E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

Linked List

Algorithm - abstract way to perform computation tasks
Data Structure - abstract way to organize information

—1—»| 12 —1 3| 3 —1—p| 75 ——» 18

Linked List: head

Node:

Data
Next > null

Node code:

public class Node<T> {
private T data;
private Node<T> next;

public Node(T data) { this.data = data; }

public void setData(T data) { this.data = data; }
public T getData() { return data; }

public Node<T> getNext() { return next; }
public void setNext(Node<T> next) { this.next = next; }

Linked List Code:

public class LinkedList<T> {
private Node<T> head;

}

Inserting a new node:
Inserting a Node into a Specified Position of a Linked List:
Three steps to insert a new node into a linked list
— Determine the point of insertion
— Create a new node and store the new data in it
— Connect the new node to the linked list by changing references

30

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Case 1: To insert a node at the beginning of a linked list: (curr == head)
newNode.next = head;
head = newNode;

head| t+———————————— > 3 > 6 —1—>» e —»| 100

curr
ﬁ prev

newNode

What’s the time complexity of inserting an item to the head? = 0(1)

Case 2: To insert a node between two nodes:
newNode.next = curr;
prev.next = newNode;

—» 20 '\— —————————— »>| 40 —1—>» «eee —» 100

prev [curr

newNode

Case 3: Inserting at the end of a linked list is a special case if curr is null:
newNode.next = curr;
prev.next = newNode;

Formerly null
Y/
-
#

=1 102

prev curr newlode

Determining curr and prev
Determining the point of insertion or deletion for a sorted linked list of objects

for(prev=null, curr=head ;
(curr !=null) && (newNode.data.compareTo(curr.data) > 0);

prev = curr, curr = curr.next) , //endfor
Time Complexity & O(n)
H.W. = implement insert into a sorted linked list
31

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah

Create a driver class to test linked list classes.
Override the toString methods first
Node toString:
@Override
public String toString() { return data.toString(); }

LinkedList toString:
@Override
public String toString() {
String res ="=>";
Node<T> curr = head;
while (curr != null) {
res+=curr+"=>";
curr = curr.next;

}

return res + “NULL”;

}

Length of Linked List?
Case 1: If it’s empty: head == null =» length=0
Case 2: If not: Make a pointer and move over all the nodes and maintain a counter
Length code:

public int length() {
int length = 0;
Node<T> curr = head;
while (curr != null) {
length++;
curr = curr.next;

}

return length;

Time Complexity & O(n)

Deleting Nodes:
Case 1: Deleting the head node:

-» 5 > 10 —1—>» oo —» 100

head

]

prev curr

Simply move the head to the head.next: head = head.next;
Now first Node has no reference to it =» Garbage

Time Complexity & O(1)

32

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
Delete at head code: // make sure linked list is not empty
public Node<T> deleteAtStart() {
Node<T> toDel =head;
head = head.next;
return toDel;

}

Case 2: Delete node N which curr references:

NodeN
|3_> s | L-»l & ol 10| et cone —] 100

head A next A
[H] []
prev curr

Set next in the node that precedes N to reference the node that follows N
prev.next = curr.next; // prev.next = prev.next.next;

Searching for an Item in a Linked List:
Search code:
public Node<T> find(T data) {
Node<T> curr = head;
while (curr 1= null) {
if (curr.getData() == data) // if (curr.getData().equals(data))
return curr;
curr = curr.next;

}

return null;

Time Complexity: linear growth =» O(n)

33

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021

Variations of the Linked List:
1- Tail References (Doubly Ended Linked List)
— Remembers where the end of the linked list is.
— Therefore, we can add and delete at both ends.
— To add a node to the end of a linked list

tail.next = new Node(request, null);

head

STUDENTS-HUB.com

Y
N
Y
I
L

\
[e)}
9

\
[o]

L

tail

Prepared by: Dr. Mamoun Nawahdah

public class DoubleEndedList<T> extends LinkedList<T> {
private Node<T> tail;
public Node<T> getTail() { return tail; }

public void addAtEnd(T data) {
Node<T> newNode = new Node<T>(data);
if (head == null) { // empty
head = newNode;
tail = newNode;

}
else {
tail.setNext(newNode);
tail = newNode;

}

Make sure to override addAtStart to set the tail pointer correctly:

@Override
public void addAtStart(T data) {
Node<T> newNode = new Node<T>(data);
if (head == null) { // empty
head = newNode;
tail = newNode;
}
else{
newNode.setNext(head);
head = newNode;

}

34

Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
2- Circular Linked List
— Last node references the first node
— Every node has a successor

® |head

Y
b .

L)

Advantages of Circular Linked Lists:

1) Any node can be a starting point. We can traverse the whole list by starting from any point. We
just need to stop when the first visited node is visited again.

2) Useful for implementation of queue. Unlike this implementation, we don’t need to maintain two
pointers for front and rear if we use circular linked list. We can maintain a pointer to the last
inserted node and front can always be obtained as next of last.

3) Circular lists are useful in applications to repeatedly go around the list. For example, when
multiple applications are running on a PC, it is common for the operating system to put the
running applications on a list and then to cycle through them, giving each of them a slice of
time to execute, and then making them wait while the CPU is given to another application. It is
convenient for the operating system to use a circular list so that when it reaches the end of the
list it can cycle around to the front of the list.

Y
te}

L

Y

3

[
Y

-3
e

3- Dummy Head Nodes
— Always present, even when the linked list is empty
— Insertion and deletion algorithms initialize prev to reference the dummy head node, rather

than null
B—b —— | ——» § — o — U4

head Dummy head node

Processing Linked Lists Recursively:
* Traversal
— Recursive strategy to display a list
Write the first node of the list
Traversal the list minus its first node
public static void traversList(Node curr) {
if(curr == null)
System.out.printIn("NULL");
else {
System.out.print("[" + curr + "]-->");
traversList(curr.next);

35

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

E Data Structure: Lectures Note 2020/2021 Prepared by: Dr. Mamoun Nawahdah
— Recursive strategies to display a list backward
» writelistBackward strategy
Write the last node of the list
Write the list minus its last node backward
public static void traversListBackward(Node curr) {
if(curr == null)
System.out.print("NULL");
else {
traversListBackward(curr.next);
System.out.print("<--[" + curr + "]");

}

}

How to reverse a linked list:

Iterative:
Logic for this would be:
o Have three references i.e. prevNode, currNode and nextNode.
e When currNode is starting node, then prevNode will be null.
e Assign currNode.next to prevNode to reverse the link.
e In each iteration move currNode and prevNode by 1 node.

public static Node reverselinkedList(Node currNode) {

Node prevNode=null; // For first node, prevNode will be null

Node nextNode;

while(currNode!=null) {
nextNode=currNode.next;
currNode.next=prevNode; // reversing the link
prevNode=currNode; // moving currNode and prevNode by 1 node
currNode=nextNode;

}

return prevNode;

}

Recursive:
Base case for this would be either node is null or node.next is null.

public static Node reverseLinkedList(Node node) {
if (node == null || node.next == null)
return node;

Node remaining = reverseLinkedList(node.next);
node.next.next = node;

node.next = null;

return remaining;

36

STUDENTS-HUB.com Uploaded By: Jibreel Bornat

