
Exception Handling
 and
Text IO

STUDENTS-HUB.com

https://students-hub.com

2

Runtime Error?

STUDENTS-HUB.com

https://students-hub.com

3

Fix it Using an if Statement

STUDENTS-HUB.com

https://students-hub.com

Suppose there is another method that can
throw the exception

STUDENTS-HUB.com

https://students-hub.com

Better handling
using exceptions

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

https://students-hub.com

Handling an exception and
continuing program execution

STUDENTS-HUB.com

https://students-hub.com

8

Exception Handling

 Exception handling technique enables a

method to throw an exception to its caller.

 Without this capability, a method must
handle the exception or terminate the
program.

STUDENTS-HUB.com

https://students-hub.com

9

Exception Types

STUDENTS-HUB.com

https://students-hub.com

10

System Errors

System errors are thrown by JVM and represented in the
Error class. The Error class describes internal system errors.

STUDENTS-HUB.com

https://students-hub.com

11

Exceptions

 Exception describes errors caused by your program and
external circumstances.

 These errors can be caught and handled by your program.
STUDENTS-HUB.com

https://students-hub.com

12

Runtime Exceptions

 RuntimeException is caused by programming errors,
such as bad casting, accessing an out-of-bounds array, and
numeric errors.

STUDENTS-HUB.com

https://students-hub.com

13

Checked Exceptions vs.
Unchecked Exceptions

 RuntimeException, Error and their

subclasses are known as unchecked
exceptions.

 All other exceptions are known as checked
exceptions, meaning that the compiler forces
the programmer to check and deal with the
exceptions.

STUDENTS-HUB.com

https://students-hub.com

14

Unchecked Exceptions
 In most cases, unchecked exceptions reflect programming
logic errors that are not recoverable.

 For example:

 a NullPointerException is thrown if you access an
object through a reference variable before an object is
assigned to it.

 an IndexOutOfBoundsException is thrown if you access
an element in an array outside the bounds of the array.

 These are the logic errors that should be corrected in the
program.

STUDENTS-HUB.com

https://students-hub.com

15

Declaring, Throwing, and
Catching Exceptions

STUDENTS-HUB.com

https://students-hub.com

16

Declaring Exceptions

 Every method must state the types of
checked exceptions it might throw.

 This is known as declaring exceptions.

public void x() throws IOException

public void y() throws IOException, OtherException

STUDENTS-HUB.com

https://students-hub.com

17

Throwing Exceptions
 When the program detects an error, the
program can create an instance of an appropriate
exception type and throw it.

 This is known as throwing an exception.

throw new TheException();

TheException ex = new TheException();
throw ex;

STUDENTS-HUB.com

https://students-hub.com

18

Throwing Exceptions Example

public void setRadius(double newRadius)
 throws IllegalArgumentException {
 if (newRadius >= 0)
 radius = newRadius;
 else
 throw new IllegalArgumentException(
 "Radius cannot be negative");
 }

STUDENTS-HUB.com

https://students-hub.com

19

Catching Exceptions
try {
 statements; // Statements that may throw exceptions

}
catch (Exception1 exVar1) {
 handler for exception1;
}
catch (Exception2 exVar2) {
 handler for exception2;
}
...
catch (ExceptionN exVar3) {
 handler for exceptionN;
}

STUDENTS-HUB.com

https://students-hub.com

20

Catch or Declare Checked Exceptions

 Java forces you to deal with checked exceptions.

 You must invoke it in a try-catch block or declare to
throw the exception in the calling method.

 For example, suppose that method p1 invokes method
p2 and p2 may throw a checked exception (e.g.,
IOException), you have to write the code as follow:

STUDENTS-HUB.com

https://students-hub.com

Important Example

STUDENTS-HUB.com

https://students-hub.com

throws IllegalArgumentException

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

https://students-hub.com

STUDENTS-HUB.com

https://students-hub.com

25

Rethrowing Exceptions

try {
 statements;
}
catch(TheException ex) {
 perform operations before exits;

 throw ex;
}

STUDENTS-HUB.com

https://students-hub.com

26

The finally Clause

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

STUDENTS-HUB.com

https://students-hub.com

27

Trace a Program Execution
try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Suppose no
exceptions in

the statements

STUDENTS-HUB.com

https://students-hub.com

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

28

Trace a Program Execution

The final block
is always
executed

STUDENTS-HUB.com

https://students-hub.com

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

29

Trace a Program Execution

Next statement
in the method

is executed

STUDENTS-HUB.com

https://students-hub.com

30

Trace a Program Execution
try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Suppose an
exception of

type Exception1
is thrown in
statement2

STUDENTS-HUB.com

https://students-hub.com

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

31

Trace a Program Execution

The exception is
handled.

