Chapter 13 Definite Integrals: Techniques of Integration

1. Approximate the area under the curve defined by the function $f(x) = 4x^4$ over the

interval x = 0 to x = 3 using the right-hand endpoints of three subintervals (rectangles).

- A) $A \approx 68$ square units
- B) $A \approx 392$ square units
- C) $A \approx 328$ square units
- D) $A \approx 388$ square units
- E) $A \approx 1352$ square units
- Ans: B
- 2. Approximate the area under the curve over the specified interval by using the indicated number of subintervals (or rectangles) and evaluating the function at the *right-hand* endpoints of the subintervals. Compute the approximate area using up to 4 decimal places as needed.
 - $f(x) = x^2 + x + 7$ from x = -1 to x = 1; 8 subintervals
 - A) 7.4687 square units
 - B) 14.4375 square units
 - C) 0.25 square unit
 - D) 14.9375 square units
 - E) 29.875 square units

Ans: D

3. Approximate the area under the curve defined by the function $f(x) = 8x^4$ over the

interval x = 0 to x = 3 using the left-hand endpoints of three subintervals (rectangles).

- A) $A \approx 784$ square units
- B) $A \approx 776$ square unit
- C) $A \approx 656$ square units
- D) $A \approx 136$ square units
- E) $A \approx 2704$ square units
- Ans: D
- 4. Approximate the area under the curve over the specified interval by using the indicated number of subintervals (or rectangles) and evaluating the function at the *left-hand* endpoints of the subintervals. Compute the approximate area using up to 4 decimal places as needed.

 $f(x) = 12 - x^2$ from x = 1 to x = 3; 2 subintervals

- A) 9.5000 square units
- B) 19.0000 square units
- C) 11.0000 square units
- D) 38.0000 square units
- E) 4.0000 square units

Ans: B

©2013 Cengage Learning. All Rights Reserved. Page 922

- 5. When the area under $f(x) = x^2 + x$ from x = 0 to x = 2 is approximated, the formulas for the sum of *n* rectangles using *left-hand* endpoints and *right-hand* endpoints are:
 - Left-hand endpoints: $S_L = \frac{14}{3} \frac{6}{n} + \frac{4}{3n^2}$

Right-hand endpoints:
$$S_R = \frac{14n^2 + 18n + 4}{3n^2}$$

Find $S_L(250)$ and $S_R(250)$. Round to 4 decimal places.

A)	
	$S_L(250) = 9.2854$
	$S_R(250) = 9.3814$
B)	
	$S_L(250) = 3.2499$
	$S_R(250) = 3.2835$
C)	
	$S_L(250) = 4.6427$
	$S_R(250) = 4.6907$
D)	
	$S_L(250) = 13.9281$
	$S_R(250) = 14.0721$
E)	
	$S_L(250) = 7.4283$
	$S_R(250) = 7.5051$
Amar	<u>C</u>

Ans: C

©2013 Cengage Learning. All Rights Reserved. Page 923

6. When the area under $f(x) = x^2 + x + 5$, from x = 0 to x = 2 is approximated, the formulas for the sum of *n* rectangles using *left-hand* endpoints and *right-hand* endpoints are:

Left-hand endpoints:
$$S_L = \frac{44}{3} - \frac{6}{n} + \frac{4}{3n^2}$$

Right-hand endpoints: $S_R = \frac{44n^2 + 18n + 4}{3n^2}$
Find $\lim_{n \to \infty} S_L$ and $\lim_{n \to \infty} S_R$. Round to 4 decimal places.
A)
 $\lim_{n \to \infty} S_L = \frac{49}{3}$
B)
 $\lim_{n \to \infty} S_R = \frac{49}{3}$
B)
 $\lim_{n \to \infty} S_L = \frac{32}{3}$
 $\lim_{n \to \infty} S_R = \frac{32}{3}$

C)

$$\frac{\lim_{n \to \infty} S_{L} = \frac{41}{3}}{\lim_{n \to \infty} S_{R} = \frac{41}{3}}$$
D)

$$\frac{\lim_{n \to \infty} S_{R} = \frac{41}{3}}{\lim_{n \to \infty} S_{L} = \frac{37}{3}}$$
E)

$$\frac{\lim_{n \to \infty} S_{R} = \frac{37}{3}}{\lim_{n \to \infty} S_{L} = \frac{44}{3}}$$
Ans:

$$\frac{\lim_{n \to \infty} S_{R} = \frac{44}{3}}{E}$$

©2013 Cengage Learning. All Rights Reserved. Page 924

STUDENTS-HUB.com

7. Find the value of the sum $\sum_{k=1}^{3} 6x_k$, if $x_1 = 8, x_2 = 8, x_3 = -4, x_4 = 7$.

A) 120B) 138

- C) 66
- D) 72
- E) 114
- Ans: D

8. Find the value of the sum $\sum_{i=3}^{5} (2i^2 + 1)$.

- A) 100
 B) 103
 C) 102
 D) 77
 E) 61
 Ans: B
- 9. Find the value of the given sum and round to 4 decimal places.

$\sum_{i=4}^{7} \left(\frac{4}{2} \right)^{2}$	$\frac{4(i-4)}{i^2}$
A)	0.6271
B)	0.8153
C)	0.2508
D)	1.3797
E)	0.4703
Ans:	А

10.

Find the numerical value of $\sum_{k=1}^{58} 8$ by using the sum formulas.

A) 66 B) 8

- C) 464
- D) 465
- E) 70
- Ans: C

©2013 Cengage Learning. All Rights Reserved. Page 925

11. Use the sum formulas to find the value of the sum that follows.

 $\sum_{k=1}^{50} (7k^2 + 1)$ A) 66,215 B) 104,405 C) 155,020 D) 300,525 E) 569,687 Ans: D

12.

Find the numerical value of $\sum_{i=1}^{n} \left(8 - \frac{8i}{n} + \frac{i^2}{n^2}\right) \left(\frac{3}{n}\right)$ by using the sum formulas.

A)
$$\frac{24n^{2} - 33n + 1}{4n^{2}}$$
B)
$$\frac{26n^{2} - 33n + 1}{2n^{2}}$$
C)
$$\frac{26n^{2} - 24n + 1}{4n^{2}}$$
D)
$$\frac{24n^{2} - 24n + 1}{2n^{2}}$$
E)
$$\frac{26n^{2} - 21n + 1}{2n^{2}}$$
Ans: E

13. Use the function y = 10x from x = 0 to x = 1 and *n* equal subintervals with the function evaluated at the *left-hand* endpoints of each subinterval. Find a formula for the sum of the areas of the *n* rectangles (call this *S*).

A)

$$S(n) = \frac{5(n-3)}{n}$$
B)

$$S(n) = \frac{5(n-1)}{n}$$
C)

$$S(n) = \frac{5(2n-3)}{n}$$
D)

$$S(n) = \frac{5(2n+3)}{n}$$
E)

$$S(n) = \frac{5(n+1)}{n}$$

Ans: B

©2013 Cengage Learning. All Rights Reserved. Page 926

- 14. Use the function y = 16x from x = 0 to x = 1 and *n* equal subintervals with the function evaluated at the *left-hand* endpoints of each subinterval. Find S(25) by using the formula for the sum of the areas of the *n* rectangles (call this *S*).
 - A) $S(25) = \frac{136}{25}$ B) $S(25) = \frac{208}{25}$ C) $S(25) = \frac{176}{25}$ D) $S(25) = \frac{128}{25}$ E) $S(25) = \frac{192}{25}$ Ans: E
- 15. Use the function $y = 7x^2$ from x = 0 to x = 1 and *n* equal subintervals with the function evaluated at the *right-hand* endpoints of each subinterval. Find a formula for the sum of the areas of the *n* rectangles (call this *S*).

A)
$$\frac{7(2n+1)}{6n^2}$$

B) $\frac{7(n+1)(2n+3)}{8n^2}$
C) $\frac{7(n+1)(2n+1)}{6n^2}$
D) $\frac{7(n+2)(2n+3)}{6n^3}$
E) $\frac{7(n+1)(2n+1)}{8n^3}$
Ans: C

16. Use the function $y = 21x^2$ from x = 0 to x = 1 and *n* equal subintervals with the function evaluated at the *right-hand* endpoints of each subinterval. Let the sum of the areas of the rectangles be *S*. Find $\lim_{n \to \infty} S$ by using the formula for the sum of the areas of

the *n* rectangles.

A) 7
B) 21
C) 42
D) 9
E) 11

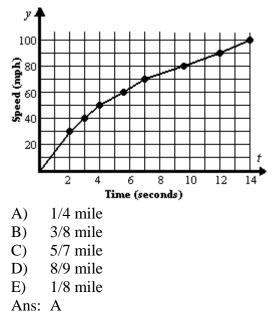
Ans: A

©2013 Cengage Learning. All Rights Reserved. Page 927

STUDENTS-HUB.com

17. Use rectangles to find the area between $y = 9x - x^2$ and the x-axis from x = 0 to x = 2.

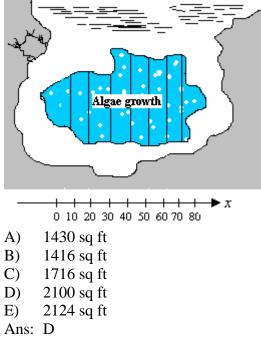
$\lambda - \Delta$	•
A)	$A = \frac{82}{3}$
B)	$A = \frac{100}{3}$
C)	$A = \frac{46}{3}$
D)	$A = \frac{28}{3}$
E)	$A = \frac{64}{3}$
Ans:	C


18. The following table shows the rate of oil consumption (in thousands of barrels per year) by a certain city. Estimate the total consumption of oil by the city from 1999 -2004 by using 5 equal subdivisions and left-hand endpoints to estimate the area under the graph that corresponds to the table from 1999 to 2004.

Year	Rate
1999	3.087
2000	3.329
2001	3.427
2002	3.304
2003	3.437
2004	3.397
A)	17.234 thousand barrels
B)	16.584 thousand barrels
C)	17.573 thousand barrels
D)	16.894 thousand barrels
E)	16.275 thousand barrels
Ans:	В

©2013 Cengage Learning. All Rights Reserved. Page 928

19. The graph in the following figure gives the times that it takes a vehicle to reach speeds from 0 mph to 100 mph, in increments of 10 mph, with a curve connecting them. Count the squares under the curve to estimate this distance. Estimate the distance traveled by the vehicle in 14 seconds, to a speed of 100 mph. (Be careful with time units.)


©2013 Cengage Learning. All Rights Reserved. Page 929

STUDENTS-HUB.com

20. Suppose the presence of phosphates in certain waste products dumped into a lake promotes the growth of algae. Rampant growth of algae affects the oxygen supply in the water, so an environmental group wishes to estimate the area of algae growth. The group measures the length across the algae growth (see the figure) and obtains the following data (in feet).

	0		
x	Length	x	Length
0	0	50	35
10	22	60	34
20	25	70	33
30	24	80	0
40	37		

Use 8 rectangles with bases of 10 feet and lengths measured at the left-hand endpoints to approximate the area of the algae growth.

- 21. Suppose spending for a wireless communications services (in billions of dollars per year) can be modeled by the function S(t) = 16.230t + 7.075 where t = 0 represents 1995. Use n = 10 equal subdivisions with right-hand endpoints to approximate the area under the graph of S(t) between t = 5 and t = 10. Round your answer to one decimal place.
 - A) 623.7 billion dollars
 - B) 579.6 billion dollars
 - C) 708.4 billion dollars
 - D) 543.1 billion dollars
 - E) 664.3 billion dollars

Ans: E

©2013 Cengage Learning. All Rights Reserved. Page 930

- 22. The United States' spending for military (in billions of dollars per year) can be modeled by $M(t) = -87.189 + 267.9 \ln(t)$, where t = 0 represents 1993. Estimate the total spending for the United States military between 2000 and 2005 by using 10 equal subdivisions and right-hand endpoints to approximate the area under the graph of M(t)between t = 7 and t = 12. Round to 3 decimal places.
 - A) \$2527.436 billion dollars
 - B) \$2310.376 billion dollars
 - C) \$2816.579 billion dollars
 - D) \$2690.231 billion dollars
 - E) \$2599.635 billion dollars
 - Ans: E

^{23.} Evaluate the definite integral $\int_{1}^{11} -4 \, dy$.

