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A stack is a data structure in which elements are added and removed from one end!
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A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack
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A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack

top
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Stack
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A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack 10

top

stack.push(10);
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A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack

15

10
top

stack.push(15);
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A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack

110

15

10
top

stack.push(110);
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A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack

15

10
top

stack.pop();
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A stack is a data structure in which elements are added and removed from one end!

It can allow us to insert elements and retrieve them in opposite order!

Operations

1. Push: Insert/Add a new element to top the stack
2. Pop: Remove/Delete top element in the stack
3. Peek: Examine element at the top of the stack

77

15

10
top

stack.push(77);
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77

15

10
top

Stacks are called (LIFO): Last In First Out

Last element that gets pushed is the first element that gets popped!
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77

15

10
top

Stacks are called (LIFO): Last In First Out

Last element that gets pushed is the first element that gets popped!

They are also called (FILO): First In Last Out

First element that gets pushed is the last element that gets popped!
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1. Method calls.

private static void m2() {
    return;
}

private static void m1() {
    m2();
    System.out.println(”21");   // Line 21
}

private static void run() {
    m1();
    System.out.println("26");   // Line 26
}
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}
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Stack (Applications)

15

1. Method calls.

private static void m2() {
    return;
}

private static void m1() {
    m2();
    System.out.println(”21");   // Line 21
}

private static void run() {
    m1();
    System.out.println("26");   // Line 26
}

Line 21

Line 26
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Stack (Applications)
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1. Method calls.
2. Evaluating some expressions (used by compilers)
3. Check if string is palindrome
4. Check if brackets match in an expression

1 + 2 * (3 + 5
5 + (6 + 7)

5. Undo stack in applications!
6. Many others!
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Stack (Array Implementation)

17

public class Stack<T> {
    private int capacity;
    private int top;
    T[] array;

    public Stack() {
        this(10);
    }
    
    public Stack(int capacity) {
        this.capacity = capacity;
        this.top = -1;
        array = (T[]) new Object[capacity];
    }
}

9

8

7

6

5

4

3

2

1

0

Stack<Integer> stack = new Stack<>();

top = -1

capacity = 10
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Stack<Integer> stack = new Stack<>();

top = -1

capacity = 10
public boolean isEmpty() {
    return top == -1;
}
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Stack<Integer> stack = new Stack<>();

top = -1

capacity = 10
public boolean isEmpty() {
    return top == -1;
}

public boolean isFull() {
    return top + 1 == capacity;
}
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Stack<Integer> stack = new Stack<>();

top = -1

capacity = 10
public boolean isEmpty() {
    return top == -1;
}

public boolean isFull() {
    return top + 1 == capacity;
}

public void push(T element) {
    if (!isFull()) {
        array[++top] = element;
    }
}
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Stack<Integer> stack = new Stack<>();

top = 0

capacity = 10
public boolean isEmpty() {
    return top == -1;
}

public boolean isFull() {
    return top + 1 == capacity;
}

public void push(T element) {
    if (!isFull()) {
        array[++top] = element;
    }
}

stack.push(10);
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Stack<Integer> stack = new Stack<>();

top = 1

capacity = 10
public boolean isEmpty() {
    return top == -1;
}

public boolean isFull() {
    return top + 1 == capacity;
}

public void push(T element) {
    if (!isFull()) {
        array[++top] = element;
    }
}

stack.push(17);
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Stack<Integer> stack = new Stack<>();

top = 1

capacity = 10
public T pop() {
    if (isEmpty()) {
        return null;
    }

    return array[top--];
}
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Stack<Integer> stack = new Stack<>();

top = 1

capacity = 10
public T pop() {
    if (isEmpty()) {
        return null;
    }

    return array[top--];
}

public T peek() {
    if (isEmpty()) {
        return null;
    }

    return array[top];
}
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Stack<Integer> stack = new Stack<>();

top = 0

capacity = 10
public T pop() {
    if (isEmpty()) {
        return null;
    }

    return array[top--];
}

public T peek() {
    if (isEmpty()) {
        return null;
    }

    return array[top];
}

stack.pop();
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5 10 1

head/first

0 1 2
13

3

last

Where is the top?
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5 10 1

head/first

0 1 2
13

3

last

Where is the top?

