4+n

where q; + g2 + ¢3 and 7 are integers and 0 < r < d. Hence by definition of mod,

r = (m+n)mod d, and so (m +n) mod d = (a + b) mod d.

Section 4.5

6. If k is an integer, then [k] = k because k — 1 < k < k and k — 1 and k are integers.
9. If the remainder obtained when n is divided by 36 is positive, an additional box beyond those
containing exactly 36 units will be needed to hold the extra units.

So, since the ceiling notation rounds each number up to the nearest integer, the number of
boxes required will be [75].

Also, because the ceiling of an integer is itself, if the number of units is a multiple of 36, the
number of boxes required will be [35] as well.

Thus the ceiling notation is more appropriate for this problem because the answer is simply
[35] regardless of the value of n.

If the floor notation is used, the answer is more complicated: if -;—6 is not an integer, the answer
is l:—bj + 1, but if n is an integer, it is [%j

18. Counterexample: Let z = y = 1.5. Then
[z+y] =[1.5+15]=[3] =3 whereas [z]+ [y]=[15]+[1.5]=2+2=4,
and 3 # 4.

21. Proof: Let n be any odd integer. [We must show that [3] =%] By definition of odd,
n = 2k + 1 for some integer k. The left-hand side of the equation to be proved is

n 2k+1
IVE.I ‘:%.‘ by substitution
1
= k + 5 by algebra '
1 . o e 3 H o 3
- k41 by definition of ceiling because k is

anintegerand k < k+1/2<k+1
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On the other hand, the right-hand side of the equation to be proved is

n+1 — M by substitution
2 2
_ 2k+2
- 2
o 2(k+1)
2
= k+1 by algebra.

Thus both the left- and right-hand sides of the equation to be proved equal k + 1, and so both
are equal to each other. In other words, [n/2] = (n +1)/2 [as was to be shown/.

24. Proof:
Suppose m is any integer and x is any real number that is not an integer.
By definition of floor, |z| = n where n is an integer and n <z <n + 1.

Since x is not an integer, x # n, and so
n<z<n+l
Multiply all parts of this inequality by —1 to obtain
-n>-r>-n-1L
Then add m to all parts to obtain
m—-n>m—-x>m—n-—1, or, equivalently, m-n-1l1<m-z<m-n.

But m —n — 1 and m — n are both integers, and so by definition of floor, |[m—z| =m—-n-1.
By substitution,
lz|+|m—z]=n+(m-n-1)=m-1

[as was to be shown/.
27. Proof: Suppose z is any real number such that

z— |z] >1/2.

Multiply both sides by 2 to obtain
22 —2|x| > 1 or, equivalently, 2z >2|z]+ 1.
Now by definition of floor,
x < |z|]+1 and hence 2z <2|z]+2.
Put the two inequalities involving z together to obtain
2lz) +1< 2z < 2|z] +2.

By definition of floor, then, |2z] = 2|x] + 1.
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36 Chapter 4: Elementary Number Theory and Methods of Proof

Section 4.6

6. Negation of Statement: There is a greatest negative real number.

Proof of statement (by contradiction):

Suppose not. That is, suppose there is a greatest negative real number. Call it a. [We must
show that this supposition leads logically to a contradiction.]

By supposition,
a<0 and a>a forevery negative real number x.

Let b = a/2. Then b is a real number because b is a quotient of two real numbers (with a
nonzero denominator). Also

because 0 < % <1 then 0> -g- >a

by multiplying all parts of the inequality by a, which is negative. Thus
a< g < 0 and so, by substitution, a <b<D0.

Thus b is a negative real number that is greater than a. This contradicts the supposition that
a is the greatest negative real number.

[Hence the supposition is false and the given statement is true./

9. b. Proof by contradiction:

Suppose not. That is, suppose there is an irrational number and a rational number whose
difference is rational. In other words, suppose there are real numbers = and y such that z
is irrational, y is rational and z — y is rational. [We must show that this supposition leads
logically to a contradiction.|

By definition of rational,

[

1 for some integers a, b, ¢, and d with b # 0 and d # 0.

y=% and z—y=

Then, by substitution,

Solve this equation for z to obtain

’__£+E_E+£i_bc+ad
YA T T  bd

But both bc + ad and bd are integers because products and sums of integers are integers, and
bd # 0 by the zero product property.

Hence z is a ratio of integers with a nonzero denominator, and so z is rational by definition of
rational.

This contradicts the supposition that a is irrational. [Hence the supposition is false and the
given statemnent is true./

Note: The fact that order matters in subtraction implies that the truth of the statement in
exercise 8 does not automatically imply the truth of the statement in this exercise.
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Section 4.6 37

12. Proof by contradiction:

Suppose not. That is, suppose there are rational numbers a and b such that b # 0, r is an
irrational number, and @ + br is rational. [We must show that this supposition leads logically
to a contradiction.|

By definition of rational,

a=-, b=- and a+br= m
J l n
where i, j, k, [, m, and n are integers and j # 0, [ # 0, and n # 0. Since b # 0, we also have

that k& # 0. By substitution
i

a+br=-

J

o~

m .
-7 = —, or, equivalently,
n

+

=

|3
L] =

Solving for r gives
_mj—in L mjl—inl
Y k- ngk

r
Now mjl — inl and njk are both integers fbecause products and differences of integers are
integers] and njk # 0 because n £ 0,7 # 0, and &k # 0.

It follows, by definition of rational, that r is a rational number, which contradicts the suppo-
sition that 7 is irrational. [Hence the supposition is false and the given statement is true.]

15. Yes.

Proof by contradiction:

Suppose not. That is, suppose there exist integers a, b, and ¢ such that e and b are both odd
and a? + b2 = ¢%. [We must show that this supposition leads logically to a contradiction.]

By definition of odd, @ = 2k + 1 and b = 2m + 1 for some integers k& and m. Then,

e = a2+ by supposition
= (2k+1)2+(2m+1)? by substitution
= 4k +4k+1+4m?+4m+1
= 4k +k+m?+m)+2 by algebra.

Let t = k2 + k +m? + m. Then ¢ is an integer because products and sums of integers are
integers, and so, by substitution and algebra,

A =4t+2=2(2t+1).

Thus ¢? is even by definition of even, and hence ¢ is even by Proposition 4.6.4. It follows by
definition of even again that ¢ = 2» for some integer ». Substituting ¢ = 2r into the equation
¢ = 4t + 2 gives

(2r)2 =4t 42, andso 4r® =4t+2.

Dividing by 2 gives
2r% =2t + 1.

But since r? is an integer, 2r2 is even, by definition of even, and hence 2t +1 is even. However,

since ¢ is an integer, 2f + 1 is odd by definition of odd. So 2¢ + 1 is both even and odd, which
contradicts Theorem 4.6.2 . It follows that the supposition that there exist integers a, b, and ¢
such that a and b are both odd and a? + b? = ¢? is false, and thus the given statement is true.

24. a. Proof by contraposition:

Suppose z is a nonzero real number and the reciprocal of , namely -i, is rational. [We must
show that z is rational.]
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38 Chapter 4: Elementary Number Theory and Methods of Proof

Because % is rational, there are integers a and b with b # 0 such that

Now
1
since 1- (;) =1, it follows that % cannot equal zero, and so a # 0.

Thus we may solve equation (*) for z to obtain
b .
T =~ where b and a are integers and a # 0.

Hence, by definition of rational, % is rational [as was to be shown/.

b. Proof by contradiction:

Suppose not. That is, suppose there exists a nonzero irrational number z such that the
reciprocal of z, namely ﬁ, is rational. [We must show that this supposition leads logically to a
contradiction.|

By definition of rational,

where e and b are integers with b # 0. Now
1 1
since 1- (;) =1, it follows that p cannot equal zero, and so a # 0.
Thus we may solve equation (*) for z to obtain

b
z= where b and a are integers and a # 0.

Hence, by definition of rational, Lis rational, which contradicts the supposition that z is
irrational. [Hence the supposition is false and the given statement is true.]

27. a. Proof 1 by contraposition: [This proof is based only on the definitions of even and odd
integers and the parity property.]

Suppose m and n are integers such that one of m and n is even and the other is odd. [We
must show that m + n is not even./

Case 1 (m i3 even and n is odd): In this case there exists integers r and s such that
m = 2r and n = 2s 4+ 1. Then

m+n = 2r+(2s+1) by substitution
= 2(r+s)+1 by algebra.

Let kK = r + s. Then k is an integer because it is a product of integers, and thus m + n is odd
by definition of odd.

Case 2 (m i3 odd and n is even): In this case, by Theorem 4.4.3, there is an integer m
such that n? = 8m + 1. Then

m+n (2r + 1)+ 2s by substitution

2(r+s)+1 by algebra.

Let £k = r + s. Then k is an integer because it is a product of integers, and thus m + n is odd
by definition of odd.

Conclusion: In both cases, m + n is odd, and so by the parity property, m + n is not even
[as was to be shown/.
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Proof 2 by contraposition: [This proof uses a previously established property of even and odd

integers.]

Suppose m and n are integers such that one of m and n is even and the other is odd. [We
must show that m + n is not even.|

By property 5 of Example 4.2.3, the sum of any even integer and any odd integer is odd. Hence
m + n is odd, and so, by the parity property, m -+ n is not even fas was to be shown)/.

b. Proof 1 by contradiction: [This proof is based only on the definitions of even and odd integers
and the parity property./

Suppose not. That is, suppose there exist, integers m and n such that m +n is even and either
m is even and n is odd or m is odd and n is even. [We must show that this supposition leads
logically to a contradiction.]

Case 1 (m is even and n is odd): In this case there exists integers r and s such that
m =2r and n = 2s + 1. Then

m+n = 2r+(2s+1) by substitution
2(r+s)+1 Dby algebra.

Let £ =7 + s. Then k is an integer because it is a product of integers, and thus m +n is odd
by definition of odd.

Case 2 (m is odd and n is even): In this case, by Theorem 4.4.3, there is an integer m
such that n? = 8m + 1. Then

(2r + 1) +2s by substitution
2(r+s)+1 by algebra.

m+n

Let k = r + s. Then k is an integer because it is a product of integers, and thus m + n is odd
by definition of odd.

Conclusion: In both cases, m + n is odd, whereas, by supposition, m + n is even. This result
contradicts the parity property, which says that an integer cannot be both even and odd. Thus
the supposition is false, and the given statement is true.

Proof 2 by contradiction: [This proof uses a previously established property of even and odd
integers.]

Suppose not. That is, suppose there exist integers m and n such that m+n is even and either
m is even and 7 is odd or m is odd and n is even. [We must show that this supposition leads
logically to a contradiction.]

By property 5 of Example 4.2.3, the sum of any even integer and any odd integer is odd. Thus
both when m is even and n is odd and when m is odd and n is even, the sum m + n is odd.
But, by supposition, m + n is even. This result contradicts the parity property, which says
that an integer cannot be both even and odd. Thus the supposition is false, and the given
statement is true.

After crossing out all multiples of 2, 3, 5, and 7 (the prime numbers less than v100 ), the
remaining numbers are prime. They are circled in the following diagram.
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Section 4.7
6. False.

Proof 1 (by using a previous result): v/2/6 = (1/6)- v/2, which is a product of a nonzero
rational number and an irrational number. By exercise 11 of Section 4.6, such a product is
irrational.

Proof 2 (by contradiction):

Suppose not. That is, suppose V/2/6 is rational. [We must show that this supposition leads
logically to a contradiction.]

By definition of rational, there exist integers e and b with
V2/6=a/b and b#0.

Solving for v/2 gives v/2 = 6a/b. But Ga is an integer (because products of integers are integers)
and b is a nonzero integer.

Therefore, by definition of rational, V2 is rational. This contradicts Theorem 4.7.1 which
states that /2 is irrational. Hence the supposition is false. In other words v/2/6 is irrational.

12. Counterexample: V2 is irrational, Also v2-v2 = 2 and 2 is rational because 2 = 2/1. Thus
there exist irrational numbers whose product is rational.

15. a. Proof by contraposition:

Let n be any integer such that n is not even. [We must show that n3 is not even.]

By Theorem 4.6.2 n is odd, and so n* is also odd (by property 3 of Example 4.2.3 applied
twice).

Thus (again by Theorem 4.6.2), n3 is not even fas was to be shown/.
b. Proof by contradiction:

Suppose not. That is, suppose /2 is rational. [We must show that this supposition leads
logically to a contradiction.]

By definition of rational,
V2 = a/b for some integers a and b with b # 0.

By cancelling any common factors if necessary, we may assume that e and b have no common
factors. Cubing both sides of equation V2 = a/b gives

2=a%/b®, andso 2b*®=d>

i
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Thus a3 is even. By part (a) of this question, a is even, and thus a = 2k for some integer k.
By substitution
a® = (2k)3 = 8k3 = 203,

and so ’
b = 4k = 2(2k3).

It follows that b is even, and hence (also by part (a)) b is even.

Thus both a and b are even which contradicts the assumption that a and b have no common
factor. Therefore, the supposition is false, and so Y2 is irrational.

18. Proof :
Suppose that ¢ and d are integers with d > 0 and that g1, g2, 71, and r; are integers such that

a=dg +r; and a=dg+r2, where 0<r <d and 0<r, <d.

[We must show that vy = ry and ¢ = qa./

Then dqy + 1 = dgg + 1o,
and SO To —T1 = d‘ll —_ qu = d(’]l —_ qg)_
This implies that d|(ry—711)

because g — g2 is an integer (since it is a difference of integers).
But both r; and 7y lie between 0 and d, and thus the difference ro — v, lies between —d and d.

[For, by properties T23 and T26 of Appendiz A, because 0 < 71 < d aend 0 < rp < d, then
multiplying the first inequality by —1 gives 0 > —r) > —d or, equivalently, —d < —r, £ 0, and
adding the incqualities —d < —ry <0 and 0 < rp < d gives —d <re—1 < d.]

Since 19 — 71 is a multiple of d and yet lies between —d and d, the only possibility is that
ro — 1 = 0, or, equivalently, that ry = ry.

