
Data Structures
COMP242

Ala’ Hasheesh
ahashesh@birzeit.edu

Stacks

1Uploaded By: anonymousSTUDENTS-HUB.com

Stack

2

A stack is a data structure in which elements are added and removed from one end!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack

3

A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack

4

A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack

Uploaded By: anonymousSTUDENTS-HUB.com

Stack

5

A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack

top

Uploaded By: anonymousSTUDENTS-HUB.com

Stack

6

A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack 10

top

stack.push(10);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack

7

A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack

15

10
top

stack.push(15);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack

8

A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack

110

15

10
top

stack.push(110);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack

9

A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack

15

10
top

stack.pop();

Uploaded By: anonymousSTUDENTS-HUB.com

Stack

10

A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack

77

15

10
top

stack.push(77);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack

11

77

15

10
top

Stacks are called (LIFO): Last In First Out

Last element that gets pushed is the first element that gets popped!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack

12

77

15

10
top

Stacks are called (LIFO): Last In First Out

Last element that gets pushed is the first element that gets popped!

They are also called (FILO): First In Last Out

First element that gets pushed is the last element that gets popped!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Applications)

13

1. Method calls.

private static void m2() {
 return;
}

private static void m1() {
 m2();
 System.out.println(”21"); // Line 21
}

private static void run() {
 m1();
 System.out.println("26"); // Line 26
}

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Applications)

14

1. Method calls.

private static void m2() {
 return;
}

private static void m1() {
 m2();
 System.out.println(”21"); // Line 21
}

private static void run() {
 m1();
 System.out.println("26"); // Line 26
}

Line 26

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Applications)

15

1. Method calls.

private static void m2() {
 return;
}

private static void m1() {
 m2();
 System.out.println(”21"); // Line 21
}

private static void run() {
 m1();
 System.out.println("26"); // Line 26
}

Line 21

Line 26

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Applications)

16

1. Method calls.
2. Evaluating some expressions (used by compilers)
3. Check if string is palindrome
4. Check if brackets match in an expression

1 + 2 * (3 + 5
5 + (6 + 7)

5. Undo stack in applications!
6. Many others!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Array Implementation)

17

public class Stack<T> {
 private int capacity;
 private int top;
 T[] array;

 public Stack() {
 this(10);
 }

 public Stack(int capacity) {
 this.capacity = capacity;
 this.top = -1;
 array = (T[]) new Object[capacity];
 }
}

9

8

7

6

5

4

3

2

1

0

Stack<Integer> stack = new Stack<>();

top = -1

capacity = 10

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Array Implementation)

18

9

8

7

6

5

4

3

2

1

0

Stack<Integer> stack = new Stack<>();

top = -1

capacity = 10
public boolean isEmpty() {
 return top == -1;
}

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Array Implementation)

19

9

8

7

6

5

4

3

2

1

0

Stack<Integer> stack = new Stack<>();

top = -1

capacity = 10
public boolean isEmpty() {
 return top == -1;
}

public boolean isFull() {
 return top + 1 == capacity;
}

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Array Implementation)

20

9

8

7

6

5

4

3

2

1

0

Stack<Integer> stack = new Stack<>();

top = -1

capacity = 10
public boolean isEmpty() {
 return top == -1;
}

public boolean isFull() {
 return top + 1 == capacity;
}

public void push(T element) {
 if (!isFull()) {
 array[++top] = element;
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Array Implementation)

21

9

8

7

6

5

4

3

2

1

0 10

Stack<Integer> stack = new Stack<>();

top = 0

capacity = 10
public boolean isEmpty() {
 return top == -1;
}

public boolean isFull() {
 return top + 1 == capacity;
}

public void push(T element) {
 if (!isFull()) {
 array[++top] = element;
 }
}

stack.push(10);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Array Implementation)

