BIRZEIT UNIVERSITY

Abstract Classes
and Interfaces

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

https://students-hub.com

abstract Classes and Methods

» Abstract classes: some methods
are only declared, but no concrete
implementations are provided.

*** Those methods called abstract
methods and they need to be
implemented by the extending
classes.

STUiEE!EBcom

https://students-hub.com

abstract class Person {
protected String name;

public abstract String getDescription() ,

b \ PE:I%SDH \

Class Student extends Person {
private String major;

| Employee Student

public String getDescription() {
return name + “ a student major in “ + major;

}
}

Class Employee extends Person {
private float salary;

public String getDescription() {
return name + “ an employee with a salary of S “ + salary;

}
}

STUDE -HUB.com

https://students-hub.com

STU

abstract Classes and abstract Methods

The # sign indicates
protected modifier

Abstract methods
are italicized

GeometricObject

-color: String
-filled: boolean
-dateCreated: java.util.Date

#GeometricObject()

#GeometricObject(color: string,
filled: boolean)

+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+toString(): String

+getArea(): double
+getPerimeter(): double

Abstract class name is italicized

Methods getArea and getPerimeter are

F 7

overridden in Circle and Rectangle.
Superclass methods are generally omitted

Circle

Rectangle

in the UML diagram for subclasses.

-radius: double

-width: double

+Circle()
+Circle(radius: double)

+Circle(radius: double, color: string,

filled: boolean)
+getRadius(): double
+setRadius(radius:
+getDiameter(): double

-HUB.com

doubTe): void

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double,
color: string, filled: boolean)

+getWidth(): double
+setWidth(width: double): void
+getHeight(): double

+setHeight(height:

double): void

https://students-hub.com

abstract Method in abstract Class

¢ An abstract method cannot be contained in a
non-abstract class.

¢ If a subclass of an abstract superclass does not
implement all the abstract methods, the subclass
must be defined abstract.

** |n other words, in a nonabstract subclass
extended from an abstract class, all the abstract
methods must be implemented, even if they are not
used in the subclass.

5
STUDE -HUB.com

https://students-hub.com

Object Can't be Created from
abstract Class

s* An abstract class can't be instantiated
using the new operator, but you can still
define its constructors, which are invoked
in the constructors of its subclasses.

¢ For instance, the constructors of
GeometricObject are invoked in the Circle
class and the Rectangle class.

STUiEﬁ!EBcom

https://students-hub.com

Abstract Class without Abstract Method

¢ A class that contains abstract methods must be
abstract.

** However, it is possible to define an abstract class
that contains no abstract methods.

» In this case, you cannot create instances of
the class using the new operator.

» This class is used as a base class for defining

a hew subclass.

https://students-hub.com

Superclass of abstract Class
may be Concrete

“* A subclass can be abstract even if
its superclass is concrete.

*** For example, the Object class is
concrete, but its subclasses, such as
GeometricObject, may be abstract.

STUiEﬁ!EBcom

https://students-hub.com

Concrete Method Overridden
to be abstract

¢ A subclass can override a method from
its superclass to define it abstract.

** This is rare, but useful when the
implementation of the method in the
superclass becomes invalid in the subclass.
In this case, the subclass must be defined

abstract.

STUiEﬁ!EBcom

https://students-hub.com

abstract Class as Type

¢ You can’t create an instance from an
abstract class using the new operator, but an
abstract class can be used as a data type.

** Therefore, the following statement, which
creates an array whose elements are of
GeometricObject type, is correct:

GeometricObject[] geo = new GeometricObject[10];

% .
STUDE -HUB.com

https://students-hub.com

Case Study:

The Abstract Number Class

java.lang. Number

+byteValue(): byte
+shortValue(): short
+intValue(): int
+longVlaue(): long
+floatValue(): float
+doubleValue(): double