Assume that top = last
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5 10 1

head/first

0 1 2
13

3

last

Where is the top?

Assume that top = last

push -> addLast(); // O(1)
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Stack (LinkedList)
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5 10 1

head/first

0 1 2
13

3

last

Where is the top?

Assume that top = last

push -> addLast(); // O(1)

pop -> removeLast(); // O(n)

This is valid because it’s LIFO (Last In First Out)
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5 10 1

head/first

0 1 2
13

3

last

Where is the top?

Assume that top = first

push -> addFirst(); // O(1)

pop -> removeFirst(); // O(1)

This is valid because it’s LIFO (Last In First Out)
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public class Node<T> {
    public T val;
    public Node<T> next;

    public Node(T val) {
        this(val, null);
    }

    public Node(T val, Node<T> next) {
        this.val = val;
        this.next = next;
    }
}

Uploaded By: anonymousSTUDENTS-HUB.com



Stack (LinkedList Implementation)

32

public class Stack<T> {
    int size = 0;

    Node<T> top;

    public Stack() {
        top = null;
        size = 0;
    }
}

top

null
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public boolean isEmpty() {
    return size == 0;
}

public int size() {
    return size;
}

top

null

size = 0
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public boolean isEmpty() {
    return size == 0;
}

public int size() {
    return size;
}

public void push(T element) {
    Node<T> node = new Node<>(element);
    node.next = top;
    top = node;
    size++;
}

top

null

size = 0
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public boolean isEmpty() {
    return size == 0;
}

public int size() {
    return size;
}

public void push(T element) {
    Node<T> node = new Node<>(element);
    node.next = top;
    top = node;
    size++;
} size = 0

push(10);

10

top

null
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public boolean isEmpty() {
    return size == 0;
}

public int size() {
    return size;
}

public void push(T element) {
    Node<T> node = new Node<>(element);
    node.next = top;
    top = node;
    size++;
} size = 0

push(10);

10

top

null
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public boolean isEmpty() {
    return size == 0;
}

public int size() {
    return size;
}

public void push(T element) {
    Node<T> node = new Node<>(element);
    node.next = top;
    top = node;
    size++;
} size = 1

push(10);

10

top

null
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public boolean isEmpty() {
    return size == 0;
}

public int size() {
    return size;
}

public void push(T element) {
    Node<T> node = new Node<>(element);
    node.next = top;
    top = node;
    size++;
} size = 1

push(81);

81

top

10 null
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Stack (LinkedList Implementation)
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public boolean isEmpty() {
    return size == 0;
}

public int size() {
    return size;
}

public void push(T element) {
    Node<T> node = new Node<>(element);
    node.next = top;
    top = node;
    size++;
} size = 1

push(81);

81

top

10 null
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Stack (LinkedList Implementation)
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public boolean isEmpty() {
    return size == 0;
}

public int size() {
    return size;
}

public void push(T element) {
    Node<T> node = new Node<>(element);
    node.next = top;
    top = node;
    size++;
} size = 2

push(81);

81

top

10 null
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public T pop() {
    if (top == null) {
        return null;
    }

    Node<T> temp = top;
    top = top.next;
    temp.next = null; // Not needed
    size--;

    return temp.data;
}

pop();

81

top

10 null

temp 

size = 2
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public T pop() {
    if (top == null) {
        return null;
    }

    Node<T> temp = top;
    top = top.next;
    temp.next = null; // Not needed
    size--;

    return temp.data;
}

pop();

81

top

10 null

temp 

size = 2
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Stack (LinkedList Implementation)
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public T pop() {
    if (top == null) {
        return null;
    }

    Node<T> temp = top;
    top = top.next;
    temp.next = null; // Not needed
    size--;

    return temp.data;
}

pop();

81

top

10 null

temp 

size = 1
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public T peek() {
    if (top == null) {
        return null;
    }

    return top.data;
}

top

10 null

size = 1
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How to loop on stack?
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How to loop on stack?

while (!stack.isEmpty()) {
    int x = stack.pop();
    // Do something with x
}

// stack is empty here!
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You have a stack of random integers!