22

9

8

7

6

5

4

3

2

1 17

0 10

Stack<Integer> stack = new Stack<>();

top = 1

capacity = 10
public boolean isEmpty() {
 return top == -1;
}

public boolean isFull() {
 return top + 1 == capacity;
}

public void push(T element) {
 if (!isFull()) {
 array[++top] = element;
 }
}

stack.push(17);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Array Implementation)

23

9

8

7

6

5

4

3

2

1 17

0 10

Stack<Integer> stack = new Stack<>();

top = 1

capacity = 10
public T pop() {
 if (isEmpty()) {
 return null;
 }

 return array[top--];
}

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Array Implementation)

24

9

8

7

6

5

4

3

2

1 17

0 10

Stack<Integer> stack = new Stack<>();

top = 1

capacity = 10
public T pop() {
 if (isEmpty()) {
 return null;
 }

 return array[top--];
}

public T peek() {
 if (isEmpty()) {
 return null;
 }

 return array[top];
}

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Array Implementation)

25

9

8

7

6

5

4

3

2

1

0 10

Stack<Integer> stack = new Stack<>();

top = 0

capacity = 10
public T pop() {
 if (isEmpty()) {
 return null;
 }

 return array[top--];
}

public T peek() {
 if (isEmpty()) {
 return null;
 }

 return array[top];
}

stack.pop();

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList)

26

5 10 1

head/first

0 1 2
13

3

last

Where is the top?

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList)

27

5 10 1

head/first

0 1 2
13

3

last

Where is the top?

Assume that top = last

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList)

28

5 10 1

head/first

0 1 2
13

3

last

Where is the top?

Assume that top = last

push -> addLast(); // O(1)

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList)

29

5 10 1

head/first

0 1 2
13

3

last

Where is the top?

Assume that top = last

push -> addLast(); // O(1)

pop -> removeLast(); // O(n)

This is valid because it’s LIFO (Last In First Out)

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList)

30

5 10 1

head/first

0 1 2
13

3

last

Where is the top?

Assume that top = first

push -> addFirst(); // O(1)

pop -> removeFirst(); // O(1)

This is valid because it’s LIFO (Last In First Out)

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

31

public class Node<T> {
 public T val;
 public Node<T> next;

 public Node(T val) {
 this(val, null);
 }

 public Node(T val, Node<T> next) {
 this.val = val;
 this.next = next;
 }
}

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

32

public class Stack<T> {
 int size = 0;

 Node<T> top;

 public Stack() {
 top = null;
 size = 0;
 }
}

top

null

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

33

public boolean isEmpty() {
 return size == 0;
}

public int size() {
 return size;
}

top

null

size = 0

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

34

public boolean isEmpty() {
 return size == 0;
}

public int size() {
 return size;
}

public void push(T element) {
 Node<T> node = new Node<>(element);
 node.next = top;
 top = node;
 size++;
}

top

null

size = 0

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

35

public boolean isEmpty() {
 return size == 0;
}

public int size() {
 return size;
}

public void push(T element) {
 Node<T> node = new Node<>(element);
 node.next = top;
 top = node;
 size++;
} size = 0

push(10);

10

top

null

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

36

public boolean isEmpty() {
 return size == 0;
}

public int size() {
 return size;
}

public void push(T element) {
 Node<T> node = new Node<>(element);
 node.next = top;
 top = node;
 size++;
} size = 0

push(10);

10

top

null

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

37

public boolean isEmpty() {
 return size == 0;
}

public int size() {
 return size;
}

public void push(T element) {
 Node<T> node = new Node<>(element);
 node.next = top;
 top = node;
 size++;
} size = 1

push(10);

10

top

null

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

38

public boolean isEmpty() {
 return size == 0;
}

public int size() {
 return size;
}

public void push(T element) {
 Node<T> node = new Node<>(element);
 node.next = top;
 top = node;
 size++;
} size = 1

push(81);