Double Float Long Integer Short Byte BigInteger BigDecimal
% 11
STU -HUB.com

https://students-hub.com

The Abstract Calendar Class and
Its GregorianCalendar subclass

java.util.Calendar
#Calendar() Constructs a default calendar.
+get(field: int): int Returns the value of the given calendar field.
+set(field: int, value: int): void Sets the given calendar to the specified value.
+set(year: int, month: int, Sets the calendar with the specified year, month, and date. The month
dayOfMonth: int): void parameter is 0-based; that is, 0 is for January.
+getActualMaximum(field: int): int Returns the maximum value that the specified calendar field could have.
+add(field: int, amount: int): void Adds or subtracts the specified amount of time to the given calendar field.
+getTime(): java.util.Date Returns a Date object representing this calendar’s time value (million
second offset from the UNIX epoch).
+setTime(date: java.util.Date): void Sets this calendar’s time with the given Date object.
java.util. GregorianCalendar
+GregorianCalendar() Constructs a GregorianCalendar for the current time.
+GregorianCalendar(year: int, Constructs a GregorianCalendar for the specified year, month, and
month: int, dayOfMonth: int) date.
+GregorianCalendar(year: int, Constructs a GregorianCalendar for the specified year, month, date,
month: int, dayOfMonth: int, hour, minute, and second. The month parameter is O-based, that
hour:int, minute: int, second: int) is, 0 1s for January.

— - 1z
STU!E!—ESBAcom

https://students-hub.com

GregorianCalendar subclass

** An instance of java.util.Date represents a specific
instant in time with millisecond precision.

s java.util.Calendar is an abstract base class for
extracting detailed information such as year, month,
date, hour, minute and second from a Date object.

¢ Subclasses of Calendar can implement specific calendar
systems such as Gregorian calendar, Lunar Calendar
and Jewish calendar.

s Currently, java.util.GregorianCalendar for the
Gregorian calendar is supported in the Java API.

https://students-hub.com

The GregorianCalendar Class

** You can use new GregorianCalendar() to
construct a default GregorianCalendar with
the current time

’0

« Use new GregorianCalendar(year, month,
date) to construct a GregorianCalendar
with the specified year, month, and date.

¢ The month parameter is 0-based, i.e., O is
for January.

https://students-hub.com

The get Method in Calendar Class

*** The get(int field) method defined in the Calendar class is useful to
extract the date and time information from a Calendar object. The
fields are defined as constants, as shown in the following.

STUiEE!EBAcom

Constant Description

YEAR The year of the calendar.

MONTH The month of the calendar, with O for January.

DATE The day of the calendar.

HOUR The hour of the calendar (12-hour notation).
HOUR_OF_DAY The hour of the calendar (24-hour notation).

MINUTE The minute of the calendar.

SECOND The second of the calendar.

DAY OF WEEK The day number within the week, with 1 for Sunday.
DAY_OF_MONTH Same as DATE.

DAY_OF_YEAR The day number in the year, with [for the first day of the year.

WEEK_OF_MONTH
WEEK_OF_YEAR
AM_PM

The week number within the month, with | for the first week.
The week number within the year, with 1 for the first week.
Indicator for AM or PM (0 for AM and | for PM). 15

https://students-hub.com

Interfaces

** An interface is a way to
describe what classes should
do, without specifying how
they should do it.

* It is not a class but a set o

requirements for classes that
want to conform to the

interface.

% ;
STU -HUB.com

https://students-hub.com

What is an interface?

¢ An interface is a class-like construct that
contains only constants and abstract methods.

*** In many ways, an interface is similar to an
abstract class, but the intent of an interface is to
specify common behavior for objects.

¢ For example, you can specify that the objects
are comparable, edible, cloneable using
appropriate interfaces.

'* 17
STUDE -HUB.com

https://students-hub.com

Define an interface

¢ To distinguish an interface from a class, Java uses
the following syntax to define an interface:

public interface InterfaceName {

// constant declarations;
// method signatures;

}

Example:
public interface Edible {

/** Describe how to eat */

public abstract String howToEat();

STUiEﬁ!EBcom

https://students-hub.com

Interface is a Special Class

*** An interface is treated like a special class in Java.

¢ Each interface is compiled into a separate
bytecode file, just like a regular class.

¢ Like an abstract class, you cannot create an
instance from an interface using the new operator,
but in most cases you can use an interface more or
less the same way you use an abstract class.

** For example, you can use an interface as a data
type for variable, as the result of casting, and so on.

% .
STUDE -HUB.com

https://students-hub.com

E Xam p I e cinterfaces o

+howToEat(): String +sound(): String

e 5

2 ' |

: '

: '

Fruit (‘hickcnl Notation: Tiger |
The interface name and the

method names are italicized.
The dashed lines and hollow

triangles are used to point to
Orange I Apple | bl
the interface.

¢ You can now use the Edible interface to specify
whether an object is edible.

¢ This is accomplished by letting the class implement
this interface using the implements keyword.

