
Single Cycle Processor Design

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Presentation Outline

❖ Designing a Processor: Step-by-Step

❖ Datapath Components and Clocking

❖ Assembling an Adequate Datapath

❖ Controlling the Execution of Instructions

❖ Main, ALU, and PC Control

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

CPU Organization (Design)

❖ Datapath Design:

 Capabilities & performance characteristics of principal Functional

Units (FUs) needed by ISA instructions

 (e.g., Registers, ALU, Shifters, Logic Units, ...)

 Ways in which these components are interconnected (buses

connections, multiplexors, etc.).

 How information flows between components.

❖ Control Unit Design:

 Logic and means by which such information flow is controlled.

 Control and coordination of FUs operation to realize the targeted

Instruction Set Architecture to be implemented (can either be

implemented using a finite state machine or a microprogram).

❖ Hardware description with a suitable language, possibly using

Register Transfer Notation (RTN).

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Designing a Processor: Step-by-Step

1. Analyze instruction set => datapath requirements

 The meaning of each instruction is given by the register transfers

 Datapath must include storage elements for ISA registers

 Datapath must support each register transfer

2. Select datapath components and clocking methodology

3. Assemble datapath meeting the requirements

4. Analyze implementation of each instruction

 Determine the setting of control signals for register transfer

5. Assemble the control logic

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Review of MIPS Instruction Formats

❖ All instructions are 32-bit wide

❖ Three instruction formats: R-type, I-type, and J-type

 Op6: 6-bit opcode of the instruction

 Rs5, Rt5, Rd5: 5-bit source and destination register numbers

 sa5: 5-bit shift amount used by shift instructions

 funct6: 6-bit function field for R-type instructions

 immediate16: 16-bit immediate constant or PC-relative offset

 address26: 26-bit target address of the jump instruction

Op6 Rs5 Rt5 Rd5 funct6sa5

Op6 Rs5 Rt5 immediate16

Op6 address26

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MIPS Five Addressing Modes

1 Register Addressing:

Where the operand is a register (R-Type)

2 Immediate Addressing:

Where the operand is a constant in the instruction (I-Type, ALU)

3 Base or Displacement Addressing:

Where the operand is at the memory location whose address is the
sum of a register and a constant in the instruction (I-Type, load/store)

4 PC-Relative Addressing:

Where the address is the sum of the PC and the 16-address field in
the instruction shifted left 2 bits. (I-Type, branches)

5 Pseudodirect Addressing:

Where the jump address is the 26-bit jump target from the instruction
shifted left 2 bits concatenated with the 4 upper bits of the PC (J-
Type)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

7

MIPS Addressing
Modes/Instructio

n Formats

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MIPS Subset of Instructions

❖ Only a subset of the MIPS instructions is considered

 ALU instructions (R-type): add, sub, and, or, xor, slt

 Immediate instructions (I-type): addi, slti, andi, ori, xori

 Load and Store (I-type): lw, sw

 Branch (I-type): beq, bne

 Jump (J-type): j

❖ This subset does not include all the integer instructions

❖ But sufficient to illustrate design of datapath and control

❖ Concepts used to implement the MIPS subset are used to

construct a broad spectrum of computers

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Details of the MIPS Subset

Instruction Meaning Format

add rd, rs, rt addition op6 = 0 rs5 rt5 rd5 0 0x20

sub rd, rs, rt subtraction op6 = 0 rs5 rt5 rd5 0 0x22

and rd, rs, rt bitwise and op6 = 0 rs5 rt5 rd5 0 0x24

or rd, rs, rt bitwise or op6 = 0 rs5 rt5 rd5 0 0x25

xor rd, rs, rt exclusive or op6 = 0 rs5 rt5 rd5 0 0x26

slt rd, rs, rt set on less than op6 = 0 rs5 rt5 rd5 0 0x2a

addi rt, rs, imm16 add immediate 0x08 rs5 rt5 imm16

slti rt, rs, imm16 slt immediate 0x0a rs5 rt5 imm16

andi rt, rs, imm16 and immediate 0x0c rs5 rt5 imm16

ori rt, rs, imm16 or immediate 0x0d rs5 rt5 imm16

xori rt, imm16 xor immediate 0x0e rs5 rt5 imm16

lw rt, imm16(rs) load word 0x23 rs5 rt5 imm16

sw rt, imm16(rs) store word 0x2b rs5 rt5 imm16

beq rs, rt, offset16 branch if equal 0x04 rs5 rt5 offset16

bne rs, rt, offset16 branch not equal 0x05 rs5 rt5 offset16

j address26 jump 0x02 address26

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Register Transfer Level (RTL)

❖ RTL is a description of data flow between registers

❖ RTL gives a meaning to the instructions

❖ All instructions are fetched from memory at address PC

Instruction RTL Description

ADD Reg(rd) ← Reg(rs) + Reg(rt); PC ← PC + 4

SUB Reg(rd) ← Reg(rs) – Reg(rt); PC ← PC + 4

ORI Reg(rt) ← Reg(rs) | zero_ext(imm16); PC ← PC + 4

LW Reg(rt) ← MEM[Reg(rs) + sign_ext(imm16)]; PC ← PC + 4

SW MEM[Reg(rs) + sign_ext(imm16)] ← Reg(rt); PC ← PC + 4

BEQ if (Reg(rs) == Reg(rt))

