E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Hash Tables

* Hashing: is a technique that determines element index using only element’s distinct search key.
* Hash function:

= Takes a search key and produces the integer index of an element in the hash table.

= Search key-maps, or hashes, to the index.

Example 1: Phone numbers (xxx-xxxx).

*Bad: first three digits. // identical for same area

-

*Better: last four digits. // distinct .
Example 2: Social Security numbers (ID number).

P e
h(555-1214) ====== E ._+Ilk 150 Main Street J

*Bad: first three digits. // identical for same period

*Better: last three digits. // distinct

Practical challenge: Need different approaches for each key type.

Simple algorithms for the hash operations that add and retrieve:

Algorithm add(key, value) Eliah ikl

Algorithm getValue(key)
I ndex h(key)
return hashTable[in
Typical Hashing
Typical hash functions perform two steps:
1. Convert search key to an integer called the hash code.
2. Compress hash code into the range of indices for hash table.

llgorithm getHashIndex(phoneNumber)

return |

* Typical hash functions are not perfect:
= Can allow more than one search key to map into a
single index. .
= Causes a collision in the hash table. ’
Example: Consider table (array) size = 101 , .
n getHashIndex(555-1264) =52 h(555-1264)-----:g o——h-—:__/‘_rl:?n_\dain Strcc[‘/‘-]
» getHashindex(555-8132) = 52 also!!! h(5558132) """

Collision

STUDENTS-HUB.com Uploaded*BY“Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

Hash Functions
* A good hash function should:
= Minimize collisions
= Be fast to compute
* To reduce the chance of a collision

* Choose a hash function that distributes entries uniformly throughout hash table.

Java’s hash code conventions (optional)
All Java classes inherit a method hashCode(), which returns a 32-bit int.
Default implementation: Memory address.
Customized implementations: Integer, Double, String, File, URL, Date, ...
User-defined types: Users are on their own.

Java library implementations:
Integer public final class Integer
L

private final int value;

public int hashCode()
{ return value; }

}

Boolean public final class Boolean
{

private final boolean value;

public int hashCode()

{
if (value) return 1231;

else return 1237;

}

Double public final class Double
{

private final double value;

public int hashCode()

{
long bits = doubleToLongBits(value);

return (int) (bits A (bits >>> 32));
1
} 1

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

110

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

String public final class String
{

private final char[] s;

public int hashCode()
{

int hash = 0; 'a' 97
for (int i = 0; i < lengthQ); i++) FE
hash = s[i] + (31 * hash); b o8
return hash; \ c! 99
} ith character of s

}

Horner's method to hash a String of length L:
h=s[0] <31 + ..+ sIL-3] - 312 + s[L-2] 31! + s[L—1] 31°

Example:

String s = "call”; c a 1 1
int code = s.hashCode(): <—— 3045982=99.31%+97-312+ 108-31'+ 108-31¢
=108 +31-(108 +31-(97 + 31 - (99))

Implementing hash code: user-defined types

Hash code design
"Standard" recipe for user-defined types:

*If field is a primitive type, use wrapper type hashCode().
*If field is null, return 0.
*If field is a reference type, use hashCode().

*If field is an array, apply to each entry. < or use Arrays.deepHashCode()

*Combine each significant field using the 31X + ¥ rule. (see example below)

Example:
public final class Transaction {
private final String who;
private final Date when;
private final double amount;

iubhc int hashCode() R T

for reference types,

int hash = 17;
use hashCode()

hash = 31*hash + who.hashCode():

hash = 31*hash + when.hashCode(); B o iR tpes
hash = 31*hash + ((Double) amount).hashCode(); use hashCode O :
; return hash; AR,
} typically a small prime
111

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Compressing a Hash Code
Hash code: An int between -231 and 231 - 1.
Hash function: returns an int between 0 and M-1 (for use as array index. Array size is M).
* Common way to scale an integer
» Use Java % operator = hash code % M
* Avoid M as power of 2 or 10
» Bestto use an odd number for M

« Prime numbers often give good distribution of hash values

private int hash(Key key)
{ return (key.hashCode() & Ox7fffffff) % M; }

Resolving Collisions
* Collisions: Two distinct keys hashing to same index.
* Two techniques:

= Change the structure of the hash table so that each array location can represent more than one
value. (Separate Chaining)
= Use another empty location in the hash table. (Open Addressing)

Separate Chaining
» Alter the structure of the hash table:
= Each location can represent more than one value.
* Such a location is called a bucket
* Decide how to represent a bucket: list, sorted list; array; linked nodes; vector; etc.