Random random = new Random();
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < 10; i++) {
    stack.push(random.nextInt());
}

9 587

8 473

7 315

6 94

5 37

4 63

3 1025

2 1

1 77

0 10
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Stack (Exercise)
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You have a stack of random integers!

Random random = new Random();
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < 10; i++) {
    stack.push(random.nextInt());
}

9 587

8 473

7 315

6 94

5 37

4 63

3 1025

2 1

1 77

0 10

1. Find max in stack without destroying it!

int max = 0;
while (!stack.isEmpty()) {
    max = Math.max(max, stack.pop());
}

// stack is empty here! We don't want that!
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Stack (Exercise)
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You have a stack of random integers!

Random random = new Random();
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < 10; i++) {
    stack.push(random.nextInt());
}

9 587

8 473

7 315

6 94

5 37

4 63

3 1025

2 1

1 77

0 10

1. Find max in stack without destroying it!

int max = 0;
while (!stack.isEmpty()) {
    max = Math.max(max, stack.pop());
}

// stack is empty here! We don't want that!

Hint: Use Recursion
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Stack (Exercise)
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You have a stack of random integers!

Random random = new Random();
Stack<Integer> stack = new Stack<>();
for (int i = 0; i < 10; i++) {
    stack.push(random.nextInt());
}

9 587

8 473

7 315

6 94

5 37

4 63

3 1025

2 1

1 77

0 10

1. Find max in stack without destroying it!
2. Print stack without destroying it!

Hint: Use Recursion
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Infix Notation

We usually use Infix notation as our conventional notation to express our mathematical equations!

1. Operands (i.e. Numbers, Variables and so on) come before operations!
2. Operators appear each two operands (e.g. “2 + 5”)
3. We use brackets to assign priority! (e.g. “(2 + 5) * 7”)
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Infix Notation

We usually use Infix notation as our conventional notation to express our mathematical equations!

1. Operands (i.e. Numbers, Variables and so on) come before operations!
2. Operators appear each two operands (e.g. “2 + 5”)
3. We use brackets to assign priority! (e.g. “(2 + 5) * 7”)

2 + 5 * 7 = 37
(2 + 5) * 7 = 49
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postfix Notation

post notation is easier to evaluate because we don’t deal with brackets!

1. Operators appear after two operands (e.g. “2 5 +”)
2. To evaluate an operator, we apply it to the previous two numbers!

2 5 + 11 *
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postfix Notation

post notation is easier to evaluate because we don’t deal with brackets!

1. Operators appear after two operands (e.g. “2 5 +”)
2. To evaluate an operator, we apply it to the previous two numbers!

2 5 + 11 *
Numbers Token Result

[] 2 0

[2] 5 0

[2, 5] + 7

[7] 11 7

[7, 11] * 77

[77] null 77
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Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!

Token Output
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Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!

Token Output

2 2
2 * (5 + 4 * 2) / 3
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Stack (Application - Infix to postfix)
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Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.

*

Token Output

* 2
2 * (5 + 4 * 2) / 3
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Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.

(

*

Token Output

( 2
2 * (5 + 4 * 2) / 3
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Stack (Application - Infix to postfix)
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Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.