PC ← PC + 4 + 4 × sign_ext(offset16)

else PC ← PC + 4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Instruction Fetch/Execute

❖ R-type Fetch instruction: Instruction ← MEM[PC]

Fetch operands: data1 ← Reg(rs), data2 ← Reg(rt)

Execute operation: ALU_result ← func(data1, data2)

Write ALU result: Reg(rd) ← ALU_result

Next PC address: PC ← PC + 4

❖ I-type Fetch instruction: Instruction ← MEM[PC]

Fetch operands: data1 ← Reg(rs), data2 ← Extend(imm16)

Execute operation: ALU_result ← op(data1, data2)

Write ALU result: Reg(rt) ← ALU_result

Next PC address: PC ← PC + 4

❖ BEQ Fetch instruction: Instruction ← MEM[PC]

Fetch operands: data1 ← Reg(rs), data2 ← Reg(rt)

Equality: zero ← subtract(data1, data2)

Branch: if (zero) PC ← PC + 4 + 4×sign_ext(offset16)

else PC ← PC + 4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Instruction Fetch/Execute – cont’d

❖ LW Fetch instruction: Instruction ← MEM[PC]

Fetch base register: base ← Reg(rs)

Calculate address: address ← base + sign_extend(imm16)

Read memory: data ← MEM[address]

Write register Rt: Reg(rt) ← data

Next PC address: PC ← PC + 4

❖ SW Fetch instruction: Instruction ← MEM[PC]

Fetch registers: base ← Reg(rs), data ← Reg(rt)

Calculate address: address ← base + sign_extend(imm16)

Write memory: MEM[address] ← data

Next PC address: PC ← PC + 4

❖ Jump Fetch instruction: Instruction ← MEM[PC]

Target PC address: target ← PC[31:28] || address26 || ‘00’

Jump: PC ← target

concatenation

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Basic MIPS Instruction Processing Steps

Obtain instruction from program storage

Determine instruction type

Obtain operands from registers

Compute result value or status

Store result in register/memory if needed

(usually called Write Back).

Update program counter to address

of next instruction } Common

steps

for all

instructions

Instruction

Fetch

Instruction

Decode

Execute

Result

Store

Next

Instruction

Instruction  Mem[PC]

PC  PC + 4

Done by

Control Unit

Instruction Memory

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Overview of MIPS Instruction Micro-operations
❖ All instructions go through these common steps:

 Send program counter to instruction memory and fetch the instruction.
(fetch) Instruction  Mem[PC]

 Update the program counter to point to next instruction PC  PC + 4

 Read one or two registers, using instruction fields. (decode)

▪ Load reads one register only.

❖ Additional instruction execution actions (execution) depend on the instruction
in question, but similarities exist:

 All instruction classes use the ALU after reading the registers:

▪ Memory reference instructions use it for address calculation.

▪ Arithmetic and logic instructions (R-Type), use it for the specified
operation.

▪ Branches use it for comparison.

❖ Additional execution steps where instruction classes differ:

 Memory reference instructions: Access memory for a load or store.

 Arithmetic and logic instructions: Write ALU result back in register.

 Branch instructions: Change next instruction address based on comparison.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Requirements of the Instruction Set

❖Memory

 Instruction memory where instructions are stored

 Data memory where data is stored

❖ Registers

 31 × 32-bit general purpose registers, R0 is always zero

 Read source register Rs

 Read source register Rt

 Write destination register Rt or Rd

❖ Program counter PC register and Adder to increment PC

❖ Sign and Zero extender for immediate constant

❖ ALU for executing instructions

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Next . . .

❖ Designing a Processor: Step-by-Step

❖ Datapath Components and Clocking

❖ Assembling an Adequate Datapath

❖ Controlling the Execution of Instructions

❖ Main, ALU, and PC Control

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Combinational Elements

 ALU, Adder

 Immediate extender

 Multiplexers

❖ Storage Elements

 Instruction memory

 Data memory

 PC register

 Register file

❖ Clocking methodology

 Timing of writes

Components of the Datapath

32

Address

Instruction

Instruction

Memory

32

m
u
x

0

1

select

Extend
3216

ExtOp

A
L
U

ALUOp

ALU result

zero

32

32

32

overflow

P
C

32 32

clk

Registers

RA

RB

BusA

RegWrite

BusB

RW

5

5

5

32

32

32

BusW

clk

Data

Memory

Address

Data_in

Data_out

Mem

Read

Mem

Write

32

32

32

clk

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Register

 Similar to the D-type Flip-Flop

❖ n-bit input and output

❖Write Enable (WE):

 Enable / disable writing of register

 Negated (0): Data_Out will not change

 Asserted (1): Data_Out will become Data_In after clock edge

❖ Edge triggered Clocking

 Register output is modified at clock edge

Register Element

Register

Data_In

Clock
Write

Enable

n bits

Data_Out

n bits

WE

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Register File consists of 31 × 32-bit registers