Substituting back into the original expressions for a and equating the two gives
dgy +711 =dg2 + 1 because r; = ra.
Subtracting r) from both sides gives dq; = dg2, and since d # 0, we have that g; = go.

24. Proof by contradiction :

Suppose not. That is, supposc that logg(2) is rational. [We will show that this supposition
leads logically to a contradiction.]

By definition of rational,
logs(2) = ({—j for some integers a and b with b # 0.

Since logarithms are always positive, we may assume that a and b are both positive. By
definition of logarithin,

52 =2, andso (5%)*=2" or, equivalently, 5= 2b
Let
N =35 =2°
Since b > 0, N > 2° = 1. Thus we may consider the prime factorization of N.

Because N = 5%, the prime factors of N are all 5. On the other hand, because N = 20, the
prime factors of N are all 2.

This contradicts the unique factorization of integers theorem, which states that the prime
factors of any integer greater than 1 are unique except for the order in which they are written.

Hence the supposition is false, and so log;(2) is irrational.

Leaming. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

STUDENTS-HUB om Uploaded By: anonymous



42 Chapter 4: Elementary Number Theory and Methods of Proof

27. a. All of the following are prime numbers: N) =2+1=3, N, =23+1 =17, N3 = 235+1 = 31,
N;=2-3-5-T4+1=211, Ny = 2-3-5-7-11 + 1 = 2311. However,

Ng=2:3-5-7-11-13+1 = 30031 = 59 - 509.

Thus the smallest non-prime integer of the given form is 30,031.

b. Each of Ny, Na, N3, N4, and Nj is prime, and so each is its own smallest prime divisor.
Thus q) = Ny ,q20 = N3, g3 = N3, g4 = N4, and g5 = N;. However, Ng is not prime and
Ng = 30031 = 59-509. Since 59 and 509 are primes, the smallest prime divisor of Ng is gg = 59.

30. Proof: Let p1,p2,...,pn be distinct prime numbers with p; = 2 and n > 1. [We must show
that pipa - pp + 1= 4k + 3 for some integer k.] Let
N=pip2---pn+ 1.
By the quotient-remainder theorem, there is an integer & such that
N =4k, 4k +1, 4k +2, or 4k + 3.
But N is odd (because p; = 2); hence
N=4k+1 or 4k+3

Suppose N = 4k + 1. [We will show that this supposition leads to a contradiction.]
By substitution,
4k+1=pp2---pn+1 andso 4k =pips-- py.
Thus
4| pip2-+ - pa.

But p; = 2 and all of pa, p3, ... ,p, are odd (being prime numbers that are greater than 2).
Consequently, there is only one factor of 2 in the prime factorization of pps - - - p,, and so

41' »ip2- - Pn,

which results in a contradiction. Therefore the supposition that N = 4k + 1 for some integer
k is false, and so by elimination] N = 4k + 3 for some integer k fas was to be shown/.

33. Existence Proof: When n = 2, then
2 __ 02 — K
n“+2n-3=2°4+2-2-3 =05,
which is prime. Thus there is a prime number of the form n? + 2n — 3, where n is a positive

integer.

Uniqueness Proof (by contradiction): By the existence proof above, we know that when n = 2,
then n?+2n—3 is prime. Suppose there is another positive integer m, not equal to 2, such that
m? + 2m — 3 is prime. [We will show that this supposition leads logically to a contradiction.]
By factoring, we see that

m? +2m -3 = (m+3)(m - 1).

Now m # 1 because otherwise m?-+2m—3 = 0, which is not prime. Also m # 2 by supposition.
Thus m > 2. Consequently, m +3 > 5 and m — 1 > 1, and so m? 4+ 2m — 3 can be written
as a product of two positive integers neither of which is 1 (namely m + 3 and m — 1). This
contradicts the supposition that m? 4+ 2m — 3 is prime. Hence the supposition is false: there
is no integer m other than 2 such that m? + 2m — 3 is prime.
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Uniqueness Proof {direct): Suppose m is any positive integer such that m? + 2m — 3 is prime.
[We will show that m = 2.] By factoring,

m? +2m —3 = (m+3)(m—1).

Since m? + 2m — 3 is prime, either m +3 =1 or m —1 = 1. Now m + 3 # 1 because m is
positive and if m+3 =1 thenm = -2. Thusm—-1=1, which implies that m = 2 [as was to
be shouwn.].

Section 4.8

3.b.2=6

12. Solution 1: gcd(48,54) = ged(6-8,6-9) =6
Solution 2: ged(48,54) = ged(24-3,2-3%)=2-3=6

15. 13
83910033 So 10933 = 832 - 13 + 117, and hence ged(10933, 832) = ged(832, 117)

10816

117

7

117 [832 So 832 =117-7 + 13, and hence ged(832,117) = ged(117,13)
819
13

9
13 [117 So 117 =139+ 0, and hence ged(117,13) = ged(13,0)

17
0
But ged(13,0) = 13. So ged(10933,832) = 13.
18.
A 5859
B 1232
r 12321 931|301 | 2821 | 7(0
a 5859 | 1232 1 931 | 301 | 28 | 21 | 7
b 1232 [ 9311301 28 21| 7|0
ged 7
21. Proof:

Suppose a and b are any integers with b # 0, and suppose ¢ and r are any integers such that
a=>bg+r.

We must show that
ged(b, 1) < ged(a, b).

Step 1 (proof that any common divisor of b and r 1s also a common divisor of a
and b):

Let ¢ be a common divisor of b and 7. Then ¢ | b and ¢ | r, and so by definition of divisibility,
there are integers n and m so that

b=nc and r=mc
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44 Chapter 4: Elementary Number Theory and Methods of Proof

Substitute these values into the equation a = bg + r to obtain
a = (nc)q + me = c(ng + m).
But ng + m is an integer, and so by definition of divisibility ¢ | a. Because we already know
that ¢ | b, we can conclude that c is a common divisor of a and b.
Step 2 (proof that ged(b,r) < ged(ae, b):

By step 1, every common divisor of b and r is a common divisor of @ and b. It follows that the
greatest common divisor of b and r is a common divisor of a and b. But then ged(b, ) (being
one of the common divisors of a and b) is less than or equal to the greatest common divisor of
a and b:

ged(b, r) < ged(a, b)

[as was to be shoun].

24. a. Proof: Suppose a and b are integers and a > b > 0.

Part 1 (proof that every common divisor of a and b is a common divisor of b and

a—b):
Suppose
dla and d|b.
Then, by exercise 16 of Section 4.3,
d| (a-0b).

Hence d is a common divisor of @ and a — b.

Part 2 (proof that every common divisor of b and a — b is a common divisor of
a and b):

Suppose
dlb and d|(a-0b).

Then, by exercise 15 of Section 4.3,
al[b+ (a-0b).

But b+ (a — b) = @, and so

d| a.
Hence d is a common divisor of a and b.
Part 3 (end of proof):

Because every common divisor of ¢ and b is a common divisor of b and a — b, the greatest
common divisor of a and b is a common divisor of b and @ — b and so is less than or equal to
the greatest common divisor of a and a — b. Thus

ged(e, b) < ged(b,a — b).
By similar reasoning,

ged(b,a — b) < ged{a,b) and, therefore, ged(a,b) = ged(b,a — b).

“ A 768
B |[ 348
a 768 | 420 | 72 12 0
b 348 276 | 204 | 132 | 60 48 | 36 | 24 | 12
gcd 12
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27. Proof: Let a and b be any positive integers.
Part 1 (proof that if lem(a,b) = b then a | b): Suppose that

lem(a, b) = b.
By definition of least common multiple,
a | lem(a, b),

and so by substitution, a | b.
Part 2 (proof that if a | b then lem(a,b) = b): Suppose that

alb.

Then since it is also the case that
b|b,

b is a common multiple of @ and b. Moreover, because b divides any common multiple of both

a and b,
lem(a, b) = b.
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46 Chapter 4: Elementary Number Theory and Methods of Proof
Review Guide: Chapter 4

Definitions

e Why is the phrase “if, and only if” used in a definition? (p. 147)
e How are the following terms defined?

— even integer (p. 147)

— odd integer (p. 147)

— prime number (p. 148)

— composite number (p. 148)

— rational number (p. 163)

— divisibility of one integer by another (p. 170)

— n div d and n mod d (p. 181)

— the floor of a real number (p. 191)

— the ceiling of a real number (p. 191)
greatest common divisor of two integers (p. 220)

Proving an Existential Statement/Disproving a Universal Statement

How do you determine the truth of an existential statement? (p. 148)
What does it mean to “disprove” a statement? (p. 149)

What is disproof by counterexample? (p. 149)

How do you establish the falsity of a universal statement? (p. 149)

¢ O o o

Proving a Universal Statement /Disproving an Existential Statement

¢ If a universal statement is defined over a small, finite domain, how do you use the method of
exhaustion to prove that it is true? (p. 150)

e What is the method of generalizing from the generic particular? (p. 151)

o If you use the method of direct proof to prove a statement of the form “Vz, if P(z) then Q(z)",
what do you suppose and what do you have to show? (p. 152)

e What are the guidelines for writing proofs of universal statements? (pp. 155-156)

What are some common mistakes people make when writing mathematical proofs? (pp. 157-

158)

How do you disprove an existential statement? (p. 159)

What is the method of proof by division into cases? (p. 184)

What is the triangle inequality? (p. 188)

If you use the method of proof by contradiction to prove a statement, what do you suppose

and what do you have to show? (p. 198)

e If you use the method of proof by contraposition to prove a statement of the form “vz, if P(x)
then Q(z)”, what do you suppose and what do you have to show? (p. 202)

e Are you able to use the various methods of proof and disproof to establish the truth or falsity
of statements about odd and even integers (pp. 154,199), prime numbers (pp. 159,210), ra-
tional and irrational numbers (pp. 165,166,201,208,209), divisibility of integers (pp. 171,173-
175,184,186,202,203), absolute value (pp. 187-188), and the floor and ceiling of a real number

(pp. 194-196)7

Some Important Theorems and Algorithms

e What is the transitivity of divisibility theorem? (p. 173)
e What is the theorem about divisibility by a prime number? (p. 174)

Al
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Chapter 4 Review 47

e What is the unique factorization of integers theorem? (This theorem is also called the funda-
mental theorem of arithmetic.) (p. 176)

e What is the quotient-remainder theorem? Can you apply it to specific situations? (p. 180)

o What is the theorem about the irrationality of the square root of 27 Can you prove this
theorem? (p. 208)

What is the theorem about the infinitude of the prime numbers? Can you prove this theorem?
(p. 210)

e What is the division algorithm ? (p. 219)

o What is the Euclidean algorithm? (pp. 220,224)

e How do you use the Euclidean algorithm to compute the greatest common divisor of two
positive integers? (p. 223)

Notation for Algorithms

e How is an assignment statement executed? (p. 214)

¢ How is an if-then statement executed? (p. 215)

e How is an if-then-else statement executed? (p. 215)

¢ How are the statements do and end do used in an algorithm? (p. 215)
How is a while loop executed? (p. 216)

How is a for-next loop executed? (p. 217)
How do you construct a trace table for a segment of an algorithm? (pp. 217,219)
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Chapter 5: Sequences, Mathematical Induction, and Recursion

The first section of this chapter introduces the notation for sequences, summations, products, and
factorial. The section is intended to help you learn to recognize patterns so as to be able, for
instance, to transform expanded versions of sums into summation notation, and to handle subscripts,
particularly to change variables for summations and to distinguish index variables from variables
that are constant with respect to a summation.

The second, third, and fourth sections of the chapter treat mathematical induction. The or-
dinary form is discussed in Sections 5.2 and 5.3 and the strong form in Section 5.4. Because of
the importance of mathematical induction in discrete mathematics, a wide variety of examples is
given to help you become comfortable with using the technique in many different situations. Section
5.5 then shows how to use a variation of mathematical induction to prove the correctness of an
algorithm. Sections 5.6-5.8 deal with recursively defined sequences, both how to analyze a situation
using recursive thinking to obtain a sequence that describes the situation and how to find an explicit
formula for the sequence once it has been defined recursively. Section 5.9 applies recursive thinking
to the question of defining a set, and it describes the technique of structural induction, which is
the variation of mathematical induction that can be used to verify properties of a set that has been
defined. Section 5.9 also introduces the concept of a recursively defined function.

The logic of ordinary mathematical induction can be described by relating it to the logic discussed
in Chapters 2 and 3. The main point is that the inductive step establishes the truth of a sequence
of if-then statements. Together with the basis step, this sequence gives rise to a chain of inferences
that lead to the desired conclusion. More formally:

Suppose
1. P(1) is true; and
2. for all integers k > 1, if P(k) is true then P(k + 1) is true.

The truth of statement (2) implies, according to the law of universal instantiation, that no matter
what particular integer k > 1 is substituted in place of k, the statement “If P(k) then P(k + 1)" is
true. The following argument, therefore, has true premises, and so by modus ponens it has a true

conclusion:
If P(1) then P(2). by 2 and universal instantiation
P(1) by 1
P(2) by modus ponens

Similar reasoning gives the following chain of arguments, each of which has a true conclusion by
modus ponens:
If P(2) then P(3).
P(2)
P(3)
If P(3) then P(4).
P(3)
P(4)
If P(4) then P(5).
P(4)
P(5)
And so forth.

Thus no matter how large a positive integer n is specified, the truth of P(n) can be deduced as the
final conclusion of a (possibly very long) chain of arguments continuing those shown above.

48
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Section 5.1

6. f = BJ.4=0-4=0, fo = {%J-4=0-4=0, fs = EJ-4=0-4=4,
fa= BJ 4=1-4=4

9. h = 1-|logy1] = 1-0
he = 2-|log,2| = 21
hs = 3 |log,3] = 3-1
hy = 4-|log,4] = 4-2
hs = 5-|logy3] = 5.2
he = 6-[log,6] = 6:2
hy = T7-|log, 7] = 7-2
hs = 8- L10g2 8J = 8-3
he = 9-|log, 9] = 9.3
h]() = 10- I_]ng 10_] = 10-3
hipn = 11-|log,11] = 11-3
h12 = 12. [log2 12J = 12-3
h13 = 13- [log2 13J = 13-3
hiy = 14-[logz14] = 14-3
)l15 = 15 - |_10g2 15J = 15-3

When n is an integral power of 2, h, is n times the exponent of that power. For instance,
8 = 23 and hg = 8- 3. If m and n are integers and 2™ < n < 2™*! then h, =n-m.

n-—

15. a, = (-1)""! (

1
) for all integers n > 1 (There are other correct answers for this exercise.)

