CHAPTER

10

OBJECT-ORIENTED
THINKING

Objectives
B To apply class abstraction to develop software (§10.2).

B To explore the differences between the procedural paradigm and
object-oriented paradigm (§10.3).

B To discover the relationships between classes (§10.4).

B To design programs using the object-oriented paradigm (§§10.5 and
10.6).

B To create objects for primitive values using the wrapper classes (Byte,
Short, Integer, Long, Float, Double, Character, and Boolean)
(810.7).

B To simplify programming using automatic conversion between
primitive types and wrapper class types (§10.8).

B Tousethe BigInteger and BigDecimal classes for computing very
large numbers with arbitrary precisions (§10.9).

B To use the String class to process immutable strings (§10.10).

B To use the StringBuilder and StringBuffer classes to process
mutable strings (§10.11).

STUDENTS-HUB.com Uploaded By: 1210711 @student.birzeit.edu

368 Chapter 10 Object-Oriented Thinking

10.1 Introduction

The focus of this chapter is on class design and to explore the differences between

procedural programming and object-oriented programming.
Key
Point The preceding chapter introduced objects and classes. You learned how to define classes,

create objects, and use objects. This book’s approach is to teach problem solving and funda-
mental programming techniques before object-oriented programming. This chapter shows how
procedural and object-oriented programming differ. You will see the benefits of object-oriented
programming and learn to use it effectively.

Our focus here is on class design. We will use several examples to illustrate the advantages
of the object-oriented approach. The examples involve designing new classes and using them
in applications and introducing new classes in the Java API.

10.2 Class Abstraction and Encapsulation

Class abstraction is separation of class implementation from the use of a class. The
details of implementation are encapsulated and hidden from the user. This is known as

Key class encapsulation.

Point

In Chapter 6, you learned about method abstraction and used it in stepwise refinement. Java

class abstraction provides many levels of abstraction, and class abstraction separates class implementation
from how the class is used. The creator of a class describes the functions of the class and

lets the user know how the class can be used. The collection of public constructors, meth-

ods, and fields that are accessible from outside the class, together with the description of

class’s contract how these members are expected to behave, serves as the class’s contract. As shown in
Figure 10.1, the user of the class does not need to know how the class is implemented. The

details of implementation are encapsulated and hidden from the user. This is called class

class encapsulation encapsulation. For example, you can create a Circle object and find the area of the circle
without knowing how the area is computed. For this reason, a class is also known as an
abstract data type abstract data type (ADT).
Class implementation Cless Clamiimast

Clients use the
—~<—> class through the
contract of the class

is like a black box

hidden from the clients Class (signatures of public

constructors, methods,
and data fields)

Ficure 10.1 Class abstraction separates class implementation from the use of the class.

Class abstraction and encapsulation are two sides of the same coin. Many real-life examples
illustrate the concept of class abstraction. Consider, for instance, building a computer system.
Your personal computer has many components—a CPU, memory, disk, motherboard, fan,
and so on. Each component can be viewed as an object that has properties and methods. To
get the components to work together, you need to know only how each component is used and
how it interacts with the others. You don’t need to know how the components work internally.
The internal implementation is encapsulated and hidden from you. You can build a computer
without knowing how a component is implemented.

The computer-system analogy precisely mirrors the object-oriented approach. Each com-
ponent can be viewed as an object of the class for the component. For example, you might
have a class that models all kinds of fans for use in a computer, with properties such as fan
size and speed and methods such as start and stop. A specific fan is an instance of this class
with specific property values.

As another example, consider getting a loan. A specific loan can be viewed as an object of
a Loan class. The interest rate, loan amount, and loan period are its data properties and

STUDENTS-HUB.com Uploaded By: 1210711 @student.birzeit.edu

10.2 Class Abstraction and Encapsulation 369

computing the monthly and total payments are its methods. When you buy a car, a loan

object is created by instantiating the class with your loan interest rate, loan amount, and u
loan period. You can then use the methods to find the monthly payment and total payment

of your loan. As a user of the Loan class, you don’t need to know how these methods are
implemented.

Listing 2.9, ComputeLoan.java, presented a program for computing loan payments. That
program cannot be reused in other programs because the code for computing the payments is
in the main method. One way to fix this problem is to define static methods for computing the
monthly payment and the total payment. However, this solution has limitations. Suppose that
you wish to associate a date with the loan. There is no good way to tie a date with a loan without
using objects. The traditional procedural programming paradigm is action-driven, and data are
separated from actions. The object-oriented programming paradigm focuses on objects, and
actions are defined along with the data in objects. To tie a date with a loan, you can define a
loan class with a date along with the loan’s other properties as data fields. A loan object now
contains data and actions for manipulating and processing data, and the loan data and actions
are integrated in one object. Figure 10.2 shows the UML class diagram for the Loan class.

VideoNote
the Loan class

—annualInterestRate: double The annual interest rate of the loan (default: 2.5).
—-numberOfYears: int The number of years for the loan (default: 1).
—loanAmount: double The loan amount (default: 1000).
—-loanDate: java.util.Date The date this loan was created.
+Loan () Constructs a default Loan object.
+Loan (annualInterestRate: double, Constructs a loan with specified interest rate, years,
numberOfYears: int, loanAmount: and loan amount.
double)
+getAnnualInterestRate () : double Returns the annual interest rate of this loan.
+getNumberOfYears () : int Returns the number of years of this loan.
+getLoanAmount () : double Returns the amount of this loan.
+getLoanDate () : java.util.Date Returns the date of the creation of this loan.
+setAnnualInterestRate (Sets a new annual interest rate for this loan.
annualInterestRate: double): void
+setNumberOfYears (Sets a new number of years for this loan.
numberOfYears: int): void
+setLoanAmount (Sets a new amount for this loan.
loanAmount: double): void
+getMonthlyPayment () : double Returns the monthly payment for this loan.
+getTotalPayment () : double Returns the total payment for this loan.

FIGURE 10.2 The Loan class models the properties and behaviors of loans.

The UML diagram in Figure 10.2 serves as the contract for the Loan class. Throughout this
book, you will play the roles of both class user and class developer. Remember that a class user
can use the class without knowing how the class is implemented.

Assume the Loan class is available. The program in Listing 10.1 uses that class.

LisTING 10.1 TestLoanClass.java
import java.util.Scanner;

1
2
3 public class TestLoanClass {
4 /** Main method */

[¢)]

public static void main(String[] args)

{
STUDENTS-HUB.com Uploaded By: 1210711 @student.birzeit.edu

370 Chapter 10 Object-Oriented Thinking

6 /'l Create a Scanner

7 Scanner input = new Scanner(System.in);

8

9 /] Enter annual interest rate

10 System.out.print(

11 "Enter annual interest rate, for example, 8.25: ");

12 double annualInterestRate = input.nextDouble();

13

14 /| Enter number of years

15 System.out.print("Enter number of years as an integer: ");

16 int numberOfYears = input.nextInt();

17

18 /| Enter loan amount

19 System.out.print("Enter Toan amount, for example, 120000.95: ");

20 double ToanAmount = input.nextDouble();

21

22 /'l Create a Loan object

23 Loan loan =
create Toan object 24 new Loan(annuallnterestRate, numberOfYears, ToanAmount);

25

26 /| Display loan date, monthly payment, and total payment

27 System.out.printf(“The loan was created on %s\n" +

28 "The monthly payment is %.2f\nThe total payment is %.2f\n",
invoke instance method 29 loan.getLoanDate().toString(), Toan.getMonthlyPayment(),
invoke instance method 30 loan.getTotalPayment());

31 }

32}

E Enter annual interest rate, for example, 8.25: 2.5

Enter number of years as an integer: 5

Enter loan amount, for example, 120000.95: 1000
The Toan was created on Sat Jun 16 21:12:50 EDT 2012
The monthly payment is 17.75

The total payment is 1064.84

The main method reads the interest rate, the payment period (in years), and the loan amount;
creates a Loan object; then obtains the monthly payment (line 29) and the total payment (line
30) using the instance methods in the Loan class.

The Loan class can be implemented as in Listing 10.2.

LISTING 10.2 Loan.java

1 public class Loan {

2 private double annuallnterestRate;
3 private int numberOfYears;

4 private double loanAmount;

5 private java.util.Date loanDate;
6

7

8

/** Default constructor */
public Loan() {

9 this(2.5, 1, 1000);

10 }

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

no-arg constructor

10.2 Class Abstraction and Encapsulation 371

constructor

(1 -

12 /** Construct a loan with specified annual interest rate,
13 number of years, and loan amount

14 */

15 public Loan(double annualInterestRate, int numberOfYears,
16 double ToanAmount) {

17 this.annualInterestRate = annuallnterestRate;

18 this.numberOfYears = numberOfYears;

19 this.loanAmount = ToanAmount;

20 lToanDate = new java.util.Date();

21 }

22

23 /** Return annuallnterestRate */

24 public double getAnnualInterestRate() {

25 return annuallnterestRate;

26 }

27

28 /** Set a new annuallnterestRate */

29 public void setAnnuallnterestRate(double annualInterestRate) {
30 this.annualInterestRate = annuallnterestRate;

31 }

32

33 /** Return numberOfYears */

34 public int getNumberOfYears() {

35 return numberOfYears;

36 }

37

38 /** Set a new numberOfYears */

39 public void setNumberOfYears(int numberOfYears) ({

40 this.numberOfYears = numberOfYears;

41 }

42

43 /** Return ToanAmount */

44 public double getLoanAmount() {

45 return ToanAmount;

46 }

47

48 /** Set a new ToanAmount */

49 public void setLoanAmount (double ToanAmount) {

50 this.loanAmount = ToanAmount;

51 }

52

53 /** Find monthly payment */

54 public double getMonthlyPayment() ({

55 double monthlyInterestRate = annuallnterestRate / 1200;
56 double monthlyPayment = loanAmount * monthlyInterestRate /
57 (1 / Math.pow(1 + monthlylInterestRate, numberOfYears * 12)));
58 return monthlyPayment;

59 }

60

61 /** Find total payment */

62 public double getTotalPayment() {

63 double totalPayment = getMonthlyPayment()
64 return totalPayment;

65 }

66

67 /** Return loan date */

68 public java.util.Date getLoanDate() {

69 return ToanDate;

70 }

71}

STUDENTS-HUB.com

*

numberOfYears * 12;

Uploaded By: 1210711@student.birzeit.edu

372 Chapter 10 Object-Oriented Thinking

From a class developer’s perspective, a class is designed for use by many different customers.
In order to be useful in a wide range of applications, a class should provide a variety of ways
for customization through constructors, properties, and methods.

The Loan class contains two constructors, four getter methods, three setter methods,
and the methods for finding the monthly payment and the total payment. You can con-
struct a Loan object by using the no-arg constructor or the constructor with three parame-
ters: annual interest rate, number of years, and loan amount. When a loan object is created,
its date is stored in the ToanDate field. The getLoanDate method returns the date. The
methods—getAnnualInterest, getNumberOfYears, and getLoanAmount—return the
annual interest rate, payment years, and loan amount, respectively. All the data properties
and methods in this class are tied to a specific instance of the Loan class. Therefore, they
are instance variables and methods.

Use the UML diagram for the Loan class shown in Figure 10.2 to write a test program
that uses the Loan class even though you don’t know how the Loan class is imple-
mented. This has three benefits:

Q Important Pedagogical Tip

B It demonstrates that developing a class and using a class are two separate tasks.

W It enables you to skip the complex implementation of certain classes without inter-
rupting the sequence of this book.

B ltis easier to learn how to implement a class if you are familiar with it by using the class.

For all the class examples from now on, create an object from the class and try using its
methods before turning your attention to its implementation.

heck

j 10.2.1 If you redefine the Loan class in Listing 10.2 without setter methods, is the class
Point immutable?

0.3 Thinking in Objects

The procedural paradigm focuses on designing methods. The object-oriented
paradigm couples data and methods together into objects. Software design using the

Klfoyint object-oriented paradigm focuses on objects and operations on objects.