 BusA and BusB: 32-bit output busses for reading 2 registers

 BusW: 32-bit input bus for writing a register when RegWrite is 1

 Two registers read and one written in a cycle

❖ Registers are selected by:

 RA selects register to be read on BusA

 RB selects register to be read on BusB

 RW selects the register to be written

❖ Clock input

 The clock input is used ONLY during write operation

 During read, register file behaves as a combinational logic block

▪ RA or RB valid => BusA or BusB valid after access time

MIPS Register File

Register

FileRA

RB

BusA

RegWrite

BusB
RW

5

5

5

32

32

32

BusW

Clock

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Details of the Register File

BusA

BusB

"0" "0"

RA

Decoder

5 RB

Decoder

5

R1

R2

R31

.

.

.
BusW

D
e
c
o
d
e
r

RW

5

Clock

RegWrite

.

.

.

R0 is not

used

32

32

32

32

32

32

32

32

32

Tri-state

buffers

WE

WE

WE

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Allow multiple sources to drive a single bus

❖ Two Inputs:

 Data_in

 Enable (to enable output)

❖ One Output: Data_out

 If (Enable) Data_out = Data_in

else Data_out = High Impedance state (output is disconnected)

❖ Tri-state buffers can be

used to build multiplexors

Tri-State Buffers

Data_in Data_out

Enable

Data_0

Data_1

Output

Select

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Another Implementation

5-to-32

Decoder

Register 0
Write

Data In

Data

Out

Register 1
Write

Data In

Data

Out

Register 30
Write

Data In

Data

Out

Register 31
Write

Data In

Data

Out

...
...

32-to-1

MUX

0

1

30

31

32...

5

32-to-1

MUX

0

1

30

31

32...

5

.

..

.

32

32

32

32

.

.

.

...

0

1

30

31

5

.

.

.

Register

Read Data 1

(Bus A)

Register

Read Data 2

(Bus B)

Read Register 1

(RA)

Read Register 2

(RB)

Register Write Data (Bus W)

32

Register Write Enable (RegWrite)

Write

Register

RW

Clk

busW

Write Enable

32

32

busA

32

busB

5 5 5

RW RA RB

32 32-bit

Registers

Each Register contains 32 edge triggered D-Flip Flops

Clock input to registers

not shown in diagram

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Building a Multifunction ALU

0

1

2

3

0

1

2

3

Logic Unit

2

AND = 00

OR = 01

NOR = 10

XOR = 11

L
o
g
ic

a
l

O
p
e
ra

ti
o

n

Shifter

2
SLL = 00

SRL = 00

SRA = 01

ROR = 11

S
h
if
t/
R

o
ta

te

O
p
e
ra

ti
o

n

A 32

32
B

A
d
d
e
r

c0

32

32

ADD = 0

SUB = 1

A
ri

th
m

e
ti
c

O
p

e
ra

ti
o

n

Shift = 00

SLT = 01

Arith = 10

Logic = 11

ALU

Selection

32

2

Shift Amount

ALU Result

5

sign
≠

zerooverflow

SLT: ALU does a SUB

and check the sign

and overflow

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Details of the Shifter

❖ Implemented with multiplexers and wiring

❖ Shift Operation can be: SLL, SRL, SRA, or ROR

❖ Input Data is extended to 63 bits according to Shift Op

❖ The 63 bits are shifted right according to S4S3S2S1S0

S0

32

31

311

31

1

split

33

1

1

S1

312

31

2

split

35

2

31

2

S2

4

314

31

4

split

39

4

31

S3

8

318

31

8

split

47

8

31

S4

16

3116

31

16

0

1

m
u
x

split

63

16

31

Shift Right

0 or 16 bits

Shift Right

0 or 8 bits

Shift Right

0 or 4 bits

Shift Right

0 or 2 bits

Shift Right

0 or 1 bit

0

1

m
u
x

0

1

m
u
x

0

1

m
u

x

0

1

m
u
x

E
x
te

n
d
e
r

32

Shift
op

2

D
a
ta

D
a
ta

_
o
u
t

5
sa

SLL

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Details of the Shifter – cont’d

❖ Input data is extended from 32 to 63 bits as follows:

 If shift op = SRL then ext_data[62:0] = 031 || data[31:0]

 If shift op = SRA then ext_data[62:0] = data[31]31 || data[31:0]

 If shift op = ROR then ext_data[62:0] = data[30:0] || data[31:0]

 If shift op = SLL then ext_data[62:0] = data[31:0] || 031

❖ For SRL, the 32-bit input data is zero-extended to 63 bits

❖ For SRA, the 32-bit input data is sign-extended to 63 bits

❖ For ROR, 31-bit extension = lower 31 bits of data

❖ Then, shift right according to the shift amount

❖ As the extended data is shifted right, the upper bits will be: 0

(SRL), sign-bit (SRA), or lower bits of data (ROR)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Implementing Shift Left Logical