18. e. Hi:z ap = ap = -2

3
1 1 1 1 1 1 1 1 15
1. =t —t—F—m=lt-F-f-=—
2 m;)zm pratetE=ltgtitz=3
0 .
24. ) (j+1) 2P =(0+1)-2=1-1=1
=0

n
30. Zj(j +1)=1-2+2-3+3-4+ .-+ n-(n+1) (There are other correct answers for this
i=1

exercise. )
1-2 1
% (3—4) =5
n+1 n
39. Y mim+1)=> mim+1)+ (n+1)((n+1)+1)
m=1 m=1

n n+1
42. Y (m+1)2"+ (n+2)2" =Y (m+1)2m

m=0 m=0

FEzercises 45 and 48 have more than one correct answer.

4
5. [J62-1)
i=2
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50 Chapter 5: Sequences and Mathematical Induction

4
48. JJ(1-#)
j=1

54, Whenk=1,i=1+1=2. Whenk=n,i=n+1. Sincei=k+1,then k =7—1. So
ko (i=-1) i—1 _ o i-1
k244 (1-1)%44 P22+ 144 22045

Therefore,
n+1

- i-1
11 ) =

57. Wheni=1,j=1-1=0. Wheni=n-1,j=n—2. Since j=i—1,theni=j+1. So
i _ j+1 g+
- m-G+0P (m-j-1¢

Therefore,
n—1 . n—2

1 _ J+1
Z:((n—t)"’) JZ(:)((n—j— 1)2)'

60. By Theorem 5.1.1,
2. Z (3k% +4) + 5- Z(2k2 —1) = Y 2Bk +4)+ ) 5(2k* 1)

k=1 k=1

= i(6k2+8 +Zn: 10k% — 5)
k=1 k=1

n

= ) (6k%+8+10k% - 5)
k=1

= > (16K% +3).
k=1
6! 6 1
3 S =876 56
79 (AN 7! _ 76-5-4-3-221  T7-6-5
"\4) T A(T-4) (4-3-2-1)(3-2-1)  (3-2-1)
87. Let a nonnegative integer a be given. Divide a by 16 using the quotient-remainder theorem
to obtain a quotient ¢[0] and a remainder r[0]. If the quotient is nonzero, divide by 16 again

to obtain a quotient ¢[1] and a remainder r{1]. Continue this process until a quotient of 0 is
obtained. The remainders calculated in this way are the hexadecimal digits of a:

arp = (rlk]rlk — 1] ...7[2)7[1)7[0])}16.

=35

90.

0 R. 8 =84
16f 8 R. 15 = Fig
16] 143 R. 13 = D]e
16| 2301 Hence 230119 = 8F Dy5.

rl
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Section 5.2

9. Proof (by mathematical induction): Let the property P(n) be the equation

4(4™ - 16)

3 « Pn)

B 4P+ 4=

Show that P(3) is true: P(3) is true because the left-hand side is 43 = 64 and the right-hand
4(43—-16)  4(64—16) 4-48

3 3 3
Show that for all integers k > 3, if P(k) is true then P(k + 1) is true: Let k be
any integer with k > 3, and suppose that

= 64 also.

side is

4(4% —16) P(k)
3 44 A5 4o dk —
P+ +47+ +4 3 ) " inductive hypothesis
We must show that
4(4%+1 —
43+44+45+~-+4’°+‘=———( 3 16), — Pk+1)
Now the left-hand side of P(k + 1) is
43+44+45+“_+4k+1 — 43+44+45+,,_+4k+4k+1
by making the next-to-last term explicit
_ A4 -16) b+
3

by inductive hypothesis
4kt g4 3. 4R

3 3
by creating a common denominator
4.4k — 64

3
by adding the fractions
4(4k+1 — 16)

3
by factoring out the 4,
and this is the right-hand side of P(k + 1) [as was to be shown].
[Since both the basis and the inductive steps have been proved, we conclude that P(n) is true
for all integers n > 3.]

12. Proof (by mathematical induction): Let the property P(n) be the equation

1 n

1
1.2 nn+1) =+l

1.2

1
+m+"'+ — Pn)

and the

Do | =

Show that P(1) is true: P(1) is true because the left-hand side equals ﬁ =

: : 11

right-hand side equals T¥i-2 also.

Show that for all integers k > 1, if P(k) is true then P(k + 1) is true: Let k be
any integer with k£ > 1 and suppose that

L, 1 __k P(k)
1-27 2.3 T k(k+1)  k+1 inductive hypothesis
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52 Chapter 5: Sequences and Mathematical Induction

We must show that
1 1 1 k+1

—+__ - = s
2t 23T Y Gr DG DA T ke D1
or, equivalently,
1 1 1 k+1
T3t 33t GrnGiy - wez DD
The left-hand side of P(k +1) is
RS S T
1-2 2.3 (k+1)(k+2)
1 1 1
= ettt Y Rr D2
by making the next-to-last term explicit
k 1

kel DR+ 2)
by inductive hypothesis
k(k + 2) 1
(k+1)(k+2) (k+1)(k+2)

by creating a common denominator

K2 +2k+1
(k+1)(k+2)
by adding the fractions
(k+1)2
(k+1)(k+2)
because k*+2k + 1 = (k + 1)°

Eend
—

+
+

|

Eoyd
N

by canceling (k + 1) from numerator and denominator,

and this is the right-hand side of P(k + 1) [as was to be shown/
15. Proof (by mathematical induction): Let the property P(n) be the equation

n

dii) = (n+1) -1, — Pn)

i=1
Show that P(1) is true: We must show that El!:l i(21) = (14+1)!—1. But the left-hand side of
this equation is Z:=1 i(i!) = 1-(1!) = 1 and the right-hand side is (1+1)!-1=2!-1=2-1=1
also. So P(1) is true.

Show that for all integers k > 1, if P(k) is true then P(k 4+ 1) is true: Let k be
any integer with k£ > 1, and suppose that

k

i) =(k+1)! - L.

i=1

P(k)
inductive hypothesis
We must show that

k+1

ST =((k+1)+1)! -1,

=1

or, equivalently,

k+1
Sii)y=(k+2!-1. «— Pk+1)

i=1
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Section 5.2 53

The left-hand side of P(k + 1) is

k+1 k
Zz(z‘) = Zz(z') + (k+1)((k+ 1)) by writing the (k + 1)st term separately
i=1 i=1

= [(k+1)! =1+ (k+1)((k+1)!) by inductive hypothesis

= ((k+DNA+(k+1)-1 by combining the terms with

the common factor (k + 1)!

Il

(k+D(k+2)-1
= (k+2)!-1 by algebra,
and this is the right-hand side of P(k + 1) fas was to be shown/.
18. Proof (by mathematical induction): Let the property P(n) be the equation

1 —cos2nz
2sinz

sinz+sin3z + - +sin(2n — 1)z = — Pn)

Show that P(1) is true: P(1) is true because the left-hand side equals sinz, and the
right-hand side equals

1—cos2z _ 1-cos’+sin’z _ 2sin’z

2sinz 2sinz ~ 2sinz

Show that for all integers k > 1, if P(k) is true then P(k 4 1) is true: Let k be
any integer with & > 1 and suppose that
1 — cos 2kz - P(k)

sing+sindz - +sin (2 - Dz = 2sinz inductive hypothesis

We must show that

1- ;
sinz+sin3z + - --+sin (2(k+1) _ 1)(1} — (7052(’9—[-1)5[‘

2sinx

or, equivalently,

—cos2(k+1
sinz+sin3z + - +sin(2k + 1)z = 1 cos2(k + ):r:

2sinx

— P(k+1)

When the next-to-last term of the the left-hand side of P(k + 1) is made explicit, the
left-hand side becomes
sinz + sin 3z + - - - + sin(2k — 1)z + sin{2k + 1)z

1 —cos2kz

= " Senz + sin(2k + 1)z by inductive hypothesis
1~ 2si i
= c.os 2kz + = :zrsm‘(2k:a: +2) by creating a common denominator
2sinz . 2sinz
= 1~ cos2ka + 22 :::z sin(2kz + 2) by adding fractions
- Ll—oos 2kz + 2sin x[m;(:li? cos % + cos(2kz) sin o] by the addition formula for sine
— cos i i 1 in2 .
_ _Ll—cos2kz +2sinz sm(22;;rl)mcosx + 2sin® z cos(2kz) by multiplying out

2 ; i
_  l+tecos 2kz(2sin® £ — 1) + 2sin z cos z sin(2kx) by combining like terms

2sinz
- ldtoos 2kz(~ cos 2z) + sin 2 sin(2kz) by the formulas for cos 2x and sin 2z

1 2k %sin o 2z sin{2k
_ — (cos 2kz cos 2z — sin 2x sin{2kzx)) by factoring out —1

) ok 22 sinx

= — cos( i +27) by the addition formula for cosine
2sinx

- 1- COS(2(_k + D) : by factoring out 2z,
2sinz

and this is the right-hand side of P(k + 1) fas was to be shown/.
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54 Chapter 5: Sequences and Mathematical Induction

21. 54+10+15+20+---+300=5(1+2+3+-- +60)—5( 60 61) = 9150.

27. Solution 1:

535 4+54 455+ +5% = 5H(1+5+52+. 4579
_ 53 5(k—3)+1 -1 _ 53(5k—2 _ 1)
5—-1 4
Solution 2:
B +5 455+ +5% = 145452+ +55 - (1+5+57)
R+l _ 1 R+l _ 1
= —-31=——-131
5-1 4
Note that the expression obtained in solution 2 can be transformed into the one obtained in
solution 1:
R+ 1 SRPL_1 31.4 5 o125 skl s3(5k-2 o)
T4 T 4 4 4 4 4 '

30. (a+md) + (a+ (m+1)d)+ (e + (m+2)d)+ -+ (a+ (m+ n)d)
= (a+md)+ (a+md+d)+(a+md+2d)+ -+ (a+ md+ nd)
(£a+md)+(a+md)+~-+(a+mdl)+d(1+2+3+--~+n)

N—

n + | terms

= (n+1)(a+md +d(@-2+—1-)—)

by Theorem 5.2.2
2
= (a+md+ %d)(n +1)

n

= le+(m+3)dn+1)
Any one of the last three equations or their algebraic equivalents could be considered a correct
answer.

36. Proof: Suppose m and n are any positive integers such that m is odd. By definition of odd,
m = 2q + 1 for some integer k, and so, by Theorems 5.1.1 and 5.2.2,

m—1 (2¢+1)-1 2q 2¢q 2q 2
(n+k)= > (m+k)=) (n+k)=> n+) k=(Qq+n+) k
k=0 k=0 k=0 k=0 k=0 k=1
2q(2q+1
= @a+n+ 2D (04 1n 4+ g(20 +1) = (20 + 1)m +0) = mln + ).
But n + ¢ is an integer because it is a sum of integers. Hence, by definition of divisibility,
m-1
> (n+k) is divisible by m.
k=0
Note: If m is even, the property is no longer true. For example, if n = 1 and m = 2, then
m—1 2-1

Z(n+k =Y (1+k)=1+2=3, and 3 is not divisible by 2.
k=0

Section 5.3

9. Proof (by mathematical induction): Let the property P(n) be the sentence

7" — 1 is divisible by 6.

We will prove that P(n) is true for all integers n > 0.
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Section 5.3 55

Show that P(0) is true: P(0) is true because because 7° — 1 =1—1 =0 and 0 is divisible
by 6 (since 0 =0 - 6).
Show that for all integers k > 0, if P(k) is true then P(k + 1) is true: Let k be
any integer with k > 0, and suppose
7% — 1 is divisible by 6. — inductive hypothesis
We must show that
7%+1 _ 1 is divisible by 6.

By definition of divisibility, the inductive hypothesis is equivalent to the statement

F—1="6r
for some integer r. Then
TRHL—1 = T7.7F-1
= (B+1)7*-1
= 6-7°+(7"—1) by algebra
= 6-7"+6r by inductive hypothesis
= 6(7"+r) by algebra.

Now 7* +r is an integer because products and sums of integers are integers.Thus, by definition
of divisibility, 7%t — 1 is divisible by 6 [as was to be shown/.

12. Proof (by mathematical induction): Let the property P(n) be the sentence

7" — 2™ is divisible by 5.

We will prove that P(n) is true for all integers n > 0.

Show that P(0) is true: P(0) is true because 7° — 2° = 0 — 0 = 0 and 0 is divisible by 5
(since 0 = 5-0).

Show that for all integers k > 0, if P(k) is true then P(k + 1) is true: Let k be
any integer with £ > 0, and suppose

7k — 9% is divisible by 5. — inductive hypothesis

We must show that
7h+1 _ 2k+1 ig divisible by 5.

By definition of divisibility, the inductive hypothesis is equivalent to the statement 7k -2k = 5p
for some integer r. Then

7k+l — 2/9-{-1 7. 71\1 —9. 2k

(542)-7F — 2.2~

5.7 +2. 7% — 2. 2F

5. 75 4 2(7% — 2¥) by algebra

5.7% 4+ 2. 5r by inductive hypothesis
5(7% + 2r) by algebra.

I

Now 7% + 2r is an integer because products and sums of integers are integers. Therefore, by
definition of divisibility, 7%+! — 25+1 is divisible by 5 [as was to be shown/.

15. Proof (by mathematical induction): Let the property P(n) be the sentence

n(n? + 5) is divisible by 6.
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56 Chapter 5: Sequences and Mathematical Induction

We will prove that P(n) is true for all integers n > 0.
Show that P(0) is true: P(0) is true because 0(0? + 5) = 0 and 0 is divisible by 6.