(

*

Token Output

5 2 5
2 * (5 + 4 * 2) / 3
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60

Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack

+

(

*

Token Output

+ 2 5
2 * (5 + 4 * 2) / 3
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Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack

+

(

*

Token Output

4 2 5 4
2 * (5 + 4 * 2) / 3
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Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

*

+

(

*

Token Output

* 2 5 4
2 * (5 + 4 * 2) / 3
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Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

*

+

(

*

Token Output

2 2 5 4 2
2 * (5 + 4 * 2) / 3
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Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

4. If it’s a closing parenthesis, then keep popping and adding to output
until you reach an opening parenthesis. *

+

(

*

Token Output

) 2 5 4 2
2 * (5 + 4 * 2) / 3
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Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

4. If it’s a closing parenthesis, then keep popping and adding to output
until you reach an opening parenthesis.

*

Token Output

) 2 5 4 2 * +
2 * (5 + 4 * 2) / 3
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Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

4. If it’s a closing parenthesis, then keep popping and adding to output
until you reach an opening parenthesis.

*

Token Output

/ 2 5 4 2 * +
2 * (5 + 4 * 2) / 3
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Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

4. If it’s a closing parenthesis, then keep popping and adding to output
until you reach an opening parenthesis.

/

Token Output

/ 2 5 4 2 * + *
2 * (5 + 4 * 2) / 3
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Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

4. If it’s a closing parenthesis, then keep popping and adding to output
until you reach an opening parenthesis.

5. If there is input repeat step 1.

6. If we are done then pop everything and add it to the output! /

Token Output

3 2 5 4 2 * + * 3
2 * (5 + 4 * 2) / 3
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Convert from infix to postfix

1. If you see an operand (i.e., number), then add it to the output!
2. If it’s an opening parenthesis “(” then we push it into a stack!
3. If it’s an operator (e.g., “+”, “-”, “*”, “/”):

i. If stack is empty, then push the operator into the stack.
ii. If the top of the stack is an opening parenthesis, then push the operator into the stack
iii. If it has higher priority than top of the stack, then push the operator into the stack (e.g., “*” > “+”)
iv. If it has lower priority, then pop the stack and add the popped element to the output and repeat step 3

4. If it’s a closing parenthesis, then keep popping and adding to output
until you reach an opening parenthesis.

5. If there is input repeat step 1.

6. If we are done then pop everything and add it to the output!

Token Output

3 2 5 4 2 * + * 3 /
2 * (5 + 4 * 2) / 3
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Convert from infix to postfix
Token Output

3 2 5 4 2 * + * 3 /
2 * (5 + 4 * 2) / 3

2 * (5 + 4 * 2) / 3    =>    2 5 4 2 * + * 3 /
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Evaluate postfix
Token

2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
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Evaluate postfix

2

Token

2
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
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Evaluate postfix

5

2

Token

5
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
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Evaluate postfix

4

5

2

Token

4
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
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Evaluate postfix

2

4

5

2

Token

2
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
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Evaluate postfix

2

4

5

2

Token

*
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
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Evaluate postfix

2

4

5

2

Token

*
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop();
int x = stack.pop();
int result = x * y;
stack.push(result);
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Evaluate postfix

4

5

2

Token

*
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 2
int x = stack.pop();
int result = x * y;
stack.push(result);
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Evaluate postfix

5

2

Token

*
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 2
int x = stack.pop(); // 4
int result = x * y;
stack.push(result);

Uploaded By: anonymousSTUDENTS-HUB.com



Stack (Application - Infix to postfix)

80

Evaluate postfix

8

5

2

Token

*
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 2
int x = stack.pop(); // 4
int result = x * y;  // 8
stack.push(result);
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Evaluate postfix

8

5

2

Token

+
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 8
int x = stack.pop(); // 5
int result = x + y;  // 13
stack.push(result);
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Evaluate postfix

13

2

Token

+
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 8
int x = stack.pop(); // 5
int result = x + y;  // 13
stack.push(result);

Uploaded By: anonymousSTUDENTS-HUB.com



Stack (Application - Infix to postfix)

83

Evaluate postfix

13

2

Token

*
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 13
int x = stack.pop(); // 2
int result = x * y;  // 26
stack.push(result);
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Evaluate postfix

26

Token

3
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
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Evaluate postfix

3

26

Token

3
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
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Evaluate postfix

3

26

Token

/
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 3
int x = stack.pop(); // 26
int result = x / y;  // 8.6
stack.push(result);
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Evaluate postfix

8.6

Token

/
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!
int y = stack.pop(); // 3
int x = stack.pop(); // 26
int result = x / y;  // 8.6
stack.push(result);
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Evaluate postfix

8.6

Token

/
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!