STUDENTS-HUB.com

https://students-hub.com

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

32

Trace a Program Execution

The final block
is always
executed.

STUDENTS-HUB.com

https://students-hub.com

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

33

Trace a Program Execution

The next
statement in the
method is now

executed.

STUDENTS-HUB.com

https://students-hub.com

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

34

Trace a Program Execution

statement2
throws an

exception of
type Exception2.

STUDENTS-HUB.com

https://students-hub.com

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

35

Trace a Program Execution

Handling
exception

STUDENTS-HUB.com

https://students-hub.com

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

36

Trace a Program Execution

Execute the
final block

STUDENTS-HUB.com

https://students-hub.com

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

37

Trace a Program Execution

Rethrow the
exception and

control is
transferred to the

caller

STUDENTS-HUB.com

https://students-hub.com

38

Cautions When Using Exceptions

 Exception handling separates error-handling
code from normal programming tasks, thus

making programs easier to read and to modify.

 Be aware, however, that exception handling

usually requires more time and resources
because it requires instantiating a new
exception object, rolling back the call stack, and
propagating the errors to the calling methods.

STUDENTS-HUB.com

https://students-hub.com

39

When to Throw Exceptions

 An exception occurs in a method.

 If you want the exception to be processed
by its caller, you should create an
exception object and throw it.

 If you can handle the exception in the
method where it occurs, there is no need
to throw it.

STUDENTS-HUB.com

https://students-hub.com

40

When to Use Exceptions

 You should use it to deal with unexpected
error conditions.

 Do not use it to deal with simple, expected
situations. For example, the following code:

try {

 System.out.println(refVar.toString());

}

catch (NullPointerException ex) {

 System.out.println("refVar is null");

}

STUDENTS-HUB.com

https://students-hub.com

41

When to Use Exceptions

 is better to be replaced by:

if (refVar != null)

 System.out.println(refVar.toString());

else

 System.out.println("refVar is null");

STUDENTS-HUB.com

https://students-hub.com

42

Defining Custom Exception Classes

Use the exception classes in the API
whenever possible.

Define custom exception classes if the
predefined classes are not sufficient.

Define custom exception classes by
extending Exception or a subclass of
Exception.

STUDENTS-HUB.com

https://students-hub.com

43

Custom Exception Class Example

STUDENTS-HUB.com

https://students-hub.com

44

The File Class

 The File class is intended to provide
an abstraction that deals with most of
the machine-dependent complexities
of files and path names in a machine-
independent fashion.

 The filename is a string.

 The File class is a wrapper class for
the file name and its directory path.

STUDENTS-HUB.com

https://students-hub.com

45

File class

STUDENTS-HUB.com

https://students-hub.com

46

File class

STUDENTS-HUB.com

https://students-hub.com

47

Text I/O
 A File object encapsulates the properties of a file or a

path, but does not contain the methods for

reading/writing data from/to a file.

 In order to perform I/O, you need to create objects

using appropriate Java I/O classes.

 The objects contain the methods for reading/writing

data from/to a file.

 This section introduces how to read/write strings and

numeric values from/to a text file using the Scanner

and PrintWriter classes.

STUDENTS-HUB.com

https://students-hub.com

48

PrintWriter class

STUDENTS-HUB.com

https://students-hub.com

49

Scanner class

STUDENTS-HUB.com

https://students-hub.com

Read / Write from/to File

 File f = new File("C:\\Users\\Ahmad\\Desktop\\h.txt");

 Scanner sc = new Scanner(f);

 while (sc.hasNextLine()) {

 System.out.println(sc.nextLine());

 }

PrintWriter pw = new
PrintWriter("C:\\Users\\Ahmad\\Desktop\\h.txt");

pw.println("Welcome");

pw.close();

STUDENTS-HUB.com

https://students-hub.com

51

Problem: Replacing Text

 Write a class named ReplaceText that
replaces a string in a text file with a
new string. The filename and strings
are passed as command-line
arguments as follows:

 java ReplaceText sourceFile
targetFile oldString newString

STUDENTS-HUB.com

https://students-hub.com

52

Reading Data from the Web
Just like you can read data from a file on your
computer, you can read data from a file on
the Web.