Chapters 1 through 8 introduced fundamental programming techniques for problem solv-
ing using loops, methods, and arrays. Knowing these techniques lays a solid foundation for
object-oriented programming. Classes provide more flexibility and modularity for building
reusable software. This section improves the solution for a problem introduced in Chapter 3
using the object-oriented approach. From these improvements, you will gain insight into the
differences between procedural and object-oriented programming, and see the benefits of
developing reusable code using objects and classes.

Listing 3.4, ComputeAndInterpretBMI.java, presented a program for computing the body mass
index (BMI). The code cannot be reused in other programs, because the code is in the main
method. To make it reusable, define a static method to compute body mass index as follows:

public static double getBMI(double weight, double height)

This method is useful for computing body mass index for a specified weight and height. How-

ever, it has limitations. Suppose you need to associate the weight and height with a person’s

name and birth date. You could declare separate variables to store these values, but these values
B would not be tightly coupled. The ideal way to couple them is to create an object that contains
VideoNote them all. Since these values are tied to individual objects, they should be stored in instance
The BMI class data fields. You can define a class named BMI as shown in Figure 10.3.

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

10.3 Thinking in Objects 373

The getter methods for these data fields
are provided in the class, but omitted in the

UML diagram for brevity.
—name: String The name of the person.
-age: int The age of the person.
-weight: double The weight of the person in pounds.
~height: double The height of the person in inches.
+BMI (name: String, age: int, weight: Creates a BMI object with the specified
double, height: double) name, age, weight, and height.
+BMI (name: String, weight: double, Creates a BMI object with the specified
height: double) name, weight, height, and a default age 20.
+getBMI () : double Returns the BMI.
+getStatus () : String Returns the BMT status (e.g., normal,
overweight, etc.).

FiGure 10.3 The BMI class encapsulates BMI information.

Assume the BMI class is available. Listing 10.3 gives a test program that uses this class.

LisTING 10.3 UseBMIClass.java

1 public class UseBMIClass {

2 public static void main(String[] args) {

3 BMI bmi1 = new BMI("Kim Yang", 18, 145, 70); create an object

4 System.out.printin("The BMI for " + bmi1.getName() + " is " invoke instance method
5 + bmi1.getBMI() + ™ " + bmi1.getStatus());

6

7 BMI bmi2 = new BMI("Susan King", 215, 70); create an object

8 System.out.println("The BMI for " + bmi2.getName() + " is " invoke instance method
9 + bmi2.getBMI() + " " + bmi2.getStatus());

10 }

11}

The BMI for Kim Yang is 20.81 Normal E

The BMI for Susan King is 30.85 Obese

Line 3 creates the object bmi1 for Kim Yang, and line 7 creates the object bmi2 for Susan
King. You can use the instance methods getName (), getBMI (), and getStatus () to return
the BMI information in a BMI object.

The BMI class can be implemented as in Listing 10.4.

LisTING 10.4 BMI.java

1 public class BMI {

2 private String name;

3 private int age;

4 private double weight; // in pounds

5 private double height; // 1in inches

6 public static final double KILOGRAMS_PER POUND = 0.45359237;
7 public static final double METERS_PER_INCH = 0.0254;

8

9 public BMI(String name, int age, double weight, double height) ({ constructor
this.name = name;

10
STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

374 Chapter 10 Object-Oriented Thinking

11 this.age = age;
12 this.weight = weight;
13 this.height = height;
14 }
15
constructor 16 public BMI(String name, double weight, double height) {
17 this(name, 20, weight, height);
18 }
19
getBMI 20 public double getBMI() ({
21 double bmi = weight * KILOGRAMS_PER_POUND /
22 ((height * METERS_PER _INCH) * (height * METERS_PER _INCH));
23 return Math.round(bmi * 100) / 100.0;
24 }
25
getStatus 26 public String getStatus() {
27 double bmi = getBMI();
28 if (bmi < 18.5)
29 return "Underweight";
30 else if (bmi < 25)
31 return "Normal";
32 else if (bmi < 30)
33 return "Overweight";
34 else
35 return "Obese";
36 }
37
38 public String getName() {
39 return name;
40 }
41
42 public int getAge() {
43 return age;
44 }
45
46 public double getWeight() {
47 return weight;
48 }
49
50 public double getHeight() {
51 return height;
52 }
53 }

The mathematical formula for computing the BMI using weight and height is given in
Section 3.8. The instance method getBMI () returns the BMI. Since the weight and height
are instance data fields in the object, the getBMI () method can use these properties to

compute the BMI for the object.
The instance method getStatus () returns a string that interprets the BMI. The interpre-

tation is also given in Section 3.8.
procedural vs. object-oriented This example demonstrates the advantages of the object-oriented paradigm over the proce-
paradigms dural paradigm. The procedural paradigm focuses on designing methods. The object-oriented
paradigm couples data and methods together into objects. Software design using the object-
oriented paradigm focuses on objects and operations on objects. The object-oriented approach
combines the power of the procedural paradigm with an added dimension that integrates data

with operations into objects.

In procedural programming, data and operations on the data are separate, and this meth-
odology requires passing data to methods. Object-oriented féOframmin laces data and

STUDENTS-HUB.com Uploaded By: 0711@student.birzeit.edu

10.4 Class Relationships 375

the operations that pertain to them in an object. This approach solves many of the problems
inherent in procedural programming. The object-oriented programming approach organizes
programs in a way that mirrors the real world, in which all objects are associated with both
attributes and activities. Using objects improves software reusability and makes programs
easier to develop and easier to maintain. Programming in Java involves thinking in terms of
objects; a Java program can be viewed as a collection of cooperating objects.

10.3.1 Ts the BMI class defined in Listing 10.4 immutable? ﬁeck
Point

10.4 Class Relationships

To design classes, you need to explore the relationships among classes. The

common relationships among classes are association, aggregation, composition, and

inheritance. Klfglint

This section explores association, aggregation, and composition. The inheritance relationship
will be introduced in Chapter 11.

10.4.1 Association

Association is a general binary relationship that describes an activity between two classes. association
For example, a student taking a course is an association between the Student class and the

Course class, and a faculty member teaching a course is an association between the Faculty

class and the Course class. These associations can be represented in UML graphical notation,

as shown in Figure 10.4.

Take p Teach 4

5. 0.. 1
Student X Course Faculty
- Teacher

FIGURE 10.4 This UML diagram shows that a student may take any number of courses, a
faculty member may teach at most three courses, a course may have from 5 to 60 students,
and a course is taught by only one faculty member.

An association is illustrated by a solid line between two classes with an optional label that
describes the relationship. In Figure 10.4, the labels are Take and Teach. Each relationship
may have an optional small black triangle that indicates the direction of the relationship.
In this figure, the P indicates that a student takes a course (as opposed to a course taking a
student).

Each class involved in the relationship may have a role name that describes the role it plays
in the relationship. In Figure 10.4, teacher is the role name for Faculty.

Each class involved in an association may specify a multiplicity, which is placed at the side multiplicity
of the class to specify how many of the class’s objects are involved in the relationship in UML.
A multiplicity could be a number or an interval that specifies how many of the class’s objects
are involved in the relationship. The character * means an unlimited number of objects, and
the interval m. . n indicates that the number of objects is between m and n, inclusively. In
Figure 10.4, each student may take any number of courses, and each course must have at least
5 and at most 60 students. Each course is taught by only one faculty member, and a faculty
member may teach from O to 3 courses per semester.

In Java code, you can implement associations by using data fields and methods. For exam-

ple, the relationships in Figure 10.4 may be implemented using the classes in Figure 10.5.

STUDENTS HUB.com Uploaded By: 1210711@student.birzeit.edu

376 Chapter 10 Object-Oriented Thinking

The relation “a student takes a course” is implemented using the addCourse method in the
Student class and the addStudent method in the Course class. The relation “a faculty
teaches a course” is implemented using the addCourse method in the Faculty class and
the setFaculty method in the Course class. The Student class may use a list to store the
courses that the student is taking, the Faculty class may use a list to store the courses that the
faculty is teaching, and the Course class may use a list to store students enrolled in the course
and a data field to store the instructor who teaches the course.

public class Student {
private Course[]
courselist;

public void addCourse(
Course c) { ... }

public class Course {
private Student[]
classList;
private Faculty faculty;

public void addStudent(

public class Faculty {
private Course[]
courselist;

public void addCourse(
Course c) { ... }

} Student s) { ... } }

public void setFaculty(
Faculty faculty) { ... }

FiGure 10.5 The association relations are implemented using data fields and methods in classes.

z Note

There are many possible ways to implement relationships. For example, the student and
faculty information in the Course class can be omitted, since they are already in the
Student and Faculty class. Likewise, if you don't need to know the courses a student
takes or a faculty member teaches, the data field courseList and the addCourse
method in Student or Faculty can be omitted.

many possible
implementations

10.4.2 Aggregation and Composition

Aggregation is a special form of association that represents an ownership relationship between
two objects. Aggregation models has-a relationships. The owner object is called an aggregating
object, and its class is called an aggregating class. The subject object is called an aggregated
object, and its class is called an aggregated class.

We refer aggregation between two objects as composition if the existence of the aggregated
object is dependent on the aggregating object. In other words, if a relationship is composition,
the aggregated object cannot exist on its own. For example, “a student has a name” is a composition
relationship between the Student class and the Name class because Name is dependent on
Student, whereas “a student has an address” is an aggregation relationship between the Student
class and the Address class because an address can exist by itself. Composition implies exclusive
ownership. One object owns another object. When the owner object is destroyed, the dependent
object is destroyed as well. In UML, a filled diamond is attached to an aggregating class (in this
case, Student) to denote the composition relationship with an aggregated class (Name), and an
empty diamond is attached to an aggregating class (Student) to denote the aggregation
relationship with an aggregated class (Address), as shown in Figure 10.6.

aggregation
aggregating object
aggregating class
aggregated object
aggregated class
composition

1 1 1.3 1
‘ Student O

Composition Aggregation

Name Address

FIGURE 10.6 Each student has a name and an address.

In Figure 10.6, each student has only one multiplicity—address—and each address can be
shared by up to 3 students. Each student has one name, and the name is unique for each student.

STUDENTS-HUB.com Uploaded By: 1210711 @student.birzeit.edu

10.4 Class Relationships 377

An aggregation relationship is usually represented as a data field in the aggregating
class. For example, the relationships in Figure 10.6 may be implemented using the classes
in Figure 10.7. The relation “a student has a name” and “a student has an address” are
implemented in the data field name and address in the Student class.

public class Name { public class Student { public class Address {
- private Name name;
} private Address address; }
}
Aggregated class Aggregating class Aggregated class

FIGURE 10.7 The composition relations are implemented using data fields in classes.

Aggregation may exist between objects of the same class. For example, a person may have a
supervisor. This is illustrated in Figure 10.8.

0 —
Person

1 Supervisor

FIGURE 10.8 A person may have a supervisor.
In the relationship “a person has a supervisor,” a supervisor can be represented as a data
field in the Person class, as follows:

public class Person {
// The type for the data is the class itself
private Person supervisor;

}

If a person can have several supervisors, as shown in Figure 10.9a, you may use an array to
store supervisors, as shown in Figure 10.9b.

1
Person 07 public class Person {

Supervisor private Person[] supervisors;
m
}

(a) (b)

FIGURE 10.9 A person can have several supervisors.

Important Note

Since aggregation and composition relationships are represented using classes in the
same way, we will not differentiate them and call both compositions for simplicity.

aggregation or composition

10.4.1 What are common relationships among classes? ﬁeck
10.4.2 What is association? What is aggregation? What is composition? Point
10.4.3 What is UML notation of aggregation and composition?

STUDENPE-H B Ggjeercesion and composition are el e 4 By ™ 1918711 @student.birzeit.edu

378 Chapter 10 Object-Oriented Thinking

10.5 Case Study: Designing the Course Class

This section designs a class for modeling courses.

Key This book’s philosophy is feaching by example and learning by doing. The book provides a
Point wide variety of examples to demonstrate object-oriented programming. This section and the
next offer additional examples on designing classes.
Suppose you need to process course information. Each course has a name and has students
enrolled. You should be able to add/drop a student to/from the course. You can use a class to
model the courses, as shown in Figure 10.10.

