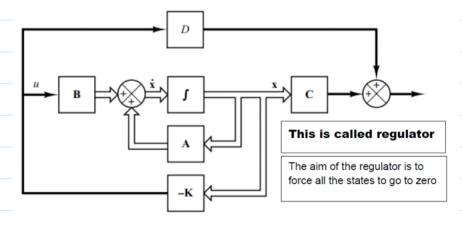
#### Simplified Steps for Regulator

Monday, June 14, 2021 4:13


## Methodo: When n < 3

1 Check Controllability
2 Define K = [Ki Kz --- Kn]

M, M2, \_, Mn: Desired poles that are found depending on system requirements (TrorTsorTp, 5 or %OS)

 $M_{1,2} = -3Un \pm jUn \int 1 - 5^2$ Assume  $M_3, M_4, \dots, M_n$  if the system needs it, where  $M_{assumed} = -20, -30, \dots$ 

- (4) Solve for Ki, Kz, ---, Kn by equating the coefficients of the Similar powers on both sides.
- 6 Draw the control scheme



#### Method (2):

Monday, June 14, 2021

7:50 PM

## Case (1): The matrix (A) is in the canonical form

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & 0 & \ddots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & -a_{n-3} & \cdots & -a_1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

## 1 Check He controllability

$$Sinilar = SI-A$$

$$S_{+a_{1}}S_{+---+a_{n}} = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & 0 & 0 & 1 & 0 \\ 0 & 0 & \cdots & \cdots & \ddots & 1 \\ (-a_{n}-k_{1}) & (-a_{n-1}-k_{2}) & \cdots & \cdots & (-a_{1}-k_{n}) \end{bmatrix}$$

## 3 From the desired poles &

Find Act of the desired poles?

$$A_{CL} = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \ddots & & & \\
0 & 0 & \cdots & & \\
-\alpha_n & -\alpha_{n-1} & -\alpha_{n-2} & \cdots & -\alpha_1
\end{bmatrix}$$

6 let 
$$AcL = AcL desired$$
  
by solving:  $K = [(\alpha_n - q_n) (\alpha_{n-1} - \alpha_{n-1}) \dots (\alpha_1 - q_1)]$ 

# (Bass - Gaura Approach)

$$W = \begin{bmatrix} a_{n-2} & & \ddots & \ddots & 0 \\ & \ddots & \ddots & \ddots & \vdots \\ a_1 & 1 & \cdots & \cdots & \vdots \\ & & & & & & & & \\ \end{bmatrix}$$

#### Simplified Steps for Tracking System:

Monday, June 14, 2021

### Case (1): No integral action (Css (00) = 0) (1) Check the type number

$$|SI-A| = 0$$
 | If Here is no (S) = 0  $\rightarrow$  type 0  
| | | | | | one (S) = 0  $\rightarrow$  type 1  
| | | | | two (S) = 0  $\rightarrow$  type 2

\* See the table to check if ess ( ) = 0 depending on the

TABLE 7.2 Relationships between input, system type, static error constants, and steady-state errors

| Input                          | Steady-state<br>error formula | Type 0                       |                   | Type 1                  |                 | Type 2                |                 |
|--------------------------------|-------------------------------|------------------------------|-------------------|-------------------------|-----------------|-----------------------|-----------------|
|                                |                               | Static error constant        | Error             | Static error constant   | Error           | Static error constant | Error           |
| Step, $u(t)$                   | $\frac{1}{1+K_p}$             | $K_{\rho} = \text{Constant}$ | $\frac{1}{1+K_p}$ | $K_p = \infty$          | 0               | $K_p = \infty$        | 0               |
| Ramp, tu(t)                    | $\frac{1}{K_{ u}}$            | $K_{\nu}=0$                  | ∞ .               | $K_v = \text{Constant}$ | $\frac{1}{K_v}$ | $K_{\nu}=\infty$      | 0               |
| Parabola, $\frac{1}{2}t^2u(t)$ | $\frac{1}{K_a}$               | $K_a = 0$                    | $\infty$          | $K_a = 0$               | $\infty$        | $K_a$ = Constant      | $\frac{1}{K_a}$ |

- 2 Check He Controllability M= [B AB \_\_\_ A"B] if def (M) ≠0 => Controllable
- (3) Find K matrix using pole placement (Logulctor Method (2))

Chock if matrix (A)

is in Canonical form

Check if matrix (A) is not in canonical

form (Bass Gaura)

+ Use the steps in the regulator

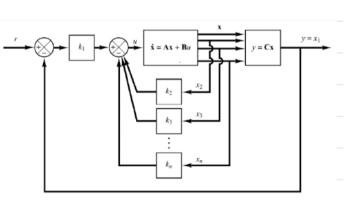
to find K

$$4 U = - \begin{bmatrix} K_1 & K_2 & \dots & K_n \end{bmatrix} \begin{bmatrix} X_1 & \dots & K_n \end{bmatrix} \begin{bmatrix} X_1 & \dots & K_n \end{bmatrix} \begin{bmatrix} X_1 & \dots & \dots & K_n \end{bmatrix}$$

= -K1 X1 + K2 X2 + - K3 X3 + - - - + - Kn Xn + K1

5 Draw Me control scheme.

#### Case 2: Integral Action


Monday, June 14, 2021

4:13 PM

Case 2: With integral action (Css (00) 70)

(1) Check the type number

\* See the table to check if ess (00) = 0 depending on the input