STUDENTS-HUB.com

https://students-hub.com

53

Reading Data from the Web
URL url = new

URL("www.google.com/index.html");

 After a URL object is created, you can use
the openStream() method defined in the
URL class to open an input stream and use
this stream to create a Scanner object as
follows:

Scanner input = new
Scanner(url.openStream());

STUDENTS-HUB.com

https://students-hub.com

Read webpage
import java.util.Scanner;

public class ReadFileFromURL {

 public static void main(String[] args) {

 System.out.print("Enter a URL: ");

 String URLString = new Scanner(System.in).next();

 try {

 java.net.URL url = new java.net.URL(URLString);

 int count = 0;

 Scanner input = new Scanner(url.openStream());

 while (input.hasNext()) {

 String line = input.nextLine();

 count += line.length();

 }

 System.out.println("The file size is " + count + " characters");

 }

 catch (java.net.MalformedURLException ex) { System.out.println("Invalid URL"); }

 catch (java.io.IOException ex) { System.out.println("IO Errors"); }

 }

}

STUDENTS-HUB.com

https://students-hub.com

55

Case Study: Web Crawler
This case study develops a program that travels the
Web by following hyperlinks.

STUDENTS-HUB.com

https://students-hub.com

56

Case Study: Web Crawler
 The program follows the URLs to traverse the

Web.

 To avoid that each URL is traversed only once,
the program maintains two lists of URLs.

 One list stores the URLs pending for traversing and
the other stores the URLs that have already been
traversed.

 The algorithm for this program can be
described as follows:

STUDENTS-HUB.com

https://students-hub.com

57

Case Study: Web Crawler
Add the starting URL to a list named listOfPendingURLs;

while listOfPendingURLs is not empty {

 Remove a URL from listOfPendingURLs;

 if this URL is not in listOfTraversedURLs {

 Add it to listOfTraversedURLs;

 Display this URL;

 Exit the while loop when the size of S is equal to 100.

 Read the page from this URL and for each URL contained in the page {

 Add it to listOfPendingURLs if it is not is listOfTraversedURLs;

 }

 }

 }

STUDENTS-HUB.com

https://students-hub.com

Web Crawler program
import java.util.Scanner; import java.util.ArrayList; public class WebCrawler { public static
void main(String[] args) { Scanner input = new Scanner(System.in);
System.out.print("Enter a URL: "); String url = input.nextLine(); crawler(url); // Traverse
the Web from the a starting url } public static void crawler(String startingURL) {
ArrayList<String> listOfPendingURLs = new ArrayList<>(); ArrayList<String>
listOfTraversedURLs = new ArrayList<>(); listOfPendingURLs.add(startingURL); while
(!listOfPendingURLs.isEmpty() && listOfTraversedURLs.size() <= 100) { String urlString =
listOfPendingURLs.remove(0); listOfTraversedURLs.add(urlString);
System.out.println("Crawl " + urlString); for (String s: getSubURLs(urlString)) { if
(!listOfTraversedURLs.contains(s) && !listOfPendingURLs.contains(s))
listOfPendingURLs.add(s); } } } public static ArrayList<String> getSubURLs(String urlString)
{ ArrayList<String> list = new ArrayList<>(); try { java.net.URL url = new
java.net.URL(urlString); Scanner input = new Scanner(url.openStream()); int current = 0;
while (input.hasNext()) { String line = input.nextLine(); current = line.indexOf("http:",
current); while (current > 0) { int endIndex = line.indexOf("\"", current); if (endIndex > 0)
{ // Ensure that a correct URL is found list.add(line.substring(current, endIndex)); current
= line.indexOf("http:", endIndex); } else current = -1; } } } catch (Exception ex) {
System.out.println("Error: " + ex.getMessage()); } return list; } }

STUDENTS-HUB.com

https://students-hub.com