A) 8 B) -48 C) -4 D) -40 E) -44 Ans: D

24. Evaluate
$$\int_{0}^{5} 5\sqrt[3]{x^{2}} dx$$
.
A) $\int_{0}^{5} 5\sqrt[3]{x^{2}} dx = 15\sqrt[3]{25}$
B) $\int_{0}^{5} 5\sqrt[3]{x^{2}} dx = 15\sqrt[5]{9}$
C) $\int_{0}^{5} 5\sqrt[3]{x^{2}} dx = 25\sqrt[3]{25}$
D) $\int_{0}^{5} 5\sqrt[3]{x^{2}} dx = 25\sqrt[3]{9}$
E) $\int_{0}^{5} 5\sqrt[3]{x^{2}} dx = 15\sqrt[5]{25}$
Ans: A

^{25.} Evaluate the definite integral $\int_0^7 (6x^4 - x^3 - 6x) dx$.

A)	388,423
	15
B)	388,423
	20
C)	388,423
	12
D)	388,423
	25
E)	388,423
	4
Ans:	В

©2013 Cengage Learning. All Rights Reserved. Page 931

STUDENTS-HUB.com

26. Evaluate the definite integral $\int_{5}^{7} (x-7)^9 dx$.

A)	1024
	9
B)	1024
	11
C)	1024
	9
D)	512
	5
E)	512
	5
Ans:	E

^{27.} Evaluate the definite integral $\int_{1}^{2} (16x - 8x^2)^3 (8 - 8x) dx$.

A) 0
B) 512
C) -512
D) -1024
E) 1024
Ans: C

28. Evaluate the definite integral $\int_0^1 \sqrt{3x+7} \, dx$.

A)
$$\frac{\left(-14\sqrt{7}+20\sqrt{10}\right)}{9}$$

B) $\frac{\left(-6\sqrt{7}+20\sqrt{10}\right)}{7}$
C) $\frac{\left(-28\sqrt{7}+40\sqrt{10}\right)}{15}$
D) $\frac{\left(-28\sqrt{7}+12\sqrt{10}\right)}{9}$
E) $\frac{\left(-6\sqrt{7}+14\sqrt{10}\right)}{9}$

Ans: A

©2013 Cengage Learning. All Rights Reserved. Page 932

STUDENTS-HUB.com

29.	Evalı	hate the definite integral $\int_{1}^{4} \frac{2}{z^4} dz$.
	A)	21
		128
	B)	21
		64
	C)	21
		16
	D)	7
	-	32
	E)	21
		32
	Ans:	E

30. Evaluate the definite integral
$$\int_0^3 -4e^{6x} dx$$
.

A)
$$-\frac{3(e^{18}-1)}{2}$$

B) $-\frac{2(e^{18}-1)}{3}$
C) $-\frac{2(e^{19}-1)}{3}$
D) $\frac{2e^{19}}{3}$
E) $-\frac{3e^{19}}{2}$
Ans: B

31. Evaluate
$$\int_{1}^{11e} 8y^{-1}dy$$
.
A) $\int_{1}^{11e} 8y^{-1}dy = 8 \ln 11$
B) $\int_{1}^{11e} 8y^{-1}dy = 8(\ln 11+1)$
C) $\int_{1}^{11e} 8y^{-1}dy = 8(\ln 11+2)$
D) $\int_{1}^{11e} 8y^{-1}dy = 8$
E) $\int_{1}^{11e} 8y^{-1}dy = 19$
Ans: B

©2013 Cengage Learning. All Rights Reserved. Page 933

STUDENTS-HUB.com

32. Evaluate
$$\int_{0}^{2} 8x^{2}e^{-x^{3}}dx$$
.
A) $\int_{0}^{2} 8x^{2}e^{-x^{3}}dx = \frac{8}{3}\left(\frac{1}{e^{8}}-1\right)$
B) $\int_{0}^{2} 8x^{2}e^{-x^{3}}dx = \frac{3}{8}\left(\frac{1}{e^{8}}-1\right)$
C) $\int_{0}^{2} 8x^{2}e^{-x^{3}}dx = \frac{8}{3}\left(1-\frac{1}{e^{8}}\right)$
D) $\int_{0}^{2} 8x^{2}e^{-x^{3}}dx = \frac{8}{3}\left(1-\frac{1}{e^{4}}\right)$
E) $\int_{0}^{2} 8x^{2}e^{-x^{3}}dx = \frac{3}{8}\left(\frac{1}{e^{4}}-1\right)$
Ans: C

33.

3. Evaluate the definite integral $\int_0^2 \frac{-x^3}{4x^4+1} dx$.

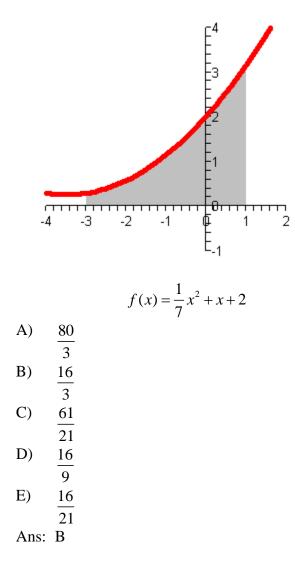
A)
$$-\frac{\ln(65)}{16}$$

B) $-\frac{\ln(65)}{4}$
C) $-\frac{\ln(33)}{4}$
D) $-\frac{\ln(33)}{16}$
E) $-\frac{\ln(32)}{16}$
Ans: A

34.

Evaluate the given integral with the Fundamental Theorem of Calculus $\int_{1}^{4} \frac{8\sqrt{x}+5}{\sqrt{x}} dx$.

A) 39
B) 40
C) 37
D) 30
E) 34
Ans: E


^{35.} True or false. For the function $f(x) = x^4 - 2$, $\int_0^2 f(x) dx$ gives the area between the graph of f(x) and the x-axis from x = 0 to x = 2.

- A) false
- B) true
- Ans: A

©2013 Cengage Learning. All Rights Reserved. Page 934

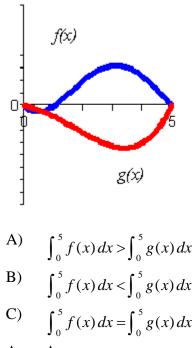
STUDENTS-HUB.com

Harshbarger/Reynolds, Mathematical Applications for the Management, Life, and Social Sciences, 10e 36. Find the shaded area between the given function and the *x*-axis.

37. Find the area between the curve $y = -6x^2 + 7x + 5$ and the *x*-axis from x = -2 to x = 3.

A)	
B)	2 385
C)	$-\frac{1}{2}$ 275
,	<u>-</u> <u>-</u> <u>6</u>
D)	$-\frac{275}{2}$
E)	$-\frac{55}{4}$
Ans:	A

©2013 Cengage Learning. All Rights Reserved. Page 935


STUDENTS-HUB.com

38. Find the area between the curve $y = x^2 e^{x^3}$ and the x-axis from x = 1 to x = 2.

A)
$$\frac{1}{3}(e^{8}-1)$$

B) $\frac{1}{3}(e^{8}-e)$
C) $\frac{1}{3}(e^{9}-e)$
D) $\frac{1}{4}(e^{8}-e)$
E) $\frac{1}{4}(e^{9}-1)$
Ans: B

Ans: B

^{39.} Use the figure to decide which of $\int_0^5 f(x)dx$ or $\int_0^5 g(x)dx$ is larger, or if they are equal.

Ans: A

©2013 Cengage Learning. All Rights Reserved. Page 936

40. Evaluate
$$\int_{4}^{4} \sqrt{x^{2} - 3} dx$$
.
A) $\int_{4}^{4} \sqrt{x^{2} - 3} dx = 3$
B) $\int_{4}^{4} \sqrt{x^{2} - 3} dx = 2$
C) $\int_{4}^{4} \sqrt{x^{2} - 3} dx = 8$
D) $\int_{4}^{4} \sqrt{x^{2} - 3} dx = 4$
E) $\int_{4}^{4} \sqrt{x^{2} - 3} dx = 0$
Ans: E

- 41. The rate of depreciation of a building is given by D'(t) = 8,400(15-t) dollars per year, $0 \le t \le 15$. Use the definite integral to find the total depreciation over the first 15 years.
 - A) \$945,000
 - B) \$63,000
 - C) \$472,500
 - D) \$270,000
 - E) \$1,890,000
 - Ans: A
- 42. Assume that a store finds that its sales revenue changes at a rate given by

 $S'(t) = -27t^2 + 366t$ dollars per day, where *t* is the number of days after an advertising campaign ends and $0 \le t \le 30$. Find the total sales for the second week after the campaign ends (t = 7 to t = 14).

- A) \$5292
 B) \$6510
 C) \$3696
 D) \$11,634
 E) \$1134
 Ans: A
- 43. Suppose that a vending machine service company models its income by assuming that money flows continuously into the machines, with the annual rate of flow given by $f(t) = 140e^{0.01t}$ in thousands of dollars per year. Find the total income from the

machines predicted by the model over the first 5 years. Round your answer to the nearest thousand dollars.

A) \$866,000
B) \$571,000
C) \$718,000
D) \$28,718,000
E) \$28,571,000
Ans: C

©2013 Cengage Learning. All Rights Reserved. Page 937

STUDENTS-HUB.com

44. Market revenue for Hammer Inc. (in millions of dollars per year) can be modeled by

R(t) = 53.57t + 83.95, where t = 0 represents 1990. Evaluate $\int_{15}^{25} R(t) dt$.

A) \$1,507.15 B) \$17,330.25 C) \$103,981.50 D) \$11,553.50 E) \$57,767.50 Ans: D

45. Suppose the rate of production of a new line of products is given by

 $\frac{dx}{dt} = 150 \left| 1 + \frac{400}{(t+40)^2} \right|$, where x is the number of items produced and t is the number

of weeks the products have been in production. How many units were produced in the first 4 weeks? Round your answer to the nearest unit produced.

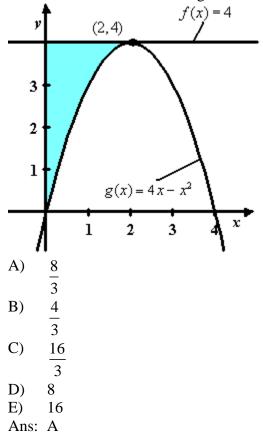
- A) 464 units
- B) 736 units
- C) 886 units
- D) 314 units 586 units
- E)
- Ans: B
- 46. Suppose in a small city the response time t (in minutes) of the fire company is given by the probability density function $f(t) = \frac{90t^2 - 4t^3}{69.984}$, $0 \le t \le 18$. For a fire chosen at

random, find the probability that the response time is 10 minutes or less. Round your answer to three decimal places.

0.724 A) B) 0.470 C) 0.286 D) 0.276 E) 0.714 Ans: C

47. The average life for a particular brand of car battery is given by the following probability density function where *t* is in years.

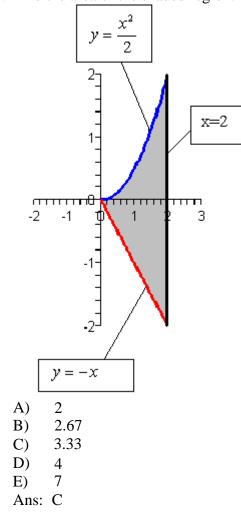
$$f(t) = 0.34e^{-0.34t}, \qquad t \ge 0$$


Find the probability that a battery chosen at random lasts between 3 and 8 years.

A) 0.12 B) 0.29 C) 0.37 D) 0.24 E) 0.44Ans: B

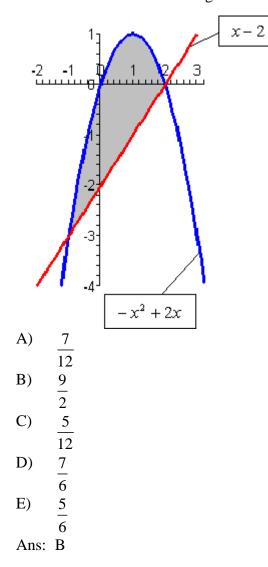
> ©2013 Cengage Learning. All Rights Reserved. Page 938

STUDENTS-HUB.com


Harshbarger/Reynolds, Mathematical Applications for the Management, Life, and Social Sciences, 10e 48. Find the area of the shaded region for the graph given below.