❖ The wiring of the above shifter dictates a right shift

❖ However, we can convert a left shift into a right shift

❖ For SLL, 31 zeros are appended to the right of data

 To shift left by 0 is equivalent to shifting right by 31

 To shift left by 1 is equivalent to shifting right by 30

 To shift left by 31 is equivalent to shifting right by 0

 Therefore, for SLL use the 1’s complement of the shift amount

❖ ROL is equivalent to ROR if we use (32 – rotate amount)

❖ ROL by 10 bits is equivalent to ROR by (32–10) = 22 bits

❖ Therefore, software can convert ROL to ROR

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Instruction and Data Memories

❖ Instruction memory needs only provide read access

 Because datapath does not write instructions

 Behaves as combinational logic for read

 Address selects Instruction after access time

❖ Data Memory is used for load and store

 MemRead: enables output on Data_out

▪ Address selects the word to put on Data_out

 MemWrite: enables writing of Data_in

▪ Address selects the memory word to be written

▪ The Clock synchronizes the write operation

❖ Separate instruction and data memories

 Later, we will replace them with caches

MemWriteMemRead

Data

Memory

Address

Data_in

Data_out
32

32

32

Clock

32
Address Instruction

Instruction

Memory

32

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Clocking Methodology

❖ Clocks are needed in a sequential logic

to decide when a state element

(register) should be updated

❖ To ensure correctness, a clocking

methodology defines when data can be

written and read

Combinational logic

R
e
g
is

te
r

1

R
e

g
is

te
r

2
clock

rising edge falling edge

❖ We assume edge-

triggered clocking

❖ All state changes

occur on the same

clock edge

❖ Data must be valid

and stable before

arrival of clock edge

❖ Edge-triggered

clocking allows a

register to be read

and written during

same clock cycle

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Determining the Clock Cycle

❖With edge-triggered clocking, the clock cycle must be long

enough to accommodate the path from one register through the

combinational logic to another register

Tcycle ≥ Tclk-q + Tmax_comb + Ts

Combinational logic

R
e
g
is

te
r

1

R
e
g
is

te
r

2

clock

writing edge

Tclk-q Tmax_comb Ts Th

❖ Tclk-q : clock to output delay

through register

❖ Tmax_comb : longest delay

through combinational logic

❖ Ts : setup time that input to a

register must be stable before

arrival of clock edge

❖ Th: hold time that input to a

register must hold after arrival

of clock edge

❖ Hold time (Th) is normally

satisfied since Tclk-q > Th

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Clock Skew

❖ Clock skew arises because the clock signal uses different

paths with slightly different delays to reach state elements

❖ Clock skew is the difference in absolute time between when

two storage elements see a clock edge

❖With a clock skew, the clock cycle time is increased

❖ Clock skew is reduced by balancing the clock delays

Tcycle ≥ Tclk-q + Tmax_combinational + Tsetup+ Tskew

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Clocking Methodologies

❖ State element design choices

 Latches:

▪ Output responds to input changes only when the clock is asserted

▪ Assert means "logically true“(could mean electrically low)

 Flip-flop:

▪ State changes only on a clock edge

▪ (edge-triggered methodology)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

State Elements

❖ Level sensitive D latch

❖ D flip flop

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Overview: Processor Implementation Styles

❖ Single Cycle

 perform each instruction in 1 clock cycle

 clock cycle must be long enough for slowest instruction;

therefore,

 disadvantage: only as fast as slowest instruction

❖ Multi-Cycle

 break fetch/execute cycle into multiple steps

 perform 1 step in each clock cycle

 advantage: each instruction uses only as many cycles as it needs

❖ Pipelined

 execute each instruction in multiple steps

 perform 1 step / instruction in each clock cycle

 process multiple instructions in parallel – assembly line
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Single Cycle, Multiple Cycle, vs. Pipeline

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Next . . .

❖ Designing a Processor: Step-by-Step

❖ Datapath Components and Clocking

❖ Assembling an Adequate Datapath

❖ Controlling the Execution of Instructions

❖ Main, ALU, and PC Control

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖We can now assemble the datapath from its components

❖ For instruction fetching, we need …

 Program Counter (PC) register

 Instruction Memory

 Adder for incrementing PC

Instruction Fetching Datapath

The least significant 2 bits of

the PC are ‘00’ since PC is

a multiple of 4

Datapath does not

handle branch or

jump instructions

P
C

32

Address

Instruction

Instruction

Memory

32

32
32

4
A
d
d

next PC

clk

Improved datapath

increments upper 30

bits of PC by 1

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30

Improved

Datapath

next PC

clk

0
0

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Datapath for R-type Instructions

❖ Control signals

 ALUOp is the ALU operation as defined in the funct field for R-type

 RegWr is used to enable the writing of the ALU result

Op6 Rs5 Rt5 Rd5 funct6sa5

ALUOp

RegWr

A
L
U

32

32

ALU result

32

Rs and Rt fields select two

registers to read. Rd field

selects register to write

BusA & BusB provide data input to ALU.

