
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 10:  Virtual Memory

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 10:  Virtual Memory

 Background

 Demand Paging

 Copy-on-Write

 Page Replacement

 Allocation of Frames 

 Thrashing

 Memory-Mapped Files

 Allocating Kernel Memory

 Other Considerations

 Operating-System Examples

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

 Define virtual memory and describe its benefits.

 Illustrate how pages are loaded into memory using demand paging.

 Apply the FIFO, optimal, and  LRU page-replacement algorithms.

 Describe the working set of a process, and explain how it is related to 

program locality.

 Describe how Linux, Windows 10, and Solaris manage virtual memory.

 Design a virtual memory manager simulation in the C programming 

language.

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Background

 Code needs to be in memory to execute, but entire program rarely 

used

• Error code, unusual routines, large data structures

 Entire program code not needed at same time

 Consider ability to execute partially-loaded program

• Program no longer constrained by limits of physical memory

• Each program takes less memory while running -> more programs 

run at the same time

 Increased CPU utilization and throughput with no increase in 

response time or turnaround time

• Less I/O needed to load or swap programs into memory -> each 

user program runs faster

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual memory 

 Virtual memory – separation of user logical memory from physical 

memory

• Only part of the program needs to be in memory for execution

• Logical address space can therefore be much larger than physical 

address space

• Allows address spaces to be shared by several processes

• Allows for more efficient process creation

• More programs running concurrently

• Less I/O needed to load or swap processes

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual memory  (Cont.)

 Virtual address space – logical view of how process is stored in 

memory

• Usually start at address 0, contiguous addresses until end of 

space

• Meanwhile, physical memory organized in page frames

• MMU must map logical to physical

 Virtual memory can be implemented via:

• Demand paging 

• Demand segmentation

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual Memory That is Larger Than Physical Memory

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual-address Space

 Usually design logical address space for 

stack to start at Max logical address and 

grow “down” while heap grows “up”

• Maximizes address space use

• Unused address space between 

the two is hole

 No physical memory needed 

until heap or stack grows to a 

given new page

 Enables sparse address spaces with 

holes left for growth, dynamically linked 

libraries, etc.

 System libraries shared via mapping into 

virtual address space

 Shared memory by mapping pages read-

write into virtual address space

 Pages can be shared during fork(), 

speeding process creation

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shared Library Using Virtual Memory

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging

 Could bring entire process into 
memory at load time

 Or bring a page into memory only 
when it is needed

• Less I/O needed, no 
unnecessary I/O

• Less memory needed 

• Faster response

• More users

 Similar to paging system with 
swapping (diagram on right)

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging

 Page is needed  reference to it

• invalid reference  abort

• not-in-memory  bring to memory

 Lazy swapper – never swaps a page into memory unless page will 
be needed

• Swapper that deals with pages is a pager

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Basic Concepts

 With swapping, pager guesses which pages will be used before 

swapping out again

 Instead, pager brings in only those pages into memory

 How to determine that set of pages?

• Need new MMU functionality to implement demand paging

 If pages needed are already memory resident

• No difference from non demand-paging

 If page needed and not memory resident

• Need to detect and load the page into memory from storage

 Without changing program behavior

 Without programmer needing to change code

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Valid-Invalid Bit

 With each page table entry a valid–invalid bit is associated

(v  in-memory – memory resident, i  not-in-memory)

 Initially valid–invalid bit is set to i on all entries

 Example of a page table snapshot:

 During MMU address translation, if valid–invalid bit in page table entry 

is i  page fault

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page Table When Some Pages Are Not

in Main Memory

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Steps in Handling Page Fault

1. If there is a reference to a page, first reference to that page will trap to 
operating system 

• Page fault

2. Operating system looks at another table to decide:

• Invalid reference  abort

• Just not in memory

3. Find free frame

4. Swap page into frame via scheduled disk operation

5. Reset tables to indicate page now in memory
Set validation bit = v

6. Restart the instruction that caused the page fault

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Steps in Handling a Page Fault (Cont.)