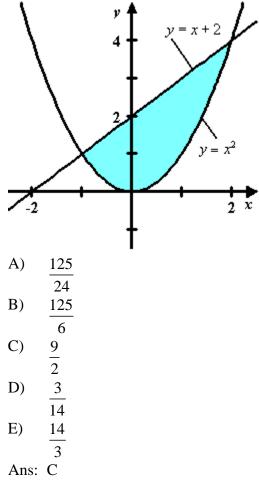
©2013 Cengage Learning. All Rights Reserved. Page 939

STUDENTS-HUB.com


Harshbarger/Reynolds, Mathematical Applications for the Management, Life, and Social Sciences, 10e 49. Find the area of the shaded region. Round to the nearest hundredth if necessary.

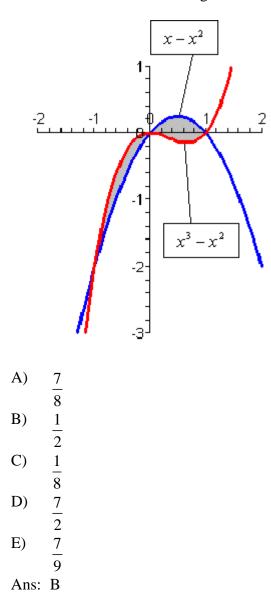
©2013 Cengage Learning. All Rights Reserved. Page 940

STUDENTS-HUB.com


Harshbarger/Reynolds, Mathematical Applications for the Management, Life, and Social Sciences, 10e 50. Find the area of the shaded region.

©2013 Cengage Learning. All Rights Reserved. Page 941

STUDENTS-HUB.com


51. Find the area of the shaded region for the graph given below.

©2013 Cengage Learning. All Rights Reserved. Page 942

Harshbarger/Reynolds, Mathematical Applications for the Management, Life, and Social Sciences, 10e 52. Find the area of the shaded region.

©2013 Cengage Learning. All Rights Reserved. Page 943

STUDENTS-HUB.com

53. Find the area of the region enclosed by $\frac{1}{1}$

f(x)	$= 3x^2, g(x) = -\frac{1}{10}(10+x), x = 0, \text{ and } x = 3.$
A)	289
	10
B)	609
	20
C)	601
	$\overline{20}$
D)	569
	20
E)	309
	10
Ans:	B

54. Equations are given whose graphs enclose a region. Find the area of the region.

y = x	$x^2 - 2x + 1;$	$y = 9x^2 - 20x - 11;$	x = 1;	x = 2
A)				
	3			
B)	122			
	9			
C)	122			
	5			
D)	122			
	7			
E)	61			
	6			
Ans:	А			

55. Equations are given whose graphs enclose a region. Find the area of the region.

g(x)	$=2x^2-14x;$	$h(x) = x^2 - 48$
A)	$\frac{4}{3}$	
	3	
B)	8	
	13	
C)	$\frac{2}{3}$	
	3	
D)	4	
	13	
E)	$\frac{4}{9}$	
	9	
Ans:	А	

©2013 Cengage Learning. All Rights Reserved. Page 944

STUDENTS-HUB.com

Harshbarger/Reynolds, Mathematical Applications for the Management, Life, and Social Sciences, 10e 56. Equations are given whose graphs enclose a region. Find the area of the region.

f(x)	$= x^{3};$	$g(x) = 7x^2 - 12x$
A)	71	
	2	
B)	142	
	3	
C)	<u>71</u>	
	3	
D)	71	
	6	
E)	71	
	9	
Ans:	D	

57.

⁷. Find the area of the region enclosed by the graphs of $f(x) = \frac{17}{x}$ and g(x) = 18 - x.

A) 144-17 ln18
B) 144-18 ln18
C) 144-17 ln17
D) 162-17 ln17
E) 162-18 ln18
Ans: C

58. Find the area of the region bounded by $y = \sqrt{x+192}$, x = -192, and y = 14.

A)	2744
	5
B)	2747
	5
C)	2743
D)	3 2746
E)	3 2744
L)	$\frac{2744}{3}$
Ans:	E

59. Find the average value of the function $f(x) = 10 - x^2$ over [0,3].

A) 21
B) 27
C) 13
D) 7
E) 1
Ans: D

©2013 Cengage Learning. All Rights Reserved. Page 945

STUDENTS-HUB.com

Harshbarger/Reynolds, Mathematical Applications for the Management, Life, and Social Sciences, 10e 60. Find the average value of the given function over the given interval.

f(x)	$=\frac{1}{6}x^{3}-7$	over	[-2,3
A)	31		
	4		
B)	155		
	$-\overline{24}$		
C)	155		
	48		
D)	155		
	72		
E)	155		
	4		
Ans:	B		

61. Find the average value of the function $f(x) = \sqrt{x} - 2$ over [1,16].

]

A)	$-\frac{6}{5}$
B)	$\frac{6}{5}$
C)	$\frac{4}{5}$
D)	$-\frac{4}{5}$
E)	$\frac{5}{41}$
Ans:	45 C

©2013 Cengage Learning. All Rights Reserved. Page 946

62. For a certain product, the total revenue is given by $R(x) = \frac{x^2 + 2}{2}$, and the total cost is

given by $C(x) = \frac{x^2}{4}$. Write an integral that gives the average profit for the product over the interval from 3 to 9.

A)
$$AP = \frac{1}{6} \int_{3}^{9} \left(\frac{x^2}{4} - \frac{x^2 + 2}{2} \right) dx$$

B)
$$AP = \frac{1}{6} \int_{3}^{9} \left(\frac{x^2 + 2}{2} - \frac{x^2}{4} \right) dx$$

C)
$$AP = \int_{3}^{9} \left(\frac{x^2}{4} - \frac{x^2 + 2}{2}\right) dx$$

D)
$$AP = \int_{3}^{9} \left(\frac{x^2 + 2}{2} - \frac{x^2}{4} \right) dx$$

E)
$$AP = 27 \int_{3}^{9} \left(\frac{x^2}{4} - \frac{x^2 + 2}{2} \right) dx$$

Ans: B

- 63. The cost of producing x units of a certain item is $C(x) = x^2 + 770x + 3100$. Find the average value of the cost function C(x) over the interval from 0 to 1000. Round answer to nearest penny.
 - A) \$721,433.33
 - B) \$2,164,300.00
 - C) \$424,372.55
 - D) \$2,885,733.33
 - E) \$1,659,296.67

Ans: A

64. Suppose the number of daily sales of a product was found to be given by

 $S = 140xe^{-x^2} + 140$, x days after the start of an advertising campaign for this product. Find the average daily sales during the first 20 days of the campaign—that is, from x = 0 to x = 20. Round your answer to the nearest dollar.

- A) \$144
 B) \$140
 C) \$137
 D) \$287
- E) \$273
- Ans: A

©2013 Cengage Learning. All Rights Reserved. Page 947

65. The demand function for a certain product is given by $p = 400 + \frac{1500}{q+1}$, where p is the

price and q is the number of units demanded. Find the average price as demand ranges from 22 to 96 units. Round your answer to the nearest penny.

- A) \$579.38
 B) \$291.95
 C) \$1244.60
 D) \$429.17
 E) \$987.10
 Ans: D
- 66. Assume that the tax burden per capita (in dollars) for selected years from 1950 to 1992 can be modeled by $T(t) = 257.8e^{0.065t}$, where t = 0 represents 1950. If the model remains valid, find the predicted average federal tax burden per capita from 1990 to

2000. Round your answer to the nearest dollar.

- A) \$4444 average federal tax per capita
- B) \$4889 average federal tax per capita
- C) \$9365 average federal tax per capita
- D) \$10,405 average federal tax per capita
- E) \$5432 average federal tax per capita
- Ans: B
- 67. Suppose that the income from a slot machine in a casino flows continuously at a rate of $f(t) = 290e^{0.15t}$, where *t* is the time in hours since the casino opened. The total income during the first 13 hours is given by $\int_{0}^{13} 290e^{0.15t} dt$. Find the average income over the

first 13 hours.

- A) \$582.19B) \$500.88
- C) \$1,165.55
- D) \$896.57
- E) \$1,524.18
- Ans: D
- 68. A drug manufacturer has developed a time-release capsule with the number of

milligrams of the drug in the bloodstream given by $S = 30x^{18/7} - 210x^{11/7} + 490x^{4/7}$, where x is in hours and $0 \le x \le 3$. Find the average number of milligrams of the drug in the bloodstream for the first 3 hours after a capsule is taken. Round your answer to the nearest milligram.

 A)
 400 mg

 B)
 305 mg

 C)
 267 mg

 D)
 200 mg

 E)
 229 mg

 Ans:
 C

STUDENTS-HUB.com

©2013 Cengage Learning. All Rights Reserved. Page 948

69. The Lorenz curve for the income distribution in a certain country in 2005 is given by

 $y = x^{2.2084}$. Find the Gini coefficient of income for 2005 for this country.

A) 0.3766

- B) 0.4896
- C) 0.5913
- D) 0.2216 0.2811
- E)
- Ans: A
- 70. In an effort to make the distribution of income more nearly equal, the government of a country passes a tax law that changes the Lorenz curve from $y = 0.94x^{2.16}$ for 2004 to

 $y = 0.25x^{1.94} + 0.68x$ for 2005. Find the Gini coefficient of income for both years.

A)	2004:	0.307692
	2005:	0.111878
B)	2004:	0.405063
	2005:	0.149932
C)	2004:	0.248062
	2005:	0.089231
D)	2004:	0.207792
	2005:	0.074209
E)	2004:	0.592593
	2005:	0.227216
Ans:	В	

- 71. Suppose the Gini coefficient of income for a certain country is 6/7. If the Lorenz curve for this country is $L(x) = \frac{1}{19}x + \frac{18}{19}x^p$, find the value of *p*.
 - A) 20
 - B) 21
 - C) 19
 - D) 18 E) 22
 - Ans: A
- 72. Suppose that the Carter Car Service franchise finds that the income generated by its stores can be modeled by assuming that the income is a continuous stream with a monthly rate of flow at time t given by $f(t) = 12,000e^{0.05t}$ (dollars per month). Find the total income from a Carter Car Service store for years 3 through 7 of operation and round to the nearest penny.
 - \$8,412,025.47 A)
 - B) \$19,937,341.56
 - C) \$9,152,706.95
 - D) \$14,552,804.06
 - E) \$10,248,453.56
 - Ans: D

©2013 Cengage Learning. All Rights Reserved. Page 949

- 73. A small brewery considers the output of its bottling machine as a continuous income stream with an annual rate of flow at time *t* given by $f(t) = 90e^{-0.1t}$ in thousands of dollars per year. Find the income from this stream for the next 30 years. Round your answer to the nearest dollar.
 - A) \$855,192B) \$859,456
 - C) \$845,690
 - D) \$864,694E) \$850,479
 - E) \$850,4 Ans: A
- 74. A franchise models the profit from its store as a continuous income stream with a monthly rate of flow at time *t* given by $f(t) = 3000e^{0.004t}$ (dollars per month). When a new store opens, its manager is judged against the model, with special emphasis on the second half of the first year. Find the total profit for the second 6-month period (t = 6 to t = 12). Round your answer to the nearest dollar.
 - A) \$32,755
 B) \$28,160
 C) \$23,256
 D) \$18,660
 E) \$24,880
 Ans: D
- 75. The Carter Car Service franchise has a continuous income stream with a monthly rate of flow modeled by $f(t) = 7,000e^{0.04t}$ (dollars per month). Find the average flow of income over years 4 to 6.
 - A) \$58,510.65
 - B) \$50,414.83
 - C) \$138,676.08
 - D) \$80,159.59
 - E) \$56,450.41

Ans: D

76. A continuous income stream has an annual rate of flow at time *t* given by

 $f(t) = 12,000e^{0.07t}$ (dollars per year). Find the present value of this income stream for the next 11 years, if the money is worth 7% compounded continuously. Round to the nearest dollar.