ALU result is connected to BusW

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30

Registers

RA

RB

BusA

BusB

RW
BusW

5Rs

5Rt

5Rd

clk

Same clock updates PC and Rd register

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Datapath for I-type ALU Instructions

❖ Control signals

 ALUOp is derived from the Op field for I-type instructions

 RegWr is used to enable the writing of the ALU result

 ExtOp is used to control the extension of the 16-bit immediate

Op6 Rs5 Rt5 immediate16

ALUOp

RegWr

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30

5

Registers

RA

RB

BusA

BusB

RW
BusW

5Rs

5Rt

ExtOp

32

32

ALU result

32

32

A
L
U

Extender
Imm16

Second ALU input comes from the extended

immediate. RB and BusB are not used

Same clock edge

updates PC and

Rt
Rt selects register to

write, not Rd

clk

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Combining R-type & I-type Datapaths

❖ Control signals

 ALUOp is derived from either the Op or the funct field

 RegWr enables the writing of the ALU result

 ExtOp controls the extension of the 16-bit immediate

 RegDst selects the register destination as either Rt or Rd

 ALUSrc selects the 2nd ALU source as BusB or extended immediate

A mux selects RW

as either Rt or Rd

Another mux

selects 2nd ALU

input as either data

on BusB or the

extended immediate

ALUOp

RegWr

ExtOp

A
L
U

ALU result

32

32

Registers

RA

RB

BusA

BusB

RW

5

32

BusW

32

Address

Instruction

Instruction

Memory

32

30
P

C
0
0

+1

30
Rs

5

Rd

Extender
Imm16

Rt

32

RegDst ALUSrc

0

1

clk

0

1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Controlling ALU Instructions

For R-type ALU

instructions, RegDst is ‘1’

to select Rd on RW and

ALUSrc is ‘0’ to select

BusB as second ALU

input. The active part of

datapath is shown in

green

For I-type ALU

instructions, RegDst is ‘0’

to select Rt on RW and

ALUSrc is ‘1’ to select

Extended immediate as

second ALU input. The

active part of datapath is

shown in green

A
L
U

ALUOp

ALU result

32

32

Registers

RA

RB

BusA

RegWr = 1

BusB

RW

5

32

BusW

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30
Rs

5

Rd

Extender

ExtOp

Imm16

Rt

0

1

0

1

RegDst = 1
ALUSrc = 0

clk

clk

A
L
U

ALUOp

ALU result

32

32

Registers

RA

RB

BusA

RegWr = 1

BusB

RW

5

32

BusW

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30
Rs

5

Rd

Extender

ExtOp

Imm16

Rt

32

0

1

0

1

RegDst = 0
ALUSrc = 1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Details of the Extender

❖ Two types of extensions

 Zero-extension for unsigned constants

 Sign-extension for signed constants

❖ Control signal ExtOp indicates type of extension

❖ Extender Implementation: wiring and one AND gate

ExtOp = 0  Upper16 = 0

ExtOp = 1 

Upper16 = sign bit

..

.

ExtOp

Upper

16 bits

Lower

16 bits

..

.

Imm16

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

❖ Additional Control signals

 MemRd for load instructions

 MemWr for store instructions

 WBdata selects data on BusW as ALU result or Memory Data_out

BusB is connected to Data_in of Data

Memory for store instructions

Adding Data Memory to Datapath

❖ A data memory is added for load and store instructions

A 3rd mux selects data on BusW as either

ALU result or memory data_out

Data

Memory

Address

Data_in

Data_out

32

32A
L
U

ALUOp

32

Registers

RA

RB

BusA

Reg

Wr

BusB

RW

5

BusW

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30

Rs

5

Rd

E

ExtOp

Imm16

Rt

0

1

RegDst

ALUSrc

0

1

32

MemRd MemWr

32

ALU result

32

0

1

WBdata

ALU calculates data memory address

clk

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Controlling the Execution of Load

ALUOp

= ADD

RegWr

= 1

ExtOp = 1

32

Data

Memory

Address

Data_in

Data_out

32A
L
U

Registers

RA

RB

BusA

BusB

RW

5

BusW

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30

Rs

5

Rd

E
Imm16

Rt

0

1

0

1

32

ALU result

32

0

1

32

32

ALUOp = ‘ADD’ to calculate data memory

address as Reg(Rs) + sign-extend(Imm16)

ALUSrc = ‘1’ selects extended

immediate as second ALU input

MemRd = ‘1’ to read

data memory

RegDst = ‘0’ selects Rt

as destination register

RegWr = ‘1’ to enable

writing of register file

WBdata = ‘1’ places the data read

from memory on BusW

ExtOp = 1 to sign-extend

Immmediate16 to 32 bits

Clock edge updates PC

and Register Rt

RegDst

= 0

ALUSrc

= 1 WBdata

= 1

MemRd

= 1

MemWr

= 0

clk

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Controlling the Execution of Store
ALUOp

