
12/21/2021

1

Chapter7: Arrays

Friday, May 01, 2015

Computer Science Department

Comp 132

Computer Science Department

2

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

2

Arrays - Introduction

• Until now: simple data types use a single
memory cell to store a variable.

• Sometimes, we need to group data items
together in main memory than to allocate an
individual memory cell for each variable.

• Example: A program that processes exam
scores for a class.

• Here, it would be easier to write if all the
scores were stored in one area of memory
and were able to be accessed as a group

4

Arrays
 An array is a data structure that contains a number of

values, or else elements, of the same type

 Each element can be accessed by its position within the
array

 An array may have any number of dimensions, but we’ll focus
on the simplest and most usual kinds
 the one-dimensional arrays and

 the two-dimensional arrays

 To introduce you in arrays, we’ll show you how to use arrays
of integers and floating point numbers

 We’ll discuss other types of arrays, as well as their close
relationship to pointers in later chapters

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

3

5

Declaring one-dimensional Array

 To declare an one-dimensional array, you must specify its
name (array_name), the number of its elements
(number_of_elements) and its data type (data_type), like
below:

data_type array_name[number_of_elements];

Remarks
 The number_of_elements (also called the length of the

array) is specified by an integer constant expression greater
than 0 enclosed in brackets []

 All the elements are the same type and

 An array may be of any type (e.g., int, float, char,...)

6

Array Declaration Examples

int a[10];

/*array a, with 10 elements of type int */

double arr[5];

/*array arr, with 5 elements of type double */

float x[2000];

/*array x, with 2000 elements of type float */

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

4

7

Remarks (1/3)

 The length of an array cannot change during the program
execution; It remains fixed

 If the length of the array is used several times in the
program, a good practice is to use a macro instead, so if you
ever need to change it, you just change the macro

E.g.,

#define SIZE 150

float arr[SIZE]; /* The compiler replaces SIZE with

150 and creates an array of 150 floats. */

8

Remarks (2/3)

 When declaring an array, the compiler allocates a memory
block to store the values of its elements

 These values are stored one after another in consecutive
memory locations

 Typically, this memory block is allocated in a region called
stack, and it is automatically released when the function
that declares the array terminates

 E.g., with the following statement the compiler allocates 40
bytes to store the values of the 10 integer elements

int arr[10];

 To find the size of the allocated memory, we use the sizeof
operator (e.g., sizeof(arr))

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

5

9

Remarks (3/3)

 The maximum memory size that can be allocated for an array
depends on the available memory in the stack

E.g., the following program may not run in your computer,

unless the available stack size is large enough to hold the values

#include <stdio.h>

int main(void)

{

double arr[300000];

return 0;

}

 When memory is scarce, don’t declare an array with more
length than needed, in order to avoid waste of memory

10

Accessing Array Elements

 To access an array element, we write the array’s name
followed by the element’s index enclosed in brackets []

 The index specifies the position of the element within the

array and it can be an integer constant, variable or expression

 In an array of n elements, the first one is stored in position
[0], the second one in position [1] and the last one in [n-1]

 E.g., the statement:

float grd[1000];

declares the array grd with 1000 elements of type float,
named grd[0], grd[1], ... grd[999]

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

6

11

Remarks (1/2)
 An array element can be used in the same way as an ordinary

variable, e.g.,

 A common error occurs when we want to copy one array into
another

E.g., it looks pretty natural to write b = a;

However, this plausible assignment is illegal

12

Example
 The following program declares an array of 5 integers,

assigns the values 10, 20, 30, 40, and 50 to its elements and
displays those greater than 20

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

7

13

Remarks

 C does not check if the index is out of the array bounds. It is
the programmer’s responsibility to assure that this won’t
happen. If it does, the behavior of the program is
unpredictable.