- A) \$112,941
- B) \$255,360
- C) \$422,400
- D) \$349,440
- E) \$192,000

Ans: E

©2013 Cengage Learning. All Rights Reserved. Page 950

- 77. Suppose that a printing firm considers the production of its presses as a continuous income stream. If the annual rate of flow at time *t* is given by $f(t) = 89.5e^{-0.2(t+2)}$ in thousands of dollars per year, and if money is worth 6% compounded continuously, find the present value and future value of the presses over the next 10 years. Round your answer to the nearest dollar.
 - A) Present Value: \$252,444; Future Value: \$459,983
 - B) Present Value: \$213,607; Future Value: \$389,217
 - C) Present Value: \$173,555; Future Value: \$316,238
 - D) Present Value: \$228,425; Future Value: \$416,217
 - E) Present Value: \$187,480; Future Value: \$341,611
 - Ans: B
- 78. Suppose that a vending machine company is considering selling some of its machines. Suppose further that the income from these particular machines is a continuous stream with an annual rate of flow at time *t* given by $f(t) = 10,000e^{-0.6(t+2)}$. Find the present value and future value of the machines over the next 4 years if the money is worth 12% compounded continuously. Round answers to the nearest dollar.
 - A) PV = \$4,565FV = \$7,377
 - B) PV = \$4,565FV = \$6,381
 - C) PV = \$3,948FV = \$6,381
 - D) PV = \$3,948FV = \$7,377
 - E) PV = \$5,528FV = \$7,377
 - Ans: C
- 79. A 58-year-old couple are considering opening a business of their own. They will either purchase an established Gift and Card Shoppe or open a new Video Rental Palace. The Gift Shoppe has a continuous income stream with an annual rate of flow at time *t* given by G(t) = 20,000 (dollars per year) and the Video Palace has a continuous income

stream with a projected annual rate of flow at time t given by $V(t) = 21,600e^{0.08t}$

(dollars per year). The initial investment is the same for both businesses, and money is worth 10% compounded continuously. Find the present value of the Video Palace over the next 7 years (until the couple reach age 65). Round your answer to the nearest dollar. A) \$100,683

 A)
 \$100,085

 B)
 \$110,107

 C)
 \$159,685

 D)
 \$177,908

 E)
 \$141,093

 Ans:
 E

©2013 Cengage Learning. All Rights Reserved. Page 951

STUDENTS-HUB.com

- 80. A 58-year-old couple are considering opening a business of their own. They will either purchase an established Gift and Card Shoppe or open a new Video Rental Palace. The Gift Shoppe has a continuous income stream with an annual rate of flow at time *t* given by G(t) = 40,000 (dollars per year) and the Video Palace has a continuous income stream with a projected annual rate of flow at time *t* given by $V(t) = 20,600e^{0.08t}$ (dollars per year). The initial investment is the same for both businesses, and money is worth 10% compounded continuously. Determine which is the better buy by finding the present value of each business over the next 8 years (until the couple reach age 66). A) the Gift Shoppe B) the Video Palace
 - Ans: A
- 81. The demand function for a product is $p = 44 x^2$ where *p* is in millions of dollars and *x* is the number of thousands of units. If the equilibrium price is \$8 million, what is the consumer's surplus? Round your answer to the nearest million dollars.
 - A) 232 million dollars
 - B) 256 million dollars
 - C) 144 million dollars
 - D) 156 million dollars
 - E) 328 million dollars
 - Ans: C
- 82. The demand function for a product is p = 100 2x, where *p* is the number of dollars and *x* is the number of units. If the equilibrium price is \$20, what is the consumer's surplus?
 - A) \$1525
 - B) \$1600
 - C) \$1725
 - D) \$1570
 - E) \$1690
 - Ans: B
- 83. The demand function for a product is $p = \frac{120}{2 + x}$, where *p* is the number of dollars and *x* is the number of units. If the equilibrium quantity is \$8, what is the consumer's surplus?
 - A) \$46.25
 B) \$57.14
 C) \$97.13
 D) \$126.27
 E) \$233.12
 - Ans: C

©2013 Cengage Learning. All Rights Reserved. Page 952

- 84. The demand function for a certain product is $p = 81 x^2$ and the supply function is $p = x^2 + 4x + 11$ where p is in millions of dollars and x is the number of thousands of units. Find the equilibrium point (x, p) and the consumer's surplus there. Round your answer to the nearest million dollars, where applicable.
 - Equilibrium point: (5, 56); Consumer's surplus: 83 million dollars A)
 - B) Equilibrium point: (4, 56); Consumer's surplus: 164 million dollars
 - Equilibrium point: (11, 56); Consumer's surplus: 245 million dollars C)
 - Equilibrium point: (5, 11); Consumer's surplus: 220 million dollars D)
 - E) Equilibrium point: (4, 11); Consumer's surplus: 139 million dollars Ans: A

85. The demand function for a product is $p = 47 - x^2$ and the supply function is p = -x + 17, where p is the number of dollars and x is the number of units. Find the equilibrium point and the consumer's surplus there. Round to the nearest cent.

- A) \$110.77 \$144.00 B) C) \$244.80 D) \$302.40 \$172.80
- E)
- Ans: B

If the demand function for a product is $p = \frac{147}{(x+1)}$ and the supply function is 86.

p = 3 + 0.2x where p is in millions of dollars and x is the number of thousands of units. Find the consumer's surplus. Round your answer to the nearest million dollars.

- A) 391 million dollars
- B) 387 million dollars
- C) 377 million dollars
- 308 million dollars D)
- E) 350 million dollars

Ans: D

87.

The total cost function for a product is $C = \frac{3}{2}x^2 + 730$, and the demand function is

 $p = -\frac{1}{3}x^2 + 108$, where p is the number of dollars and x is the number of units. Find the consumer's surplus at the point where the product has maximum profit. Round to the nearest cent.

\$108.00 A) B) \$124.62 C) \$243.00 \$162.00 D) E) \$77.14 Ans: D

> ©2013 Cengage Learning. All Rights Reserved. Page 953

STUDENTS-HUB.com

- 88. The supply function for a good is $p = 0.4x^2 + 3x + 9$, where *p* is the number of dollars and *x* is the number of units. If the equilibrium price is \$35, what is the producer's surplus at the equilibrium price? Round to the nearest cent.
 - A) \$129.04
 - B) \$58.39
 - C) \$42.17
 - D) \$113.86
 - E) \$75.90
 - Ans: E
- 89. If the supply function for a commodity is $p = 7e^{x/4}$ where p is in millions of dollars and x is the number of thousands of units. What is the producer's surplus when 12 thousand units are sold? Round your answer to the nearest million dollars.
 - A) 13,224 million dollars
 - B) 1153 million dollars
 - C) 1146 million dollars
 - D) 17,867 million dollars
 - E) 1209 million dollars

Ans: B

^{90.} If the supply function for a commodity is $p = 30 + 90(x+1)^2$ where p is in millions of dollars and x is the number of thousands of units. What is the producer's surplus at x = 25? Round your answer to the nearest million dollars.

- A) 994,415 million dollars
- B) 1,516,641 million dollars
- C) 930,605 million dollars
- D) 1,113,000 million dollars
- E) 993,750 million dollars
- Ans: E
- 91. Find the producer's surplus for a product if its demand function is $p = 82 x^2$ and its supply function is p = 2x + 2 where p is in millions of dollars and x is the number of thousands of units. Round your answer to the nearest million dollars.
 - A) 85 million dollars
 - B) 72 million dollars
 - C) 64 million dollars
 - D) 56 million dollars
 - E) 80 million dollars

Ans: C

©2013 Cengage Learning. All Rights Reserved. Page 954

STUDENTS-HUB.com

^{92.} Find the producer's surplus for a product with demand function $p = \frac{156}{(x+1)}$ and supply

function p = 1 + 0.2x where p is in millions of dollars and x is the number of thousands of units. Round your answer to one decimal place.

- A) 87.5 million dollars
- B) 68.5 million dollars
- C) 60.0 million dollars
- D) 62.5 million dollars
- E) 63.5 million dollars

Ans: D

- 93. The demand function for a product is $p = 200 + 13x x^2$, and the supply function for it is $p = 116 + 15x + x^2$, where *p* is the number of dollars and *x* is the number of units. If the equilibrium price is \$242, what is the producer's surplus at the equilibrium price? Round to the nearest cent.
 - A) \$243.53
 - B) \$414.00 C) \$1.076 4
 - C) \$1,076.40
 - D) \$579.60E) \$1,242.00
 - E $\Im I, Z$

Ans: B

^{94.} Use an integral formula to evaluate $\int \frac{dx}{x(8x+3)} dx$.

A) $\frac{1}{8}\ln\left|\frac{x}{8x+3}\right| + C$ B) $\frac{1}{3}\ln\left|\frac{x}{8x+3}\right| + C$ C) $\frac{1}{3}\ln\left|\frac{1}{x(8x+3)}\right| + C$ D) $\frac{1}{8}\ln\left|\frac{1}{x(8x+3)}\right| + C$

E)
$$\frac{1}{11}\ln\left|\frac{x}{3}\right| + C$$

Ans: B

©2013 Cengage Learning. All Rights Reserved. Page 955

95. Use an integral formula to evaluate $\int \frac{dx}{x\sqrt{16-x^2}}$.

A)
$$-\frac{1}{16} \ln \left| \frac{16 + \sqrt{16 - x^2}}{x} \right| + C$$

B) $-\frac{1}{16} \ln \left| \frac{4 + \sqrt{4 - x^2}}{x} \right| + C$
C) $-\frac{1}{4} \ln \left| \frac{16 + \sqrt{4 - x^2}}{x} \right| + C$
D) $-\frac{1}{4} \ln \left| \frac{4 + \sqrt{16 - x^2}}{x} \right| + C$
E) $-\frac{1}{4} \ln \left| \frac{16 + \sqrt{16 - x^2}}{x} \right| + C$
Ans: D

96. Evaluate the integral $\int 3(11^x) dx$.

A)
$$\int 3(11^{x}) dx = \frac{11^{x}}{\ln 11} + C$$

B)
$$\int 3(11^{x}) dx = 3 \cdot 11 \ln (11^{x}) + C$$

C)
$$\int 3(11^{x}) dx = \frac{3 \cdot 11^{x}}{\ln 11} + C$$

D)
$$\int 3(11^{x}) dx = 3 \cdot 11^{x} \ln (11) + C$$

E)
$$\int 3(11^{x}) dx = \frac{3}{\ln 11^{x}} + C$$

Ans: C

©2013 Cengage Learning. All Rights Reserved. Page 956

97. Evaluate the integral $\int_{0}^{3} \frac{qdq}{4q+3}$. A) $\int_{0}^{3} \frac{qdq}{4q+3} = \frac{3}{4} - \frac{3}{16} \ln \frac{1}{5}$ B) $\int_{0}^{3} \frac{qdq}{4q+3} = \frac{3}{4} + \frac{3}{16} \ln \frac{1}{5}$ C) $\int_{0}^{3} \frac{qdq}{4q+3} = \frac{3}{4} + \frac{3}{16} \ln \frac{1}{5}$ D) $\int_{0}^{3} \frac{qdq}{4q+3} = \frac{3}{4} - \frac{9}{4} \ln \frac{1}{5}$ E) $\int_{0}^{3} \frac{qdq}{4q+3} = \frac{3}{4} + \frac{3}{16} \ln \frac{1}{4}$ Ans: B