: Node
C g CH K %—*Cf 1)
‘ ()
Key Value
Hash table

Where to insert a new entry into a linked bucket?
(a) If unsorted (apply 90-10 rule): add new entry to the beginning of chain

(20)
;-—»(45 —(3 o)

Hash table

112

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
(b) If sorted:

When search keys are distinct, e
® add an entry in sorted order to 37
a sorted chain

o——)—‘zol |07‘—>(\14||D\—><45I !lj

Hash table

Time Complexity
Worst case: all keys mapped to the same location =» one long list of size N
Find(key) = O(n) ®
Best case: hashing uniformly distribute records over the hash table = each list long = N/M = a
(ais load factor)
Find(key) > O(1+a) ©

Design Consequences

*M too large =» too many empty chains.
*M too small = chains too long.

*Typical choice: M = N / 5 = constant-time ops.

Open Addressing
> Linear Probing ((38adll)

* When a new key collides, find next empty slot, and put it there.
* Hash: Map key to integer k between 0 and M-1.
* Insert: Put at table index k if free; if not try k+1, k+2, etc.
= [f reaches end of table, go to beginning of table (Circular hash table)
+ Hash function: h(k,i)=(h(k,0)+i)% m
* Array size M must be greater than number of key-value pairs N.
Example: Linear hash table demo: take last 2 digits of student’s ID and run a demo
0 1 2 3 4 5 6 7 8 9

st[]

Clustering problem: A contiguous block of items will be easily formed which in turn will affect
performance.
Knuth’s Parking Problem

= Model: Cars arrive at one-way street with M parking spaces. If space k is taken, try k+1, k+2, etc.
displacement = 3

e @ oo

]

113

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Parameters.
« M too large = too many empty array entries.

« Mtoo small = search time blows up.
probes for search hit is about 3/2
probes for search miss is about 5/2

» Typical choice: a = N/M ~ Y. «——
» Quadratic Probing
Linear probing looks at consecutive locations beginning at index k
Quadratic probing, considers the locations at indices k + j2

= Usestheindices k, k+1,k+4,k+9, ...

i,

k k+1 k+2?2 k + 32 k + 42

e Hash function: h(k,i)=(h(k,0) +i*) % m

e Forlinear probing it is a bad idea to let the hash table get nearly full, because performance
degrades.

e For quadratic probing, the situation is even worse: There is no guarantee of finding an empty cell
once the table gets more than half full, or even before the table gets half full if the table size is not
prime.

e Standard deletion cannot be performed in a probing hash table, because the cell might have
caused a collision to go past it. (instead soft deletion is used)

Double Hashing

* Linear probing and quadratic probing add increments to k to define a probe sequence
= Both are independent of the search key

* Double hashing uses a second hash function to compute these increments
= This is a key-dependent method.
* The 2" hash function must never evaluate to zero.

h(k,i) = (h,(k) +ihyk)) % m
| J | J
L

| Two different hash functions

(a) (b) (c)
0 0 0
1 1 1
hy(16) ====>2 2 2
3 3 h,(16) + 2 hy(16) ====>3
4 4 4
5 5 5
6 y(16) + hy(16) aan> g 6

The 1%t three locations in a probe sequence generated by double hashing for the search key 16

114

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

Potential Problem with Open Addressing
* Note that each location is either occupied, empty (null), or available (removed)
= Frequent additions and removals can result in no locations that are null

* Thus searching a probe sequence will not work
* Consider separate chaining as a solution

Time Complexity
Worst case: O(n)

Average case:
1
Number of probes < — o =n/m

if,a<1 (i.e.n<m)

If the table is 50% full, « = 0.5

Number of probes < 2

If the table is 80% full, « = 0.8

Number of probes <5

a—>1 (near full space utilization), Performance ¥

Rehashing

e If the table gets too full, the running time for the operations will start taking too long and insertions

might fail for open addressing hashing with quadratic resolution.

e A solution, then, is to build another table that is about twice as big (with an associated new hash
function) and scan down the entire original hash table, computing the new hash value for each (non-

deleted) element and inserting it in the new table.
e This entire operation is called rehashing.

o This is obviously a very expensive operation; the running time is O(N), since there are N
elements to rehash and the table size is roughly 2N, but it is actually not all that bad, because it

happens very infrequently.

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