 E.g., consider the next program

 Since arr contains three elements, the valid indexes are from
0 to 2

 In the last iteration (i=3) the

statement arr[3] = 100; assigns

a value to a non-existing array

element

14

Array Initialization (1/3)

 Like ordinary variables, an array can be initialized when it is
declared, while uninitialized elements get the arbitrary values
of their memory locations, just like an uninitialized variable

1. In the most common form, the array initializer is a list of
values enclosed in braces {} and separated by commas (,)

 The list is allowed to end with a comma

 The values must be constant expressions, variables are not
allowed

For example, with the declaration:

int arr[4] = {10, 20, 30, 40};

the value of arr[0] is initialized to 10

the value of arr[1] is initialized to 20

the value of arr[2] is initialized to 30

and the value of the last element arr[3] is initialized to 40

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

8

15

Array Initialization (2/3)

2. If the initialization list is shorter than the number of the
elements, the remaining elements are set to 0.

 It is illegal to be either empty or longer

For example, with the declaration:

int arr[10] = {10, 20};

the value of arr[0] is initialized to 10

the value of arr[1] is initialized to 20

and the values of all the rest elements

(i.e., arr[2], arr[3], ... , arr[9]) are initialized to 0

16

Array Initialization (3/3)

3. If the array’s length is omitted, the compiler will create
an array with length equal to the number of the values in
the list

For example, with the declaration:

int arr[] = {10, 20, 30, 40};

the compiler creates an array of four integers and assigns
the values 10, 20, 30 and 40 to its elements

 Specifically:
the value of arr[0] is initialized to 10
the value of arr[1] is initialized to 20
the value of arr[2] is initialized to 30
the value of arr[3] is initialized to 40

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

9

Initialization Examples

int x [3]; x

int val[3]={1,2,3}; val

int y[3]={0}; y

int m[]={1,2,4}; m

1 2 3

int z[3]={7}; z

0 1 2

0 1 2

00 01 0 2

10 21 4 2

70 01 0 2

Index (subscript)

Example Array (1)

/* prints the days for each month */

#include <stdio.h>

#define MONTHS 12

int main(void)

{

int days[MONTHS] = {31,28,31,30,31,30,31,31,30,31,30,31};

int index;

for (index = 0; index < MONTHS; index++)

printf("Month %d has %2d days.\n", index +1,days[index]);

return 0;

}

Month 1 has 31 days.

Month 2 has 28 days.

Month 3 has 31 days.

Month 4 has 30 days.

Month 5 has 31 days.

Month 6 has 30 days.

Month 7 has 31 days.

Month 8 has 31 days.

Month 9 has 30 days.

Month 10 has 31 days.

Month 11 has 30 days.

Month 12 has 31 days.

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

10

19

Examples (2)
 What is the output of the following program ???

Output: 10
20

30

40

50

20

Examples (3)
 What would be the values of the array a in the following

program?

a[0] , a[1], and a[2] become 5, 3, and 1, respectively

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

11

21

Examples (4)
 What would be the values of the array arr in the following

program ???

The value of each element with “even index”, i.e.:

arr[0], arr[2], arr[4], arr[6], arr[8] become 0

The value of each element with “odd index”, i.e.:

arr[1], arr[3], arr[5], arr[7], arr[9] become 20

22

Examples (5)
 What would be the values of the array arr in the following

program ???

The value of each element with “even index”, i.e.:

arr[0], arr[2], arr[4], arr[6], arr[8] become 20

The value of each element with “odd index”, i.e.:

arr[1], arr[3], arr[5], arr[7], arr[9] become 0

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

12

23

Examples (6)
 Write a program that declares an array of 5 elements and

uses a for loop to assign the values 1.1, 1.2, 1.3, 1.4, and
1.5 to them. Then, the program should display the array’s
elements in reverse order.

24

Examples (7)
 Write a program that reads 10 integers, stores them in an

array and displays array elements in reverse order.

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

13

25

Examples (8)
 Write a program that reads 10 integers and stores each one

of them in an array, only if it has not already been stored
again. It means, that the array elements should have
different values between each other.

(continued... )

26

Examples (8)

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

14

27

Examples (9)
 What is the output of the following program ???