81

top

10 null

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

39

public boolean isEmpty() {
 return size == 0;
}

public int size() {
 return size;
}

public void push(T element) {
 Node<T> node = new Node<>(element);
 node.next = top;
 top = node;
 size++;
} size = 1

push(81);

81

top

10 null

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

40

public boolean isEmpty() {
 return size == 0;
}

public int size() {
 return size;
}

public void push(T element) {
 Node<T> node = new Node<>(element);
 node.next = top;
 top = node;
 size++;
} size = 2

push(81);

81

top

10 null

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

41

public T pop() {
 if (top == null) {
 return null;
 }

 Node<T> temp = top;
 top = top.next;
 temp.next = null; // Not needed
 size--;

 return temp.data;
}

pop();

81

top

10 null

temp

size = 2

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

42

public T pop() {
 if (top == null) {
 return null;
 }

 Node<T> temp = top;
 top = top.next;
 temp.next = null; // Not needed
 size--;

 return temp.data;
}

pop();

81

top

10 null

temp

size = 2

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

43

public T pop() {
 if (top == null) {
 return null;
 }

 Node<T> temp = top;
 top = top.next;
 temp.next = null; // Not needed
 size--;

 return temp.data;
}

pop();

81

top

10 null

temp

size = 1

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

44

public T peek() {
 if (top == null) {
 return null;
 }

 return top.data;
}

top

10 null

size = 1

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

45

How to loop on stack?

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (LinkedList Implementation)

46

How to loop on stack?

while (!stack.isEmpty()) {
 int x = stack.pop();
 // Do something with x
}

// stack is empty here!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Exercise)

47

You have a stack of random integers!

Random random = new Random();
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < 10; i++) {
 stack.push(random.nextInt());
}

9 587

8 473

7 315

6 94

5 37

4 63

3 1025

2 1

1 77

0 10

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Exercise)

48

You have a stack of random integers!

Random random = new Random();
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < 10; i++) {
 stack.push(random.nextInt());
}

9 587

8 473

7 315

6 94

5 37

4 63

3 1025

2 1

1 77

0 10

1. Find max in stack without destroying it!

int max = 0;
while (!stack.isEmpty()) {
 max = Math.max(max, stack.pop());
}

// stack is empty here! We don't want that!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Exercise)

49

You have a stack of random integers!

Random random = new Random();
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < 10; i++) {
 stack.push(random.nextInt());
}

9 587

8 473

7 315

6 94

5 37

4 63

3 1025

2 1

1 77

0 10

1. Find max in stack without destroying it!

int max = 0;
while (!stack.isEmpty()) {
 max = Math.max(max, stack.pop());
}

// stack is empty here! We don't want that!

Hint: Use Recursion

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Exercise)

50

You have a stack of random integers!

Random random = new Random();
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < 10; i++) {
 stack.push(random.nextInt());
}

9 587

8 473

7 315

6 94

5 37

4 63

3 1025

2 1

1 77

0 10

1. Find max in stack without destroying it!
2. Print stack without destroying it!

Hint: Use Recursion

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

51

Infix Notation

We usually use Infix notation as our conventional notation to express our mathematical equations!

1. Operands (i.e. Numbers, Variables and so on) come before operations!
2. Operators appear each two operands (e.g. “2 + 5”)
3. We use brackets to assign priority! (e.g. “(2 + 5) * 7”)

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

52

Infix Notation

We usually use Infix notation as our conventional notation to express our mathematical equations!

1. Operands (i.e. Numbers, Variables and so on) come before operations!
2. Operators appear each two operands (e.g. “2 + 5”)
3. We use brackets to assign priority! (e.g. “(2 + 5) * 7”)

2 + 5 * 7 = 37
(2 + 5) * 7 = 49

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

53

postfix Notation

post notation is easier to evaluate because we don’t deal with brackets!

1. Operators appear after two operands (e.g. “2 5 +”)
2. To evaluate an operator, we apply it to the previous two numbers!

2 5 + 11 *

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

54

postfix Notation

post notation is easier to evaluate because we don’t deal with brackets!