98. Use an integral formula to evaluate
$$\int_{b}^{c} \frac{dq}{q\sqrt{a^{A}2+q^{2}}}$$
A)
$$-\frac{1}{a} \left[\ln \left(\frac{a + \text{leadcoeff}(2 * \text{bafac})\sqrt{\text{barad}}}{b} \right) - \ln \left(\frac{a + \text{leadcoeff}(3 * \text{cafac})\sqrt{\text{carad}}}{c} \right) \right]$$
B)
$$-\frac{1}{a} \left[\ln \left(\frac{a + \text{leadcoeff}(\text{cafac})\sqrt{\text{carad}}}{c} \right) - \ln \left(\frac{a + \text{leadcoeff}(\text{bafac})\sqrt{\text{barad}}}{b} \right) \right]$$
C)
$$-\frac{1}{a} \left[\ln \left(\frac{a + \text{leadcoeff}(\text{eafac})\sqrt{\text{earad}}}{b} \right) - \ln \left(\frac{a + \text{leadcoeff}(\text{dafac})\sqrt{\text{darad}}}{c} \right) \right]$$
D)
$$-\frac{1}{a} \left[\ln \left(\frac{a + \text{leadcoeff}(2 * \text{bafac})\sqrt{\text{barad}}}{b} \right) - \ln \left(\frac{a + \text{leadcoeff}(2 * \text{cafac})\sqrt{\text{carad}}}{c} \right) \right]$$
E)
$$-\frac{1}{a} \left[\ln \left(\frac{a + \text{leadcoeff}(2 * \text{bafac})\sqrt{\text{barad}}}{b} \right) - \ln \left(\frac{a + \text{leadcoeff}(2 * \text{cafac})\sqrt{\text{carad}}}{c} \right) \right]$$
Ans: B

©2013 Cengage Learning. All Rights Reserved. Page 957

99. Use an integral formula to evaluate $\int_0^1 \sqrt{x^2 + 144}$.

A)
$$\frac{\sqrt{145} + 145\ln(1+\sqrt{145}) - 145\ln(12)}{2}$$
B)
$$\frac{12 + 145\ln(1+\sqrt{145}) - 144\ln(12)}{2}$$

C)
$$\frac{\frac{2}{12+145\ln(1+\sqrt{145})-145\ln(12)}}{2}$$

D)
$$\frac{12 + 144 \ln \left(1 + \sqrt{145}\right) - 145 \ln \left(12\right)}{2}$$

E)
$$\frac{\sqrt{145} + 144 \ln \left(1 + \sqrt{145}\right) - 144 \ln \left(12\right)}{2}$$

Ans: E

100. Use an integral formula to evaluate
$$\int \frac{xdx}{(7x+5)^2}.$$
A) $\frac{1}{49} \left(\ln|7x+5| + \frac{5}{(7x+5)^2} \right) + C$
B) $\frac{1}{7} \left(\ln|7x+5| + \frac{5}{(7x+5)^2} \right) + C$
C) $\frac{1}{49} \left(\ln|7x+5| + \frac{5}{7x+5} \right) + C$
D) $\frac{1}{7} \left(\ln|7x+5| + \frac{5}{7x+5} \right) + C$
E) $\frac{1}{8} \left(\ln|7x+5| + \frac{5}{7x+5} \right) + C$
Ans: C

©2013 Cengage Learning. All Rights Reserved. Page 958

Harshbarger/Reynolds, Mathematical Applications for the Management, Life, and Social Sciences, 10e 101. Evaluate the integral $\int w\sqrt{16w+5} \, dw$.

A)
$$\int w\sqrt{16w+5} \, dw = \frac{(24w-5)(16w+5)^{3/2}}{960} + C$$

B)
$$\int w\sqrt{16w+5} \, dw = \frac{(24w+5)(16w+5)^{1/2}}{704} + C$$

C)
$$\int w\sqrt{16w+5} \, dw = \frac{(24w-5)(16w+15)^{5/2}}{768} + C$$

D)
$$\int w\sqrt{16w+5} \, dw = \frac{(24w-5)(5w-32)^{1/2}}{832} + C$$

E)
$$\int w\sqrt{16w+5} \, dw = \frac{(24w-5)(5w-32)^{1/2}}{832} + C$$

E)
$$\int w\sqrt{16w+5} \, dw = \frac{(24w-5)(5w+16)^{7/2}}{1088} + C$$

Ans: A

102. Use an integral formula to evaluate
$$\int \frac{dy}{\sqrt{81 + y^2}}$$
A) $\ln |y + \sqrt{y^2 + 81}| + C$
B) $\ln |y^2 + \sqrt{y^2 + 81}| + C$
C) $\ln |y + \sqrt{y + 9}| + C$
D) $\ln |y^2 + \sqrt{y + 9}| + C$
E) $\ln |y^2 + \sqrt{y + 81}| + C$
Ans: A

103. Use an integral formula to evaluate $\int x\sqrt{x^4 - 25} \, dx$.

A)
$$\frac{x\sqrt{x^{2}-25}-25\ln \left|x+\sqrt{x^{2}-25}\right|}{2}+C$$
B)
$$\frac{x\sqrt{x^{2}-5}-5\ln \left|x+\sqrt{x^{2}-5}\right|}{2}+C$$
C)
$$\frac{x^{2}\sqrt{x^{4}-5}-5\ln \left|x^{2}+\sqrt{x^{4}-5}\right|}{4}+C$$
D)
$$\frac{x^{2}\sqrt{x^{4}-25}-25\ln \left|x^{2}+\sqrt{x^{4}-25}\right|}{4}+C$$

E)
$$\frac{\frac{4}{x\sqrt{x^2-25}-25\ln|x+\sqrt{x^2-25}|}}{4}+C$$

Ans: D

©2013 Cengage Learning. All Rights Reserved. Page 959

STUDENTS-HUB.com

104. Evaluate the integral
$$\int \frac{11dx}{x\sqrt{49-4x^2}}$$
.
A) $\int \frac{11dx}{x\sqrt{49-4x^2}} = \ln |2x+\sqrt{4x^2-49}| + C$
B) $\int \frac{11dx}{x\sqrt{49-4x^2}} = \ln |2x+\sqrt{4x^2+49}| + C$
C) $\int \frac{11dx}{x\sqrt{49-4x^2}} = -\frac{11}{7}\ln \left|\frac{7+\sqrt{49-4x^2}}{2x}\right| + C$
D) $\int \frac{11dx}{x\sqrt{49-4x^2}} = \frac{1}{7}\ln \left|\frac{11+\sqrt{49+4x^2}}{2x}\right| + C$
E) $\int \frac{11dx}{x\sqrt{49-4x^2}} = \ln \left|\frac{11+\sqrt{49-4x^2}}{2x}\right| + C$
Ans: C

105. Evaluate the integral
$$\int \frac{dx}{\sqrt{49x^2 - 16}}$$
.
A)
$$\int \frac{dx}{\sqrt{49x^2 - 16}} = \frac{1}{4} \ln \left| 4x + \sqrt{49x^2 + 16} \right| + C$$
B)
$$\int \frac{dx}{\sqrt{49x^2 - 16}} = \frac{1}{7} \ln \left| 7x + \sqrt{49x^2 - 16} \right| + C$$
C)
$$\int \frac{dx}{\sqrt{49x^2 - 16}} = \frac{1}{7} \ln \left| 4x + \sqrt{49 - 16x^2} \right| + C$$
D)
$$\int \frac{dx}{\sqrt{49x^2 - 16}} = \ln \left| 7x + \sqrt{16 + 49x^2} \right| + C$$
E)
$$\int \frac{dx}{\sqrt{49x^2 - 16}} = \ln \left| 7x + \sqrt{16 - 49x^2} \right| + C$$
Ans: B

©2013 Cengage Learning. All Rights Reserved. Page 960

STUDENTS-HUB.com

106. Use an integral formula to evaluate $\int \frac{dx}{81-121x^2}$.

A)	$\frac{1}{18}\ln\left \frac{9-11x}{9+11x}\right +C$
B)	$\frac{1}{18}\ln\left \frac{9+11x}{9-11x}\right +C$
C)	$\frac{1}{99}\ln\left \frac{9-11x}{9+11x}\right +C$
D)	$\frac{1}{198}\ln\left \frac{9-11x}{9+11x}\right +C$
E)	$\frac{1}{198}\ln\left \frac{9+11x}{9-11x}\right + C$
Ans:	E

107. Use an integral formula to evaluate $\int_0^1 \frac{x dx}{7+2x}$.

A)
$$\frac{7+2\ln\left(\frac{9}{14}\right)}{49}$$
B)
$$\frac{2-7\ln\left(\frac{9}{7}\right)}{4}$$
C)
$$\frac{2-7\ln\left(\frac{9}{14}\right)}{4}$$
D)
$$\frac{7+2\ln\left(\frac{9}{7}\right)}{49}$$
E)
$$\frac{2-7\ln\left(\frac{9}{7}\right)}{49}$$
49

Ans: B

©2013 Cengage Learning. All Rights Reserved. Page 961

STUDENTS-HUB.com

108. Evaluate the integral $\int \frac{dx}{\sqrt{(5x+6)^2+1}}$. A) $\int \frac{dx}{\sqrt{(5x+6)^2+1}} = \frac{1}{6} \ln \left| 5x+6+\sqrt{(5x+6)^2-1} \right| + C$ B) $\int \frac{dx}{\sqrt{(5x+6)^2+1}} = \ln \left| 5x+6+\sqrt{(5x+6)^2+1} \right| + C$ C) $\int \frac{dx}{\sqrt{(5x+6)^2+1}} = \ln \left| 5x+6+\sqrt{(5x+6)^2-1} \right| + C$ D) $\int \frac{dx}{\sqrt{(5x+6)^2+1}} = \frac{1}{5} \ln \left| 5x+6+\sqrt{(5x+6)^2+1} \right| + C$ E) $\int \frac{dx}{\sqrt{(5x+6)^2+1}} = \frac{1}{6} \ln \left| 6x+5+\sqrt{(5x+6)^2+1} \right| + C$

Ans: D

109. Evaluate the integral
$$\int_{0}^{2} x \sqrt{(x^{2}+1)^{2}+16} \, dx$$
.
A) $\int_{0}^{2} x \sqrt{(x^{2}+1)^{2}+16} = \frac{1}{4} \Big[5\sqrt{41} + 16 \Big(5 + \sqrt{41} \Big) - \sqrt{17} - \Big(1 + \sqrt{17} \Big) \Big]$
B) $\int_{0}^{2} x \sqrt{(x^{2}+1)^{2}+16} = \frac{1}{4} \Big[5\sqrt{41} + 16 \ln \Big(5 + \sqrt{41} \Big) - \sqrt{17} - 16 \ln \Big(1 + \sqrt{17} \Big) \Big]$
C) $\int_{0}^{2} x \sqrt{(x^{2}+1)^{2}+16} = \frac{1}{4} \Big[5\sqrt{41} + 16 \ln \Big(5 - \sqrt{41} \Big) - \sqrt{17} - \Big(1 - \sqrt{17} \Big) \Big]$
D) $\int_{0}^{2} x \sqrt{(x^{2}+1)^{2}+16} = \frac{1}{2} \Big[17\sqrt{41} + 16 \ln \Big(5 + \sqrt{41} \Big) + \sqrt{17} + 16 \ln \Big(1 + \sqrt{17} \Big) \Big]$
E) $\int_{0}^{2} x \sqrt{(x^{2}+1)^{2}+16} = \frac{1}{2} \Big[17\sqrt{41} + 4 \Big(5 + \sqrt{41} \Big) + \sqrt{17} - 4 \Big(1 + \sqrt{17} \Big) \Big]$
Ans: B

110. Evaluate the integral $\int_1^e x^6 \ln x^7 dx$.

A)
$$\int_{1}^{e} x^{6} \ln x^{7} dx = 1 + 6e^{7}$$
B)
$$\int_{1}^{e} x^{6} \ln x^{7} dx = \frac{1}{7} (1 - 6e^{7})$$
C)
$$\int_{1}^{e} x^{6} \ln x^{7} dx = \frac{1}{7} (1 + 6e^{7})$$
D)
$$\int_{1}^{e} x^{6} \ln x^{7} dx = 1 + 7e^{6}$$
E)
$$\int_{1}^{e} x^{6} \ln x^{7} dx = \frac{1}{7} (1 + 7e^{6})$$
Ans: C

©2013 Cengage Learning. All Rights Reserved. Page 962

STUDENTS-HUB.com

- 111. Evaluate the integral $\int e^x \sqrt{3e^x + 7} \, dx$. A) $\int e^x \sqrt{3e^x + 7} = \frac{(3e^x + 7)^{1/2}}{6} + C$ B) $\int e^x \sqrt{3e^x + 7} = \frac{2(3e^x + 7)^{3/2}}{9} + C$ C) $\int e^x \sqrt{3e^x + 7} = \frac{(3e^x + 7)^{3/2}}{6} + C$ D) $\int e^x \sqrt{3e^x + 7} = \frac{(3e^x + 7)^{1/2}}{9} + C$ E) $\int e^x \sqrt{3e^x + 7} = \frac{(3e^x + 7)^{1/2}}{9} + C$ Ans: B
- 112. Use formulas or numerical integration with a graphing calculator or computer to evaluate the given definite integral. Round answer to 3 decimal places.