28

Examples (9)

Output:

Rating Frequency

1 2

2 2

3 2

4 2

5 5

6 11

7 5

8 7

9 1

10 3

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

15

O-29

Array Elements as Parameters

 Individual array elements can be used as
parameters, just like other simple variables.
Examples:

 printf(“Last two are %f, %f”, rain[5], rain[6]) ;

 draw_house(color[i], x[i], y[i], windows[i]) ;

 scanf(“%lf”, &rain[0]) ;

 swap(&rain[i], &rain[i+1]) ;

O-30

Whole Arrays as Parameters

 Array parameters (entire arrays) work
differently:

 An array is never copied (no call by value)
 The array name is always treated as a

pointer parameter
 The & and * operators are not used

 Programming issue: in C, arrays do not
contain information about their size, so the
size often needs to be passed as an
additional parameter.

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

16

O-31

Array Parameter Example

#define ARRAY_SIZE 200

 In the caller function (for example main):
int x[ARRAY_SIZE] ;
// here fill the array
int x_avg = average (x) ;

// function definition after main function
double average (int a[ARRAY_SIZE]) {
int i, total = 0 ;
for (i = 0 ; i < ARRAY_SIZE ; i = i + 1)

total = total + a[i] ;

return ((double) total / ARRAY_SIZE) ;
}

Fill and print array using function & reverse
#define size 5

void fillArray (int[],int);

void printArray (int[],int);

void printArrayInreverse(int[],int);

int main () {

int n[size];

fillArray(n,size);

printArray(n,size);

printArrayInreverse(n,size);

return 0;

}

void printArray (int myArray[],int s)

{

int i;

for (i=0;i<s;i++){

printf ("myArray[%d]= ",i);

printf("%d",myArray[i]);

printf("\n");

}

}
void printArrayInreverse(int

myArray[],int s)

{ int i;

for (i=s-1; i>=0; i--){

printf ("myArray[%d]= ",i);

printf("%d",myArray[i]);

printf("\n");

}

}

void fillArray (int myArray[],int s) {

int i;

for (i=0;i<s;i++)

{

printf ("myArray[%d]= ",i);

scanf("%d",&myArray[i]);

printf("\n");

}

}

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

17

Selection Sorting in descending order

Enter array of integers with size 3

3 4 5

array after sorted :5 4 3

#include <stdio.h>

#define Size 3

void Sort (int []);

int main()

{

int i;

int array[Size];

printf("Enter array size %d\n",Size);

for(i=0;i<Size;i++)

scanf("%d",&array[i]);

Sort (array);

printf("array after sorted :");

for(i=0;i<Size;i++)

printf("%d ",array[i]);

printf("\n");

return 0;

}

void Sort(int array[])

{

int i,j;

int temp;

for(i=0;i<Size-1;i++) // why Size-1?

{

for (j=i+1;j<Size;j++) { // why i+1?

if (array[i] < array[j]) {

temp=array[j];

array[j]=array[i];

array[i]=temp;

} // if statement

} // inner loop

} // outer loop

} // Sort function

34

Two-dimensional Arrays Declaration

 The form of a two-dimensional array resembles that of a
matrix in math; it is an array of elements of the same type
arranged in rows and columns

 To declare a two-dimensional array, we must specify its name
(array_name), its data type (data_type), and the number of
its rows (number_of_rows) and columns (number_of_columns),
like below:

data_type array_name[number_of_rows][number_of_columns];

 The number of its elements is equal to the product of rows
multiplied by columns

 E.g., the statement double arr[10][5]; declares the two-
dimensional array arr with 50 elements of type double

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

18

35

Accessing the Elements of a Two Dimensional Array

 To access an element, we write the name of the array followed by the
element’s row index and column index enclosed in double brackets [][]

 As with one-dimensional arrays, the indexing of rows and columns
starts from 0

 E.g., the statement: int a[3][4];

declares a two-dimensional array whose elements are the a[0][0],
a[0][1], …, a[2][3], as depicted in the figure below

36

Two-dimensional Arrays and Memory

 As with one-dimensional arrays, when a two-dimensional array
is declared, the compiler allocates a memory block in the
stack to store the values of its elements

 E.g., with the statement:

int array[10][5];

the compiler allocates a block of 200 bytes to store the
values of its 50 elements (since each array element requires 4
bytes)

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

19

37

Accessing two-dimensional Array Elements

 To access an element of a two-dimensional array we must

specify its row index and its column index

 E.g.,

 As with one-dimensional arrays, special care is required not
exceed the bounds of any dimension

Row, Column Indices

78 83 82

90 88 94

71 73 78

97 96
Abdallah

95
Karakra

89 93 90

Give both the ROW

and COLUMN

indices to pick out

an individual

element.