= ADD

RegWr

= 0

ExtOp = 1

32

Data

Memory

Address

Data_in

Data_out

32A
L
U

Registers

RA

RB

BusA

BusB

RW

5

BusW

32

Address

Instruction

Instruction

Memory

32

30

P
C

0
0

+1

30

Rs

5

Rd

E
Imm16

Rt

0

1

0

1

32

ALU result

32

0

1

32

32

ALUOp = ‘ADD’ to calculate data memory

address as Reg(Rs) + sign-extend(Imm16)
ALUSrc = ‘1’ selects extended

immediate as second ALU input

MemWr = ‘1’ to write

data memory

RegDst = ‘X’ because no

register is written

RegWr = ‘0’ to disable

writing of register file

WBdata = ‘X’ because don’t care

what data is put on BusW

ExtOp = 1 to sign-extend

Immmediate16 to 32 bits

Clock edge updates PC

and Data Memory

RegDst

= X

ALUSrc

= 1 WBdata

= X

MemRd

= 0

MemWr

= 1

clk

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Op

Branch Target Address

ALU

Op
Reg

Wr

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

E

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU result

clk

P
C

0
0

Data

Memory

Address

Data_in

Data_out

Registers

RA

RB

BusA

BusB

RW
BusW

+1

Mem

Rd

Mem

Wr

WB

data

1

0

Imm16

Next PC Address

0

1

1

0

ALU

Src

Reg

Dst

New adder for computing branch

target address

Adding Jump and Branch to Datapath

Zero

PCSrc

2

1

0

+

❖ Additional Control Signals

 PCSrc for PC control: 1 for a jump and 2 for a taken branch

 Zero flag for branch control: whether branch is taken or not

Adding a mux at the PC input

ExtOp

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Op

= J

Branch Target Address

ALU

Op

= X

Reg

Wr

= 0

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

E

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU result

clk

P
C

0
0

Registers

RA

RB

BusA

BusB

RW
BusW

+1

Mem

Rd

= 0

Mem

Wr

= 0

WB

data

= X

1

0

Imm16

Next PC Address

0

1

1

0

ALU

Src

= X

Reg

Dst

= X

Controlling the Execution of a Jump

Zero = X

PCSrc

= 1

2

1

0

+

Data

Memory

Address

Data_in

Data_out

ExtOp = X

MemRd = MemWr = RegWr = 0, Don't care about other control signals

Clock edge updates PC register only

If (Opcode == J) then

PCSrc = 1 (Jump Target)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Op

BEQ

Branch Target Address

ALU

Op

= SUB

Reg

Wr

= 0

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

E

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU result

clk

P
C

0
0

Registers

RA

RB

BusA

BusB

RW
BusW

+1

Mem

Rd

= 0

Mem

Wr

= 0

WB

data

= X

1

0

Imm16

Next PC Address

0

1

1

0

ALU

Src

= 0

Reg

Dst

= X

Controlling the Execution of a Branch

Zero = 1

PCSrc

= 2

2

1

0

+

Data

Memory

Address

Data_in

Data_out

ExtOp = 1

ALUSrc = 0, ALUOp = SUB, ExtOp = 1, MemRd = MemWr = RegWr = 0

Clock edge updates PC register only

If (Opcode == BEQ && Zero == 1)

then PCSrc = 2 (Branch Target)

else PCSrc = 0 (Next PC)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Next . . .

❖ Designing a Processor: Step-by-Step

❖ Datapath Components and Clocking

❖ Assembling an Adequate Datapath

❖ Controlling the Execution of Instructions

❖ Main, ALU, and PC Control

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Main, ALU, and PC Control

Main Control Input

6-bit opcode field

Main Control Output

Main control signals

Datapath
32

Address

Instruction

Instruction

Memory

ALU Control Input

 6-bit opcode field

 6-bit function field

ALU Control Output

 ALUOp signal for ALU

ALU

Control

Op6

R
e
g
D

s
t

R
e
g
W

r

E
x
tO

p

A
L

U
S

rc

M
e

m
R

d

M
e

m
W

r

W
B

d
a
ta

Main

Control

P
C

0

1

2

PC

Control

PC Control Input

 6-bit opcode

 ALU zero flag

PC Control Output

 PCSrc signal

Op6

ALUOp
funct6

Zero

PCSrc

Zero

A
L
U

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Single-Cycle Datapath + Control

Main

Control

Op

Branch Target Address

A
L
UAddress

Instruction

Instruction

Memory

Rs

Rd

Ext

Rt

Jump Target = PC[31:28] ‖ Imm26

ALU result

clk

P
C

0
0

Data

Memory

Address

Data_in

Data_out

Registers

RA

RB

BusA

BusB

RW
BusW

+1

1

0

Imm16

Next PC Address

0

1

1

0

+

0

1

2

ExtOp

RegDst RegWr
WBdataMemRd

MemWr

ALUSrcExtOp

Zero

ALU

Ctrl

ALUop
func

PC

Ctrl

PCSrc

Zero

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Signal Effect when ‘0’ Effect when ‘1’

RegDst Destination register = Rt Destination register = Rd

RegWr No register is written
Destination register (Rt or Rd) is

written with the data on BusW

ExtOp 16-bit immediate is zero-extended 16-bit immediate is sign-extended

ALUSrc
Second ALU operand is the value of

register Rt that appears on BusB

Second ALU operand is the value of

the extended 16-bit immediate

MemRd Data memory is NOT read
Data memory is read

Data_out ← Memory[address]