$\int_{3}^{9} \frac{1}{\sqrt{2}}$	$\frac{8x}{x^4 - 64} dx$
A)	6.695
B)	10.043
C)	17.073
D)	28.121
E)	34.147
Ans:	В

- 113. If the supply function for x units of a commodity is $p = 40 + 80 \ln (x+1)^2$ dollars, what is the producer's surplus at x = 21?
 - A) \$6304
 B) \$1508
 C) \$2865
 D) \$1194
 E) \$2092
 Ans: C

©2013 Cengage Learning. All Rights Reserved. Page 963

114. If the demand function for wheat is $p = \frac{1200}{\sqrt{x^2 + 3}} + 11$ dollars, where x is the number of

hundreds of bushels of wheat, estimate the consumer's surplus at x = 4, p = 286.3. Round answer to the nearest cent.

A) \$231.65
B) \$358.01
C) \$463.31
D) \$525.08
E) \$787.62
Ans: E

^{115.} Suppose the marginal cost for x units of a good is $\overline{MC} = \sqrt{x^2 + 36}$ (dollars per unit) and if the fixed cost is \$300, find the total cost function of the good?

A)
$$C(x) = \frac{1}{2} \left(x \sqrt{x^2 - 36} - 36 \ln \left(x + \sqrt{x^2 - 36} \right) \right) + 267.75$$

B) $C(x) = \ln \left(x + \sqrt{x^2 + 36} \right) + 267.75$
C) $C(x) = \frac{1}{2} \left(x \sqrt{x^2 + 36} + 36 \ln \left(x + \sqrt{x^2 + 36} \right) \right) + 267.75$
D) $C(x) = \ln \left(x - \sqrt{x^2 + 36} \right) + 267.75$
E) $C(x) = \frac{1}{2} \left(x \sqrt{x^2 - 36} + 6 \ln \left(x + \sqrt{x^2 - 36} \right) \right) + 267.75$
Ans: C

^{116.} Suppose the marginal cost for x units of a good is $\overline{MC} = \sqrt{x^2 + 16}$ (dollars per unit) and if the fixed cost is \$400. What is the total cost of producing 2 units of this good? Round your answer to the nearest dollar.

- A) C(2) = 389 dollars
- B) C(2) = 408 dollars
- C) C(2) = 411 dollar
- D) C(2) = 390 dollars
- E) C(2) = 438 dollars

Ans: B

©2013 Cengage Learning. All Rights Reserved. Page 964

117. Suppose that the demand function for an appliance is $p = \frac{200q + 200}{(q+3)^2}$ where q is the

number of units and p is in dollars. What is the consumer's surplus if the equilibrium price is \$18 and the equilibrium quantity is 17? Round your answer to the nearest dollar.

- A) \$17
 B) \$19
 C) \$323
 D) \$324
 E) \$18
- Ans: A
- 118. Suppose that when a new oil well is opened, its production is viewed as a continuous income stream with monthly rate of flow $f(t) = 30 \ln(t+1) 0.6t$, where t is time in months and f is in thousands of dollars per month. Find the total income over the next 30 years (360 months). Round your answer to one decimal place.
 - A) 13,919.9 thousand dollars
 - B) 52,976.5 thousand dollars
 - C) 14,096.5 thousand dollars
 - D) 24,878.5 thousand dollars
 - E) 63,776.5 thousand dollars

Ans: C

119. Use integration by parts to evaluate $\int 8xe^{-9x}dx$.

A)
$$-\frac{(9x+1)(8e^{-9x})}{81} + C$$

B) $-\frac{e^{-9x}}{9} + C$
C) $-\frac{(8e^{-9x})}{81} + C$
D) $-\frac{x(8e^{-9x})}{9} + C$
E) $\frac{e^{-9x}}{9} + C$

Ans: A

©2013 Cengage Learning. All Rights Reserved. Page 965

STUDENTS-HUB.com

Harshbarger/Reynolds, Mathematical Applications for the Management, Life, and Social Sciences, 10e 120. Use integration by parts to evaluate $\int 9x^6 \ln x \, dx$.

A)
$$\frac{-9x^{7}(7\ln(x)+1)}{7}+C$$
B)
$$\frac{9x^{6}(6\ln(x)+1)}{6}+C$$
C)
$$\frac{9x^{7}(7\ln(x)+1)}{49}+C$$
D)
$$\frac{9x^{6}(6\ln(x)-1)}{36}+C$$
E)
$$\frac{9x^{7}(7\ln(x)-1)}{49}+C$$
Ans: E

121. Use integration by parts to evaluate the integral $\int_{19}^{21} q \sqrt{q-19} \, dq$.

A)
$$\frac{136\sqrt{3}}{5}$$

B) $\frac{404\sqrt{2}}{15}$
C) $\frac{404\sqrt{2}}{13}$
D) $\frac{404\sqrt{3}}{15}$
E) $\frac{410\sqrt{2}}{13}$
Ans: B

122. Use integration by parts to evaluate $\int_0^2 y(2-y)^{3/2} dy$.

A)	$32\sqrt{34}$
	35
B)	$32\sqrt{2}$
	35
C)	16√34
	35
D)	$24\sqrt{2}$
	35
E)	$24\sqrt{34}$
	35
Ans:	В

©2013 Cengage Learning. All Rights Reserved. Page 966

STUDENTS-HUB.com

123.

Use integration by parts to evaluate the integral $\int \frac{11\ln(11x)dx}{x^2}$.

A)
$$-\frac{11}{x}\ln 11x + \frac{11}{x} + C$$

B) $\frac{16}{x}\ln 16x - \frac{16}{x} + C$
C) $-\frac{16}{x}\ln 16x + \frac{16}{x} + C$
D) $\frac{11}{x}\ln 11x - \frac{16}{x} + C$
E) $-\frac{11}{x}\ln 11x - \frac{11}{x} + C$
Ans: E

124. Use integration by parts to evaluate the integral $\int 9x \ln(9x) dx$.

A)
$$\frac{9}{4}x^{2}[2\ln(9x)+5]+C$$

B) $\frac{9}{2}x^{2}[2\ln(9x)-3]+C$
C) $\frac{9}{4}x^{2}[2\ln(9x)-1]+C$
D) $\frac{9}{4}x^{2}[2\ln(9x)+3]+C$
E) $\frac{9}{2}x^{2}[2\ln(9x)+5]+C$
Ans: C

125.

Use integration by parts to evaluate
$$\int \frac{x^3}{\sqrt{25-x^2}} dx$$
.
A) $-\frac{1}{2}(25+x^2)\sqrt{5-x^2} + C$
B) $-\frac{1}{2}(50+x^2)\sqrt{5-x^2} + C$
C) $-\frac{1}{2}(25+x^2)\sqrt{25-x^2} + C$
D) $-\frac{1}{3}(25+x^2)\sqrt{5-x^2} + C$
E) $-\frac{1}{3}(50+x^2)\sqrt{25-x^2} + C$
Ans: E

©2013 Cengage Learning. All Rights Reserved. Page 967

126. Use integration by parts to evaluate $\int x^2 e^{-7x} dx$. Note that evaluation may require integration by parts more than once.

A)
$$-\frac{(2+14x+49x^{2})e^{-7x}}{343}+C$$

B)
$$\frac{(1+14x-7x^{2})e^{-7x}}{49}+C$$

C)
$$-\frac{(2+21x+49x^{2})e^{-7x}}{343}+C$$

D)
$$\frac{(2-7x+49x^{2})e^{-7x}}{49}+C$$

E)
$$-\frac{(1-7x+49x^{2})e^{-7x}}{-343}+C$$

Ans: A

127. Use integration by parts to evaluate the integral $\int_0^4 5x^3 e^{x^2}$. Note that evaluation may require integration by parts more than once.

A)
$$\frac{75e^{16} + 5}{2}$$

B) $\frac{75e^{4} + 5}{2}$
C) $\frac{85e^{4} + 7}{2}$
D) $\frac{85e^{16} + 7}{2}$
E) $\frac{75e^{4} + 7}{2}$
Ans: A

©2013 Cengage Learning. All Rights Reserved. Page 968

^{128.} Use integration by parts to evaluate the integral $\int 2e^{2x}\sqrt{e^x+9}$. Note that evaluation may require integration by parts more than once.

A)
$$\frac{4}{15} (e^{x} + 12)^{5/2} (3e^{x} - 18) + C$$

B)
$$\frac{4}{15} (e^{x} + 9)^{5/2} (3e^{x} + 18) + C$$

C)
$$\frac{4}{15} (e^{x} + 12)^{3/2} (3e^{x} - 18) + C$$

D)
$$\frac{4}{15} (e^{x} + 9)^{3/2} (3e^{x} - 18) + C$$

E)
$$\frac{4}{15} (e^{x} + 12)^{3/2} (2e^{x} + 18) + C$$

L)
$$\frac{4}{15}(e^x+12)^{3/2}(3e^x+18)+C$$

Ans: D

^{129.} Use integration by parts to evaluate $\int_{1}^{2} (\ln x)^{2} dx$. Note that evaluation may require integration by parts more than once.

A)
$$4(\ln 2)^2 - 8\ln 2 + 6$$

- B) $4(\ln 4)^2 8\ln 4 + 6$
- C) $3(\ln 2)^2 6\ln 2 + 4$
- D) $2(\ln 2)^2 4\ln 2 + 2$

E)
$$3(\ln 3)^2 - 6\ln 3 + 4$$

Ans: D

©2013 Cengage Learning. All Rights Reserved. Page 969

130. Determine the most appropriate method or integral formula for evaluating the given integral. Next, evaluate the integral.

I. Integration by parts
II.
$$\int e^{u} du$$

III. $\int \frac{du}{u}$
IV. $\int u^{n} du$
 $\int \frac{x^{2}e^{x^{3}}}{5+e^{x^{3}}} dx$
A)
I. Integration by parts; $\frac{(-6-30x-75x^{2}+125x^{3})e^{x^{3}}}{625}+C$
B)
II. $\int e^{u} du$; $e^{x^{3}}+C$
C)
III. $\int \frac{du}{u}$; $\frac{\ln(5+e^{x^{3}})}{3}+C$
D)
IV. $\int u^{n} du$; $\frac{5+e^{x^{3}}}{3}+C$
E)
part integrable by easy of the technicipus we have studied

E) not integrable by any of the techniques we have studiedAns: C

^{131.} Evaluate the integral $\int 4e^x \sqrt{2e^x + 2}$.

A)
$$\frac{8}{3}\sqrt{2e^{x}+5} + C$$

B) $\frac{16}{3}(2e^{x}+2)^{3/2} + C$
C) $\frac{16}{3}\sqrt{2e^{x}+2} + C$
D) $\frac{16}{3}(2e^{x}+5)^{3/2} + C$
E) $\frac{8}{3}(2e^{x}+2)^{3/2} + C$
Ans: B

©2013 Cengage Learning. All Rights Reserved. Page 970

STUDENTS-HUB.com

132. Determine the most appropriate method or integral formula for evaluating the given integral. Next, evaluate the integral.

I. Integration by parts
II.
$$\int e^{u} du$$

III. $\int \frac{du}{u}$
IV. $\int u^{n} du$
 $\int x^{3}e^{-6x} dx$
A)
I. Integration by parts; $\frac{\left(-1-6x-18x^{2}-36x^{3}\right)e^{-6x}}{216}+C$
B)
II. $\int e^{u} du$; $e^{-6x}+C$
C)
III. $\int \frac{du}{u}$; $\ln\left(-6+e^{-6x}\right)+C$
D)
IV. $\int u^{n} du - \frac{-6+e^{-6x}}{6}+C$
E) not integrable by any of the techniques we have studied
Ans: A

133. Determine the most appropriate method or integral formula for evaluating the given integral. Next, evaluate the integral.