The fourth
student’s third test
score is at ROW 3,
COLUMN 2

0

1

2

3

4

0 1 2

int a[5][3];

a[3][2];

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

20

Example

int a[2][4];

a[1][0]=9;

a[0][3]=5;

a[0][1]=a[0][3]+ a[1][0];

14 5

9

0 1 2 3

0

1

40

Two-Dimensional Array Initialization (1/5)
 A two-dimensional array can be initialized when declared, just

like a one-dimensional array.

1. The initialization values are assigned in row order, starting
from row 0, then row 1, and so on, e.g.,

In this example:

the value of arr[0][0] is initialized to 10

the value of arr[0][1] is initialized to 20

the value of arr[0][2] is initialized to 30

the value of arr[1][0] is initialized to 40 and so on...

Alternatively, we can omit the inner braces and write:

since, once the compiler fills one row, it continues with the
next one

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

21

41

Two-Dimensional Array Initialization (2/5)

2. When using braces, if the initialization list is shorter than
the row’s elements, the compiler assigns the value 0 to
the remaining elements in that row. If it is larger it is
illegal.
E.g.,

In this example:
the value of arr[0][0] is initialized to 10

the value of arr[0][1] is initialized to 20

the value of arr[1][0] is initialized to 40

the value of arr[1][1] is initialized to 50

the value of arr[2][0] is initialized to 70

while, the values of arr[0][2], arr[1][2], arr[2][1]
and arr[2][2] are initialized to 0

42

Two-Dimensional Array Initialization (3/5)

3. If we omit the initialization of a row, the compiler
initializes its elements to 0

E.g.,

In this example:

The elements of the second and third row are set to 0

4. If the inner braces {} are omitted and the initialization
list is shorter than the number of the array elements, the
remaining elements are set to 0

E.g.,

In this example:

The value of arr[0][0] becomes 10, arr[0][1] becomes
20 and the remaining elements are all set to 0

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

22

43

Two-Dimensional Array Initialization (4/5)

5. When a two-dimensional array is declared, the number of
columns must be specified
However, the number of rows is optional
If it is not specified, the compiler will create a two-
dimensional array based the initialization list
E.g.,

In this example:
Since the array arr has three columns and the initialization
values are six, the compiler creates a two-dimensional array
of two rows and three columns

Specifically:
the value of arr[0][0] is initialized to 10
the value of arr[0][1] is initialized to 20
the value of arr[0][2] is initialized to 30
the value of arr[1][0] is initialized to 40 and so on...

44

Two-Dimensional Array Initialization (5/5)

6. If the initialization value is the same or it can be easily
produced a pair of nested loops is the typical choice

E.g.,

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

23

45

Linear Search
#include <stdio.h>

#define size 7

int main() {

int myArray[size]={29,99,87,34,97,54,66};

int target; // input - value searched for

int location; // index of the target

int found = 0;

int i=0;

printf("please enter a target: ");

scanf("%d",&target);

while (i<size) {

if (target==myArray[i]) {

location=i; //update location

found=1; //Matching target

break;

} // end if

i++;

} // end while

if (found==1)

printf("location is %d\n",location);

else

printf("Not found\n");

return 0;

} // main

Example: Finding the Maximum

Uploaded By: anonymousSTUDENTS-HUB.com

12/21/2021

24

47

Examples (I)
 Write a program that creates an identity 5×5 array and displays

its elements as an identity 5×5 matrix in algebra form.

Note: In math, an identity matrix has 1’s on the main diagonal’s
elements and 0’s everywhere else.

48

Examples (II)
 Write a program that reads

integers, stores them in an 2×4
array and displays the minimum
and the maximum value of each
row.

Uploaded By: anonymousSTUDENTS-HUB.com