Show that for all integers k > 0, if P(k) is true then P(k + 1) is true: Let k be
any integer with & > 0, and suppose

k(k? + 5) is divisible by 6. +« inductive hypothesis

We must show that
(k 4+ 1)((k + 1)? + 5) is divisible by 6.

By definition of divisibility k(k? + 5) = 67 for some integer 7. Then

(k+1)((k+1)2%2+5) = (k+1)(k2+2k+1+5)
= (k+1)(k*+2k+6)
K +2k% +6k+ k% +2k+6
k3 +3k%+8k +6
(k3 + 5k) + (3k% + 3k + 6)
k(k? + 5) + (3k? + 3k + 6) by algebra
= 6r+3(k®+k)+6, by inductive hypothesis.

Now k(k + 1) is a product of two consecutive integers. By Theorem 4.4.2 one of these is
even, and so [by properties 1 and 4 of Ezample 4.2.3] the product k(k + 1) is even. Hence
k(k 4+ 1) = 2s for some integer s. Thus

6r+3(k2+k)+6=06r+3(2s) +6=6(r+s+1).
By substitution, then,
(k+ 1){(k + 1) +5) =6(r + s+ 1),
which is divisible by 6 because r+s+1 is an integer. Therefore, (k+1)((k+1)?+5) is divisible
-by 6 fas was to be shown].
18. Proof (by mathematical induction): Let the property P(n) be the inequality 5 4+ 9 < 6™.
We will prove that P(n) is true for all integers n > 2.

Show that P(2) is true: P(2) is true because the left-hand side is 52 +9 = 25+ 9 = 34 and
the right-hand side is 62 = 36, and 34 < 36.

Show that for all integers k > 2, if P(k) is true then P(k + 1) is true: Let k be
any integer with & > 2, and suppose

5% +9 < 6. + inductive hypothesis

We must show that
5k+l +9< 6k+l.

Multiplying both sides of the inequality in the inductive hypothesis by 5 gives
5(5% +9) < 5-6*. (*)

Note that
5541 19 < 5% 445 = 5(5* +9) and 5.6 < 6FFL. (*¥)

Thus, by by the transitive property of order, (*), and (**),
551 1 9 < 5(5F +9) and 5(5* +9) < 5-6¢ and 5.6° <651
So, by the transitive property of order,
sk+l 4 g < gh+!

[as was to be shown].
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21. Proof (by mathematical induction): Let the property P(n) be the inequality

ﬁ < __1_ + _1 + _1. + -+ _l
viooV2 o V3 v
We will prove that P(n) is true for all integers n > 2.

Show that P(2) is true: To show that P(2) is true we must show that

1 1
V2< —+ —.
V1 p)

But this inequality is true if, and only if,
2<V2+1
(by multiplying both sides by v/2). And this is true if, and only if,
1< V2

(by subtracting 1 on both sides). But 1 < V2, and so P(2) is true.

Show that for all integers k > 2, if P(k) is true then P(k + 1) is true: Let k be
any integer with k > 2, and suppose

1
\/E<W+

L
7

-+ +— inductive hypothesis

1 1
—t—t--
V2 V3
We must show that

1

Vk+1< —_—
vk+1

1 1 1
et — =+t
Vi V2 V3
But for each integer k > 2,

VE < VE+1 (%),
and multiplying both sides of (*) by vk gives

k<vVk-VE+1

Adding 1 to both sides gives
E+1<vVEk vVE+1+1,

and dividing both sides by vk + 1 gives
VE+1<Vk+

1
VE+1

By substitution from the inductive hypothesis, then,

1
+

Vk+l<ﬁ

1

—_— + —_ + oo
V2 V3

[as was to be shown/.

(*) Note: Strictly speaking, the reason for this claim is that k < k+1 and for all positive real
numbers a and b, if a < b, then /a < vb.
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58 Chapter 5: Sequences and Mathematical Induction

27. Proof (by mathematical induction): According to the definition of d;, ds, ds, ..., we have that

di =2 and di = d’”k—_l for all integers k > 2. Let the property P(n) be the equation

2
dn = —l
n:

We will prove that P(n) is true for all integers n > 1.

Show that P(1) is true: To show that P(1) is true we must show that d; = % But % =2
and d; = 2 (by definition of dy,dg,ds,...). So the property holds for n = 1.

Show that for all integers k > 1, if P(k) is true then P(k+ 1) is true: Let k be
any integer with £ > 1, and suppose that

2
dy = ik « inductive hypothesis
We must show that 5
it = T
But the left-hand side of this equation is
dk .
dryy = P+l by definition of di,dy,ds, . ..
2
= P by inductive hypothesis
_ 2
T (k+ k!
2 .
= m by the algebra of fractions,

which is the right-hand side of the equation. [This is what was to be shown/.

33.

36. Proof by mathematical induction: Let the property P(n) be the sentence

In any round-robin tournament involving n teams, it is possible to label the
teams T4,T5,7T3,...,T, so that for all i =1,2,3,...,n— 1, T; beats T;,.

We will prove that P(n) is true for all integers n > 2.

Show that P(2) is true: Consider any round-robin tournament involving two teams. By
definition of round-robin tournament, these teams play each other exactly once. Let 77 be the
winner and T5 the loser of this game. Then T} beats 75, and so the labeling is as required for
P(2) to be true.

Show that for all integers k > 2, if P(k) is true then P(k + 1) is true: Let & be
any integer with k£ > 2 and suppose that

In any round-robin tournament involving & teams, it is possible to label the - inductive
teams 11,75, T3,..., Tk so that for all § = 1,2,3,...,k — 1, T; beats T;4;. hypothesis
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Section 5.3 59

We must show that

In any round-robin tournament involving k + 1 teams, it is possible to label the
teams T4, Ts, T3, . .., Txy1 so that for all i = 1,2,3,...,k, T; beats Ti41.

Consider any round-robin tournament with & + 1 teams. Pick one and call it T’. Temporarily
remove T and consider the remaining k teams. Since each of these teams plays each other
team exactly once, the games played by these k teams form a round-robin tournament. It
follows by inductive hypothesis that these k teams may be labeled T3, 73, T3,..., T} where T}
beats T;yq foralli=1,2,3,...,k— 1.

Case 1 (T’ beats T1): In this case, relabel each T; to be Tiy1, and let T} = T". Then T}
beats the newly labeled T3 (because T” beats the old T1), and T; beats T;41 for alli =2,3,...,k
(by inductive hypothesis).

Case 2 (T’ loses to Ty,,T%,T3,...,Trm and beats Tryy1 where 1 <m < k—1): In
this case, relabel teams Tpq1, T2, - - Tk t0 be T2, T3, - -+ Thy1 and let Te1 = T,
Then for each i with 1 < i < m — 1, T; beats T4 (by inductive hypothesis), T;, beats Tin+1
(because T, beats T"), Trp41 beats Tinyo (because 7" beats the old Ty,1), and for each ¢ with
m+2 < i<k, T; beats T;;1 (by inductive hypothesis).

Case 3 (T' loses to T; for alli =1,2,...,k): In this case, let T4, = T'. Then for all
i=1,2,...,k—1, T; beats T;;1(by inductive hypothesis) and Tj beats Ty (because T} beats
).

Thus in all three cases the teams may be relabeled in the way specified [as was to be shown/.

39

Proof (by mathematical induction): Let the property P(n) be the sentence

The interior angles of any n-sided convex
polygon add up to 180(n — 2) degrees.

We will prove that P(n) is true for all integers n > 3.

Show that P(3) is true: P(3) is true because any convex 3-sided polygon is a triangle, the
sum of the interior angles of any triangle is 180 degrees, and 180(3 — 2) = 180. So the angles
of any 3-sided convex polygon add up to 180(3 — 2) degrees.

Show that for all integers k > 3, if P(k) is true then P(k + 1) is true: Let k be
any integer with k¥ > 3 and suppose that

The interior angles of any k-sided convex

polygon add up to 180(k — 2) degrees. +~ inductive hypothesis

We must show that

The interior angles of any (k + 1)-sided convex polygon
add up to 180((k + 1) — 2) = 180(k — 1) degrees.

Let p be any (k + 1)-sided convex polygon. Label the vertices of p as v1, v2, v3, ..+ ; Vks Uk+1;
and draw a straight line from v; to v3. Because the angles at vy, v2, and vz are all less than
180 degrees, this line lies entirely inside the polygon. Thus polygon p is split in two pieces: (1)
the polygon p’ obtained from p by using all of its vertices except v, and (2) triangle ¢ with
vertices vy, v2, v3. This situation is illustrated in the diagram below.
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60 Chapter 5: Sequences and Mathematical Induction

Note that p’ has k vertices, and it is convex because the sizes of the angles at v; and wv; in
p’ are less than their sizes in p. Because p’ is a convex polygon with & vertices, by inductive
hypothesis, the sum of its interior angles is 180(k — 2) degrees. Now polygon p is obtained by
joining p’ and ¢, and since the sum of the interior angles in ¢ is 180 degrees,

the sum of the interior angles in p = the sum of the interior angles in p’
+ the sum of the interior angles in ¢

= 180(k — 2) degrees +180 degrees
180(k — 2 + 1) degrees
= 180(k — 1) degrees,

as was to be shown.

Section 5.4

3. Proof (by strong mathematical induction): Let the property P(n) be the sentence

¢, is even.

We will prove that P(n) is true for all integers n > 0.

Show that P(0), P(1), and P(2) are true: By definition of cp,c1,¢2,..., we have that
co=2,¢ =2, and ca = 6 and 2, 2, and 6 are all even. So P(0), P(1), and P(2) are all true.

Show that if k> 2 and P(i) is true for all integers i from 0 through k, then
P(k + 1) is true: Let k be any integer with k£ > 2, and suppose

¢; is even for all integers i with 0 <i <k + inductive hypothesis

We must show that
cp+1 IS even.

But by definition of cg,c1,¢2, ..., k1 = 3ck—2. Since k > 2, we have that 0 < k-2 < k, and
so, by inductive hypothesis, cx—2 is even. But the product of an even integer with any integer
is even [properties 1 and 4 of Example 4.2.3], and hence 3ci—2, which equals ¢4, is also even
[as was to be shown].

[Since both the basis and the inductive steps have been proved, we conclude that P(n) is true
for all integers n > 0./

6. Proof (by strong mathematical induction): Let the property P(n) be the equation

fn=38-2"+4+2.5".

We will prove that P(n) is true for all integers n > 0.

Show that P(0) and P(1) are true: By definition of fo, fi, f2,..., we have that fo = 5
and f; = 16. Since 3-2° +2-5° =3+ 2 =35 and 3-2! +2-5' =6 + 10 = 16, P(0) and P(1)
are both true.

Show that if k> 1 and P(i) is true for all integers i from 0 through k, then
P(k + 1) is true: Let k be any integer with & > 1, and suppose

fi = 3.2 + 2. 5' for all integers ¢ with 0 < i < k. «— inductive hypothesis

We must show that
fra1 = 3.2k Lo, 5RFL

© 2012 Cengage Leaming. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

STUDENTS-HUB.com Uploaded By: anonymous



Section 5.4 61

But

fev1 = Tfe—10fk_1 by definition of fg, f1, fa2,---

7(3- 28 +2-55) — 10(3- 281 4 2. 551 by inductive hypothesis

7(6- 261 4+ 10- 55=1) — 10(3- 25~ 1 4 2. 5571)  because 2= 2-2%~1 and 5%= 5. 5*"!
(42- 25=1 4 70 5¥-1) — (30- 2%~1 4+ 20. 5°1)

(42 — 30)- 28— + (70 — 20)- 55!

12-2F=1 4+ 50- 55!

= 3.22.2k-1 4 92.52.5%1

= 3.2k+1 4 9.5k+] by algebra,

[as was to be shown].

[Since both the basis and the inductive steps have been proved, we conclude that P(n) is true
for all integers n > 0.]

9. Proof (by strong mathematical induction): Let the property P(n) be the inequality

7\"
< - .

We will prove that P(n) is true for all integers n > 1.

Show that P(1) and P(2) are true: By definition of a;,a2,as,..., we have that a; = 1

and az = 3. But )
7 7 49 1
4—>1 and (Z) —1—6'——3E>3

Show that if k> 2 and P(i) is true for all integers i from 1 through k, then
P(k + 1) is true: Let k& be any integer with k > 2, and suppose

So a; € g and az < (%)2, and thus P(1) and P(2) are both true.

7\' . . . . . .
a; < (Z) for all integers ¢ with 0 < ¢ < &. + inductive hypothesis
7\ k1
We must show that ar- < (Z) .
Since k > 2,
Qg1 = ap+ar-1 by definition of a1,aq,as,...

7 k 7 k—1
= aptap—1 < (Z) + (Z) by inductive hypothesis
+

7
= aptag; < (—) (Z 1) by factoring out (%)k"]
7\ 11 4
= ay+ar-1 < 1 T by adding 7 and 1
7\* 7'/ 44
= ar+ap-1 < (Z) (-1—6) by multiplying numerator and denominator of 14—1 by 4
k-1
7 49 44 _ 49
= ap+ar—1 < (Z) (E) because 15 < 15
TNF1 77\ 2
= ap+ag) < (Z) (1) because (32) = (~—7,)2
7\ K+
= ap+ar-1 < (3) by a law of exponents.

7\ k1
Thus ag41 < (Z) [as was to be shown/.
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62 Chapter 5: Sequences and Mathematical Induction

12. Note: This problem can be solved with ordinary mathematical induction.
Proof (by mathematical induction): Let the property P(n) be the sentence

Given any sequence of n cans of gasoline, deposited around a circular track
in such a way that the total amount of gasoline is enough for a car to make
one complete circuit of the track, it is possible to find an inital location

for the car so that it will be able to traverse the entire track by using the
various amounts of gasoline in the cans that it encounters along the way.

We will prove that P(n) is true for all integers n > 1.

Show that P(1) is true: When there is just one can, the car should be placed next to it. By
hypothesis, the can contains enough gasoline to enable the car to make one complete circuit
of the track. Hence P(1) is true.