I. Integration by parts
II.
$$\int e^{u} du$$

III. $\int \frac{du}{u}$
IV. $\int u^{n} du$
 $\int x^{4} e^{x^{5}} dx$
A)
I. Integration by parts; $\frac{(-6-54x-243x^{2}+729x^{3})e^{x^{5}}}{6561}+C$
B)
II. $\int e^{u} du$; $\frac{e^{x^{5}}}{5}+C$
C)
III. $\int \frac{du}{u}$; $\ln(9+e^{x^{5}})+C$
D)
IV. $\int u^{n} du$; $\frac{9+e^{x^{5}}}{5}+C$
E) not integrable by any of the techniques we have studied
Ans: B

©2013 Cengage Learning. All Rights Reserved. Page 971

STUDENTS-HUB.com

134. If the supply function for x units of a commodity is $p = 26 + 78 \ln (2x+1)^2$ dollars,

what is the producer's surplus at x = 30? Round your answer to two decimal places.

A) \$4359.35
B) \$3250.17
C) \$31,293.24
D) \$3406.17
E) \$31,449.24
Ans: A

135. If the marginal cost function for x units of a product is $\overline{MC} = 5 + 8 \ln (x+1)$ dollars per unit, and if the fixed cost is \$100, find the total cost function.

- A) $-3x + 5\ln(x+1) + 100$
- B) $3x+8(x+1)\ln(x+1)+40$
- C) $-3x+8(x+1)\ln(x+1)+100$
- D) $-3x+5(x+1)\ln(x+1)+40$
- E) $3x + 5(x+1)\ln(x+1) + 100$

Ans: C

136. Suppose that the profit from a machine's production can be considered as a continuous income stream with annual rate of flow at time t given by f(t) = 11,000 - 500t (dollars

per year). If money is worth 20%, compounded continuously, find the present value of this stream over the next 5 years. Round your answer to the nearest dollar.

- A) \$26,874B) \$39,367
- C) \$31,464
- D) \$27,785
- E) \$34,548
- Ans: C

137. Suppose the Lorenz curve for the distribution of income of a certain country is given by $y = 7xe^{x-2.94591}$. Find the Gini coefficient of income. Round your answer to three

decimal places.
A) 2.632
B) 2.896
C) 4.264
D) 5.632
E) 0.264
Ans: E

©2013 Cengage Learning. All Rights Reserved. Page 972

- 138. Suppose the income from an Internet access business is a continuous income stream with annual rate of flow given by $f(t) = 150te^{-0.5t}$ in thousands of dollars per year. Find the total income over the next 20 years.
 - A) $600 \frac{7,600}{e^{11}}$ thousand dollars B) $600 + \frac{6,600}{e^{12}}$ thousand dollars C) $600 - \frac{6,600}{e^{10}}$ thousand dollars D) $1,600 - \frac{7,600}{e^{10}}$ thousand dollars E) $1,600 + \frac{6,600}{e^{11}}$ thousand dollars Ans: C
- 139. With data for 1990 to 2002, the total receipts for world tourism (in billions of dollars per year) can be modeled by the function $R(t) = -53.846 + 194.7 \ln t$ where t = 0 represents 1985. Find the predicted total receipts for world tourism for the decade from 2013 to 2023. Round your answer to one decimal place.
 - A) \$4002.3 billion
 - B) \$18,479.5 billion
 - C) \$6261.7 billion
 - D) \$11,463.6 billion
 - E) \$14,938.3 billion
 - Ans: C
- 140. With the data for selected years from 1920 to 2007, the life span of individuals in a country can be modeled by $L(x) = 13.96 + 15.32 \ln x$ where x = 0 represents 1900. Find the predicted average life span from 2040 to 2055. Round your answer to the nearest year.
 - A) 128.58 years
 - B) 146.66 years
 - C) 90.46 years
 - D) 289.42 years
 - E) 50.19 years

Ans: C

©2013 Cengage Learning. All Rights Reserved. Page 973

Harshbarger/Reynolds, Mathematical Applications for the Management, Life, and Social Sciences, 10e 141. Evaluate the improper integral if it converges, or state that it diverges.

$\int_{1}^{\infty} \frac{1}{x^{3}}$	-dx
A)	1
	$\overline{4}$
B)	4
C)	3
D)	1
	$\overline{2}$
E)	diverges
Ans:	D

142. Evaluate the integral $\int_{13}^{\infty} \frac{dx}{(x-9)^3}$. A) $-\frac{3}{256}$ B) $\frac{3}{256}$ C) $\frac{1}{32}$ D) $-\frac{1}{32}$ E) integral diverges Ans: C

143. Evaluate the improper integral if it converges, or state that it diverges.

$$\int_{1}^{\infty} \frac{1}{\sqrt[4]{x}} dx$$
A) $\sqrt[4]{5}$
B) 1
C) 4
D) 5
E) diverges
Ans: E

©2013 Cengage Learning. All Rights Reserved. Page 974

STUDENTS-HUB.com

Harshbarger/Reynolds, Mathematical Applications for the Management, Life, and Social Sciences, 10e 144. Evaluate the improper integral if it converges, or state that it diverges.

$$\int_{1}^{\infty} x^{6} e^{x^{7}} dx$$
A) e^{7}
B) $\frac{e^{7}}{6}$
C) e^{6}
D) $\frac{e^{7}}{7}$
E) diverges
Ans: E

145. Evaluate the improper integral if it converges, or state that it diverges.

$$\int_{-\infty}^{-2} \frac{x}{\sqrt[11]{x^2 - 1}} dx$$

A) $\sqrt[11]{x^2 - 1}$
B) $11\ln(5)$
C) $11\ln(3)$
D) $\sqrt[11]{3}$
E) diverges
Ans: E

146. Evaluate the integral $\int_{-\infty}^{2} 4x^2 e^{-x^3} dx$.

A) 0
B)
$$-\frac{1}{3}$$

C) $\frac{1}{3}$
D) $\frac{e^{-2}}{3}$
E) integral diverges
Ans: E

©2013 Cengage Learning. All Rights Reserved. Page 975

Harshbarger/Reynolds, Mathematical Applications for the Management, Life, and Social Sciences, 10e 147. Evaluate the improper integral if it converges, or state that it diverges.

$$\int_{-\infty}^{0} \frac{x}{(x^{2}+1)^{12}} dx$$
A)
$$\frac{1}{11}$$
B)
$$-\frac{1}{22}$$
C)
$$-\frac{1}{33}$$
D)
$$-\frac{1}{11}$$
E) diverges
Ans: B

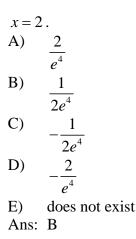
148. Evaluate the improper integral if it converges, or state that it diverges.

$$\int_{-\infty}^{-2} \frac{9x^7}{x^8 + 1} dx$$
A) ln 257
B) ln 8
C) 9 ln 8
D) 9 ln 257
E) diverges
Ans: E

149. Evaluate the improper integral if it converges, or state that it diverges.

$$\int_{-\infty}^{\infty} \frac{7x}{(x^2+1)^8} dx$$
A) 1
B) 0
C) $-\frac{7}{15}$
D) $\frac{7}{17}$
E) diverges
Ans: B

©2013 Cengage Learning. All Rights Reserved. Page 976


150. Evaluate the integral $\int_{-\infty}^{\infty} 4x^3 e^{-x^4} dx$. A) 0 B) $-\frac{1}{4}$ C) $\frac{1}{4}$ D) $\frac{e^{-3}}{4}$ E) integral diverges Ans: A

151. For what value of c does $\int_{3}^{\infty} \frac{c}{x^{2}} dx = 1$? A) 6

A) 6 B) 81 C) -3 D) 3 E) -81 Ans: D

152.

Find the area, if it exists, of the region under the graph of $y = \frac{x}{e^{x^2}}$ and to the right of

©2013 Cengage Learning. All Rights Reserved. Page 977

STUDENTS-HUB.com

- 153. Find the area, if it exists, of the region under the graph of y = f(x) and to the right of x = 1.
 - $f(x) = \frac{1}{x\sqrt[2]{x}}$ A) 4 5 B) 3 C) D) 2 E) does not exist Ans: D

154.

For what value of *a* is $f(x) = \begin{cases} ae^{-9t} & \text{if } t \ge 0 \\ 0 & \text{if } t < 0 \end{cases}$ a probability density function? A) 1 9 $\begin{array}{ccc}
B) & , \\
C) & -9 \\
D) & \frac{1}{9}
\end{array}$ B) $-\frac{1}{9}$ E) Ans: B 155.

For what value of c is the function $f(x) = \begin{cases} c/x^3 & \text{if } x \ge 50\\ 0 & \text{otherwise} \end{cases}$ a probability density function?

500 A) B) 250 C) 10,000 D) 1,000 5,000 E) Ans: E

156. Find the mean of the probability distribution if the probability density function is

f(x)	$=\begin{cases}\frac{450}{x^3}\\0\end{cases}$	if $x \ge 15$. otherwise
A)	6,750	
B)	2	
C)	30	
D)	15	
E)	45	
Ans:	С	

©2013 Cengage Learning. All Rights Reserved. Page 978

STUDENTS-HUB.com

157. In a manufacturing process involving several machines, the average down time t (in hours) for a machine that needs repair has the probability density function

 $f(t) = 0.8e^{-0.8t}$, $t \ge 0$. Find the probability that a failed machine's down time is 4 hours or more. Round your answer to three decimal places.

- A) 0.959
- B) 0.999
- C) 0.051
- D) 0.041
- E) 0.001
- Ans: D

158. The probability density function for the life span of an electronics part is

 $f(t) = 0.09e^{-0.09t}$, where t is the number of months in service. Find the probability that any given part of this type lasts longer than 20 months. Round your answer to three decimal places.

- A) 0.1653
 B) 0.8347
 C) 0.1511
 D) 0.8489
 E) 0.1753
 Ans: A
- 159. Suppose that the output of the machinery in a factory can be considered as a continuous income stream with an annual rate of flow at time *t* given by $f(t) = 530e^{-0.12t}$ in thousands of dollars per year. If the annual interest rate is 4% compounded continuously, find the capital value of the machinery.
 - A) \$4,968,750
 - B) \$1,325,000
 - C) \$2,208,333
 - D) \$7,287,500
 - E) \$3,312,500
 - Ans: E
- 160. A transmission repair firm that wants to offer a lifetime warranty on its repairs has determined that the probability density function for transmission failure after repair is $f(t) = 0.25e^{-0.25t}$, where t is the number of months after repair. What is the probability that a transmission chosen at random will last more than 4 months? Round to 3 decimal places.
 - A) 0.258
 - B) 0.184
 - C) 0.368
 - D) 0.405
 - E) 0.331
 - Ans: C

©2013 Cengage Learning. All Rights Reserved. Page 979

161. Suppose that the rate at which a nuclear power plant produces radioactive waste is proportional to the number of years it has been operating, according to f(t) = 257.64t, in pounds per year. Suppose also that the waste decays exponentially at a rate of 6% per year. Then the amount of radioactive waste that will accumulate in *b* years is given by $\int_{0}^{b} e^{-pt} dt dt dt$

$$\int_{0}^{\pi} 257.64t e^{-0.06(b-t)} dt$$
. Evaluate this integral.

A) $\frac{257.64}{0.0036} \left(0.06b - 1 + e^{-0.06b} \right)$

B)
$$\frac{257.64}{0.0036} \left(0.06b - 1 + e^{0.06b} \right)$$

C) $\frac{0.06}{257.64} \left(0.06b - 1 + e^{-0.06b} \right)$

D)
$$\frac{257.64}{0.06} (0.06b + e^{0.06b})$$

E) $0.0036 (0.06b + e^{-0.06b})$

$$\frac{1}{257.64} (0.06b + e^{-0.00b})$$
Ans: A

162. Suppose that the rate at which a nuclear power plant produces radioactive waste is proportional to the number of years it has been operating, according to f(t) = 601.4t, in pounds per year. Suppose also that the waste decays exponentially at a rate of 4% per year. Then the amount of radioactive waste that will accumulate in *b* years is given by

 $\int_{0}^{b} 601.4te^{-0.04(b-t)}dt$ and this integral evaluates to $\frac{601.4}{0.0016} (0.04b - 1 + e^{-0.04b})$. How much waste will accumulate in the long run? Take the limit as $b \to \infty$ in the integral evaluated. Round your answer to the nearest pound, if it exists.