—courseName: String The name of the course.

-students: String[] An array to store the students for the course.
-numberOfStudents: int The number of students (default: 0).
+Course (courseName: String) Creates a course with the specified name.
+getCourseName () : String Returns the course name.

+addStudent (student: String): void Adds a new student to the course.
+dropStudent (student: String): void Drops a student from the course.
+getStudents () : Stringl] Returns the students for the course.
+getNumberOfStudents () : int Returns the number of students for the course.

FIGURE 10.10 The Course class models the courses.

A Course object can be created using the constructor Course (String name) by passing
a course name. You can add students to the course using the addStudent (String student)
method, drop a student from the course using the dropStudent (String student) method, and
return all the students in the course using the getStudents () method. Suppose that the Course
class is available; Listing 10.5 gives a test class that creates two courses and adds students to them.

LisTING 10.5 TestCourse.java

1 public class TestCourse {

2 public static void main(String[] args) {
create a Course 3 Course coursel = new Course("Data Structures");

4 Course course2 = new Course("Database Systems");

5
add a Student 6 coursel.addStudent ("Peter Jones");

7 coursel.addStudent ("Kim Smith");

8 coursel.addStudent ("Anne Kennedy");

9

10 course2.addStudent ("Peter Jones");

11 course2.addStudent ("Steve Smith");

12

13 System.out.printin("Number of students in coursel: "
number of students 14 + coursel.getNumberOfStudents());
return students 15 String[] students = courseil.getStudents();

16 for (int i = 0; i < coursel.getNumberOfStudents(); i++)

17 System.out.print(students[i] + ", ");

18

19 System.out.printin();

20 System.out.print("Number of students in course2: "

21 + course2.getNumberOfStudents());

22 }

23 }

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

10.5 Case Study: Designing the Course Class 379

Number of students in coursel: 3 E
Peter Jones, Kim Smith, Anne Kennedy,
Number of students in course2: 2

The Course class is implemented in Listing 10.6. It uses an array to store the students in the
course. For simplicity, assume the maximum course enrollment is 100. The array is created
using new String[100] in line 3. The addStudent method (line 10) adds a student to the
array. Whenever a new student is added to the course, numberOfStudents is increased (line
12). The getStudents method returns the array. The dropStudent method (line 27) is left
as an exercise.

LisTING 10.6 Course.java

1 public class Course {

2 private String courseName;

3 private String[] students = new String[100]; create students
4 private int numberOfStudents;

5

6 public Course(String courseName) { add a course

7 this.courseName = courseName;

8 }

9

10 public void addStudent (String student) ({

11 students[numberOfStudents] = student;

12 numberOfStudents++;

13 }

14

15 public String[] getStudents() { return students
16 return students;

17 }

18

19 public int getNumberOfStudents() { number of students
20 return numberOfStudents;
21 }
22
23 public String getCourseName() {
24 return courseName;
25 }
26
27 public void dropStudent (String student) {
28 /| Left as an exercise in Programming Exercise 10.9
29 }

30 }

The array size is fixed to be 100 (line 3), so you cannot have more than 100 students in the
course. You can improve the class by automatically increasing the array size in Programming
Exercise 10.9.

When you create a Course object, an array object is created. A Course object contains a
reference to the array. For simplicity, you can say the Course object contains the array.

The user can create a Course object and manipulate it through the public methods
addStudent, dropStudent, getNumberOfStudents, and getStudents. However, the
user doesn’t need to know how these methods are implemented. The Course class encapsu-
lates the internal implementation. This example uses an array to store students, but you could
use a different data structure to store students. The program that uses Course does not need
to change as long as the contract of the public methods remains unchanged.

STUDENTS-HUB.com Uploaded By 1210711@student.birzeit.edu

380 Chapter 10 Object-Oriented Thinking

ﬁeck 10.5.1 Replace the statement in line 17 in Listing 10.5, TestCourse.java, so the loop
Point displays each student name followed by a comma except the last student name.

0.6 Case Study: Designing a Class for Stacks

This section designs a class for modeling stacks.

stack Key Recall that a stack is a data structure that holds data in a last-in, first-out fashion, as shown in
Point Figure 10.11.

Datal’—\ DataZ’—w Data3’—\‘

Data2
Datal Datal

Data3k—\ Datazk—\ Datal

Data?2
Datal Datal

FiIGure 10.11 A stack holds data in a last-in, first-out fashion.

Stacks have many applications. For example, the compiler uses a stack to process method
invocations. When a method is invoked, its parameters and local variables are pushed into a
stack. When a method calls another method, the new method’s parameters and local variables
are pushed into the stack. When a method finishes its work and returns to its caller, its associ-
ated space is released from the stack.
B You can define a class to model stacks. For simplicity, assume the stack holds the int
VideoNote values. Thus, name the stack class StackOfIntegers. The UML diagram for the class is
The StackOfIntegers class ~ shown in Figure 10.12.

—elements: int[] An array to store integers in the stack.

-size: int The number of integers in the stack.

+StackOfIntegers () Constructs an empty stack with a default capacity of 16.

+StackOfIntegers (capacity: int) Constructs an empty stack with a specified capacity.

+empty () : boolean Returns true if the stack is empty.

+peek () : int Returns the integer at the top of the stack without
removing it from the stack.

+push (value: int): void Stores an integer into the top of the stack.

+pop () : int Removes the integer at the top of the stack and returns it.

+getSize(): int Returns the number of elements in the stack.

FiGure 10.12 The StackOfIntegers class encapsulates the stack storage and provides
the operations for manipulating the stack.

Suppose the class is available. The test program in Listing 10.7 uses the class to create a stack
(line 3), store 10 integers 0, 1, 2, . . ., and 9 (line 6), and displays them in reverse order (line 9).

LIsTING 10.7 TestStackOfIntegers.java

public class TestStackOfIntegers {
public static void main(String[] args) {

1
2
STUDENTS-HUB.cOm Stackorintesers stack = gy BRled B 1910711 @student.birzeit.edu

10.6 Case Study: Designing a Class for Stacks 381

4

5 for (int i = 0; i < 10; i++)

6 stack.push(i); push to stack
7

8 while (!stack.empty())

9 System.out.print(stack.pop() + " "); pop from stack
10 }

11}

9876543210 g

How do you implement the StackOfIntegers class? The elements in the stack are stored
in an array named elements. When you create a stack, the array is also created. The no-arg
constructor creates an array with the default capacity of 16. The variable size counts the
number of elements in the stack, and size - 1 is the index of the element at the top of the
stack, as shown in Figure 10.13. For an empty stack, size is 0.

elements[capacity — 1]

elements[size — 1] top

|«———— capacity

| «—— size

elements[1]

elements[0] bottom _

FiGure 10.13 The StackOfIntegers uses an array to store the elements in a stack.

The StackOfIntegers class is implemented in Listing 10.8. The methods empty (), peek (),
pop (), and getSize () are easy to implement. To implement push (int value), assign
value to elements[size] if size < capacity (line 24). If the stack is full (i.e., size
>= capacity), create a new array of twice the current capacity (line 19), copy the contents
of the current array to the new array (line 20), and assign the reference of the new array to
the current array in the stack (line 21). Now you can add the new value to the array (line 24).

LisTING 10.8 StackOfIntegers.java

1 public class StackOfIntegers {

2 private int[] elements;

3 private int size;

4 public static final int DEFAULT_CAPACITY = 16; max capacity 16
5

6 /** Construct a stack with the default capacity 16 */
7 public StackOfIntegers() {

8 this (DEFAULT_CAPACITY) ;

9 }
10
11 /** Construct a stack with the specified capacity */
12 public StackOfIntegers(int capacity) {
13 elements = new int[capacity];
14 }
15

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

382 Chapter 10 Object-Oriented Thinking

16
17
18
double the capacity 19
20
21
22
23
add to stack 24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

ﬁeek 10.6.1
Point

}

/** Push a new integer to the top of the stack */
public void push(int value) {
if (size >= elements.length) {
int[] temp = new int[elements.length * 2];
System.arraycopy(elements, 0, temp, 0, elements.length);
elements = temp;

}

elements[size++] = value;

}

/** Return and remove the top element from the stack */
public int pop() {
return elements[——size];

}

/** Return the top element from the stack */
public int peek() {
return elements[size - 1];

}

/** Test whether the stack is empty */
public boolean empty() ({
return size == 0;

}

/** Return the number of elements in the stack */
public int getSize() {
return size;

}

What happens when invoking the pop () method on a stack while size is 0?

0.7 Processing Primitive Data Type Values as Objects

A primitive-type value is not an object, but it can be wrapped in an object using a
wrapper class in the Java API.

Key

Point Owing to performance considerations, primitive data type values are not objects in Java. Because
of the overhead of processing objects, the language’s performance would be adversely affected
if primitive data type values were treated as objects. However, many Java methods require the
use of objects as arguments. Java offers a convenient way to incorporate, or wrap, a primitive
data type value into an object (e.g., wrapping an int into an Integer object, wrapping a double
into a Doub1e object, and wrapping a char into a Character object). By using a wrapper class,
you can process primitive data type values as objects. Java provides Boolean, Character,
Double, Float, Byte, Short, Integer, and Long wrapper classes in the java. Tang package
for primitive data types. The Boolean class wraps a Boolean value true or false. This section

why wrapper class? uses Integer and Double as examples to introduce the numeric wrapper classes.

naming convention

Note
Most wrapper class names for a primitive type are the same as the primitive data type
name with the first letter capitalized. The exceptions are Integer for int and
Character for char.

Numeric wrapper classes are very similar to each other. Each contains the methods

doubleValue(), floatValue(), intValue(), TongValue(), shortValue(), and
byteValue (). These methods “convert” objects into primitive-type values. The key features

STUDENTS-HUB.c@hjnteger and Double are shown in Figgrp fHad By: 1210711@student.birzeit.edu

10.7 Processing Primitive Data Type Values as Objects 383

-value: int

—-value: double

+MAX_VALUE: int +MAX_ VALUE: double

+MIN_VALUE: int +MIN_VALUE: double

+Integer (value: int) +Double (value: double)

+Integer (s: String) +Double (s: String)

t+byteValue () : byte +byteValue () : byte

+shortValue () : short +shortValue () : short

+intValue () : int +intValue () : int

+longValue () : long +longValue () : long

+floatValue () : float +floatValue(): float

+doubleValue () : double +doubleValue () : double

+compareTo (o: Integer): int +compareTo (o: Double): int

+toString () : String +toString(): String

+valueOf (s: String): Integer +valueOf (s: String): Double

+valueOf (s: String, radix: int): Integer +valueOf (s: String, radix: int): Double
+parselnt(s: String): int +parseDouble (s: String): double
+parselnt(s: String, radix: int): int +parseDouble (s: String, radix: int): double

FIGURE 10.14 The wrapper classes provide constructors, constants, and conversion methods for manipulating various

data types.

You can construct a wrapper object either from a primitive data type value or from a string constructors
representing the numeric value—for example, Double.valueOf (5.0), Double.val-
ueOf ("5.0"), Integer.valueOf (5), and Integer.valueOf ("5").
The wrapper classes do not have no-arg constructors. The instances of all wrapper classes are no no-arg constructor
immutable; this means that, once the objects are created, their internal values cannot be changed. immutable
The constructors in the wrapper classes are deprecated in Java 9. You should use the static
valueOf method to create an instance. Java enables frequently used wrapper objects to be
reused through the valueOf method. An instance created using valueOf maybe shared,
which is fine because the wrapper objects are immutable. For example, in the following code,
x1 and x2 are different objects, but x3 and x4 are the same objects created using the valueOf
method. Note that Integer x5 = 32, is same as Integer x5 = Integer.valueOf (32).