Show that for all integers k > 1, if P(k) is true then P(k + 1) is true: Let k be
any integer with £ > 1, and suppose that

For all integers ¢ with 1 < ¢ < k, given any sequence of n cans of

gasoline, deposited around a circular track in such a way that the total

amount of gasoline is enough for a car to make one complete circuit inductive
of the track, it is possible to find an inital location for the car so that - hypothesis
it will be able to traverse the entire track by using the various amounts

of gasoline in the cans that it encounters along the way.

We must show that

Given any sequence of &k + 1 cans of gasoline, deposited around a circular track
in such a way that the total amount of gasoline is enough for a car to make
one complete circuit of the track, it is possible to find an inital location

for the car so that it will be able to traverse the entire track by using the
various amounts of gasoline in the cans that it encounters along the way.

Now, because the total amount of gasoline in all k¥ + 1 cans is enough for a car to make one
complete circuit of the track, there must be at least one can, call it C, that contains enough
gasoline to enable the car to reach the next can, say D, in the direction of travel along the
track. Imagine pouring all the gasoline from D into C. The result would be k cans deposited
around the track in such a way that the total amount of gasoline would be enough for a car to
make one complete circuit of the track. By inductive hypothesis, it is possible to find an initial
location for the car so that it could traverse the entire track by using the various amounts of
gasoline in the cans that it encounters along the way. Use that location as the starting point
for the car. When the car reaches can C, the amount of gasoline in C is enough to enable it
to reach can D, and once the car reaches D, the additional amount of gasoline in D enables it
to complete the circuit. [This is what was to be shown.]

15. Note: This solution makes free use of the properties from Chapter 4 about sums and differences
for two even and odd integers.

Proof (by strong mathematical induction): Let the property P(n) be the sentence

Any sum of n even integers is even.

We will prove that P(n) is true for all integers n > 2.

Show that P(2) is true: P(2) is true because any sum of two even integers is even.

Show that if k > 2 and P(i) is true for all integers i from 2 through k, then
P(k + 1) is true: Let k be any integer with & > 2, and suppose that

For all integers i from 2 through &,

. . . «— inductive hypothesis
any sum of i even integers is even.
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We must show that
any sum of k& + 1 even integers is even.

Consider any sum S of £+ 1 even integers. Some addition is the final one that is used to obtain
S. Thus there are integers A and B such that S = A+ B, A is a sum of r even integers, and
B is a sum of (k + 1) — r even integers, wherc 1 <r <kand 1 < (k+1) -7 < k.

Case 1 (both 2 < r < k and 2 < k+ 1)—r < k): In this case, by inductive hypothesis,
both A and B are even, and hence S = A + B is even.

Case 2 (r =1 or (k+1)—r =1): In this case, since A+ B = B + A, we may assume
without loss of generality that = 1. Then A is a single even integer, and, since 2 < (k+1)r<k,
B is even by inductive hypothesis. Hence S = A + B is even.

Conclusion: It follows from cases 1 and 2 that any sum of k + 1 even integers is even [as was
to be shown/.
18. Conjecture: For all integers n > 0, the units digit of 9" is 1 if n is even and is 9 if n is odd.

Proof (by strong mathematical induction): Let the property P(n) be the sentence

The units digit of 9" is 1 if n is even and is 9 if n is odd.

We will prove that P(n) is true for all integers n > 0.

Show that P(0) and P(1) are true: P(0) is true because 0 is even and the units digit of
9% = 1. P(1) is true because 1 is odd and the units digit of 9! = 9.

Show that if k> 1 and P(i) is true for all integers i from 0 through k, then
P(k + 1) is true: Let k be any integer with k£ > 1, and suppose that

The units digit of 9™ is 1 if n is even and is 9 if n is odd. « inductive hypothesis
We must show that

The units digit of 9! is 1 if k + 1 is even and is 9 if k + 1 is odd.

Case 1 (k+1 is even): In this case k is odd, and so, by inductive hypothesis, the units
digit of 9% is 9. This implies that there is an integer a so that 9% = 10a + 9, and hence

ok+l = gl.gk by algebra (a law of exponents)
= 9(10a +9) by substitution
= 90a + 81
= 90a+80+1

= 10(9+8)+1 by algebra.

Because 9a + 8 is an integer, it follows that the units digit of 95+! is 1.

Case 2 (k+ 1 is odd): In this case k is even, and so, by inductive hypothesis, the units
digit of 95! is 1. This implies that there is an integer a so that 9* = 10a + 1, and hence

g+l —  gl.gk by algebra (a law of exponents)
= 9(10a + 1) by substitution
= 90a+9

10(92) +9 by algebra.

Because 9a is an integer, it follows that the units digit of 95+ is 9.

Hence in both cases the units digit of 9%+! is as specified /as was to be shown).
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21. Proof by contradiction: Suppose not. That is, suppose that there exists an integer that is
greater than 1, that is not prime, and that is not a product of primes. [ We will show that this
supposition leads to a contradiction.|

Let S be the set of all integers that are greater than 1, are not prime, and are not a product
of primes. That is,

S={n€ Z |n>1, nisnot prime, and n is not a product of primes }.

Then, by supposition, S has one or more elements. By the well-ordering principle for the
integers, S has a least element; call it m. Then m is greater than 1, is not prime, and is not a
product of primes.

Now because m is greater than 1 and is not prime, m = rs for some integers r and s with
l1<r<mandl < s < m. Also, because both 7 and s are less than m, which is the least
element of S, neither 7 nor s is in S. Thus both r and s are either prime or products of primes.

But this implies that m is a product of primes because m is a product of r and s. Thus m is
not in S. So m is in § and m is not in S, which is a contradiction. [Hence the supposition is
false, and so every integer greater than 1 is either prime or a product of primes.|

27. Suppose P(n) is a property that is defined for integers n and suppose the following statement
can be proved using strong mathematical induction:

P(n) is true for all integers n > a.

Then for some integer b > a the following two statements are true:
1. P(a), P(a+1), P(a+2), ..., P(b) are all true.

2. For any integer k > b, if P() is true for all integers ¢ from a through k, then P(k + 1) is
true.

We will show that we can reach the conclusion that P(n) is true for all integers n > a using
ordinary mathematical induction.

Proof by mathematical induction: Let Q(n) be the property

P(j) is true for all integers j from a through n.

Show that Q(b) is true: For n = b, the property is “P(j) is true for all integers j with
a < j <b.” But this is true by (1) above.

Show that for all integers k > b, if Q(k) is true then Q(k + 1) is true: Let k be
any integer with k > b, and suppose that Q(k) is true. In other words, suppose that

P(j) is true for all integers j from a through k. «— inductive hypothesis
We must show that Q(k + 1) is true. In other words, we must show that

P(j) is true for all integers j from a through & + 1.

Since, by inductive hypothesis, P(j) is true for all integers j from a through k, it follows from
(2) above that P(k+ 1) is also true. Hence P(j) is true for all integers j from a through k+1,
[as was to be shown).

It follows by the principle of ordinary mathematical induction that P(j) is true for all integers
j from a through n for all integers n > b. From this and from (1) above, we conclude that
P(n) is true for all integers n > a.
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30. Theorem: Given any nonnegative integer n and any positive integer d, there exist integers ¢
and rsuchthat n =dg+rand 0 <r < d.

Proof by (ordinary) mathematical induction: Let a nonnegative integer d be given, and let the
property P(n) be the sentence

There exist integers ¢ and r such that

n=dg+r and 0<r<d. ~ P(n)

We will prove that P(n) is true for all integers n > 0.
Show that P(0) is true: We must show that there exist integers q and r such that

O=dg+r and 0<r<d.

Let g =7 =0. Then
0=d-0+0 and 0<0<d.

Hence P(0) is true.

Show that for all integers k > 0, if P(k) is true, then P(k + 1) is true: Let k be
any integer with & > 0, and suppose that

There exist integers ¢’ and 7’ such that . P(k)
k=dg +7 and 0<7v' <d. inductive hypothesis

We must show that

There exist integers ¢ and r such that
k+1=dg+r and 0<r<d.

— P(k+1)
Adding 1 to both sides of the equation in the inductive hypothesis gives
k+1=(d¢+r)+1

Note that since 7/ is an integer and 0 < ' < d, then either 7/ <d—1lorr' =d -1
Case 1 (' < d —1): In this case

k+1=(dd +7)+1=dg + (' +1).

Let ¢ = ¢’ and r = r’ + 1. Then, by substitution,

k+1=dg+r.
Since
r<d—1 then r=7"+1<d,
and since
r=r"+1 and 7' >0 then 7 >0.
Hence

0<r<ad
Case 2 (v’ = d — 1): In this case

k+1

(dg' +7)+1

dg' + (v +1)

dg’ +{(d—1) +1)
= d¢ +d=4d(¢ +1).
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66 Chapter 5: Sequences and Mathematical Induction

Let ¢ = ¢’ + 1 and r = 0. Then by substitution
k+1=dg+m,
and since
r=0 and d>0,
then
0<r<d.

Thus in either case there exist integers q and r such that k+1=dg+7 and 0 < r < d [as was
to be shoun/.

Section 5.5

9. Proof
1. Basis Property: I(0) is the statement

both a and A are even integers or both are odd integers and, in either case, a > —1.

According to the pre-condition this statement is true.

I1. Inductive Property: Suppose k is any nonnegative integer such that G A I(k) is true
before an iteration of the loop. Then when execution comes to the top of the loop, agq > 0
and

both aqq and A are even integers or both are odd integers and, in either case, agq > —1.

Execution of statement 1 sets @pew equal to aglq — 2. Hence apew has the same parity as aqq
which is the same as A. Also since aglq > 0, then

a,,,ew=a01d—2>0—-2=—2.

But since apew > —2 and since apew is an integer, anew > —1. Hence after the loop iteration,
I(k + 1) is true. ,
III. Eventual Falsity of Guard: The guard G is the condition a > 0. After each iteration
of the loop,

Quew = Qold — 2 < Qold,

and so successive iterations of the loop give a strictly decreasing sequence of integer values of
a which eventually becomes less than or equal to zero, at which point G' becomes false.

IV. Correctness of the Post-Condition: Suppose that N is the least number of iterations
after which G is false and I(N) is true. Then (since G is false) a < 0 and (since I(N) is true)
both ¢ and A are even integers or both are odd integers, and e > —1. Putting the inequalities
together gives

-1<a<y,

and so since a is an integer, a = —1 or a = 0. Since a and A have the same parity, then, a = 0
if A is even and a = —1 if A is odd. This is the post-condition.

12. a. Suppose the following condition is satisfied before entry to the loop:“there exist integers u,
v, s, and ¢ such that a = uA + vB and b = sA +tB.” Then

Qold = Uold A + VotaB  and  bolg = Soi A + tola B,
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for some integers Uold, Volds Sold, and to1q. Observe that buew = Tnew = @ola M0d boia. So by the
quotient-remainder theorem, there exists a unique integer g,ew With agld = bold * Gnew + Pnew =
Bold * Gnew T+ Dnew. Solving for byew gives

bpew = Qold — Dald * Gnew
= (uoldA + vold B) — (S0ld A + told B)Gnew
= (uo]d - sold‘]new)A + (vold - to]dQnew)B-

Therefore, let
Snew = Uold — Soldfnew aNA  new = Uold — toldnew-

Also since
new = bold = Sold A + tola B,
let
Unew = Sold  anNd  Vpew = loid-
Hence

Gnow = Unew' A + Vpew B and  bpew = Snew® A + thew: B,
and so the condition is true after each iteration of the loop and hence after exit from the loop.

b. Initially a = Aand b= B. Let u =1, v =0, s =0, and £ = 1. Then before the first
iteration of the loop,
a=uA+vB and b=sA+tB,

as was to be shown.

c. By part (b) there exist integers u, v, s, and t such that before the first iteration of the loop,
e=uA+vB and b=sA+tB.

So by part (a), after each subsequent iteration of the loop, there exist integers u, v, s, and ¢
such that
a=uA+vB and b=sA+tB.

Now after the final iteration of the while loop in the Euclidean algorithm, the variable ged is
given the current value of a. (See page 224.) But by the correctness proof for the Euclidean
algorithm, ged = ged(A, B). Hence there exist integers u and v such that

ged(A, B) = uA +vB.
d. The method discussed in part (a) gives the following formulas for u, v, s, and ¢:

Unpew = Sold, Unew = told, Snew = Uold — Soldqnew and thew = Uold — told¥news

where in each iteration gnew is the quotient obtained by dividing agq by boiq. The trace table
below shows the values of a, b, r, g, gcd, and u, v, s, and ¢ for the iterations of the while loop
from the Euclidean algorithm. By part (b) the initial values of u, v, s, and tareu =1, v =0,
s=0,andt=1.

T 18 | 12 6 0
q 2] 8 1 2
a |l 330 | 156 | 18 | 12 6
b 156 | 18| 12 6 0
ged 6
u 1 0] 1| -8 9
v 0 1]1-2] 17 -19
s 0 1] -8 9| -26
t 1 -2117|-19 | 55

Since the final values of ged, «, and v are 6, 9 and —19 and since A = 330 and B = 156, we
have ged(330, 156) = 6 = 330w + 156w = 330 - 9 + 156 - (—19), which is true.
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68 Chapter 5: Sequences and Mathematical Induction

Section 5.6

6. tg=—1, t;, =2, t2=t1+2-t0=2+2'(—1)=0, t3=t+2-4H1=04+2-2=4

= &

12. For all integers n > 0, s, = _n! . Thus for any integer k with k > 1,

(-1
k=11

and sp_; =

It follows that for any integer k with k& > 1,

_1)k-1

—_S;:_l = ——(-Lk——nl— by substitution

I

T k(k-1)

_ (=D*

Tk

= S by algebra.

Thus Sk = -s;:_l .