1. Operators appear after two operands (e.g. “2 5 +”)
2. To evaluate an operator, we apply it to the previous two numbers!

2 5 + 11 *
Numbers Token Result

[] 2 0

[2] 5 0

[2, 5] + 7

[7] 11 7

[7, 11] * 77

[77] null 77

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

55

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!

Token Output

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

56

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!

Token Output

2 2
2 * (5 + 4 * 2) / 3

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

57

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.

*

Token Output

* 2
2 * (5 + 4 * 2) / 3

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

58

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.

(

*

Token Output

(2
2 * (5 + 4 * 2) / 3

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

59

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.

(

*

Token Output

5 2 5
2 * (5 + 4 * 2) / 3

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

60

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack

+

(

*

Token Output

+ 2 5
2 * (5 + 4 * 2) / 3

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

61

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack

+

(

*

Token Output

4 2 5 4
2 * (5 + 4 * 2) / 3

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

62

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

*

+

(

*

Token Output

* 2 5 4
2 * (5 + 4 * 2) / 3

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

63

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

*

+

(

*

Token Output

2 2 5 4 2
2 * (5 + 4 * 2) / 3

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

64

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

4. If it’s a closing parenthesis, then keep popping and adding to output
until you reach an opening parenthesis. *

+

(

*

Token Output

) 2 5 4 2
2 * (5 + 4 * 2) / 3

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

65

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

4. If it’s a closing parenthesis, then keep popping and adding to output
until you reach an opening parenthesis.

*

Token Output

) 2 5 4 2 * +
2 * (5 + 4 * 2) / 3

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

66

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

4. If it’s a closing parenthesis, then keep popping and adding to output
until you reach an opening parenthesis.

*

Token Output

/ 2 5 4 2 * +
2 * (5 + 4 * 2) / 3

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

67

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

4. If it’s a closing parenthesis, then keep popping and adding to output
until you reach an opening parenthesis.

/

Token Output

/ 2 5 4 2 * + *
2 * (5 + 4 * 2) / 3

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

68

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

4. If it’s a closing parenthesis, then keep popping and adding to output
until you reach an opening parenthesis.

5. If there is input repeat step 1.

6. If we are done then pop everything and add it to the output! /

Token Output

3 2 5 4 2 * + * 3
2 * (5 + 4 * 2) / 3

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

69

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

4. If it’s a closing parenthesis, then keep popping and adding to output
until you reach an opening parenthesis.

5. If there is input repeat step 1.

6. If we are done then pop everything and add it to the output!

Token Output

3 2 5 4 2 * + * 3 /
2 * (5 + 4 * 2) / 3

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

70

Convert from infix to postfix
Token Output

3 2 5 4 2 * + * 3 /
2 * (5 + 4 * 2) / 3

2 * (5 + 4 * 2) / 3 => 2 5 4 2 * + * 3 /

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

71

Evaluate postfix
Token

2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

72

Evaluate postfix

2

Token

2
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

73

Evaluate postfix

5

2

Token

5
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

74

Evaluate postfix

4

5

2

Token

4
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

75

Evaluate postfix

2

4

5

2

Token

2
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

76

Evaluate postfix

2

4

5

2

Token

*
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

77

Evaluate postfix

2

4

5

2

Token

*
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop();
int x = stack.pop();
int result = x * y;
stack.push(result);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

78

Evaluate postfix

4

5

2

Token

*
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 2
int x = stack.pop();
int result = x * y;
stack.push(result);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

79

Evaluate postfix

5

2

Token

*
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 2
int x = stack.pop(); // 4
int result = x * y;
stack.push(result);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

80

Evaluate postfix

8

5

2

Token

*
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 2
int x = stack.pop(); // 4
int result = x * y; // 8
stack.push(result);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

81

Evaluate postfix

8

5

2

Token

+
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 8
int x = stack.pop(); // 5
int result = x + y; // 13
stack.push(result);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