3. Repeat until input is finished!

4. When there is no more input the result will be at the top of the stack!

int y = stack.pop(); // 3
int x = stack.pop(); // 26
int result = x / y;  // 8.6
stack.push(result);

2 * (5 + 4 * 2) / 3    =>    2 5 4 2 * + * 3 /
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Evaluate postfix

8.6

Token

/
2 5 4 2 * + * 3 /

1. If you see an operand (i.e., number), then push it to stack!
2. If you see an operator, then pop two numbers from the stack and evaluate the operator!

Then you push the result back into the stack!

3. Repeat until input is finished!

4. When there is no more input the result will be at the top of the stack!

int y = stack.pop(); // 3
int x = stack.pop(); // 26
int result = x / y;  // 8.6
stack.push(result);

2 * (5 + 4 * 2) / 3    =>    2 5 4 2 * + * 3 /
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1. Evaluate “2 3 * 2 1 - / 5 3 * +”
Result should be 21

2. Convert “(((3 + 5) * (7 - 9)) / (11 + 13))” to postfix.

3. Evaluate the following:
1. “6 2 3 + - 3 8 2 / + * 2 + 3 +”
2. “4 5 + 7 2 - *”
3. “7 5 2 * + 4 3 4 + * 4 * -”
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1. Write java code to evaluate postfix input.

2. Compare between Array and LinkedList implementation of Stack.

You should compare between methods (push, pop and peek)
You should compare implementations based on Memory and time!
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• 1 + (4 * 5)
• 7 + (2 + 3
• 3 * 2 / 5)

How to tell if brackets are balanced or not?
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Check Brackets
Token

2 * (5 +7))

1. If you anything other than a bracket, then ignore it
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Check Brackets
Token

2
2 * (5 +7))

1. If you anything other than a bracket, then ignore it Ignore it!
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Check Brackets
Token

*
2 * (5 +7))

1. If you anything other than a bracket, then ignore it Ignore it!
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Check Brackets

(

Token

(
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!

stack.push(‘(‘);
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Check Brackets

(

Token

5
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!

Ignore it!
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Check Brackets

(

Token

+
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!

Ignore it!
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Check Brackets

(

Token

7
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!

Ignore it!
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Check Brackets

(

Token

)
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).
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Check Brackets

(

Token

)
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

‘)’ matches with ‘(‘
so, we pop the top.
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Check Brackets
Token

)
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).
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Check Brackets
Token

)
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).
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Check Brackets
Token

)
2 * (5 +7))

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).
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Check Brackets
Token

2
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Ignore it!
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Check Brackets
Token

*
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Ignore it!
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Check Brackets

(

Token

(
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).
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Check Brackets

(

(

Token

(
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).
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Check Brackets

(

(

Token

5
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Ignore it!
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Check Brackets

(

(

Token

+
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Ignore it!
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Check Brackets

(

(

Token

7
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Ignore it!
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Check Brackets

(

(

Token

)
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

‘)’ matches with ‘(‘
so, we pop the top.
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Check Brackets

(

Token
2 * ((5 +7)

1. If you anything other than a bracket, then ignore it.
2. If you see an opening bracket (e.g., ‘(‘, ’{‘, ‘[‘), then push it into the stack!
3. If you see an opening bracket (e.g., ‘)‘, ’}‘, ‘]‘):

1. If the closing matches with the top of the Stack, then pop the top.
If it does not match, then return false (brackets are unbalanced).

2. If the the stack is empty, then return false (brackets are unbalanced).

4. When finished if the stack is not empty, then return false (brackets are unbalanced).

5. Otherwise return true, (brackets are balanced).

Since stack is not empty then we return false!
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