" For example, the classes Chicken and Fruit
implement the Edible interface.

STUDE -HUB.com

https://students-hub.com

Omitting Modifiers in Interfaces

** All data fields are public final static and all
methods are public abstract in an interface.

** For this reason, these modifiers can be omitted,
as shown below:

public interface T1 |

public interface T1 {
Equivalent int K = 1;

public static final int K = 1;

public abstract void p(); void p() s
}

}

** A constant defined in an interface can be
accessed using syntax:

% InterfaceName.CONSTANT_NAME

https://students-hub.com

Example: The Comparable Interface

// This interface is defined in
// java.lang package
package java.lang;

public interface Comparable<E> {
public int compareTo(E o);

STUiEﬁ!EBcom

https://students-hub.com

Integer and Biglinteger Classes

STUDENTS-

B.col

public class Integer extends Number
implements Comparable<Integer> |

@override
public int compareTo (Integer o) {

}

public class BigInteger extends Number
implements Comparable<BigInteger> |

@override
public int compareTo(BigInteger o) {

}

23

https://students-hub.com

String and Date Classes

STUDENTS-

B.col

public class String extends CObject
implements Comparable<String> {

@override
public int compareTo(String o) {

}

public class Date extends Object
implements Comparable<Date> |

@0verride
public int compareTo (Date o) {

}

24

https://students-hub.com

Examples

Integer il = new Integer(3), i2 =new Integer(3);

System.out.printin(il.compareTo(i2));

System.out.printin("ABC".compareTo("ABE"));

Date datel = new Date(2013, 1, 1);

Date date2 = new Date(2012, 1, 1);
System.out.printin(datel.compareTo(date2));

STUiEﬁ!EBcom

https://students-hub.com

instanceof

** Let N be an Integer object, S be a String object,
and d be a Date object.

»» All the following expressions are true:

n instanceof Integer
n instancecf Chject
n instanceof Comparable

s instanceof String
5 instanceof hject
5 instanceof Comparable

d instancecf java.util.Date
d instancecf Chject
d instancecof Comparable

https://students-hub.com

The toString, equals, and
hashCode Methods

** Each wrapper class overrides the toString,
equals, and hashCode methods defined in
the Object class.

¢ Since all the numeric wrapper classes and
the Character class implement the
Comparable interface, the compareTo
method is implemented in these classes.

https://students-hub.com

Generic SOrt Method

java.util.Arrays.sort(array)

< This method requires that the
elements in an array are

instances of Comparable<E>.

% 28
STUDE -HUB.com

https://students-hub.com

Extending Interfaces

*** Interfaces support multiple inheritance:
an interface can extend more than one
interface.

»* Superinterfaces and subinterfaces.

** Exam

pub

ole:

ic interface SerializableRunnable extends

java.io.Serializable , Runnable {

STUiEﬁ!EBcom

https://students-hub.com

Extending Interfaces — Constants

»* If a superinterface and a subinterface
contain two constants with the same
name, then the one belonging to the
superinterface is hidden:

interface X {

int val = 1;
}
interface Y extends X {
int val = 2;

int sum = val + X.val;

https://students-hub.com

Extending Interfaces — Methods

» If a declared method in a subinterface
has the same signature as an inherited

method @NA the same return type, then

the new declaration overrides the
inherited method in its superinterface.

* If the only difference is in the return type,
then there will be a compile-time error.

STUiEﬁ!EBcom

https://students-hub.com

The Cloneable Interface

** A class that implements the Cloneable interface is
marked cloneable, and its objects can be cloned using the
clone() method defined in the Object class.

» clone method returns a new object whose initial state is
a copy of the current state of the object on which clone
was invoked.

¢ Subsequent changes to the new clone object should
not affect the state of the original object.

package java.lang;

public interface Cloneable {

STUiEﬁ!EBcom

https://students-hub.com

Examples

*** Many classes (e.g., Date and Calendar)
implement Cloneable. Thus, the instances of these
classes can be cloned. For example:

Calendar calendar = new GregorianCalendar(2003, 2, 1);

Calendar calendarCopy = (Calendar)calendar.clone();
System.out.printin("calendar == calendarCopy is " +

(calendar == calendarCopy));
System.out.printin("calendar.equals(calendarCopy) is " +

calendar.equals(calendarCopy));

calendar == calendarCopy is false
% calendar.equals(calendarCopy) is true

https://students-hub.com

Implementing Cloneable Interface

* To define a custom class that implements

the Cloneable interface, the class must

override the clone() method in the Object
class.