MemWr Data Memory is NOT written
Data memory is written

Memory[address] ← Data_in

WBdata BusW = ALU result BusW = Data_out from Memory

Main Control Signals

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Main Control Truth Table

Op RegDst RegWr ExtOp ALUSrc MemRd MemWr WBdata

R-type 1 = Rd 1 X 0 = BusB 0 0 0 = ALU

ADDI 0 = Rt 1 1 = sign 1 = Imm 0 0 0 = ALU

SLTI 0 = Rt 1 1 = sign 1 = Imm 0 0 0 = ALU

ANDI 0 = Rt 1 0 = zero 1 = Imm 0 0 0 = ALU

ORI 0 = Rt 1 0 = zero 1 = Imm 0 0 0 = ALU

XORI 0 = Rt 1 0 = zero 1 = Imm 0 0 0 = ALU

LW 0 = Rt 1 1 = sign 1 = Imm 1 0 1 = Mem

SW X 0 1 = sign 1 = Imm 0 1 X

BEQ X 0 1 = sign 0 = BusB 0 0 X

BNE X 0 1 = sign 0 = BusB 0 0 X

J X 0 X X 0 0 X

X is a don’t care (can be 0 or 1), used to minimize logic

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

RegDst = R-type

RegWrite = (SW + BEQ + BNE + J)

ExtOp = (ANDI + ORI + XORI)

ALUSrc = (R-type + BEQ + BNE)

MemRd = LW

MemWr = SW

WBdata = LW

Logic Equations for Main Control Signals

Op6

R
-t

y
p

e

A
D

D
I

S
L
T

I

A
N

D
I

O
R

I

X
O

R
I

L
W

S
W

B
E

Q

B
N

E

R
e

g
D

s
t

R
e

g
W

r

E
x
tO

p

A
L

U
S

rc

M
e

m
R

d

W
B

d
a

ta

M
e

m
W

r

Logic Equations

J

Decoder

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

ALU Control Truth Table

Op funct ALUOp 4-bit Coding

R-type AND AND 0001

R-type OR OR 0010

R-type XOR XOR 0011

R-type ADD ADD 0100

R-type SUB SUB 0101

R-type SLT SLT 0110

ADDI X ADD 0100

SLTI X SLT 0110

ANDI X AND 0001

ORI X OR 0010

XORI X XOR 0011

LW X ADD 0100

SW X ADD 0100

BEQ X SUB 0101

BNE X SUB 0101

J X X X

Other bit-coding can

be used. The goal is

to simplify the ALU

control.

The 4-bit Coding

defines the binary

ALU operations.

Logic equations are

derived for the 4-bit

coding.

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

PC Control Truth Table

Op Zero flag PCSrc

R-type X 0 = Increment PC

J X 1 = Jump Target Address

BEQ 0 0 = Increment PC

BEQ 1 2 = Branch Target Address

BNE 0 2 = Branch Target Address

BNE 1 0 = Increment PC

Other than Jump or Branch X 0 = Increment PC

The ALU Zero flag is used by BEQ and BNE instructions

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

PC Control Logic

❖ The PC control logic can be described as follows:

if (Op == J) PCSrc = 1;

else if ((Op == BEQ && Zero == 1) ||

(Op == BNE && Zero == 0)) PCSrc = 2;

else PCSrc = 0;

Branch = (BEQ . Zero) + (BNE . Zero)

Branch = 1, Jump = 0 ➔ PCSrc = 2

Branch = 0, Jump = 1 ➔ PCSrc = 1

Branch = 0, Jump = 0 ➔ PCSrc = 0

Branch

Op

BEQ BNE

Decoder

J

Jump

Zero

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Drawbacks of Single Cycle Processor

❖ Long cycle time

 All instructions take as much time as the slowest

❖ Alternative Solution: Multicycle implementation

 Break down instruction execution into multiple cycles

Instruction FetchStore ALU Memory Write

Instruction FetchALU Reg Read ALU

Instruction FetchBranch

Load Memory ReadInstruction Fetch

longest delay

ALUReg Read

Reg Read

Reg Read ALU

Instruction FetchJump Decode

Reg Write

Reg Write

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Simplified Single Cycle Datapath Timing
❖ Assuming the following datapath/control hardware components delays:

 Memory Units: 2 ns

 ALU and adders: 2 ns

 Register File: 1 ns

 Control Unit < 1 ns

❖ Ignoring Mux and clk-to-Q delays, critical path analysis:

Instruction

Memory
Register

Read

Main

ALU

Data

Memory

Register

Write

PC + 4

ALU

Branch Target

ALU

Control

Unit

Time

0 2ns 3ns 4ns 5ns 7ns 8ns

Critical Path
(Load)

Obtained from low-level target VLSI

implementation technology of

components

ns = nanosecond = 10-9 second

}

125 MHzUploaded By: Jibreel BornatSTUDENTS-HUB.com

Drawbacks of Single Cycle Processor
1. Long cycle time:

 All instructions must take as much time as the slowest
▪ Here, cycle time for load is longer than needed for all other instructions.