15. Proof : Let n be an integer with » > 1. Then

4n1+ 2 ( 2::12) - ( 2(2nl+ 1)) ( (n+ 1)!((;":‘2?)1 (n+ 1))!)
- ( 2(2 = 1)) ( ( (2;1)'1;2)! 1)')
7 n+Din+1)
- (zmr0) (ivaroen )
- () (22)

1 2n
n+1\ n

= G
1 2n +2
ThUSCn=T+2( n+1)

18. a. by=1, bo=1+1+14+1=4, b3=4+4+1+4=13
¢. Note that it takes just as many moves to move a stack of disks from the middle pole to an
outer pole as from an outer pole to the middle pole: the moves are the same except that their
order and direction are reversed. For all integers k > 2,
by = ag-1 (moves to transfer the top k& — 1 disks from pole A to pole C)
+1 (move to transfer the bottom disk from pole A to pole B)
+bg—1 (moves to transfer the top k& — 1 disks from pole C to pole B).

= ap_1+14+bp_.
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Section 5.6 69

d. One way to transfer a tower of k disks from pole A to pole B is first to transfer the top
k — 1 disks from pole A to pole B [this requires by, moves/, then transfer the top k—1 disks
from pole B to pole C [this also requires by—1 moves/, then transfer the bottom disk from pole
A to pole B [this requires one move/, and finally transfer the top k — 1 disks from pole C to
pole B [this again requires by_1 moves]. This sequence of steps need not necessarily, however,
result in a minimum number of moves. Therefore, at this point, all we can say for sure is that
for all integers & > 2,
b <bp_1+bp_1+1+bgp_1=3bg_1+1.

e. Proof (by mathematical induction): Let the property P(k) be the equation

br = 3bp—1 + 1.

Show that P(2) is true: The property is true for k = 2 because for k = 2 the left-hand side
is 4 (by part (a)) and the right-hand side is 31+ 1 = 4 also.

Show that for all integers i > 2, if P(i) is true then P(i 4 1) is true: Let ¢ be any
integer with ¢ > 2, and suppose that

P(i)
bi = 3b;1 + 1. inductive hypothesis

We must show that
b«i+1=3b¢'+1. ~— P(’L+1)
But the left-hand side of P(i + 1) is

a; +1+b; by part (c)

a;+1+3b;_1 +1 by inductive hypothesis
(3a;—1 +2)+ 1+ 3bi_1 +1 by exercise 17 (c)
3a;_1+3+3b1+1

3ai—y +14+bi1)+1 by algebra

3b; +1 by part (c) of this exercise,

biv1

which is the right-hand side of P(i + 1) [as was to be shown].

2. a. t1 =2, t2=2+4+2+2=6
c. For all integers & > 2,
ty = tp—1 (moves to transfer the top 2k — 2 disks from pole A to pole B)
+2 (moves to transfer the bottom two disks from pole A to pole C)
+k—1 (moves to transfer the top 2k — 2 disks from pole B to pole C)
= 21 +2

Note that transferring the stack of 2k disks from pole A to pole C requires at least two transfers
of the top 2(k — 1) disks: one to transfer them off the bottom two disks to free the bottom
disks so that they can be moved to pole C and another to transfer the top 2(k — 1) disks back
on top of the bottom two disks. Thus at least 2{,_, moves are needed to effect these two
transfers. Two more moves are needed to transfer the bottom two disks from pole A to pole

C, and this transfer cannot be effected in fewer than two moves. It follows that the sequence
of moves indicated in the description of the equation above is, in fact, minimal.

24, Fi3 = Fio + F1; = 233 + 144 = 377, Fia = Fy3 + Fip =377+ 233 =610
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70 Chapter 5: Sequences and Mathematical Induction

30. Proof (by mathematical induction): Let the property P(n) be the equation

FuoFu—Fly = (-1 — P(n)

Show that P(0) is true: The left-hand side of P(0) is Foy2Fp — F2=2.1-12=1, and
the right-hand side is (—1)? = 1 also. So P(0) is true.

Show that for all integers k > 0, if P(k) is true then P(k + 1) is true: Let k be
any integer with & > 0, and suppose that

_F2 . (—1)k - P(k)
Fiea2Fie = Fyp = (-1)% " inductive hypothesis

We must show that
Fiy3Fisr — Flg = (-1)** — P(k+1)
But by inductive hypothesis,
F2 = FuaFy — (1) = FraFi + (-1 (%)

Hence,

Frr3Frer — F2o
= (Fi41 + Fra2)Fre1 — FL+2 by definition of the Fibonacci sequence

= F&,+FopaFrn — F,
FipoFi + (1) 4+ FroFpyq — Fk2+2 by substitution from equation (¥*)

Fry2(Fr + Fia — Fiq2) + (-1)FH! by factoring out Fj..

Fiyo(Fraa — Fry2) + (1)FH by definition of the Fibonacci sequence
= Frpyo-0+4 (—1)k+1
— (_1)k+1.

36. Let L = lim,_co Z5. By definition of zg,z(,22,... and by the continuity of the square root
function,

n—oo n—oo

L= lim z, = lim \/2+.'II,,_1 = \/2+ lim z,_; = V2 + L.
n—oo

Hence L2 = 2+ L, and so L? — L — 2 = 0. Factoring gives (L —2)(L+1) =0,andso L =2
or L = —1. But L > 0 because each z; > 0. Thus L = 2.

42. Proof (by mathematical induction): Let the property P(n) be the sentence

If a1,as,...,a, and by,bg,...,b, are any real

numbers, then [T\, (a:b;) = ([Ti2; ai) (TTi-, bs)- — P(n)

Show that P(1) is true: Let a; and b, be any real numbers. By the recursive definition of

product,
1 1 .
H(aibi) = albla Hai = a],dﬂdH bi = bl'
=1 i=1

=1

Show that for all integers k > 1, if P(k) is true then P(k + 1) is true: Let k be
any integer with k£ > 1, and suppose that

If ai.ag,...,a; and by, bq,. .., by are any real P(k)
numbers, then ]_If:l(aib,-) = (Hf:l a,') (Hf___l bi). " inductive hypothesis

q
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We must show that
If ay,as, ...

k41
numbers, then [[; 7, (a:b;

So suppose a;, a2, ..., and by, by, ...,

T2 (asby)

= (ITiabs) (arsibes)
((Hf=1 a,-) (Hf:l bi)) (@k+1bi+1)
(o) (1))
- () (1)

[This is what was to be shown.]

il

, Gty and by, be, ...

)= (IT

Section 5.7 71

, b1 are any real
k+1 k+1
i=1 ai) (Hi:l bi)'

bi.+1 are any real numbers. Then

— Pk+1)

by the recursive definition of product

by substitution from the inductive
hypothesis

by the associative and commutative
laws of algebra

by the recursive definition of product.

Section 5.7

6. d =2
do =2d1+3=2-2+3=22+3

STUDENTS&-HUY

d3 =2dy+3=2(22+3)+3=24+2-3+3
dy =2d3+3=2(22+2-3+3)+3=2"+22.34+2-3+3
=2dy+3=2(2"+22-3+2-34+3)+3=25+2%.3+22.34+2.3+3

&

Guess:d, =27 +27"2.342"3.34+...4+4922.34+2.3+3
=20 +3(2" 24278 4 422424 1)

2(n~2)+1_1
=9" 4 T) [by Theorem 5.2.3/
=2"+3(2" 1 -1)
=2""12+3)-3=5-2""1 -3 for all integers n > 1
g1 =1
g 1
g2 = =115
nt2 142
1
8 T g2 L2 1+2(0+2) 1+2+2
1
__ 93 _ _T3eE _ 1 _ 1
M =2 1 T1t2(1+2+2%) 142422423
93 Tz + 2
1
g = I _ _TmEEE 1 _ 1
- - 1 - 2 3y 2 3 4
ga+2 e +2 14+2(1424+22+23) 14242242342
1
Guess: g, = :

1424224234 ... 420~

il

[by Theorem 5.2.3)] for all integers n > 1

2n -1
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72 Chapter 5: Sequences and Mathematical Induction

15. yn =1
yo =y +22=1+22
ys =y2+32=(1+2%)+3*=1+2243?
ys =ys+42=(142243)+42=12+22+3%+4°

Guess:
gn = 124224324+ 40 = n(n+1)(2n +1)

6

by exercise 10 of Section 5.2

21. Proof (by mathematical induction): Let r be a fixed constant and ag,a1,02,... . a sequence
that satisfies the recurrence relation ay = rai_; for all integers & > 1 and the initial condition
ao = a. Let the property P(n) be the equation a, = ar™.

a, =ar”.

Show that P(0) is true: The right-hand side of P(0) is ar® = a-1 = a, which is the left-hand
side of P(0). So P(0) is true.

Show that for all integers k > 0, if P(k) is true then P(k + 1) is true: Let k be any
integer with k > 0, and suppose that

ax = ar. — .P(k) X X
inductive hypothesis
We must show that
apsr = arttl, — P(k+1)
The left-hand side of P(k +1) is
A1 = Ty by definition of ag, aq, a5, ...

r(ar®) by inductive hypothesis
= ar®t! by the laws of exponents,

which is the right-hand side of P(k + 1), [as to be shown].

27. a. Let the original balance in the account be A dollars, and let A, be the amount owed
in month n assuming the balance is not reduced by making payments during the year. The
annual interest rate is 18%, and so the monthly interest rate is (18/12)% = 1.5% = 0.015. The
sequence Ag, Aj, Az, . .. satisfies the recurrence relation

Ap = Ap_1 +0.015A4;_; = 1.015A, 1.
Thus Ay = 1.0154, = 1.0154
As = 1.0154, = 1.015(1.0154) = (1.015)%A

Ajp = 1.0154;; = 1.015(1.015)'1 A = (1.015)'2 A.
So the amount owed at the end of the year is (1.015)!2A. It follows that the APR is
(1.015)124 — A A((1.015)'2 — 1)
A - A

Note: Because A = 1.015Ax_; for each integer k > 1, we could have immediately con-
cluded that the sequence is geometric and, therefore, satisfies the equation A, = A¢(1.015)" =
A(1.015)".

b. Because the person pays $150 per month to pay off the loan, the balance at the end of month
k is By = 1.015B_, — 150. We use iteration to find an explicit formula for By, By, Ba, .. ..

= (1.015)'% — 1~ 19.6%.
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Section 5.7 73

By = 3000
B, = (1.015) By — 150 = 1.015(3000) — 150
B, = (1.015)B; — 150 = (1.015)[1.015(3000) — 150} — 150
= 3000(1.015)% — 150(1.015) — 150
Bs = (1.015) By — 150 = (1.015)[3000(1.015)? — 150(1.015) — 150} — 150
= 3000(1.015)3 — 150(1.015)2 — 150(1.015) — 150
B, = (1.015)B; — 150
= (1.015)[3000(1.015)® — 150(1.015)® — 150(1.015) — 150] — 150
= 3000(1.015)* — 150(1.015)3 — 150(1.015)® — 150(1.015) — 150

Guess: By, = 3000(1.015)" + [150(1.015)"~1 — 150(1.015)"~2 + ...
—150(1.015)2 — 150(1.015) — 150]

= 3000(1.015)" — 150[(1.015)*~! + (1.015)"~2 + .- + (1.015)2 + 1.015 + 1]
B n (1.015)" — 1
= 3000(1.015)" — 150 ( e
. 150 n
= (1.015)"(3000) — 5= ((1.015)" — 1)
= (1.015)™(3000) — 10000((1.015)" — 1)

= (1.015)"(3000 — 10000) + 10000
= (=7000)(1.015)" + 10000

So it appears that B, = (—7000)(1.015)™ + 10000. We use mathematical induction to confirm
this guess.

Proof (by mathematical induction): : Let Bo, B1, Bz,... . be a sequence that satisfies the
recurrence relation By = (1.015)Bi_1 —150 for all integers k > 1, with initial condition
By = 3000, and let the property P(n) be the equation

Bn = (—7000)(1.015)" + 10000.  « P(n)

Show that P(0) is true: The right-hand side of P(0) is (—7000)(1.015)® + 10000 = 3000,
which equals By, the left-hand side of P(0). So P(0) is true.

Show that for all integers k > 0, if P(k) is true then P(k + 1) is true: Let k be any
integer with k > 0, and suppose that

P(k)

By = (—7000)(1.015)*410000. inductive hypothesis
We must show that
By = (—7000)(1.015)%*! 4 10000. «— P(k+1)
The left-hand side of P(k + 1) is
Biy1 = (1.015)Bj — 150 by definition of By, By, B, ...

= (1.015)[(—7000)(1.015)* + 10000] — 150 by substitution from
the inductive hypothesis
= (—7000)(1.015)%*+! + 10150 — 150

= (—7000)(1.015)**! + 10000 by the laws of algebra,
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33.

Chapter 5: Sequences and Mathematical Induction

which is the right-hand side of P(k + 1) [as to be shown].
c. By part (b), B, = (—7000)(1.015)" + 10000, and so we need to find the value of n for which

(—7000)(1.015)" + 10000 = 0.

But this equation holds

& 7000(1.015)™ = 10000

10000 _ 10

n——_
& (L) = =

1
& log,(1.015)" = log,q (70) by a property of logarithms

10
&  nlogp(1.015) = logq (7) by a property of logarithms

log;0(10/7)

= ==L =24,
® log,(1.015)
So n 22 24 months = 2 years. It will require approximately 2 years to pay off the balance,
assuming that payments of $150 are made each month and the balance is not increased by
any additional purchases.

d. Assuming that the person makes no additional purchases and pays $150 each month, the
person will have made 24 payments of $150 each, for a total of $3600 to pay off the initial
balance of $3000.

Proof (by mathematical induction): : Let fi, f2, f3,... . be a sequence that satisfies the re-
currence relation fr = fr_y + 2* for all integers k > 2, with initial condition f; = 1, and let
the property P(n) be the equation

fn - 2n+1 - 3. — P(n)

Show that P(1) is true: The right-hand side of P(1) is 2!*! —3 = 22 — 3 = 1, which equals
f1, the left-hand side of P(1). So P(1) is true.