** The following code defines a class named
House that implements Cloneable and

Comparable. ‘

https://students-hub.com

public class House implements Cloneable, Comparable<House> {
private int id;

private double area;

private java.util.Date whenBuilt;

public House(int id, double area) {
this.id = id;
this.area = area;
whenBuilt = new java.util.Date();

}

public int getld() { returnid; }
public double getArea() { returnarea; }

public java.util.Date getWhenBuilt() { return whenBuilt; }

STUiEﬁ!EBcom :

https://students-hub.com

@Override // Override the clone method defined in the Object class

public Object clone() {
return super.clone();

}

@Override // Implement the compareTo method defined in Comparable

public int compareTo(House o) {
if (area > o.area)
return 1;
else if (area < o.area)
return -1;

else
return O;

STUDE -HUB.com

https://students-hub.com

Shallow vs. Deep Copy

House housel = new House(1, 1750.50);

House house2 = (House)housel.clone();

housel: House Memory
=) > l
area = 1750.50 =—p> 1750.50
Sha I lOW whenBuilt » reference > whenBuilt: Date

date object

housel.clone()

COpy house2 = l contents

house2: House Memory

id =1 = |

area = 1750.50 === 1750.50

% whenBuilt » reference 37
STU -HUB.com

https://students-hub.com

Shallow vs. Deep Copy

housel: House | Memory
id = 1 > 1
area = 1/50.50 = 1750.50
whenBuilt > reference > whenBuilt: Date
- date object
Deep 90252 Cioneo |
Copy house2: House | Memory
id = 1 > I
whenBuilt: Date

area = 1750.50 =——>» 1750.50

‘ date object
whenBui |t ==—————— eference = contents

38

https://students-hub.com

Interfaces vs. Abstract Classes

*** In an interface, the data must be constants; an
abstract class can have all types of data.

¢ Each method in an interface has only a signature

without implementation; an abstract class can have
concrete methods.

Variables Constructors Methods
Constructors are invoked by
Abstract . subclasses through constructor .
No restrictions . No restrictions.
class chaining. An abstract class cannot be

instantiated usingthe new operator.

Allvariables No constructors. All methods must
Interface | mustbe public | Aninterface cannot be instantiated be public abstract
static final using the new operator. instance methods

39
STUDE -HUB.com

https://students-hub.com

Interfaces vs. Abstract Classes cont.

s* All classes share a single root, the Object class, but
there is no single root for interfaces.

¢ Like a class, an interface also defines a type. A variable
of an interface type can reference any instance of the class
that implements the interface.

¢ If a class extends an interface, this interface plays the
same role as a superclass.

¢ You can use an interface as a data type and cast a
variable of an interface type to its subclass, and vice versa.

% 40
STUDE -HUB.com

https://students-hub.com

instanceof
Interfacel_2 |4-- Interface2_2 |4' """""""" '

Interfacel_1 |4-----=- ------ Interfacel |4- ------------------ Interface2_1 |4-----------------i
1

4

Object M Classl |4 Class2

** Suppose that € is an instance of Class2.

¢ Cis also an instance of Object, Class1, Interfacel,
Interfacel_1, Interfacel_ 2, Interface2_1, and Interface2_2.

41

https://students-hub.com

Caution: conflict interfaces

¢ In rare occasions, a class may
implement two interfaces with
conflict information (e.g., two same
constants with different values or two
methods with same signature but
different return type). This type of
errors will be detected by the
compiler.

https://students-hub.com

Whether to use an interface or a class?

** Abstract classes and interfaces can both be
used to model common features.

** How do you decide whether to use an interface
or a class?

** In general, a strong is-a relationship that clearly
describes a parent-child relationship should be
modeled using classes.

¢ For example, a staff member is a person.

https://students-hub.com

Whether to use an interface or a class?

4

A weak is-a relationship, also known as an is-kind-of
relationship, indicates that an object possesses a certain
property.

A weak is-a relationship can be modeled using interfaces.

For example, all strings are comparable, so the String class
implements the Comparable interface.

You can also use interfaces to circumvent single
inheritance restriction if multiple inheritance is desired.

In the case of multiple inheritance, you have to design one
as a superclass, and others as interface.

https://students-hub.com