Integer x1
Integer x2

Integer x3 =
Integer x4 =

Integer x5
System.out.
System.out.
System.out.
System.out.

new Integer(“32”);
new Integer(“32”);
Integer.valueOf(“32”);
Integer.valueOf(“32”);

= 32;

printin(“x1 == x2 is” + (x1 == x2)); // Display false
printin(“x1 == x3 is” + (x1 == x3)); // Display false
printin(“x3 == x4 is” + (x3 == x4)); // Display true
printin(“x3 == x5 is” + (x3 == x5)); // Display true

Note that the “frequently used wrapper objects are reused” in Java. Which ones are fre-
quently used are not well defined in Java. In JDK 11, the frequently used wrapper objects
are the byte-size integers between —128 and 127. For example, in the following code, x1
and x2 are not the same, although their int values are the same. However, it is preferred
to use the valueOf method to create instances.

Integer x1
Integer x2

Integer.valueOf("128");
Integer.valueOf("128");

STUDENTEFOBIESH "™ == >2 1 "+ 1 [3fdhdéd BY ¥2T0711@student.birzeit.edu

384 Chapter 10 Object-Oriented Thinking

Each numeric wrapper class has the constants MAX_VALUE and MIN_VALUE. MAX_VALUE
represents the maximum value of the corresponding primitive data type. For Byte, Short,
Integer, and Long, MIN_VALUE represents the minimum byte, short, int, and Tong
values. Float and Double, MIN_VALUE represents the minimum positive float and
doub1e values. The following statements display the maximum integer (2,147,483,647),
the minimum positive float (1.4E—45), and the maximum double floating-point number
(1.79769313486231570e + 308d):

constants

System.out.printin("The maximum integer is " + Integer.MAX_VALUE);

System.out.printin("The minimum positive float is " +
Float.MIN_VALUE);

System.out.printin(
"The maximum double-precision floating-point number is " +
Double.MAX_VALUE) ;

conversion methods Each numeric wrapper class contains the methods doubleValue (), floatValue(), int-
Value (), TongValue (), and shortValue () for returning a double, float, int, Tong, or
short value for the wrapper object. For example,

Double.valueOf(12.4) .intValue () returns 12;
Integer.valueOf(12) .doubleValue () returns 12.0;

compareTo method Recall the String class contains the compareTo method for comparing two strings. The
numeric wrapper classes contain the compareTo method for comparing two numbers and
returns 1, 0, or —1, if this number is greater than, equal to, or less than the other number. For
example,

Double.valueOf(12.4) .compareTo(Double.valueOf (12.3)) returns 1;
Double.valueOf(12.3) .compareTo (Double.valueOf (12.3)) returns 0;
Double.valueOf(12.3) .compareTo (Double.valueOf (12.51)) returns -1;

static valueOf methods The numeric wrapper classes have a useful static method, valueOf (String s). This method
creates a new object initialized to the value represented by the specified string. For example,

Double doubleObject = Double.valueOf("12.4");
Integer integerObject = Integer.valueOf("12");

static parsing methods You have used the parseInt method in the Integer class to parse a numeric string into
an int value and the parseDoub1e method in the DoubTe class to parse a numeric string into
a doub1e value. Each numeric wrapper class has two overloaded parsing methods to parse a
numeric string into an appropriate numeric value based on 10 (decimal) or any specified radix
(e.g., 2 for binary, 8 for octal, and 16 for hexadecimal).

/I These two methods are in the Byte class
public static byte parseByte(String s)
public static byte parseByte(String s, int radix)

/| These two methods are in the Short class
public static short parseShort(String s)
public static short parseShort(String s, int radix)

/| These two methods are in the Integer class
public static int parselnt(String s)
public static int parseInt(String s, int radix)

/| These two methods are in the Long class
public static long parselLong(String s)
public static long parselLong(String s, int radix)

STUDENTS-HUB.com Uploaded By: 1210711@student birzeit.edu

10.7 Processing Primitive Data Type Values as Objects 385

/1 These two methods are in the Float class
public static float parseFloat(String s)
public static float parseFloat(String s, int radix)

/1 These two methods are in the Double class
public static double parseDouble(String s)
public static double parseDouble(String s, int radix)

For example,

Integer.parselnt("11", 2) returns 3;
Integer.parselInt("12", 8) returns 10;
Integer.parseInt("13", 10) returns 13;
Integer.parselnt ("1A", 16) returns 26;

Integer.parseInt("12", 2) would raise a runtime exception because 12 is not a
binary number.

Note you can convert a decimal number into a hex number using the format method. For converting decimal to hex
example,

String. format ("%x"™, 26) returns 1A;

10.7.1 Describe primitive-type wrapper classes. ﬁ eck
10.7.2 Can each of the following statements be compiled? Point

a. Integer i = new Integer("23");

b. Integer i = new Integer(23);
Integer.valueOf ("23");

c. Integer i

d. Integer i = Integer.parselnt("23", 8);
e. Double d = new Double();

f. Double d = Double.valueOf("23.45");

g. int i = (Integer.valueOf("23")).intValue();

h. double d = (Double.valueOf("23.4")).doubleValue();
i. int i = (Double.valueOf("23.4")).intValue();

j. String s = (Double.valueOf("23.4")).toString();

10.7.3 How do you convert an integer into a string? How do you convert a numeric string
into an integer? How do you convert a double number into a string? How do you
convert a numeric string into a double value?

10.7.4 Show the output of the following code:

public class Test {
public static void main(String[] args) {
Integer x = Integer.valueOf(3);
System.out.println(x.intValue());
System.out.println(x.compareTo(4));
}
}

10.7.5 What is the output of the following code?

public class Test {
public static void main(String[] args) {
System.out.printin(Integer.parseInt("10"));

STUDENTS-HUB.&uy¢ out-printin(Integer.parsefyydddet})By: 1210711 @student.birzeit.edu

386 Chapter 10 Object-Oriented Thinking

System.out.printin(Integer.parseInt("10", 16));

((
System.out.printin(Integer.parseInt("11"));

System.out.printin(Integer.parseInt(”“11", 10));
System.out.printin(Integer.parselnt("11", 16));

10.8 Automatic Conversion between Primitive Types
and Wrapper Class Types

A primitive-type value can be automatically converted to an object using a wrapper
class, and vice versa, depending on the context.
Key

Point Converting a primitive value to a wrapper object is called boxing. The reverse conversion is
boxing called unboxing. Java allows primitive types and wrapper classes to be converted automati-
unboxing cally. The compiler will automatically box a primitive value that appears in a context requiring
autoboxing an object, and unbox an object that appears in a context requiring a primitive value. This is
autounboxing called autoboxing and autounboxing.

For instance, the following statement in (a) can be simplified as in (b) using autoboxing.
The following statement in (a) is the same as in (b) due to autounboxing.

Integer intObject = Integer.valueOf(2); | _Equivalent |Integer intObject = 2;

(a) el (b)

autoboxing

Consider the following example:

=|1nt i = Integer.valueOf(1); |

(a) and (b) are
(@) Equivalent (d)

1 Integer[] intArray = {1, 2, 3};
2 System.out.printin(intArray[0] + intArray[1] + intArray[2]);

In line 1, the primitive values 1, 2, and 3 are automatically boxed into objects Integer.
valueOf (1), Integer.valueOf(2), and Integer.valueOf (3). In line 2, the objects
intArray[0], intArray[1], and intArray[2] are automatically unboxed into int values

that are added together.
l 10.8.1 What are autoboxing and autounboxing? Are the following statements correct?

heck

Point a.Integer x = 3 + Integer.valueOf(5);
b.Integer x = 3;
c.Double x = 3;
d.Double x = 3.0;
e.int x = Integer.valueOf(3);
f.int x = Integer.valueOf(3) + Integer.valueOf(4);

10.8.2 Show the output of the following code.

public class Test {
public static void main(String[] args) {
Double x = 3.5;
System.out.println(x.intValue());
System.out.println(x.compareTo(4.5));
}
}
STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

10.9 The BigInteger and BigDecimal Classes 387

10.9 The BigInteger and BigDecimal Classes

The BigInteger and BigDecimal classes can be used to represent integers or

decimal numbers of any size and precision. Key
Point

If you need to compute with very large integers or high-precision floating-point values, you can

use the BigInteger and BigDecimal classes in the java.math package. Both are immutable. ~ immutable

The largest integer of the Tong type is Long.MAX_VALUE (i.e., 9223372036854775807). An

instance of BigInteger can represent an integer of any size. You can use new BigInte-

ger (String) or BigInteger.valueOf (long) to create an instance of BigInteger and

new BigDecimal (String) or BigDecimal.valueOf (double) to create an instance of Big-

Decimal, use the add, subtract, multiply, divide, and remainder methods to perform u

arithmetic operations, and use the compareTo method to compare two big numbers. For example, videoNote

the following code creates two BigInteger objects and multiplies them: Process large numbers

BigInteger a = new BigInteger("9223372036854775807");

BigInteger b = new BigInteger("2");

BigInteger ¢ = a.multiply(b); // 9223372036854775807 * 2

System.out.printin(c);

The output is 18446744073709551614.

There is no limit to the precision of a BigDecimaTl object. The divide method may throw
an ArithmeticException if the result cannot be terminated. However, you can use the
overloaded divide (BigDecimal d, int scale, RoundingMode roundingMode)
method to specify a scale and a rounding mode to avoid this exception, where scale is the
maximum number of digits after the decimal point. For example, the following code creates
two BigDecimal objects and performs division with scale 20 and rounding mode Round -
ingMode . HALF_UP:

new BigDecimal("1.0");

BigDecimal b = new BigDecimal("3");

BigDecimal c a.divide(b, 20, RoundingMode.HALF_UP);
System.out.printin(c);

BigDecimal a

The output is 0.33333333333333333334.

. Note
/ You can create a BigDecimal using either new BigDecimal (String) or new BigDecimal (String) vs.
BigDecimal (double). Since a double value is approximated, so the result from BigDecimal (double)

new BigDecimal (double) is unpredictable. For example, new BigDeci -
mal("1.0") isnot 1.0, butis actually 0.10000000000000000555111512
31257827021181583404541015625. Therefore, it is a good idea to use new
BigDecimal (String) to obtain a predictable BigDecimal.

Note the factorial of an integer can be very large. Listing 10.9 gives a method that can return
the factorial of any integer.

LisTING 10.9 LargeFactorial.java

import java.util.Scanner;
import java.math.*;

public static void main(String[] args) {
Scanner input = new Scanner (System.in);
System.out.print(“Enter an integer: *“);

8 int n = input.nextInt();

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

1
2
3
4 public class LargeFactorial {
5
6
7

388 Chapter 10 Object-Oriented Thinking

9 System.out.printin(n +"! is \n" + factorial(n));
10 }
11
12 public static BigInteger factorial(long n) {
constant 13 BigInteger result = BigInteger.ONE;
14 for (int i =1; i <= n; i++)
multiply 15 result = result.multiply(new BigInteger(i + “”));
16
17 return result;
18 }
19 }

Enter an integer: 50

50! s
E 30414093201713378043612608166064768844377641568960512000000000000

BigInteger.ONE (line 13) is a constant defined in the BigInteger class. BigInteger.
ONE is the same as new BigInteger("1").
A new result is obtained by invoking the mu1tip1y method (line 15).

heck
Point public class Test {
public static void main(String[] args) {

java.math.BigInteger x new java.math.BigInteger("3");
java.math.BigInteger y = new java.math.BigInteger ("7");
java.math.Biglnteger z x.add(y);
System.out.printin("x is " + x);
System.out.println("y is " + y);
System.out.printin("z is " + z);

/ 10.9.1 What is the output of the following code?

[0.10 The String Class

A String object is immutable; its contents cannot be changed once the string is

created.
Key
Point Strings were introduced in Section 4.4. You know strings are objects. You can invoke the
charAt (index) method to obtain a character at the specified index from a string, the
Tength () method to return the size of a string, the substring method to return a substring

VideoNote in 3 string, the index0f and TastIndexOf methods to return the first or last index of a
The String class matching character or a substring, the equals and compareTo methods to compare two
strings, and the trim() method to trim whitespace characters from the two ends of a string,
and the toLowerCase () and toUpperCase () methods to return the lowercase and uppercase
from a string. We will take a closer look at strings in this section.
The String class has 13 constructors and more than 40 methods for manipulating strings. Not
only is it very useful in programming, but it is also a good example for learning classes and objects.