Show that for all integers k > 1, if P(k) is true then P(k + 1) is true: Let k be any
integer with k > 1, and suppose that

P(k)

— 2k+1 —3.
fe inductive hypothesis

We must show that
fk+l — 2(k+1)+l -3

or, equivalently,
frar =223 — Pk+1)

The left-hand side of P(k + 1) is

fxs1 = fr 42k by definition of f1, fa, f3,...
= 9k+1 __ 34 9k+1 by inductive hypothesis
= 9. 2k+1 -3
= ©g2kr2_3 by the laws of algebra,

which is the right-hand side of P(k + 1) /as to be shown/.
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Section 5.7 75

36. Proof (by mathematical induction): Let py,p2,ps,... . be a sequence that satisfies the recur-
rence relation py = pr_; + 2 - 3* for all integers k£ > 2, with initial condition p1 = 2, and let
the property P{n) be the equation

Pn = 3n+l =T — P(n)

Show that P(1) is true: The right-hand side of P(1) is 3! -7 =32 -7=9-7 =2,
which equals py, the left-hand side of P(1). So P(1) is true.

Show that for all integers k > 1, if P(k) is true then P(k + 1) is true: Let k be any
integer with k > 1, and suppose that

P(k)

pr =3 — 7. : . .
Pk inductive hypothesis

We must show that
Pryr =3I 7,

or, equivalently, that
Pre1 = 312 -7, — P(k+1)
The left-hand side of P(k + 1) is

Pk+1 = pr+2-35H1 by definition of py,ps, P, .. .
(8%*1 —7) + 2. 3*+1 by inductive hypothesis
31 (1+2) -7

3.3k _7

= 3k2_7 by the laws of algebra,

which is the right-hand side of P(k + 1) [as to be shown].

42. Proof (by mathematical induction): Let #;,¢s,13,... . be a sequence that satisfies the recur-
rence relation ¢ = 2¢;_; + 2 for all integers k& > 2, with initial condition ¢; = 2, and let the
property P(n) be the equation ¢, = 2**+! — 2.

tp, =271 — 2, — P(n)

Show that P(1) is true: The right-hand side of P(1) is 2% — 2 = 2, which equals ¢;, the
left-hand side of P(1). So P(1) is true.
Show that for all integers k > 1, if P(k) is true then P(k + 1) is true: Let k be any
integer with & > 1, and suppose that
] P(k)
_ ok+1 _
be =2 2. inductive hypothesis

We must show that
tk-f-l — 2(5‘»+1)+1 _ 2
or, equivalently, that
trey = 2872 - 2, — P(k+1)

The left-hand side of P(k + 1) is

kw1 = 2 +2 by definition of ¢;,15,15,...
= 2(2¥!' -2)+2 by inductive hypothesis
— 2k+2 — 442
= 2k+2_9 by the laws of algebra,

which is the right-hand side of P(k + 1) [as to be shown).
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48.

Chapter 5: Sequences and Mathematical Induction

a. 'w1=1
wo =2
w3 =wy +3=1+3
wy =was+4=2+4
ws; =w3+5=14+3+5
wg =wg +6=2+4+6
wy =ws+7=14+34+5+7

Guess: w, =

14+3+5+---+n ifnisodd
2+4+6+---+n ifniseven

( 2
1
(i> if n is odd
= A 2 by exercise 5 of Section 5.2
2(1+2+3+---+g) if n is even
1 2
1
( %) if n is odd
= n (E + 1) by Theorem 5.2.2
2| 2 22 if n is even
( ) 1 2
—(%L if n is odd
= A ( 9 by the laws of algebra.
n—n;;—) if n is even
b. Proof (by strong mathematical induction): Let wy, w2, ws, ... . be a sequence that satisfies

the recurrence relation wy = wy_o + k for all integers k£ > 3, with initial conditions w; = 1
and w, = 2, and let the property P(n) be the equation

, 2
(—'”Tl)— if 7 is odd
Wy = for all integers n > 1.
n(n+2) .. .
— if n is even

Show that P(1) and P(2) are true: For n =1 and n = 2 the right-hand sides of P(n)
are
(1+1)?
4
which equal w; and wo respectively. So P(1) and P(2) are true.
Show that if k> 2 and P(i) is true for all integers i from 1 through k, then
P(k + 1) is true: Let k be any integer with k& > 2, and suppose that

=1 and

2(2+2)
ok Sl R |
4 b

. 1 2
¢ 4:1 ) if  is odd inductive
= i 12) for all integers ¢ with 1 <7 < k. hypothesis
t 7'1— if 7 is even
We must show that ks o)
% if k+ 1 is odd
Wg+1 =

(k + 1)(k + 3)

1 if K+ 1 is even
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Section 5.7 7

But
Wre1 = Wi+ (k+1) by definition of wy, Wy, w3, ...
¢ _ 2
W=D+ k41)  ifk-1isodd
= 4 . 4 1 by inductive hypothesis
( '_1)[(}:1— ) +2] +(k+1) if k—1iseven
(k2 4(k+1) . :
_ 4 + 4 ifk+1is odd because k — 1 and k + 1 have
- . . 1 the same parity
(k 1)4“ +1) + 4(k: ) if k+ 1 is even
( 1.2 .
'”"Ljﬁ if k4 1is odd
= 9
2 N
w if k41 is even
‘ 2
(k _22) if k+1is odd
= kot 1)kt 3 by the laws of algebra.
% if £+ 1 is even

[This is what was to be shown.]

51. The sequence does not satisfy the formula. By definition of a;,a,a3,..., a3 = 0, as =
(@m+1P2=1=1a3=(a2+1)2=(1+1)2%=4,0as = (a3+1)2 = (4+1)? = 25. But
according to the formula ay = (4 - 1) = 9 # 25.

54. a.
Yi=E+c+mY
Yo=E+c+mYi=E+c+m(E+c+mYy) =(E+c)+m(E +c) + m?Y,
Y = E+ctmYs = E4+ctm((E+c)+m(E+c)+m?Y)) = (E+c)+m(E+c)+m?(E+c)+m?Y,
Yi=E+c+mYzs=E+c+m{(E+c)+m(E+c)+m?(E +c) + m3Yp)

=(E+c)+m(E +c) + m2(E +c) + m3(E + ¢) + m*Y}

Guess: Y, = (E+c)+m(E+c)+m*(E+c)+---+m" YE +c) + m"Yp
=(E+)l+m+m?+-- +m* 1+ m"Y,

m" -1
m—1

=(E+c¢) ( ) + m"Yp, for all integers n > 1.
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78 Chapter 5. Sequences and Mathematical Induction

b. Suppose 0 < m < 1. Then

limY, = lm ((E+c)( _11>+m"Y0>

_ limg, oom™ — 1
= (E+c)( — )

-1
= (E+ )( 1)-{-0 Yo because when 0 < m < 1,

then lim,_,o,o m”? =0

+ lim m™Y,

n-—o0

E+c
1—-m’

Section 5.8
3. b.
a=C-2°+D=C+D=0 D=-C D=-C C
{a1=C-2’+D=2C’+D=2 }“{2C+(—C)=2 }”{c=2 }@{D

a2=C-224D=2-224(-2)=6

=y

6. Proof: Given that b, = C - 3" + D(—2)", then for any choice of C and D and integer k > 2,
by =C-3%+ D-(=2)F, by_y =C-3*"1 4+ D-(-2)*!, and by_o = C-3*2+ D (-2)F2.
Hence,

bi—1 +6b_y = (C-3F'+D(-2)¥"1)+6(C-3*~2 + D- (-2)F?)
C- (351 +6-352) + D- ((-2)¥"! +6- (-2)*~2)
C-3*2(346) + D- (—2)*"2(-2+6)

C-32.32 4+ D. (-2)k222

C-3%+ D- (—2)*

= by

9. a. If for all integers k > 2, t* = 7t*~1 — 10t*~2 and ¢ # 0, then t* = 7t — 10 and so
—7t+10=0. Butt> -7t +10=(t - 2)(t —5). Thust =2ort=>5.

b. It follows from part (a) and the distinct roots theorem that for some constants C' and D,
the terms of the sequence by, by, bs, . .. . satisfy the equation

b, =C 2"+ D-5" for all integers n > 0.
Since by = 2 and b; = 2, then

bo=C-22+D-5=C+D=2 D=2-C
by=C-2'+D-5' =2C+5D =2 2C+5(2-C)=2
D=2-C D=2-(8/3)=—-(2/3)
e {C’=8/3 } < {C=8/3
8 n 2 3 3
Thusb,,=§-2 —§-5 for all integers n > 0.
12. The characteristic equation is t2 — 9 = 0. Since t2 —9 = (¢ — 3)(t + 3), the roots are ¢t = 3 and
t = —3. By the distinct roots theorem, there exist constants C and D such that
en =C 3"+ D-(-3)" for all integers n > 0.
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Section 5.8 79

Since eg = 0 and e; = 2, then
ep=C-3+D-(-3)°=C+D=0 o D=-C - D=-1/3
e=C-3+D-(-3)!=3C-3D=2 3C-3(-C)=2 CcC=1/3

2.3"1  if nisodd

_ 1 1 n _ qn-—1 n—1 __ qn—1 —1\yn—-1y —
Thusen—-—'3"—§(—3) =3 H(=3)T =T (AH(-1)T) = 0 if nis even

3
for all integers n > 0.

15. The characteristic equation is t?> — 6t + 9 = 0. Since t? — 6t + 9 = (¢ — 3)2, there is only one
root, ¢ = 3. By the single root theorem, there exist constants C' and D such that

t,=C-3"+ D-n-3" for all integers n > 0.
Since to = 1 and ¢, = 3, then
to=C-3+D-0-3°=C=1 N C=1 " C=1
ty=C-3'+D-1.3' =3C+3D =3 C+D=1 D=0
Thus t, =1-3" 4+ 0- n- 3" = 3" for all integers n > 0.

18. Proof: Suppose that sg.s1,82,... . and to,%1,¢2,... . are sequences such that for all integers
k>2,
Sk = 9Sp—1 —4sx—2 and = Btp_1 — dtp_o.

Then for all integers &k > 2,

5(2sg-1 + 3tk_1) —4(28;-2 + 3tk—2) = (5-28,_1 — 4 23*;-2) + (5' 3tp—1 — 4 3tg_2)
= 2(58—1 — 4Sk-2) + 3(5tp—1 — 4tk_.2)
= 28 + 3tg.

[This is what was to be shown.]

21. Let ag,a1,a2,... . be any sequence that satisfies the recurrence relation a, = Aayr_; + Bax_»
for some real numbers A and B with B # 0 and for all integers k& > 2. Furthermore, suppose
that the equation ¢2 — At — B = 0 has a single real root r. First note that r # 0 because
otherwise we would have 02 — A-0 — B = 0, which would imply that B = 0 and contradict the
hypothesis. Second, note that the following system of equations with unknowns C and D has
a unique solution.

ap=Cr’+0-Dr°=1-C+0-D
=Crl'+1.Dr'=C-r+D-r

One way to reach this conclusion is to observe that the determinant of the system is 1.7 —7-0 =
r # 0. Another way to reach the conclusion is to write the system as

a0=C'
=Cr+ Dr

and let C = ag and D = (a3 —aor)/r. It is clear by substitution that these values of C and D
satisfy the system. Conversely, if any numbers C and D satisfy the system, then C = ap, and
substituting C into the second equation and solving for D yields D = (a; — Cr)/r.

Proof of the exercise statement by strong mathematical induction: Let ag,a;,a2,... . be any

sequence that satisfies the recurrence relation ay = Aayx_1 + Bayg_2 for some real numbers

A and B with B # 0 and for all integers & > 2. Furthermore, suppose that the equation
— At — B = 0 has a single real root 7. Let the property P(n) be the equation

n=Cr* +aDr" — P(n)

where C and D are the unique real numbers such that ¢g = Cr®+0 Dr° and a; = Cr! +1. D!,
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80 Chapter 5: Sequences and Mathematical Induction

Show that P(0) and P(1) are true: : The fact P(0) and P(1) are true is automatic because
C and D are exactly those numbers for which ag = Cr® +0- D70 and a; = C-7! + 1. Drl.

Show that if k> 1 and P(i) is true for all integers i from O through k, then
P(k + 1) is true: Let k be any integer with k¥ > 1 and suppose that
a; = Crt +iDr* for all integers i with 1 <i < k. « inductive hypothesis

We must show that
ak+1 = Cr**! 4 (k + 1) Drk+l,

Now by the inductive hypothesis,
ar = Cr* + kDr* and ayx_; = Cr*~' + (k- 1)Dr*~1,

S0 g1 = Aap+ Bag_ by definition of ag,a,, a,, ..
= A(Cr* + kDr*) + B(Crk~! + (k — 1)Dr*~1)
by inductive hypothesis
= C(Ar*F 4 Br*-1) + D(Akr* + B(k — 1)r*1)
by algebra
= Crk+! 4 Dkrk+? by Lemma. 5.8.4.

[This is what was to be shown.]

% = 5—1—1, then ¢(¢ — 1) = 1, or, equivalently, > — ¢ — 1 = 0 and so ¢ satisfies the
equation t2 —t — 1= 0.

24. a. If

b. By the quadratic formula, the solutions to t2 —t — 1 = 0 are

1+v5
t_l:l:\/1+4_ )
h 2 Tl 1-V6
7
Let /s ‘/_
14+ V5 1-+v5
¢l= and P2 = .
2 2
1 1 1
.F,=—- ntl _ _~ e+l _ - gn+l  gmtd
c 75 @ 75 2 \/§(¢1 3t

This equation is an alternative way to write equation (5.8.8).

Section 5.9

3. b. (1) MI is in the MIU-system by L
(2) MII is in the MIU-system by (1) and II(b).
(8) MIIII is in the MIU-system by (2) and II(b).
(4) MIIIIIIII is in the MIU-system by (3) and II(b).
(5) MUIIIII is in the MIU-system by (4) and II(c).
(6) MUIIU is in the M IU-system by (5) and II{c).
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Section 5.9 81

6. Proof (by structural induction): Let the property be the following sentence: The string begins
with an a.

Show that each object in the BASE for S satisfies the property: The only object in
the base is a, and the string a begins with an a.

Show that for each rule in the RECURSION for S, if the rule is applied to objects
in S that satisfy the property, then the objects defined by the rule also satisfy the
property:

The recursion for S consists of two rules, denoted II(a) and II(b).

