Computer Organization

Internal Memory

STUDENTS-HUB.com

Semiconductor Memory Types

Table 5.1Semiconductor Memory Types

Memory Type	Category	Erasure	Write Mechanism	Volatility
Random-access memory (RAM)	Read-write memory	Electrically, byte-level	Electrically	Volatile
Read-only memory (ROM)	Read-only memory	Not possible	Masks	
Programmable ROM (PROM)			Electrically	Nonvolatile
Erasable PROM (EPROM)	Read-mostly memory	UV light, chip-level		
Electrically Erasable PROM (EEPROM)		Electrically, byte-level		
Flash memory		Electrically, block-level		

STUDENTS-HUB.com

Semiconductor Memory

• RAM

- Misnamed as all semiconductor memory is random access
- -Read/Write
- -Volatile
- -Temporary storage
- -Static or dynamic

STUDENTS-HUB.com

Dynamic RAM

- Bits stored as charge in capacitors
- Charges leak
- Need refreshing even when powered
- Simpler construction
- Smaller per bit
- Less expensive
- Need refresh circuits
- Slower
- Main memory
- Essentially analogue

—Level of charge determines value STUDENTS-HUB.com

DRAM Operation

- Address line active when bit read or written
 Transistor switch closed (current flows)
- Write
 - Voltage to bit line
 - High for 1 low for 0
 - Then signal address line
 - Transfers charge to capacitor
- Read
 - Address line selected
 - transistor turns on
 - Charge from capacitor fed via bit line to sense amplifier
 - Compares with reference value to determine 0 or 1
 - Capacitor charge must be restored

Static RAM

- Bits stored as on/off switches
- No charges to leak
- No refreshing needed when powered
- More complex construction
- Larger per bit
- More expensive
- Does not need refresh circuits
- Faster
- Cache
- Digital

-Uses flip-flops STUDENTS-HUB.com

Static RAM Structure

STUDENTS-HUB.com

Static RAM Operation

- Transistor arrangement gives stable logic state
- State 1
 - $-C_1$ high, C_2 low
 - $-T_1 T_4$ off, $T_2 T_3$ on
- State 0
 - $-C_2$ high, C_1 low
 - $-T_2 T_3$ off, $T_1 T_4$ on
- Address line transistors $T_5 T_6$ is switch
- Write apply value to B & compliment to B
- Read value is on line B

- Both volatile
 - -Power needed to preserve data
- Dynamic cell
 - -Simpler to build, smaller
 - -More dense
 - Smaller cells \rightarrow more cells per unit area
 - –Less expensive
 - -Needs refresh
 - -Used in larger memory units (RAM)
- Static
 - -Faster
 - -Used in Cache

STUDENTS-HUB.com

Read Only Memory (ROM)

- Permanent storage
 - -Nonvolatile
- Applications
 - -Microprogramming (see later)
 - -Library subroutines
 - -Systems programs (BIOS)
 - —Function tables

Types of ROM

- Written during manufacture
 - -Very expensive for small runs
- Programmable (once)

-PROM

- -Needs special equipment to program
- Read "mostly"
 - -Erasable Programmable (EPROM)
 - Erased by UV
 - -Electrically Erasable (EEPROM)
 - Takes much longer to write than read
 - -Flash memory
 - Erase whole memory electrically

Organization in detail

- A 16Mbit chip can be organised as 1M of 16 bit words
- A 16Mbit chip can be organised as 2048 x 2048 x 4bit array
 - —Reduces number of address pins
 - Multiplex row address and column address
 - 11 pins to address (2¹¹=2048)
 - Adding one more pin doubles range of values so x4 capacity

Refreshing

- Refresh circuit included on chip
- Disable chip
- Count through rows
- Read & Write back
- Takes time
- Slows down apparent performance

Typical 16 Mb DRAM (4M x 4)

STUDENTS-HUB.com

Packaging

(b) 16 Mbit DRAM

4M x 4 Uploaded By: anonymous

(a) 8 Mbit EPROM

$1M \ x \ 8$ STUDENTS-HUB.com

256kByte Module Organisation

- •Word size= 8 bit
- •Memory organized as 8 chips
- •Each chip with 1 bit word
- To read word from the memory, take 1 bit from each chip
- •Size of each chip =

512 x 512 x 1 bit

- 18 address lines needed
- •Total size of memory =
 - 512 x 512 x 8 chips
 - $= 2^9 \times 2^9 \times 2^3 = 2^{21}$ bit

STUDE 12-18 byte or 256 kbyte

1MByte Module Organisation

STUDENTS-HUB.com

Error Correction

- Two types of errors Hard failure and soft error
- Hard Failure
 - -Permanent (physical) defect
- Soft Error
 - -Random, non-destructive
 - -No permanent damage to memory
- Detected using Hamming error correcting code

Error Correcting Code Function

STUDENTS-HUB.com

Advanced DRAM Organization

- Basic DRAM same since first RAM chips
- Enhanced DRAM

-Contains small SRAM as well

- -SRAM holds last line read (c.f. Cache!)
- Cache DRAM
 - –Larger SRAM component
 - —Use as cache or serial buffer
- SDRAM, RDRAM AND DDRAM

Synchronous DRAM (SDRAM)

- Access is synchronized with an external clock
- Address is presented to RAM
- RAM finds data (CPU waits in conventional DRAM)
- Since SDRAM moves data in time with system clock, CPU knows that data will be ready after a set number of clock cycle
- CPU does not have to wait, it can do something else
- DDR-SDRAM sends data twice per clock cycle (leading & trailing edge)

RAMBUS DRAM (RDRAM)

- Adopted by Intel for Pentium & Itanium
- Main competitor to SDRAM
- Vertical package all pins on one side
- Data exchange over 28 wires < cm long
- Bus addresses up to 320 RDRAM chips at 1.6Gbps
- Asynchronous block protocol
 - -480ns access time
 - -Then 1.6 Gbps

DDR SDRAM

- SDRAM can only send data once per clock
- Double-data-rate SDRAM can send data twice per clock cycle

-Rising edge and falling edge

Hamming Error Correction Example

suppose an 8-bit word stored in memory is 11000010. Using the Hamming Algorithm, determine What check bils would be stored in Memory with data word ?. step D: Determine the number of check bits needed. 2K-1 > M+K K= # of Ckeck bits M = length of word Letis k=3 23-1 7 8+3 24-1 > 8+4 / => 50 k=4. (minimum k). step 2 Code Word = M+k = 844 = 12 bite D3 D7 D6 D5 G8 D4 D3 D2 ded By: anonymous STUDENT\$-HUB.com

Hamming Error Correction Example

Hamming Error Correction Example

X suppose now that data bit 3 sustains an error and changed from 0 to 1 When check bits re- calculated, we have. $C_1 = O \oplus O \oplus O \oplus O \oplus O = O$ new check bits $C_2 = O \oplus | \oplus O \oplus O \oplus | = O$ $C_8 = O \oplus O \oplus I \oplus I = O$ I when the new check bits compared with stored (old) check bits, the syndrome word is formed: Ce Cy Cz C.) result is 0110 indicating that bit at position 6 (i.e. D3) is IN EVIOr.

STUDENTS-HUB.com