You can create a string object from a string literal or from an array of characters. To create a
string from a string literal, use the syntax:

String newString = new String(stringlLiteral);

The argument stringlLiteral is a sequence of characters enclosed in double quotes. The
following statement creates a String object message for the string literal "Welcome to Java™:

STUDENTS-HUB.conjt e message = new String(YH@aHEY'BY: 1210711 @student.birzeit.edu

STUDENTS-HUB.com

[0.10 The String Class 389

Java treats a string literal as a String object. Thus, the following statement is valid:

String message = "Welcome to Java";

You can also create a string from an array of characters. For example, the following statements
create the string "Good Day":

char[] charArray = {'G', 'o', 'o', 'd", , 'D', 'a', 'y'};
String message = new String(charArray);

Note

A String variable holds a reference to a String object that stores a string value. Strictly
speaking, the terms String variable, String object, and string value are different, but
most of the time the distinctions between them can be ignored. For simplicity, the term
string will often be used to refer to String variable, String object, and string value.

10.10.1 Immutable Strings and Interned Strings

A String object is immutable; its contents cannot be changed. Does the following code
change the contents of the string?

String s = "Java";
s = "HTML";

The answer is no. The first statement creates a String object with the content "Java" and
assigns its reference to s. The second statement creates a new String object with the content
"HTML" and assigns its reference to s. The first Str1ing object still exists after the assignment,
but it can no longer be accessed, because variable s now points to the new object, as shown
in Figure 10.15.

After executing String s = "Java"; After executing s = "HTML";

s s This string object is
. . ; ’ now unreferenced
String object for "Java" String object for "Java"

e

Contents cannot be changed

J

String object for "HTML"

FiGure 10.15 Strings are immutable; once created, their contents cannot be changed.

Because strings are immutable and are ubiquitous in programming, the JVM uses a unique
instance for string literals with the same character sequence in order to improve efficiency and
save memory. Such an instance is called an interned string. For example, the following
statements:

s3 - -
String s2 = new String("Welcome to Java"); Interned string object for
"Welcome to Java"
String s3 = "Welcome to Java";
String s4 = new String("Welcome to Java"); 32_
)) A string object for
System.out.println("sl == s2 is " + (sl == s2)); "Welcome to Java"
System.out.println("sl == s3 is " + (sl == s3));
System.out.println("s2 == s4 is " + (s2 == s4));

string literal object

String variable, string
object, string value

immutable

interned string

Uploaded By: 1210711 @student.birzeit.edu

390 Chapter 10 Object-Oriented Thinking

display
s1 == s2 is false
s1 == s3 is true
s2 == s4 is false

In the preceding statements, s1 and s3 refer to the same interned string—"Welcome to
Java"—so s1 == s3is true. However, s1 == s2is false, because s1 and s2 are two
different string objects, even though they have the same contents. S2 == s4 is also false,
because s2 and s4 are two different string objects.

Tip

Q You can create a String usingnew String(stringLiteral). However,
this is inefficient because it creates an unnecessary object. You should always simply
usethe stringlLiteral.Forexample,use String s = stringlLiteral;
rather than String s = new String(stringlLiteral);

10.10.2 Replacing and Splitting Strings

The String class provides the methods for replacing and splitting strings, as shown in
Figure 10.16.

+replace (oldChar: char, Returns a new string that replaces all matching characters in this
newChar: char): String string with the new character.

+replaceFirst (oldString: String, Returns a new string that replaces the first matching substring in
newString: String): String this string with the new substring.

+replaceAll (oldString: String, Returns a new string that replaces all matching substrings in this
newString: String): String string with the new substring.

+split(delimiter: String) : Returns an array of strings consisting of the substrings split by the
Stringl[] delimiter.

FIGURE 10.16 The String class contains the methods for replacing and splitting strings.

Once a string is created, its contents cannot be changed. The methods replace,
replaceFirst, and replaceAl1 return a new string derived from the original string (without
changing the original string!). Several versions of the rep1ace methods are provided to replace
a character or a substring in the string with a new character or a new substring.

For example,

replace "Welcome".replace('e', 'A'") returns a new string, WATcomA.

replaceFirst "Welcome" .replaceFirst("e", "AB") returns a new string, WABTcome.

replace "Welcome" .replace("e", "AB") returns a new string, WABTcomAB.

replace "Welcome".replace("el™, "AB") returns a new string, WABcome.
"Welcome".replaceAl1("e™, "AB") returns a new string, WABTcomAB.

replaceAll Note that replaceAl1(o1dStr, newStr) is the same as replace(o1dStr,

newStr) when used to replace all o1dStr with newStr.

split The sp1it method can be used to extract tokens from a string with the specified delimiters.
For example, the following code

String[] tokens = "Java#HTML#Per1".split("#");
for (int i = 0; i < tokens.length; i++)
System.out.print(tokens[i] + " ");

displays
STUDENTS-HUB.com{va HTL Pert Uploaded By: 1210711@student.birzeit.edu

[0.10 The String Class 391

10.10.3 Matching, Replacing, and Splitting by Patterns

Often you will need to write code that validates user input, such as to check whether the input
is a number, a string with all lowercase letters, or a Social Security number. How do you write
this type of code? A simple and effective way to accomplish this task is to use the regular why regular expression?
expression.
A regular expression (abbreviated regex) is a string that describes a pattern for matching a regular expression
set of strings. You can match, replace, or split a string by specifying a pattern. This is an regex
extremely useful and powerful feature.
Let us begin with the matches method in the String class. At first glance, the matches matches(regex)
method is very similar to the equals method. For example, the following two statements both
evaluate to true:

"Java" .matches("Java");
"Java".equals("Java");

However, the matches method is more powerful. It can match not only a fixed string, but
also a set of strings that follow a pattern. For example, the following statements all evaluate
to true:

"Java is fun".matches("Java.*")
"Java is cool".matches("Java.*")
"Java is powerful".matches("Java.*")

Java. * in the preceding statements is a regular expression. It describes a string pattern that
begins with Java followed by any zero or more characters. Here, the substring matches any
zero or more characters.

The following statement evaluates to true:

"440-02-4534" .matches ("\\d{3}-\\d{2}-\\d{4}")

Here, \ \d represents a single digit, and \ \d{3} represents three digits.

The replaceAll, replaceFirst, and sp1it methods can be used with a regular
expression. For example, the following statement returns a new string that replaces $, +, or #
in a+b$#c with the string NNN.

String s = "a+b$#c".replaceAl1 (" [$+#]", "NNN");
System.out.printin(s); replaceAll (regex)

Here, the regular expression [$+#] specifies a pattern that matches $, +, or #. Thus, the output
is aNNNbNNNNNNc.

The following statement splits the string into an array of strings delimited by punctuation
marks.

String[] tokens = "Java,C?C#,C++".split("[.,:;?]1"); split(regex)

for (int i = 0; i < tokens.length; i++)
System.out.printin(tokens[i]);

In this example, the regular expression [. , : ; ?] specifies a pattern that matches ., ,, :, ;,or ?. further studies
Each of these characters is a delimiter for splitting the string. Thus, the string is split into Java,
C, C#, and C++, which are stored in array tokens.
Regular expression patterns are complex for beginning students to understand. For this
reason, simple patterns are introduced in this section. Please refer to Appendix H, Regular
Expressions, to learn more about these patterns.

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

392 Chapter 10 Object-Oriented Thinking

10.10.4 Conversion between Strings and Arrays

Strings are not arrays, but a string can be converted into an array and vice versa. To convert a
toCharArray string into an array of characters, use the toCharArray method. For example, the following
statement converts the string Java to an array:

char[] chars = "Java".toCharArray();

Thus, chars[0] is J, chars[1] is a, chars[2] is v, and chars[3] is a.

You can also use the getChars(int srcBegin, int srcEnd, char[] dst, int
dstBegin) method to copy a substring of the string from index srcBegin to index srcEnd-1
into a character array dst starting from index dstBegin. For example, the following code
copies a substring "3720" in "CS3720" from index 2 to index 6-1 into the character array
dst starting from index 4:

getChars char[] dst = {'J', A", 'V', "A*', 1", '3', '0', "1'};
"CS3720" .getChars (2, 6, dst, 4);

Thus, dst becomes {'J*, 'A"', 'V', 'A", '3"', '7', '2', '0'}.

To convert an array of characters into a string, use the String (char[]) constructor or the
valueOf (char[]) method. For example, the following statement constructs a string from an
array using the String constructor:

String str = new String(new char[]{'J"', 'a', 'v', 'a'});

valueOf The next statement constructs a string from an array using the valueOf method.

String str = String.valueOf(new char[]{'J', "a', 'v', 'a'});

10.10.5 Converting Characters and Numeric Values to Strings

Recall that you can use Double.parseDouble(str) or Integer.parselnt(str) to
convert a string to a double value or an int value, and you can convert a character or a
number into a string by using the string concatenating operator. Another way of converting a
number into a string is to use the overloaded static valueOf method. This method can also be
used to convert a character or an array of characters into a string, as shown in Figure 10.17.

+valueOf (c: char): String Returns a string consisting of the character c.
+valueOf (data: char[]): String Returns a string consisting of the characters in the array.
+valueOf (d: double): String Returns a string representing the double value.
+valueOf (f: float): String Returns a string representing the f1loat value.
+valueOf (i: int): String Returns a string representing the int value.
+valueOf (1: long): String Returns a string representing the 1ong value.
+valueOf (b: boolean): String Returns a string representing the boolean value.

FIGURE 10.17 The String class contains the static methods for creating strings from
primitive-type values.

For example, to convert a double value 5.44 to a string, use String.valueOf (5.44).
The return value is a string consisting of the characters '5', " . ", "4', and "4".

10.10.6 Formatting Strings

The String class contains the static format method to return a formatted string. The syntax
to invoke this method is

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

[0.10 The String Class 393

String.format(format, item1, item2, ..., itemk);

This method is similar to the printf method except that the format method returns a format-
ted string, whereas the printf method displays a formatted string. For example,

String s = String.format ("%7.2f%6d%-4s", 45.556, 14, "AB");
System.out.printin(s);

displays
1745 .56[1TT1114ABT]
where the square box () denotes a blank space.
Note
System.out.printf(format, item1, item2, ..., itemk);
is equivalent to

System.out.print(

String.format(format, item1, item2, ..., itemk));
10.10.1 Suppose s1, s2, s3, and s4 are four strings, given as follows: ﬁeck
String s1 = "Welcome to Java"; Point
String s2 = s1;
String s3 = new String("Welcome to Java");
String s4 = "Welcome to Java";

What are the results of the following expressions?

a. s1 == s2
b. s1 == s3

s1 == s4

s1.equals(s3)

s1.equals(s4)

"Welcome to Java".replace("Java"™, "HTML")
s1.replace('o', 'T")

s1.replaceAll ("o", "T")
s1.replaceFirst("o", "T")
s1.toCharArray()

e o

oo

-

—.

10.10.2 To create the string Welcome to Java, you may use a statement like this:
String s = "Welcome to Java";
or

String s = new String("Welcome to Java");
Which one is better? Why?

10.10.3 What is the output of the following code?

String s1 "Welcome to Java";

String s2 s1.replace("o", "abc");

System.out.printin(s1);
stem.out.printin(s2);

STUDENTS-HUB CoH Uploaded By: 1210711@student.birzeit.edu

394 Chapter 10 Object-Oriented Thinking

10.10.4 Lets1be" Welcome " and s2be ™ welcome ".Write the code for the fol-
lowing statements:

10.10.5
10.10.6
10.10.7
10.10.8

a. Replace all occurrences of the character e with E in s1 and assign the new

string to s3.

b. Split Welcome to Java and HTML into an array tokens delimited by a

space and assign the first two tokens into s1 and s2.

Does any method in the String class change the contents of the string?

Suppose string s is created using new String(); whatiss.Tength()?

How do you convert a char, an array of characters, or a number to a string?