In case rule II(a) is applied to a string s in S that begins with a a, the result is the string sa,
which begins with the same character as s, namely a.

Similarly, in case rule II(b) is applied to a string s that begins with a a, the result is the string
sb, which also begins with an a.

Thus, when each rule in the RECURSION is applied to strings in S that begin with an a, the
results are also strings that begin with an a.

Because no objects other than those obtained through the BASE and RECURSION conditions
are contained in S, every string in S begins with an a.

9. Proof (by structural induction): Let the property be the following sentence: The string repre-
sents an odd integer.

Show that each object in the BASE for S satisfies the property: The objects in the
base are 1, 3, 5, 7, and 9. All of these strings represent odd integers.

Show that for each rule in the RECURSION for S, if the rule is applied to objects
in S that satisfy the property, then the objects defined by the rule also satisfy the
property:

The recursion for S consists of five rules, denoted II{a)-1I(e).
Suppose s and ¢ are strings in S that represent odd integers.
Then the right-most character for cach of sand ¢ is 1, 3,5, 7, or 9.

In case rule II(a) is applied to s and ¢, the result is the string st, which has the same right-most
character as t. So st represents an odd integer.

In case rules II{b)-TI{e) are applied to s, the results are 2s, 4s, Gs, or 8s. All of these strings
have the same right-most character as s, and, therefore, they all represent odd integers.

Thus when each rule in the RECURSION is applied to strings in S that represent odd integers,
the result is also a string that represents an odd integer.

Because no objects other than those obtained through the BASE and RECURSION conditions
are contained in S, all the strings in § represent odd integers.

12. The string MU is not in the system because the number of I's in MU is 0, which is divisible
by 3, and for all strings in the M IU-system, the number of I’s in the string is not divisible by
3.
Proof (by structural induction): Let the property be the following sentence: The number of
I's in the string is not divisible by 3.
Show that each object in the BASFE for the MIU-system satisfies the property: The
only object in the base is A I, which has one I, and the number 1 is not divisible by 3.

Show that for each rule in the RECURSION for the MIU-system , if the rule is
applied to objects in the system that satisfy the property, then the objects defined
by the rule also satisfy the property:
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82 Chapter 5: Sequences and Mathematical Induction

The recursion for the M IU-system consists of four rules, denoted II(a)-(d). Let s be a string,
let n» be the number of I's in s, and suppose 3 /n. Consider the effect of acting upon s by each
recursion rule in turn.

In case rule II(a) is applied to s, s has the form =1, where x is a string. The result is the string
zIU. This string has the same number of I's as «I, namely n, and n is not divisible by 3.

In case rule II(b) is applied to s, s has the form Mz, where z is a string. The result is the
string Mzz. This string has twice the number of I’s as Mx. Because n is the number of I’s
in Mz and 3 fn, we have n = 3k + 1 or n = 3k + 2 for some integer k. In case n = 3k + 1, the
number of I's in Mzz is 2(3k + 1) = 3(2k) + 2, which is not divisible by 3. In case n = 3k + 2,
the number of I's in Mzz is 2(3k + 2) = 6k + 4 = 3(2k + 1) + 1, which is not divisible by 3
either.

In case rule II(c) is applied to s, s has the form x/1/y, where x and y are strings. The result
is the string zUy. This string has three fewer I's than the number of I's in s. Because n is
the number of I’s in zIIIy and 3 fn, we have that 3f(n — 3) either [for if 3 | (n — 3) then
n — 3 = 3k, for some integer k. Hence n = 3k +3 = 3(k + 1), and so n would be divisible by
3, which it is not]. Thus the number of I's in zUy is not divisible by 3.

In case rule II{d) is applied to s, s has the form zUUy, where 2 and y are strings. The result
is the string zUy. This string has the same number of I's as xUUy, namely n, and n is not
divisible by 3.

By the restriction for the M IU-system, no strings other than those derived from the base and
the recursion are in the system. Therefore, for all strings in the M IU-system, the number of
I’s in the string is not divisible by 3.

18. Let S be the set of all strings of a’s and b's that contain exactly one a. The following is a
recursive definition of S.
I. BASE:a € S
II. RECURSION: If s € S, then
a. bse§S b.sbeS
III. RESTRICTION: There are no elements of S other than those obtained from I and II.

2L. b A(2,1) = A(1, A(2,0)) = A(1, A(1,1)) = A(1,3) [by part (a)] = A(0, A(L,2)) = A(0,4) [by
Ezample 5.9.9] =4+1=5
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Chapter 5 Review 83
Review Guide: Chapter 5

Sequences and Summations

e What is a method that can sometimes find an explicit formula for a sequence whose first few
terms are given (provided a nice explicit formula exists!)? (p. 229)

What is the expanded form for a sum that is given in summation notation? (p. 231)
What is the summation notation for a suin that is given in expanded form? (p. 231)
How do you evaluate a; + as + az + - - - a, when n is small? (p. 232)

What does it mean to “separate off the final term of a summation”? (p. 232)

What is the product notation? (p. 233)

What are some properties of summations and products? (p. 234)

How do you transform a summation by making a change of variable? (p. 235)
What is factorial notation? (p. 237)

What is the n choose r notation? (p. 238)

What is an algorithm for converting from base 10 to base 27 (p. 241)

What does it mean for a sum to be written in closed form? (p. 251)

Mathematical Induction

¢ What do you show in the basis step and what do you show in the inductive step when you use
(ordinary) mathematical induction to prove that a property involving an integer n is true for
all integers greater than or equal to some initial integer? (p. 247)

e What is the inductive hypothesis in a proof by (ordinary) mathematical induction? (p. 247)

e Are you able to use (ordinary) mathematical induction to construct proofs involving various
kinds of statements such as formulas, divisibility properties, inequalities, and other situations?
(pp. 247, 249, 253, 259, 263, 265, )

e Are you able to apply the formula for the sum of the first n positive integers? (p. 251)

e Are you able to apply the formula for the sum of the successive powers of a number, starting
with the zeroth power? (p. 255)

Strong Mathematical Induction and The Well-Ordering Principle for the Integers

e What do you show in the basis step and what do you show in the inductive step when you use
strong mathematical induction to prove that a property involving an integer n is true for all
integers greater than or equal to some initial integer? (p. 268)

e What is the inductive hypothesis in a proof by strong mathematical induction? (p. 268)

e Are you able to use strong mathematical induction to construct proofs of various statements?
(pp. 269-274)

e What is the well-ordering principle for the integers? (p. 275)

e Are you able to use the well-ordering principle for the integers to prove statements, such as
the existence part of the quotient-remainder theorem? (p. 276)

o How are ordinary mathematical induction, strong mathematical induction, and the well-
ordering principle for the integers related? (p. 275 and exercises 31 and 32 on p. 279)

Algorithm Correctness

e What are the pre-condition and the post-condition for an algorithm? (p. 280)

e What does it mean for a loop to be correct with respect to its pre- and post-conditions? (p.
281)
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84 Chapter 5: Sequences and Mathematical Induction

e What is a loop invariant? (p. 282)

e How do you use the loop invariant theorem to prove that a loop is correct with respect to its
pre- and post-conditions? (pp. 283-288)

Recursion

e What is an explicit formula for a sequence? (p. 290)

e What does it mean to define a sequence recursively? (p. 290)

e What is a recurrence relation with initial conditions? (p. 290)

e How do you compute terms of a recursively defined sequence? (p. 290)

¢ Can different sequences satisfy the same recurrence relation? (p. 291)

e What is the “recursive paradigm”? (p. 293)

How do you develop a recurrence relation for the tower of Hanoi sequence? (p. 294)

How do you develop a recurrence relations for the Fibonacci sequence? (p. 297)

How do you develop recurrence relations for sequences that involve compound interest? (pp.
298-299)
How do you mathematical induction to prove properties of summations? (p. 301)

Solving Recurrence Relations

e What is the method of iteration for solving a recurrence relation? (p. 305)
e What is an arithmetic sequence? (p. $07)
e What is a geometric sequence? (p. 508)

¢ How do you use the formula for the sum of the first n integers and the formula for the sum
of the first n powers of a real number r to simplify the answers you obtain when you solve
recurrence relations? (pp. 309-310)

o How is mathematical induction used to check that the solution to a recurrence relation is
correct? (p. 312-314)

e What is a second-order linear homogeneous recurrence relation with constant coefficients? (p.
317)

e What is the characteristic equation for a second-order linear homogeneous recurrence relation
with constant coefficients? (p. 319)

e What is the distinct-roots theorem? If the characteristic equation of a relation has two distinct
roots, how do you solve the relation? (p. 821)

e What is the single-root theorem? If the characteristic equation of a relation has a single root,
how do you solve the relation? (p. 325)

General Recursive Definitions

e When a set is defined recursively, what are the three parts of the definition? (p. 328)

e Given a recursive definition for a set, how can you tell that a given element is in the set? (p.
328-329)

e What is structural induction? (p. 331)

e Given a recursive definition for a set, is there a way to tell that a given element is not in the
set? (solution for exercise 14a on p. A-49)

e What is a recursive function? (p. 332)
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Chapter 5 Review 85

Formats for Proving Formulas by Mathematical Induction

When using mathematical induction to prove a formula, students are sometimes tempted to present
their proofs in a way that assumes what is to be proved. There are several formats you can use,
besides the one shown most frequently in the textbook, to avoid this fallacy. A crucial point is this:

If you are hoping to prove that an equation is true but you haven’t yet done so, either preface
it with the words “We must show that” or put a question mark above the equal sign.

Format 1 (the format used most often in the textbook for the inductive step): Start with
the left-hand side (LHS) of the equation to be proved and successively transform it using definitions,
known facts from basic algebra, and (for the inductive step) the inductive hypothesis until you obtain
the right-hand side (RHS) of the equation.

Format 2 (the format used most often in the textbook for the basis step): Transform the
LHS and the RHS of the equation to be proved independently, one after the other, until both sides
are shown to equal the same expression. Because two quantities equal to the same quantity are
equal to each other, you can conclude that the two sides of the equation are equal to each other.

Format 8: This format is just like Format 2 except that the computations are done in parallel. But
in order to avoid the fallacy of assuming what is to be proved, do NOT put an equal sign between
the two sides of the equation until the very last step. Separate the two sides of the equation with a
vertical line.

Format 4: This format is just like Format 3 except that the two sides of the equation are separated
by an equal sign with a question mark on top: s

Format 5: Start by writing something like “We must show that” and the equation you want to
prove true. In successive steps, indicate that this equation is true if, and only if, (<) various other
equations are true. But be sure that both the directions of your “if and only if” claims are correct.
In other words, be sure that the < direction is just as true as the = direction. If you finally get
down to an equation that is known to be true, then because each subsequent equation is true if, and
only if, the previous equation is true, you will have shown that the original equation is true.

Example: Let the property P(n) be the equation

|1+3+5+-+(2n—1) =n?|— P(n).

Proof that P(1) is true:

Solution (Format 2):

When n = 1, the LHS of P(1) equals 1, and the RHS equals 12 which also equals 1. So P(1) is true.
Proof that for all integers k > 1, if P(k) is true then P(k + 1) is true:

Solution (Format 2):

Suppose that k is any integer with £ > 1 such that 1 +3 45+ -+- 4 (2k — 1) = k2. [This is the
inductive hypothesis, P(k).] We must show that P(k + 1) is true, where P(k + 1) is the equation
14+3+54--+(2k+1)=(k+1)2
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86 Chapter 5: Sequences and Mathematical Induction

Now the LHS of P(k +1) is

14+3+56+-+(2k+1) = 143454+ +2k—-1)+(2k+1)
by making the next-to-last term explicit
k% + (2k+1) by inductive hypothesis.

And the RHS of P(k+1) is
(k+1)2 = k?+2k+1 by basic algebra.

So the left-hand and right-hand sides of P(k+ 1) equal the same quantity, and thus and thus P(k+1)
is true fas was to be shown/.

Solution (Format 3):

Suppose that k is any integer with k¥ > 1 such that 1 +3 + 5+ .- + (2k — 1) = k%. [This is the
inductive hypothesis, P(k).] We must show that P(k + 1) is true, where P(k + 1) is the equation
1+3+5+---+(2k+1) = (k+ 1)

Consider the left-hand and right-hand sides of P(k + 1):

1+3+5+---+(2k+1) | (k+1)?
=14+3+5+--+(2k—1)+(2k+1) |
by making the next-to-last term explicit |
=k*+(2k+1) |
by inductive hypothesis |
=k2+2k+1 | =k*+2k+1
|

by basic algebra by basic algebra

So the left-hand and right-hand sides of P(k+1) equal the same quantity, and thus and thus P(k+1)
is true [as was to be shown/.

Solution (Format 4):

Suppose that k is any integer with & > 1 such that 1 +3 +5 + --- + (2k — 1) = k2. [This is the
inductive hypothesis, P(k).] We must show that P(k + 1) is true, where P(k + 1) is the equation
1+3+4+5+--+(2k+1)=(k+1)2

Consider the left-hand and right-hand sides of P(k + 1):

143454+ (2k+1) L (k+1)?
143454+ 2k—1)+(2k+1) L k24241
by making the next-to-last term explicit by basic algebra
k2 + (2k +1) L R2+2%k+1
by inductive hypothesis
k2 +2k+1 = k*+2k+1

by basic algebra

So the left-hand and right-hand sides of P(k + 1) equal the same quantity, and thus P(k + 1) is true
[as was to be shoun].

Solution (Format 5):

Suppose that k is any integer with k > 1 such that 1 + 3+ 5+ .- + (2k — 1) = k2. [This is the
inductive hypothesis, P(k).] We must show that P(k + 1) is true, where P(k + 1) is the equation
1+3+5+---+(2k+1)=(k+1)%

But P(k + 1) is true if, and only if, (&)

143454+ +(2k—-1)+(2k+1)
& K2+ (2k+1)
& k2 +2k+1

(k+ 1)2 by making the next-to-last term explicit
(k+1)? by inductive hypothesis
(k+1)2

which is true by basic algebra. Thus P(k + 1) is true [as was to be shown/.
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