82

Evaluate postfix

13

2

Token

+
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 8
int x = stack.pop(); // 5
int result = x + y; // 13
stack.push(result);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

83

Evaluate postfix

13

2

Token

*
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 13
int x = stack.pop(); // 2
int result = x * y; // 26
stack.push(result);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

84

Evaluate postfix

26

Token

3
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

85

Evaluate postfix

3

26

Token

3
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

86

Evaluate postfix

3

26

Token

/
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 3
int x = stack.pop(); // 26
int result = x / y; // 8.6
stack.push(result);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

87

Evaluate postfix

8.6

Token

/
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 3
int x = stack.pop(); // 26
int result = x / y; // 8.6
stack.push(result);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

88

Evaluate postfix

8.6

Token

/
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!

3. Repeat until input is finished!

4. When there is no more input the result will be at the top of the stack!

int y = stack.pop(); // 3
int x = stack.pop(); // 26
int result = x / y; // 8.6
stack.push(result);

2 * (5 + 4 * 2) / 3 => 2 5 4 2 * + * 3 /

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

89

Evaluate postfix

8.6

Token

/
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!

3. Repeat until input is finished!

4. When there is no more input the result will be at the top of the stack!

int y = stack.pop(); // 3
int x = stack.pop(); // 26
int result = x / y; // 8.6
stack.push(result);

2 * (5 + 4 * 2) / 3 => 2 5 4 2 * + * 3 /

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Exercises)

90

1. Evaluate “2 3 * 2 1 - / 5 3 * +”
Result should be 21

2. Convert “(((3 + 5) * (7 - 9)) / (11 + 13))” to postfix.

3. Evaluate the following:
1. “6 2 3 + - 3 8 2 / + * 2 + 3 +”
2. “4 5 + 7 2 - *”
3. “7 5 2 * + 4 3 4 + * 4 * -”

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Exercises)

91

1. Write java code to evaluate postfix input.

2. Compare between Array and LinkedList implementation of Stack.

You should compare between methods (push, pop and peek)
You should compare implementations based on Memory and time!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Balanced Brackets)

92

• 1 + (4 * 5)
• 7 + (2 + 3
• 3 * 2 / 5)

How to tell if brackets are balanced or not?

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

93

Check Brackets
Token

2 * (5 +7))

1. If you anything other than a bracket, then ignore it

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

94

Check Brackets
Token

2
2 * (5 +7))

1. If you anything other than a bracket, then ignore it Ignore it!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

95

Check Brackets
Token

*
2 * (5 +7))

1. If you anything other than a bracket, then ignore it Ignore it!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

96

Check Brackets

(

Token

(
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!

stack.push(‘(‘);

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

97

Check Brackets

(

Token

5
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!

Ignore it!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

98

Check Brackets

(

Token

+
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!

Ignore it!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

99

Check Brackets

(

Token

7
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!

Ignore it!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

100

Check Brackets

(

Token

)
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

101

Check Brackets

(

Token

)
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

‘)’ matches with ‘(‘
so, we pop the top.

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

102

Check Brackets
Token

)
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

103

Check Brackets
Token

)
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

104

Check Brackets
Token

)
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

105

Check Brackets
Token

2
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Ignore it!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

106

Check Brackets
Token

*
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Ignore it!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

107

Check Brackets

(

Token

(
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

108

Check Brackets

(

(

Token

(
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

109

Check Brackets

(

(

Token

5
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Ignore it!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

110

Check Brackets

(

(

Token

+
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Ignore it!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

111

Check Brackets

(

(

Token

7
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Ignore it!

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

112

Check Brackets

(

(

Token

)
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

‘)’ matches with ‘(‘
so, we pop the top.

Uploaded By: anonymousSTUDENTS-HUB.com

Stack (Application - Infix to postfix)

113

Check Brackets

(

Token
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Since stack is not empty then we return false!

Uploaded By: anonymousSTUDENTS-HUB.com