– Cycle time must be long enough for the load instruction:

PC’s Clock -to-Q + Instruction Memory Access Time +

Register File Access Time + ALU Delay (address calculation) +

Data Memory Access Time + Register File Setup Time + Clock Skew

 Real memory is not as well-behaved as idealized memory

▪ Cannot always complete data access in one (short) cycle.

2. Impossible to implement complex, variable-length instructions and
complex addressing modes in a single cycle.

 e.g indirect memory addressing.

3. High and duplicate hardware resource requirements

 Any hardware functional unit cannot be used more than once in a
single cycle (e.g. ALUs).

4. Does not allow overlap of instruction processing

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Alternative: Multicycle Implementation

❖ Break instruction execution into five steps

 Instruction fetch

 Instruction decode, register read, target address for jump/branch

 Execution, memory address calculation, or branch outcome

 Memory access or ALU instruction completion

 Load instruction completion

❖ One clock cycle per step (clock cycle is reduced)

 First 2 steps are the same for all instructions

Instruction # cycles Instruction # cycles

ALU & Store 4 Branch 3

Load 5 Jump 2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Reducing Cycle Time: Multi-Cycle Design
❖ Cut combinational dependency graph by inserting registers / latches.

❖ The same work is done in two or more shorter cycles, rather than one long cycle.

 Different CPI

 Share functional units

storage element

Acyclic

Combinational

Logic

storage element

storage element

Acyclic

Combinational

Logic (A)

storage element

storage element

Acyclic

Combinational

Logic (B)

=>

Place registers to:

• Get a balanced clock cycle length

• Save any results needed for the remaining cycles

One long

cycle

Two shorter

cycles

Cycle 1

Cycle 2

e.g CPI =1

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Partitioning the Single-Cycle Design

IF ID Ex Mem WB

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Where to add registers

IF ID Ex Mem WB

Place registers to:

• Get a balanced clock cycle length

• Save any results needed for the remaining cycles Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Control Specification For Multi-cycle CPU
Finite State Machine (FSM) - State Transition Diagram

IR  MEM[PC]

R-type

A  R[rs]

B  R[rt]

R  A fun B

R[rd]  R

PC  PC + 4

R  A or ZX

R[rt]  R

PC  PC + 4

ORi

R  A + SX

R[rt]  M

PC  PC + 4

M  MEM[R]

LW

R  A + SX

MEM[R]  B

PC  PC + 4

BEQ & Zero

BEQ & ~Zero

PC  PC + 4 PC  PC +

4+ SX || 00

SW

“instruction fetch”

“decode / operand fetch”

E
x

e
c

u
te

M
e

m
o

ry

W
ri

te
-b

a
c

k

To instruction fetch

To instruction fetchTo instruction fetch

13 states:

4 State Flip-Flops needed

(Start state)

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Multi-cycle Datapath Instruction CPI

❖ R-Type/Immediate: Require four cycles, CPI = 4

 IF, ID, EX, WB

❖ Loads: Require five cycles, CPI = 5

 IF, ID, EX, MEM, WB

❖ Stores: Require four cycles, CPI = 4

 IF, ID, EX, MEM

❖ Branches/Jumps: Require three cycles, CPI = 3

 IF, ID, EX

❖ Average or effective program CPI: 3  CPI  5
depending on program profile (instruction mix).

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Performance Example

❖ Assume the following operation times for components:

 Access time for Instruction and data memories: 200 ps

 Delay in ALU and adders: 180 ps

 Delay in Decode and Register file access (read or write): 150 ps

 Ignore the other delays in PC, mux, extender, and wires

❖Which of the following would be faster and by how much?

 Single-cycle implementation for all instructions

 Multicycle implementation optimized for every class of instructions

❖ Assume the following instruction mix:

 40% ALU, 20% Loads, 10% stores, 20% branches, & 10% jumps

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Solution

Instruction

Class

Instruction

Memory

Register

Read

ALU

Operation

Data

Memory

Register

Write
Total

ALU 200 150 180 150 680 ps

Load 200 150 180 200 150 880 ps

Store 200 150 180 200 730 ps

Branch 200 150 180 530 ps

Jump 200 150 350 ps

❖ For fixed single-cycle implementation:

 Clock cycle =

❖ For multi-cycle implementation:

 Clock cycle =

 Average CPI =

❖ Speedup =

0.4×4 + 0.2×5 + 0.1×4+ 0.2×3 + 0.1×2 = 3.8

max (200, 150, 180) = 200 ps (maximum delay at any step)

880 ps determined by longest delay (load instruction)

880 ps / (3.8 × 200 ps) = 880 / 760 = 1.16

Compare and update PC

Decode and update PC

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Summary
❖ 5 steps to design a processor

 Analyze instruction set => datapath requirements

 Select datapath components & establish clocking methodology

 Assemble datapath meeting the requirements

 Analyze implementation of each instruction to determine control signals

 Assemble the control logic

❖MIPS makes Control easier

 Instructions are of the same size

 Source registers always in the same place

 Immediate constants are of same size and same location

 Operations are always on registers/immediates

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