Why does the following code cause a Nul1PointerException?

public class Test {

}

private String text;

public Test(String s) {
String text = s;
}

public static void main(String[] args) {
Test test = new Test("ABC");
System.out.println(test.text.toLowerCase());

}

10.10.9 What is wrong in the following program?

1
2
3
4
5
6
7
8

9
10
11
12

public class Test {

}

String text;

public void Test(String s) {
text = s;

}

public static void main(String[] args) {
Test test = new Test("ABC");
System.out.println(test);

}

10.10.10 Show the output of the following code:

STUDENTS-HUB.com

public class Test {

public static void main(String[] args) {

System.out.printin("Hi, ABC, good".matches("ABC "));
System.out.printin("Hi, ABC, good".matches(".*ABC.*"));
System.out.printin("A,B;C".replaceAl1(",;", "#"));
System.out.printin("A,B;C".replaceAll("[,;1", "#"));

String[] tokens = "A,B;C".split("[,;1");
for (int i = 0; i < tokens.length; i++)
System.out.print(tokens[i] + " ");

Uploaded By: 1210711@student.birzeit.edu

10.1'l The StringBuilder and StringBuffer Classes 395

10.10.11 Show the output of the following code:

public class Test ({
public static void main(String[] args) {
String s = "Hi, Good Morning";
System.out.println(m(s));
}

public static int m(String s) {
int count = 0;
for (int i = 0; i < s.length(); i++)
if (Character.isUpperCase(s.charAt(i)))
count++;

return count;
}
}

[0.11 The StringBuilder and StringBuffer Classes

The StringBuilder and StringBuffer classes are similar to the String class

except that the String class is immutable.
Key
In general, the StringBuilder and StringBuffer classes can be used wherever a string Point

is used. StringBuilder and StringBuffer are more flexible than String. You can add,
insert, or append new contents into StringBuilder and StringBuffer objects, whereas
the value of a String object is fixed once the string is created.

The StringBuilder class is similar to StringBuffer except that the methods for modifying ~ StringBuilder

the buffer in StringBuffer are synchronized, which means that only one task is allowed to
execute the methods. Use StringBuffer if the class might be accessed by multiple tasks con-
currently, because synchronization is needed in this case to prevent corruptions to StringBuffer.
Concurrent programming will be introduced in Chapter 32. Using StringBuilder is more effi-
cient if it is accessed by just a single task, because no synchronization is needed in this case. The
constructors and methods in StringBuffer and StringBuilder are almost the same. This
section covers StringBuilder. You can replace StringBuilder in all occurrences in this
section by StringBuffer. The program can compile and run without any other changes.

The StringBuilder class has three constructors and more than 30 methods for managing the ~ StringBuilder constructors
builder and modifying strings in the builder. You can create an empty string builder using new
StringBuilder () or a string builder from a string using new StringBuilder (String), as
shown in Figure 10.18.

+StringBuilder () Constructs an empty string builder with capacity 16.
+StringBuilder (capacity: int) Constructs a string builder with the specified capacity.
+StringBuilder (s: String) Constructs a string builder with the specified string.

FIGURE 10.18 The StringBuilder class contains the constructors for creating instances
of StringBuilder.

10.11.1 Modifying Strings in the StringBuilder

You can append new contents at the end of a string builder, insert new contents at a specified
position in a string builder, and delete or replace characters in a string builder, using the methods
listed in Figure 10.19.

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

396 Chapter 10 Object-Oriented Thinking

+append (data: char[]): StringBuilder Appends a char array into this string builder.

+append (data: char[], offset: int, len: int): Appends a subarray in data into this string builder.
StringBuilder

+append (v: aPrimitiveType): StringBuilder Appends a primitive-type value as a string to this

builder.

+append(s: String): StringBuilder Appends a string to this string builder.

+delete (startIndex: int, endIndex: int): Deletes characters from startIndex to endIndex—1.
StringBuilder

+deleteCharAt (index: int): StringBuilder Deletes a character at the specified index.

+insert(index: int, data: char[], offset: int, Inserts a subarray of the data in the array into the builder
len: int): StringBuilder at the specified index.

+insert (offset: int, data: char[]): Inserts data into this builder at the position offset.
StringBuilder

+insert (offset: int, b: aPrimitiveType) : Inserts a value converted to a string into this builder.
StringBuilder

+insert (offset: int, s: String): StringBuilder Inserts a string into this builder at the position offset.

+replace (startIndex: int, endIndex: int, s: Replaces the characters in this builder from startIndex
String) : StringBuilder to endIndex—1with the specified string.

+reverse () : StringBuilder Reverses the characters in the builder.

+setCharAt (index: int, ch: char): void Sets a new character at the specified index in this

builder.

FiIGURe 10.19 The StringBuilder class contains the methods for modifying string builders.

The StringBuilder class provides several overloaded methods to append boolean,
char, char[], double, float, int, Tong, and String into a string builder. For example,
the following code appends strings and characters into stringBuilder to form a new string,
Welcome to Java:

StringBuilder stringBuilder = new StringBuilder();
append stringBuilder.append("Welcome") ;

stringBuilder.append(' ");

stringBuilder.append("to");

stringBuilder.append(' ');

stringBuilder.append("Java");

The StringBuilder class also contains overloaded methods to insert boolean, char, char
array, double, float, int, Tong, and String into a string builder. Consider the following code:

insert stringBuilder.insert(11, "HTML and ");

Suppose stringBuilder contains Welcome to Java before the insert method is applied.
This code inserts "HTML and " at position 11 in stringBuilder (just before the J).
The new stringBuilder is Welcome to HTML and Java.

You can also delete characters from a string in the builder using the two delete methods,
reverse the string using the reverse method, replace characters using the replace method,
or set a new character in a string using the setCharAt method.

For example, suppose stringBuilder contains Welcome to Java before each of the
following methods is applied:

delete stringBuilder.delete (8, 11) changes the builder to Welcome Java.
deleteCharAt stringBuilder.deleteCharAt (8) changes the builder to Welcome o Java.
reverse stringBuilder.reverse () changes the builder to avaJ ot emoclel.

replace stringBuilder.replace (11, 15, "HTML") changes the builder to Welcome to HTML.
setCharAt stringBuilder.setCharAt (0, 'w') sets the builder to welcome to Java.

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

10.1'1 The StringBuilder and StringBuffer Classes 397

All these modification methods except setCharAt do two things:

1. Change the contents of the string builder

2. Return the reference of the string builder ignore return value
For example, the following statement:

StringBuilder stringBuilder1 = stringBuilder.reverse();

reverses the string in the builder and assigns the builder’s reference to stringBuilder1. Thus,
stringBuilder and stringBuilder1 both point to the same StringBuilder object. Recall
that a value-returning method can be invoked as a statement, if you are not interested in the
return value of the method. In this case, the return value is simply ignored. For example, in the
following statement:

stringBuilder.reverse():

the return value is ignored. Returning the reference of a StringBuilder enables the
StringBuilder methods to be invoked in a chain such as the following:

stringBuilder.reverse().delete(8, 11).replace(11, 15, "HTML");

Tip
Q If a string does not require any change, use String rather than StringBuilder. String or StringBuilder?
String is more efficient than StringBuilder.

10.11.2 The toString, capacity, Tength, setLength,
and charAt Methods

The StringBuilder class provides the additional methods for manipulating a string builder
and obtaining its properties, as shown in Figure 10.20.

+toString () : String Returns a string object from the string builder.

+capacity(): int Returns the capacity of this string builder.

+charAt (index: int): char Returns the character at the specified index.

+length(): int Returns the number of characters in this builder.

+setLength (newLength: int): void Sets a new length in this builder.

+substring (startIndex: int): String Returns a substring starting at startIndex.

+substring(startIndex: int, endIndex: int): Returns a substring from startIndex to endIndex - 1.
String

+trimToSize () : void Reduces the storage size used for the string builder.

FIGURE 10.20 The StringBuilder class contains the methods for modifying string builders.

The capacity () method returns the current capacity of the string builder. The capacity capacity()
is the number of characters the string builder is able to store without having to increase
its size.

The Tength () method returns the number of characters actually stored in the string Tength()
builder. The setLength (newLength) method sets the length of the string builder. If the setLength(int)
newLength argument is less than the current length of the string builder, the string builder
is truncated to contain exactly the number of characters given by the newLength argument.

If the newLength argument is greater than or equal to the current length, sufficient null
characters (\u0000) are appended to the string builder so Tength becomes the newLength

STUDEN'EE B E§fyenath argument must be greater i L syal i By 1210711 @student.birzeit.edu

398 Chapter 10 Object-Oriented Thinking

charAt (int) The charAt (index) method returns the character at a specific index in the string builder.
The index is 0 based. The first character of a string builder is at index 0, the next at index 1,
and so on. The index argument must be greater than or equal to 0, and less than the length of
the string builder.

length and capacity

initial capacity

trimToSize()

Note

The length of the string builder is always less than or equal to the capacity of the builder.
The length is the actual size of the string stored in the builder, and the capacity is the
current size of the builder. The builder’s capacity is automatically increased if more
characters are added to exceed its capacity. Internally, a string builder is an array of
characters, so the builder’s capacity is the size of the array. If the builder’s capacity is
exceeded, the array is replaced by a new array. The new array sizeis 2 * (the pre-
vious array size + 1).

Tip

Q You can use new StringBuilder(initialCapacity) to create a
StringBuilder with a specified initial capacity. By carefully choosing the initial capac-
ity, you can make your program more efficient. If the capacity is always larger than the
actual length of the builder, the JVM will never need to reallocate memory for the builder.
On the other hand, if the capacity is too large, you will waste memory space. You can
use the trimToS1ize () method to reduce the capacity to the actual size.

10.11.3 Case Study: Ignoring Nonalphanumeric Characters When

Checking Palindromes

Listing 5.14, Palindrome.java, considered all the characters in a string to check whether it
is a palindrome. Write a new program that ignores nonalphanumeric characters in checking
whether a string is a palindrome.

Here are the steps to solve the problem:

1.

Filter the string by removing the nonalphanumeric characters. This can be done by
creating an empty string builder, adding each alphanumeric character in the string
to a string builder, and returning the string from the string builder. You can use the
isLetterOrDigit(ch) method in the Character class to check whether character
ch is a letter or a digit.

Obtain a new string that is the reversal of the filtered string. Compare the reversed string
with the filtered string using the equals method.

The complete program is shown in Listing 10.10.

LisTING 10.10 PalindromeIgnoreNonAlphanumeric.java

1
2
3
4
5
6
7
8

9
10
11
12
13

STUDENTS-HUB.com

import java.util.Scanner;

public class PalindromeIgnoreNonAlphanumeric {
/** Main method */
public static void main(String[] args) {
/'l Create a Scanner
Scanner input = new Scanner (System.in);

/1 Prompt the user to enter a string
System.out.print("Enter a string: ");
String s = input.nextLine();

/] Display result

Uploaded By: 1210711@student.birzeit.edu

10.1'1 The StringBuilder and StringBuffer Classes 399

14 System.out.println(“Ignoring nonalphanumeric characters, \nis “
15 + s + “ a palindrome? “ + isPalindrome(s));

16 }

17

18 /** Return true if a string is a palindrome */

19 public static boolean isPalindrome(String s) { check palindrome
20 /1 Create a new string by eliminating nonalphanumeric chars
21 String s1 = filter(s);

22

23 /'l Create a new string that is the reversal of si1

24 String s2 = reverse(s1);

25

26 /1 Check if the reversal is the same as the original string
27 return s2.equals(s1);

28 }

29

30 /** Create a new string by eliminating nonalphanumeric chars */
31 public static String filter(String s) {

32 /| Create a string builder

33 StringBuilder stringBuilder = new StringBuilder();

34

35 /] Examine each char in the string to skip alphanumeric char
36 for (int i = 0; i < s.length(); i++) {

37 if (Character.isLetterOrDigit(s.charAt(i))) {

38 stringBuilder.append(s.charAt(i)); add letter or digit
39 }

40 }

41

42 /1 Return a new filtered string

43 return stringBuilder.toString();

44 }

45

46 /** Create a new string by reversing a specified string */

47 public static String reverse(String s) {

48 StringBuilder stringBuilder = new StringBuilder(s);

49 stringBuilder.reverse(); // Invoke reverse in StringBuilder
50 return stringBuilder.toString();

51 }

52 }

Enter a string: ab<c>cb?a g
Ignoring nonalphanumeric characters,
is ab<c>cb?a a palindrome? true

Enter a string: abcc><?cab E

Ignoring nonalphanumeric characters,
is abcc><?cab a palindrome? false

The filter (String s) method (lines 31-44) examines each character in string s and copies
it to a string builder if the character is a letter or a numeric character. The fi1ter method
returns the string in the builder. The reverse (String s) method (lines 47-51) creates a
new string that reverses the specified string s. The fi1ter and reverse methods both return
a new string. The original string is not changed.