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Free-Frame List

 When a page fault occurs, the operating system must bring the 

desired page from secondary storage into main memory. 

 Most operating systems maintain a  free-frame list -- a pool of free 

frames for satisfying such requests.

 Operating system typically allocate free frames using a technique 

known as zero-fill-on-demand -- the content of the frames zeroed-

out before being allocated.

 When a system starts up, all available memory is placed on the free-

frame list. 

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

What Happens if There is no Free Frame?

 Used up by process pages

 Also in demand from the kernel, I/O buffers, etc

 How much to allocate to each?

 Page replacement – find some page in memory, but not really in use, 

page it out

• Algorithm – terminate? swap out? replace the page?

• Performance – want an algorithm which will result in minimum 

number of page faults

 Same page may be brought into memory several times

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page Replacement

 Prevent over-allocation of memory by modifying page-fault service 

routine to include page replacement

 Use modify (dirty) bit to reduce overhead of page transfers – only 

modified pages are written to disk

 Page replacement completes separation between logical memory and 

physical memory – large virtual memory can be provided on a smaller 

physical memory

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Need For Page Replacement

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

- If there is a free frame, use it

- If there is no free frame, use a page replacement algorithm to 

select a victim frame

- Write victim frame to disk if dirty

3. Bring  the desired page into the (newly) free frame; update the page 

and frame tables

4. Continue the process by restarting the instruction that caused the 

trap

Note now potentially 2 page transfers for page fault – increasing EAT

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page Replacement

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page and Frame Replacement Algorithms

 Frame-allocation algorithm determines 

• How many frames to give each process

• Which frames to replace

 Page-replacement algorithm

• Want lowest page-fault rate on both first access and re-access

 Evaluate algorithm by running it on a particular string of memory 

references (reference string) and computing the number of page faults 

on that string

• String is just page numbers, not full addresses

• Repeated access to the same page does not cause a page fault

• Results depend on number of frames available

 In all our examples, the reference string of referenced page numbers 

is 

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Graph of Page Faults Versus the Number of Frames

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

First-In-First-Out (FIFO) Algorithm

 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

 3 frames (3 pages can be in memory at a time per process)

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5

• Adding more frames can cause more page faults!

 Belady’s Anomaly

 How to track ages of pages? 

• Just use a FIFO queue

15 page faults

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

FIFO Illustrating Belady’s Anomaly

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Optimal Algorithm

 Replace page that will not be used for longest period of time

• 9 is optimal for the example

 How do you know this?

• Can’t read the future

 Used for measuring how well your algorithm performs

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Least Recently Used (LRU) Algorithm

 Use past knowledge rather than future

 Replace page that has not been used in the most amount of time

 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT

 Generally good algorithm and frequently used

 But how to implement?

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

LRU Algorithm (Cont.)

 Counter implementation

• Every page entry has a counter; every time page is referenced 

through this entry, copy the clock into the counter

• When a page needs to be changed, look at the counters to find 

smallest value

 Search through table needed

 Stack implementation

• Keep a stack of page numbers in a double link form:

• Page referenced:

 move it to the top

 requires 6 pointers to be changed

• But each update more expensive

• No search for replacement

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

LRU Algorithm (Cont.)

 LRU and OPT are cases of stack algorithms that don’t have 

Belady’s Anomaly

 Use Of A Stack to Record Most Recent Page References

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com



10.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Counting Algorithms

 Keep a counter of the number of references that have been made 

to each page

• Not common

 Lease Frequently Used (LFU) Algorithm:

• Replaces page with smallest count

 Most Frequently Used (MFU) Algorithm: 

• Based on the argument that the page with the smallest count 

was probably just brought in and has yet to be used

Uploaded By: Mohammed SaadaSTUDENTS-HUB.com