- A) Approximately 375,875 pounds of waste will accumulate in the long run.
- B) Approximately 15,035 pounds of waste will accumulate in the long run.
- C) Approximately 360,840 pounds of waste will accumulate in the long run.
- D) 0 (No waste will accumulate in the long run.)
- E) ∞ (Waste is produced more rapidly than existing waste decays.)

Ans: E

163. For the interval $\begin{bmatrix} -5, 2 \end{bmatrix}$ and for n = 4, find *h*.

A)	$-\frac{3}{4}$
B)	$\frac{7}{4}$
C)	$\frac{1}{4}$
D)	$\frac{4}{-\frac{5}{4}}$
E)	$\frac{1}{2}$
Ans:	2 B

©2013 Cengage Learning. All Rights Reserved. Page 980

STUDENTS-HUB.com

164. For the interval [-7, 5] and n = 4, find the values of x_0, x_1, \dots, x_n .

A) $x_0 = -7, x_1 = -4, x_2 = -1, x_3 = 2$ B) $x_0 = -4, x_1 = -1, x_2 = 2, x_3 = 5$ C) $x_0 = -7, x_1 = -3, x_2 = 1, x_3 = 5$ D) $x_0 = -7, x_1 = -3, x_2 = -1, x_3 = 1, x_4 = 5$ E) $x_0 = -7, x_1 = -4, x_2 = -1, x_3 = 2, x_4 = 5$ Ans: E

^{165.} Use the Trapezoidal Rule to approximate $\int_{4}^{7} 3x^{3} dx$ with n = 10. Round your answer to two decimal places.

A) 1794.13
B) 2413.13
C) 1610.98
D) 3038.81
E) 1491.11
Ans: C

166. Use Simpson's Rule to approximate $\int_4^8 4x^4 dx$ with n = 8. Round your answer to two decimal places.

A) 29,896.50
B) 25,395.33
C) 25,544.50
D) 46,737.00
E) 22,792.33
Ans: B

167. Evaluate the integral $\int_{1}^{8} 2x^{3} dx$ by integration. Round your answer to two decimal

places. A) 63.00 B) 2,047.50 C) 378.00 D) 24,570.00 E) 1,200.50 Ans: B

168.

Use the Trapezoidal Rule to approximate $\int_{4}^{6} x^{\frac{1}{4}} dx$ with n = 6. Round your answer to two decimal places.

A) 3.48
B) 2.66
C) 4.48
D) 5.48
E) 2.99
Ans: E

©2013 Cengage Learning. All Rights Reserved. Page 981

STUDENTS-HUB.com

169.

Use Simpson's Rule to approximate $\int_{2}^{7} 3x^{\frac{1}{4}} dx$ with n = 10. Round your answer to two decimal places.

A) 23.72
B) 21.62
C) 21.61
D) 41.11
E) 20.20
Ans: B

170.

^{70.} Evaluate the integral $\int_{4}^{7} 5x^{\frac{1}{3}}$ by integration. Round your answer to two decimal places.

- A) 82.50
 B) 26.40
 C) 0.80
 D) 11.73
- E) 16.23
- Ans: B
- 171. Approximate the given integral by using the Trapezoidal Rule with n = 4. Round your answer to 3 decimal places.

	$\int^4 dx$
•	$\int_{2}^{2} \sqrt{4x^{3}+1}$
A)	0.208
B)	0.314
C)	0.831
D)	0.416
E)	0.157
Ans:	А

^{172.} Use Simpson's Rule to approximate $\int_0^2 e^{-x^2} dx$ with n = 6. Round your answer to three decimal places.

A) 1.051
B) 0.882
C) 0.881
D) 1.593
E) 0.768
Ans: B

©2013 Cengage Learning. All Rights Reserved. Page 982

- ^{173.} Use the Trapezoidal Rule to approximate $\int_0^7 \ln(5x^2 2x + 1)dx$ with n = 10. Round your answer to three decimal places.
 - A) 26.641
 - B) 24.707
 - C) 23.491
 - D) 47.562
 - E) 24.734
 - Ans: E

174. Use Simpson's Rule to approximate $\int_0^4 \ln(x^2 - 2x + 2) dx$ with n = 4. Round your answer to three decimal places.

- A) 3.607
 B) 3.800
 C) 2.996
 D) 6.103
 E) 5.298
 Ans: A
- 175. Approximate the given integral by Simpson's Rule with n=4. Round your answer to 3 decimal places.
 - $\int_{6}^{10} \ln (x^{2} + x + 2) dx$ A) 34.275
 B) 17.147
 C) 12.86
 D) 25.72
 E) 8.569
 Ans: B

^{176.} Use the table values and apply the Simpson's Rule to approximate $\int_{1.0}^{8.2} f(x) dx$ to one decimal place.

uccin	iai piace
x	f(x)
1.0	1.9
2.2	0.3
3.4	0.5
4.6	0.7
5.8	0.1
7.0	0.1
8.2	0.2
A)	2.5
B)	2.2
C)	1.8
D)	2.6
E)	3.0
Ans:	D

©2013 Cengage Learning. All Rights Reserved. Page 983

^{177.} Use the table of values to approximate $\int_0^{1.8} f(x) dx$. Use Simpson's Rule and round your answers to one decimal place.

x	f(x)
0	8.5
0.3	4.6
0.6	3.9
0.9	0
1.2	4.2
1.5	7.4
1.8	9.4
A)	49.3
B)	24.6
C)	16.4
D)	8.2
E)	2.7
Ans:	D

178. The production from a particular assembly line is considered a continuous income stream with annual rate of flow given by $f(t) = 90 \frac{e^{0.05t}}{t+1}$ (in thousands of dollars per year). Use Simpson's Rule with n = 4 to approximate the total income to 2 decimal places over the first 2 years, given by Total income $= \int_0^2 90 \frac{e^{0.05t}}{t+1} dt$.

- A) \$103,176.75
 B) \$237,306.51
 C) \$60,692.20
- D) \$319,847.91
- E) \$144,447.44
- Ans: A
- 179. Suppose that the demand for q units of a certain product at p per unit is given by $p = 940 + \frac{200}{q^2 + 1}$. Use Simpson's Rule with n = 4 to approximate the average price as demand ranges from 2 to 7 items to the nearest cent. A) 952.96
 - A) \$952.96
 B) \$953.65
 C) \$4,764.79
 D) \$4,768.23
 E) \$3,969.99
 Ans: A

©2013 Cengage Learning. All Rights Reserved. Page 984

STUDENTS-HUB.com

180. Consider the following supply and demand schedules, with p in dollars and x as the number of units.

Supply Schedule		Demand Schedule			
x		x			
р		р			
0	120	0	900		
10	250	10	800		
20	310	20	700		
30	440	30	580		
40	490	40	490		
50	590	50	410		

Use Simpson's Rule to approximate the producer's surplus at market equilibrium to 2 decimal places. Note that market equilibrium can be found from the tables.

- A) \$6,300.00
- B) \$23,766.67
 C) \$15,800.00
 D) \$27,700.00
 E) \$13,300.00
 Ans: A
- 181. Suppose the following table gives the supply and demand schedules, with p in dollars and x as the number of units. Use Simpson's Rule to approximate the consumer's surplus at market equilibrium. Note that market equilibrium can be found from the tables.

	Supply	Schedule	Demand	Schedule
	x	р	x	р
	0	120	0	2400
	10	260	10	1550
	20	380	20	1200
	30	450	30	940
	40	540	40	805
	50	630	50	731
	60	680	60	680
	70	720	70	650
A)	\$32,438			
B)	\$25,780			
C)	\$28,413			
D)	\$12,460			
E)	\$30,213			
Ans:	В			

©2013 Cengage Learning. All Rights Reserved. Page 985

182. Suppose that the rate of production of a product (in units per week) is measured at the end of each of the first 5 weeks after start-up, and the following data are obtained. Use the Trapezoidal Rule to approximate the total number of units produced in the first 5 weeks. Round your answer to two decimal places.

	Weeks t	0	1	2	3	4	5
	Rate $R(t)$	350.0	297.8	195.6	293.1	291.6	289.5
A)	1423.75 units						
B)	2074.05 units						
C)	611.75 units						
D)	1667.20 units						
E)	733.25 units						
Ans:	А						

183. The manufacturer of a medicine wants to test how a new 300-milligram capsule is released into the bloodstream. After a volunteer is given a capsule, blood samples are drawn every half-hour, and the number of milligrams of the drug in the bloodstream is calculated. The results obtained are as follows.

Time t	N(t)
(hr)	(mg)
0	0
.5	246.7
1	267.1
1.5	235.3
2	179
2.5	112.4

Use the trapezoidal rule to approximate the *average* number of milligrams in the bloodstream during the first $2\frac{1}{2}$ hours and round your answer to 2 decimal places.

A)	452.78	mg

- B) 196.86 mg
- C) 123.04 mg
- D) 255.92 mg
- E) 334.66 mg

Ans: B

©2013 Cengage Learning. All Rights Reserved. Page 986

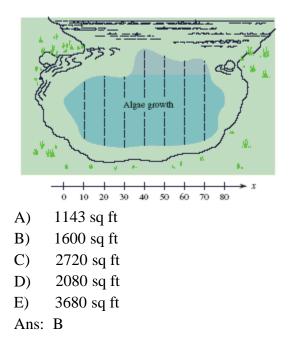
STUDENTS-HUB.com

184. The following income distribution data define points on Lorenz curves, where x represents the fraction of a certain country's population and L(x) the cumulative percent of income held by fraction x. Use this data and a numerical method to evaluate

 $2\int_{0}^{1} [x - L(x)] dx$, and hence to find the Gini coefficient of income for this country in

1995 and 2003. Round your answers to 3 decimal places.

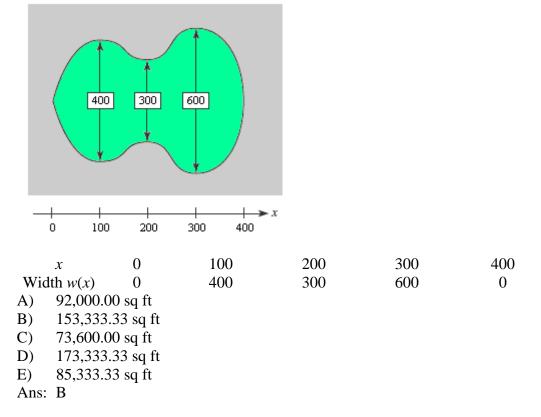
		x					
		0.0	0.2	0.4	0.6	0.8	1.0
	L(x) for						
	Americans						
	1995	0	3.8	12.8	29.3	53.5	100
	2003	0	2.6	11.2	26.7	50.4	100
A)	1995: 0.523						
	2003: 0.567						
B)	1995: 0.483						
	2003: 0.524						
C)	1995: 0.402						
	2003: 0.436						
D)	1995: 0.287						
	2003: 0.611						
E)	1995: 0.335						
	2003: 0.364						
Ans	: C						


©2013 Cengage Learning. All Rights Reserved. Page 987

STUDENTS-HUB.com

185. The presence of phosphates in certain waste products dumped into a lake promotes the growth of algae. Rampant growth of algae affects the oxygen supply in the water, so an environmental group wishes to estimate the area of algae growth. Group members measure across the algae growth (see the Figure) and obtain the following data (in feet).

x	Width w	x	Width w
0	0	50	28
10	14	60	20
20	20	70	22
30	20	80	0
40	32		


Use Simpson's Rule to approximate the area of the algae growth and round your answer to the nearest square foot.

©2013 Cengage Learning. All Rights Reserved. Page 988

STUDENTS-HUB.com

186. Suppose a land developer is planning to dig a small lake and build a group of homes around it. To estimate the cost of the project, the area of the lake must be calculated from the proposed measurements (in feet) given in the following figure and in the table. Use Simpson's Rule to approximate the area of the lake. Round your answer to two decimal places.

©2013 Cengage Learning. All Rights Reserved. Page 989