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

400 Chapter 10 Object-Oriented Thinking

The program in Listing 5.14 checks whether a string is a palindrome by comparing pairs
of characters from both ends of the string. Listing 10.10 uses the reverse method in the
StringBuilder class to reverse the string, then compares whether the two strings are equal

to determine whether the original string is a palindrome.

10.11.1
10.11.2

ﬁeck
Point
10.11.3

10.11.4

10.11.5
10.11.6

10.11.7

STUDENTS-HUB.com

What is the difference between StringBuilder and StringBuffer?

How do you create a string builder from a string? How do you return a string
from a string builder?

Write three statements to reverse a string s using the reverse method in the
StringBuilder class.

Write three statements to delete a substring from a string s of 20 characters,
starting at index 4 and ending with index 10. Use the de1ete method in the
StringBuilder class.

What is the internal storage for characters in a string and a string builder?
Suppose s1 and s2 are given as follows:

StringBuilder s1
StringBuilder s2

new StringBuilder("Java");
new StringBuilder ("HTML");

Show the value of s1 after each of the following statements. Assume the
statements are independent.

s1
s1

.append(" 1is fun");
.append(s2);
.insert(2, "is fun");
.insert(1, s2);
.charAt(2);
.length();
.deleteCharAt (3);
.delete(1, 3);
.reverse();
.replace(1, 3, "Computer");
.substring(1, 3);
.substring(2);

IS

s1
s1
s1
s1

e o

s1
s1
s1
s1
k. s1
L s1

o o™

—.

Show the output of the following program:

public class Test {
public static void main(String[] args) {
String s = "Java";
StringBuilder builder =
change (s, builder);

new StringBuilder(s);

System.out.printin(s);
System.out.printin(builder);

}

private static void change(String s, StringBuilder builder) {
s = s + " and HTML";
builder.append (" and HTML");

}

Uploaded By: 1210711@student.birzeit.edu

Programming Exercises 401

KEey TERMS

abstract data type (ADT) 368 composition 376
aggregation 376 has-a relationship 376
boxing 386 multiplicity 375
class abstraction 368 stack 380

class encapsulation 368 unboxing 386

class’s contract 368

CHAPTER SUMMARY

I. The procedural paradigm focuses on designing methods. The object-oriented paradigm
couples data and methods together into objects. Software design using the object-oriented
paradigm focuses on objects and operations on objects. The object-oriented approach
combines the power of the procedural paradigm with an added dimension that integrates
data with operations into objects.

2. Many Java methods require the use of objects as arguments. Java offers a convenient
way to incorporate, or wrap, a primitive data type into an object (e.g., wrapping int into
the Integer class, and wrapping doub1e into the Doub1e class).

3. Java can automatically convert a primitive-type value to its corresponding wrapper
object in the context and vice versa.

4. The BigInteger class is useful for computing and processing integers of any size. The
BigDecimal class can be used to compute and process floating-point numbers with any
arbitrary precision.

5. A String object is immutable; its contents cannot be changed. To improve efficiency
and save memory, the JVM stores two literal strings that have the same character
sequence in a unique object. This unique object is called an interned string object.

6. A regular expression (abbreviated regex) is a string that describes a pattern for matching
a set of strings. You can match, replace, or split a string by specifying a pattern.

7. The StringBuilder and StringBuffer classes can be used to replace the String
class. The String object is immutable, but you can add, insert, or append new contents
into StringBuilder and StringBuffer objects. Use String if the string contents do
not require any change and use StringBuilder or StringBuffer if they might change.

Quiz S

Answer the quiz for this chapter online at the book Companion Website.

PROGRAMMING EXERCISES MyProgramminglLab’

Sections 10.2 and 10.3
*10.1 (The Time class) Design a class named Time. The class contains:

B The data fields hour, minute, and second that represent a time.
B A no-arg constructor that creates a Time object for the current time. (The

STUDENTS-HUB. ¢ °f the data fields will represent {5, sksgigf-By: 1210711 @student.birzeit.edu

402 Chapter 10 Object-Oriented Thinking

B A constructor that constructs a Time object with a specified elapsed time
since midnight, January 1, 1970, in milliseconds. (The values of the data
fields will represent this time.)

B A constructor that constructs a Time object with the specified hour, minute,
and second.

B Three getter methods for the data fields hour, minute, and second,
respectively.

B A method named setTime (Tong elapseTime) that sets a new time for the
object using the elapsed time. For example, if the elapsed time is 555550000
milliseconds, the hour is 10, the minute is 19, and the second is 10.

Draw the UML diagram for the class then implement the class. Write a
test program that creates three Time objects (using new Time (), new
Time (555550000), and new Time (5, 23, 55)) and displays their hour,
minute, and second in the format hour:minute:second.

(Hint: The first two constructors will extract the hour, minute, and second
from the elapsed time. For the no-arg constructor, the current time can be
obtained using System.currentTimeMi11is (), as shown in Listing 2.7,
ShowCurrentTime.java. Assume the time is in GMT.)

10.2 (The BMI class) Add the following new constructor in the BMI class:

/** Construct a BMI with the specified name, age, weight,

* feet, and inches

*/

public BMI(String name, int age, double weight, double feet,
double inches)

10.3 (The MyInteger class) Design a class named MyInteger. The class contains:

B An int data field named value that stores the int value represented by
this object.

B A constructor that creates a MyInteger object for the specified int value.

B A getter method that returns the int value.

B The methods isEven(), is0dd (), and isPrime () that return true if the
value in this object is even, odd, or prime, respectively.

B The static methods isEven(int), isOdd(int), and isPrime (int) that
return true if the specified value is even, odd, or prime, respectively.

B The static methods isEven(MyInteger), isOdd(MyInteger), and
isPrime (MyInteger) that return true if the specified value is even, odd,
or prime, respectively.

B The methods equals (int) and equals (MyInteger) that return true if
the value in this object is equal to the specified value.

B A static method parselnt (char[]) that converts an array of numeric
characters to an int value.

B A static method parseInt (String) that converts a string into an int value.

Draw the UML diagram for the class then implement the class. Write a client
program that tests all methods in the class.

10.4 (The MyPoint class) Design a class named MyPoint to represent a point with
x- and y-coordinates. The class contains:

B The data fields x and y that represent the coordinates with getter methods.

B A no-arg constructor that creates a point (0, 0).

B A constructor that constructs a point with specified coordinates.

B A method named distance that returns the distance from this point to a
specified point of the MyPoint typ

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

Programming Exercises 403

B A method named distance that returns the distance from this point to
another point with specified x- and y-coordinates.

B A static method named distance that returns the distance from two MyPoint
objects.

Draw the UML diagram for the class then implement the class. Write a test D
program that creates the two points (0, 0) and (10, 30.5) and displays the dis- VideoNote
tance between them. The MyPoint class

Enter an id: 4 g

Main menu

1: check balance
2: withdraw

3: deposit

4: exit

Enter a choice: 1

The balance is 100.0

Main menu

1: check balance
2: withdraw

3: deposit

4: exit

Enter a choice: 2

Enter an amount to withdraw: 3

Main menu

1: check balance
2: withdraw

3: deposit

4: exit

Enter a choice: 1

The balance is 97.0

Main menu

1: check balance
2: withdraw

3: deposit

4: exit

Enter a choice: 8

Enter an amount to deposit: 10

Main menu

1: check balance
2: withdraw

3: deposit

4: exit

Enter a choice: 1

The balance is 107.0

Main menu

1: check balance
2: withdraw

3: deposit

4: exit

Enter a choice: 4
Enter an id:

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

404 Chapter 10 Object-Oriented Thinking

Sections 10.4-10.8

*10.5 (Display the prime factors) Write a program that prompts the user to enter a
positive integer and displays all its smallest factors in decreasing order. For
example, if the integer is 120, the smallest factors are displayed as 5, 3, 2, 2,
2. Use the StackOfIntegers class to store the factors (e.g., 2, 2, 2, 3, 5) and
retrieve and display them in reverse order.

*10.6 (Display the prime numbers) Write a program that displays all the prime num-
bers less than 120 in decreasing order. Use the StackOfIntegers class to
store the prime numbers (e.g., 2, 3, 5, . . .) and retrieve and display them in
reverse order.

**10.7 (Game: ATM machine) Use the Account class created in Programming Exer-
cise 9.7 to simulate an ATM machine. Create 10 accounts in an array with id
0,1,...,9, and an initial balance of $100. The system prompts the user to
enter an id. If the id is entered incorrectly, ask the user to enter a correct id.
Once an id is accepted, the main menu is displayed as shown in the sample
run. You can enter choice 1 for viewing the current balance, 2 for withdraw-
ing money, 3 for depositing money, and 4 for exiting the main menu. Once
you exit, the system will prompt for an id again. Thus, once the system starts,
it will not stop.

**%10.8 (Financial: the Tax class) Programming Exercise 8.12 writes a program for
computing taxes using arrays. Design a class named Tax to contain the follow-
ing instance data fields:

B int filingStatus: One of the four tax-filing statuses: 0—single filer,
1—married filing jointly or qualifying widow(er), 2—married filing separately,
and 3—head of household. Use the public static constants SINGLE_FILER
(0), MARRIED_JOINTLY_OR_QUALIFYING_WIDOW(ER) (1), MARRIED_
SEPARATELY (2), HEAD_OF_HOUSEHOLD (3) to represent the statuses.

m int[][] brackets: Stores the tax brackets for each filing status.

B double[] rates: Stores the tax rates for each bracket.

B double taxableIncome: Stores the taxable income.

Provide the getter and setter methods for each data field and the getTax ()
method that returns the tax. Also, provide a no-arg constructor and the construc-
tor Tax(filingStatus, brackets, rates, taxableIncome).

Draw the UML diagram for the class and then implement the class. Write a test
program that uses the Tax class to print the 2001 and 2009 tax tables for taxable
income from $50,000 to $60,000 with intervals of $1,000 for all four statuses.
The tax rates for the year 2009 were given in Table 3.2. The tax rates for 2001
are shown in Table 10.1.

TasLE 10.1 2001 U.S. Federal Personal Tax Rates

Married—Filing Jointly Married—Filing

Tax Rate Single Filers or Qualifying Widow(er) Separately Head of Household
15% Up to $27,050 Up to $45,200 Up to $22,600 Up to $36,250
27.5% $27,051-$65,550 $45,201-$109,250 $22,601-$54,625 $36,251-$93,650

30.5% $65,551-$136,750 $109,251-$166,500 $54,626-$83,250 $93,651-$151,650
35.5% $136,751-$297,350 $166,501-$297,350 $83,251-$148,675 $151,651-$297,350
39.1% $297,351 or more $297,351 or more $ 148,676 or more $297,351 or more

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

Programming Exercises 405

**%10.9 (The Course class) Revise the Course class as follows:

B Revise the getStudents () method to return an array whose length is the
same as the number of students in the course. (Hint: create a new array and
copy students to it.)

B The array size is fixed in Listing 10.6. Revise the addStudent method to automat-
ically increase the array size if there is no room to add more students. This is done
by creating a new larger array and copying the contents of the current array to it.

B Implement the dropStudent method.

B Add anew method named clear () that removes all students from the course.

Test your program using https://liveexample.pearsoncmg.com/test/
Exercise10_09.txt

*10.10 (The Queue class) Section 10.6 gives a class for Stack. Design a class named
Queue for storing integers. Like a stack, a queue holds elements. In a stack, the
elements are retrieved in a last-in first-out fashion. In a queue, the elements are
retrieved in a first-in first-out fashion. The class contains:

An int[] data field named e1ements that stores the int values in the queue.
A data field named s1ize that stores the number of elements in the queue.
A constructor that creates a Queue object with default capacity 8.

The method enqueue (int v) that adds v into the queue.

The method dequeue () that removes and returns the element from the queue.
The method empty () that returns true if the queue is empty.

The method getSize () that returns the size of the queue.

Draw an UML diagram for the class. Implement the class with the initial array size
set to 8. The array size will be doubled once the number of the elements exceeds
the size. After an element is removed from the beginning of the array, you need
to shift all elements in the array one position to the left. Write a test program that
adds 20 numbers from 1 to 20 into the queue then removes these numbers and
displays them.

*10.11 (Geometry: the Circle2D class) Define the Circle2D class that contains:

B Two double data fields named x and y that specify the center of the circle
with getter methods.

B A data field radius with a getter method.

A no-arg constructor that creates a default circle with (0, 0) for (x, y) and 1

for radius.

A constructor that creates a circle with the specified x, y, and radius.

A method getArea () that returns the area of the circle.

A method getPerimeter () that returns the perimeter of the circle.

A method contains (double x, double y) that returns true if the

specified point (x, y) is inside this circle (see Figure 10.21a).

A method contains (Circle2D circle) thatreturns true if the specified

circle is inside this circle (see Figure 10.21b).

B A method overlaps (Circle2D circle) that returns true if the specified
circle overlaps with this circle (see Figure 10.21c).

(a) (b) (©)

FiGure 10.21 (a) A point is inside the circle. (b) A circle is inside another circle. (c) A circle

STUDENTSp ez sirple- Uploaded By: 1210711@student.birzeit.edu

406 Chapter 10 Object-Oriented Thinking

Draw the UML diagram for the class then implement the class. Write a test
program that creates a Circle2D object c1 (new Circle2D(2, 2, 5.5)),
displays its area and perimeter, and displays the result of ¢c1.contains (3,
3),c1.contains(new Circle2D(4, 5, 10.5)),and c1.overlaps (new
Circle2D(3, 5, 2.3)).

*%%10.12 (Geometry: the Triang1e2D class) Define the Tr1iang1e2D class that contains:

B Three points named p1, p2, and p3 of the type MyPoint with getter and
setter methods. MyPoint is defined in Programming Exercise 10.4.

B A no-arg constructor that creates a default triangle with the points (0, 0),

(1,1), and (2, 5).

A constructor that creates a triangle with the specified points.

A method getArea () that returns the area of the triangle.

A method getPerimeter () that returns the perimeter of the triangle.

A method contains (MyPoint p) that returns true if the specified point

p is inside this triangle (see Figure 10.22a).

A method contains (Triangle2D t) that returns true if the specified

triangle is inside this triangle (see Figure 10.22b).

B A method overlaps(Triangle2D t) that returns true if the specified
triangle overlaps with this triangle (see Figure 10.22c¢).

A A L A

FIGURE 10.22 (a) A point is inside the triangle. (b) A triangle is inside another triangle.
(c) A triangle overlaps another triangle.

Draw the UML diagram for the class and then implement the class. Write a
test program that creates a Triangle2D object t1 using the constructor
new Triangle2D(new MyPoint(2.5, 2), new MyPoint(4.2, 3),
new MyPoint (5, 3.5)), displays its area and perimeter, and displays the
result of t1.contains (3, 3), r1.contains(new Triangle2D (new
MyPoint (2.9, 2), new MyPoint(4, 1), MyPoint(1, 3.4))),and t1
.overlaps(new Triangle2D(new MyPoint(2, 5.5), new MyPoint
(4, -3), MyPoint(2, 6.5))).

(Hint: For the formula to compute the area of a triangle, see Programming
Exercise 2.19. To detect whether a point is inside a triangle, draw three
dashed lines, as shown in Figure 10.23. Let A denote the area of a triangle.
If AABp + AACp + ABCp == AABC, the point p is inside the triangle, as
shown in Figure 10.23a. Otherwise, point p is not inside the triangle, as
shown in Figure 10.23b.)

A c
(a) (b)

FiIGUure 10.23 (a) A point is inside the triangle. (b) A point is outside the triangle.

STUDENTS-HUB.com Uploaded By: 1210711 @student.birzeit.edu

Programming Exercises 407

*10.13 (Geometry: the MyRectangle2D class) Define the MyRectang1e2D class that
contains:

B Two doub1e data fields named x and y that specify the center of the rectangle
with getter and setter methods. (Assume the rectangle sides are parallel to
X - Or y-axis.)

B The data fields width and height with getter and setter methods.

B A no-arg constructor that creates a default rectangle with (0, 0) for (x, y) and
1 for both width and height.

B A constructor that creates a rectangle with the specified x, y, width, and
height.

B A method getArea() that returns the area of the rectangle.

B A method getPerimeter () that returns the perimeter of the rectangle.

B A method contains(double x, double vy) that returns true if the
specified point (x, y) is inside this rectangle (see Figure 10.24a).

B A method contains (MyRectangle2D r) that returns true if the specified
rectangle is inside this rectangle (see Figure 10.24b).

B A method overlaps (MyRectangle2D r) that returns true if the specified
rectangle overlaps with this rectangle (see Figure 10.24c).

‘. [1]

(a) (b) (©) (d)

FIGURE 10.24 (a) A point is inside the rectangle. (b) A rectangle is inside another rectangle.
(c) A rectangle overlaps another rectangle. (d) Points are enclosed inside a rectangle.

Draw the UML diagram for the class then implement the class. Write a test
program that creates a MyRectangle2D object r1 (new MyRectangle2D
(2, 2, 5.5, 4.9)),displays its area and perimeter, and displays the result
of r1.contains (3, 3), r1.contains(new MyRectangle2D(4, 5,
10.5, 3.2)), and r1.overlaps(new MyRectangle2D(3, 5, 2.3,
5.4)).

*10.14 (The MyDate class) Design a class named MyDate. The class contains:

B The data fields year, month, and day that represent a date. month is O-based,
i.e., 0 is for January.

B A no-arg constructor that creates a MyDate object for the current date.

B A constructor that constructs a MyDate object with a specified elapsed time
since midnight, January 1, 1970, in milliseconds.

B A constructor that constructs a MyDate object with the specified year, month,
and day.

B Three getter methods for the data fields year, month, and day, respectively.

B A method named setDate (Tong elapsedTime) that sets a new date for
the object using the elapsed time.

Draw the UML diagram for the class then implement the class. Write a test
program that creates two MyDate objects (using new MyDate() and new
MyDate (34355555133101L)) and displays their year, month, and day.

(Hint: The first two constructors will extract the year, month, and day
from the elapsed time. For example, if the elapsed time is 561555550000
milliseconds, the year is 1987, the month is 9, and the day is 18. You may

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

408 Chapter 10 Object-Oriented Thinking

use the GregorianCalendar class discussed in Programming Exercise 9.5
to simplify coding.)

*10.15 (Geometry: the bounding rectangle) A bounding rectangle is the minimum rect-
angle that encloses a set of points in a two-dimensional plane, as shown in
Figure 10.24d. Write a method that returns a bounding rectangle for a set of
points in a two-dimensional plane, as follows:

public static MyRectangle2D getRectangle(double[][] points)

The Rectangle2D class is defined in Programming Exercise 10.13. Write a test
program that prompts the user to enter five points and displays the bounding
rectangle’s center, width, and height.

g Enter five points: 1.0 2.5 3 456 7 8 9 10

The bounding rectangle's center (5.0, 6.25), width 8.0, height 7.5

Section 10.9

*10.16 (Divisible by 2 or 3) Find the first 10 numbers with 50 decimal digits that are
divisible by 2 or 3.

*10.17 (Square numbers) Find the first 10 square numbers that are greater than Long .
MAX_VALUE. A square number is a number in the form of n*. For example, 4, 9,
and 16 are square numbers. Find an efficient approach to run your program fast.

*10.18 (Large prime numbers) Write a program that finds five prime numbers larger
than Long . MAX_VALUE.

*10.19 (Mersenne prime) A prime number is called a Mersenne prime if it can be
written in the form 27 — 1 for some positive integer p. Write a program that
finds all Mersenne primes with p = 100 and displays the output as shown
below. (Hint: You have to use BigInteger to store the number because it is
too big to be stored in Tong. Your program may take several hours to run.)

p 2%p - 1
2 3
3 7
5 31

*10.20 (Approximate) Programming Exercise 5.26 approximates e using the following
series:
1 1 1 1 1
e=14+—+—+—+—+ -+ +—
o2t 30 4l i!
In order to get better precision, use BigDecimal with 25 digits of precision
in the computation. Write a program that displays the e value for i = 100,
200, ...,and 1000.
10.21 (Divisible by 5 or 6) Find the first 10 numbers greater than Long . MAX_VALUE
that are divisible by 5 or 6.

STUDENTS-HUB.com Uploaded By: 1210711@student.birzeit.edu

Programming Exercises 409

Sections 10.10 and 10.11

**10.22

**10.23

10.24

**10.25

*10.26

STUDENTS-HUB.com

(Implement the String class) The String class is provided in the Java library.
Provide your own implementation for the following methods (name the new
class MyString1):

public MyString1(char[] chars);

public char charAt(int index);

public int length();

public MyString1 substring(int begin, int end);
public MyString1 tolLowerCase();

public boolean equals(MyString1 s);

public static MyString1 valueOf(int 1i);

(Implement the String class) The String class is provided in the Java library.
Provide your own implementation for the following methods (name the new
class MyString2):

public MyString2(String s);

public int compare(String s);

public MyString2 substring(int begin);
public MyString2 toUpperCase();

public char[] toChars();

public static MyString2 valueOf (boolean b);

(Implement the Character class) The Character class is provided in the Java
library. Provide your own implementation for this class. Name the new class
MyCharacter.

(New string sp11it method) The sp1it method in the String class returns an
array of strings consisting of the substrings split by the delimiters. However, the
delimiters are not returned. Implement the following new method that returns
an array of strings consisting of the substrings split by the matching delimiters,
including the matching delimiters.

public static String[] split(String s, String regex)

For example, sp1it ("ab#12#453", "#") returns ab, #, 12, #, and 453 in
an array of String and sp1it ("a?b?gf#e"”, "[?#]") returns a, ?, b, ?, gf,
#, and e in an array of String.

(Calculator) Revise Listing 7.9, Calculator.java, to accept an expression as a
string in which the operands and operator are separated by zero or more spaces.
For example, 3+4 and 3 + 4 are acceptable expressions. Here is a sample run:

E¥ Command Prompt - O X

c:\exercise>java Exercisele_26 "3+4" E— 314
3 +4=7

;:}e:etcise>java Exercisel®_26 "3 + 4" ¢ 344

;:le:etc:se>java Exercisel®_26 "3 + 4" ‘ 3+ 4

c:\exercise>java Exercisel®_26 "3 * 4"

«—3x 4
3 *4 =12

c:\exercise> v

Uploaded By: 1210711@student.birzeit.edu

410 Chapter I0 Object-Oriented Thinking

**10.27

**10.28

STUDENTS-HUB.com

(Implement the StringBuilder class) The StringBuilder class is provided
in the Java library. Provide your own implementation for the following methods
(name the new class MyStringBuilder1):

public MyStringBuilder1(String s);

public MyStringBuilder1 append(MyStringBuilder1 s);
public MyStringBuilder1 append(int i);

public int length();

public char charAt(int index);

public MyStringBuilder1 tolLowerCase();

public MyStringBuilder1 substring(int begin, int end);
public String toString();

(Implement the StringBuilder class) The StringBuilder class is provided
in the Java library. Provide your own implementation for the following methods
(name the new class MyStringBuilder2):

public MyStringBuilder2();

public MyStringBuilder2(char[] chars);

public MyStringBuilder2(String s);

public MyStringBuilder2 insert(int offset, MyStringBuilder2 s);
public MyStringBuilder2 reverse();

public MyStringBuilder2 substring(int begin);

public MyStringBuilder2 toUpperCase();

Uploaded By: 1210711@student.birzeit.edu

