Chapter 10: Virtual Memory

operititFlenr BB £9M oen Egition UploagedByMahammed,Raadas

4
Y,

g«%.—g Chapter 10: Virtual Memory

= Background

= Demand Paging

= Copy-on-Write

= Page Replacement

= Allocation of Frames

= Thrashing

= Memory-Mapped Files

= Allocating Kernel Memory

= Other Considerations

= Operating-System Examples

\ L0
2

J&é@r%’}@?@ﬁ UG 10 Edition 10.2 Uploagigd By Mahammed,Rasdss

557 Objectives

= Define virtual memory and describe its benefits.
= [llustrate how pages are loaded into memory using demand paging.
= Apply the FIFO, optimal, and LRU page-replacement algorithms.

= Describe the working set of a process, and explain how it is related to
program locality.

= Describe how Linux, Windows 10, and Solaris manage virtual memory.

= Design a virtual memory manager simulation in the C programming
language.

GBI 10 Edition 10.3 Uploagigd By Mahammed,Rasdss

. Background

= Code needs to be in memory to execute, but entire program rarely
used

* Error code, unusual routines, large data structures
= Entire program code not needed at same time
= Consider ability to execute partially-loaded program
* Program no longer constrained by limits of physical memory

* Each program takes less memory while running -> more programs
run at the same time

» Increased CPU utilization and throughput with no increase in
response time or turnaround time

* Less I/O needed to load or swap programs into memory -> each
user program runs faster

1\

AN
fa
B 10m Edition 10.4 Uploagigd By Malammesymasdss

<557 Virtual memory

= Virtual memory — separation of user logical memory from physical
memory

* Only part of the program needs to be in memory for execution

* Logical address space can therefore be much larger than physical
address space

* Allows address spaces to be shared by several processes
* Allows for more efficient process creation

* More programs running concurrently

* Less I/O needed to load or swap processes

S5
v
GBI 10 Edition 105 Uploagigd By Mahammed,Rasdss

e —

A”“m‘\ 1
‘uu-f Virtual memory (Cont.)

= Virtual address space — logical view of how process is stored in
memory

* Usually start at address 0, contiguous addresses until end of
space

* Meanwhile, physical memory organized in page frames
* MMU must map logical to physical
= Virtual memory can be implemented via:
* Demand paging
* Demand segmentation

e —

- : v\ :“'A\I
4 W
GBI 10t Edition 106 Uploagigd By Mahammed,Rasdss

: ﬂ_j’\‘
&“%)”Vlrtual Memory That is Larger Than Physical Memory

S\

page 0

page 1

page 2 /’_\

—
\ —
memory
page v physical backing store
memory

virtual
memory

= 3&,
S »
J RN S UB SO 10m Edition 10.7 Uplo%ﬂ@gs@}éﬂw&mg%m@%

=
,_ﬁﬂ’?»"“‘-’-l

‘13\ w/

y

Virtual-address Space

= Usually design logical address space for Max
stack to start at Max logical address and

grow “down” while heap grows “up” stack

Maximizes address space use

the two is hole

Unused address space between I

No physical memory needed
until heap or stack grows to a

given new page
u Enables sparse address spaces with ‘
holes left for growth, dynamically linked
libraries, etc. heap
u System libraries shared via mapping into
virtual address space data
u Shared memory by mapping pages read-
write into virtual address space code
u Pages can be shared during fork (), 0
speeding process creation SN
CCeopg]— 10t Edition 10.8 Uplo@@as@%{mm@%m%

L N

‘r/x-"-“‘ml) I I .
“»7/ Shared Library Using Virtual Memory

J plgr%)t!%gN;l;/§ém l(! I

stack

stack

shared library

shared
pages

shared library

heap

data

code

S — 10t Edition

10.9

heap

data

code
UploagigdBi M edymasdss

(T '

= Could bring entire process into

memory at load time
= Or bring a page into memory only Y
1 1 & _//
when it is needed
* Less I/O needed, no program , .. 4ROk AR N
unnecessary 1/O +8) 50 681 701
* Less memory needed ’ LI 0L
* Faster response . | 12[J13[114 15[]
« More USers brag "= swapin 16117118 119[]
. . . 7 20[21 [[22[[23[|
= Similar to paging system with .. »
swapping (diagram on right)
main
memory

GBI 10 Edition 10.10 Uplo@ﬂ@gsgﬁ%mmm@ggmi’é

&/“mj .

= Page is needed = reference to it
* invalid reference = abort
* not-in-memory = bring to memory

Lazy swapper — never swaps a page into memory unless page will

be needed
* Swapper that deals with pages is a pager

\

AT
> \

.\\ A
N
v .
(
>
AX

Up|06§ﬂ§Qs§5étzl\&W@Qg§a@G%

Jplgr%)t!%wge lC! ncepg1 10t Edition 10.11

Basic Concepts

With swapping, pager guesses which pages will be used before
swapping out again

Instead, pager brings in only those pages into memory
How to determine that set of pages?
* Need new MMU functionality to implement demand paging
If pages needed are already memory resident
* No difference from non demand-paging
If page needed and not memory resident
* Need to detect and load the page into memory from storage
» Without changing program behavior
» Without programmer needing to change code

1\

AN
GBI 10 Edition 10.12 Uploagigd By Mahammed,Rasdss

> o Valid-Invalid Bit

With each page table entry a valid—invalid bit is associated
(v = in-memory — memory resident, i = not-in-memory)

Initially valid—invalid bit is set to i on all entries
Example of a page table snapshot:

Frame # valid-invalid bit

- g (< <

page table

= During MMU address translation,

if valid—invalid bit in page table entry
IS | = page fault

e —

7 | J‘\f:’
10.13 Uploagied By Malammed,readas

'Mléon'c%op@- 10t Edition

I Page Table When Some Pages Are Not

In Main Memory

0 A
1 B
2 ©
3 D
4| E
5 F
6 G
7 H
logical
memory

Ird RN SR GO 100 Edition

valid-invalid
frame bit

4

\%
i
6 |v
i
i
%
i

N O L AW N = O

page table

O 0 N o u » W N = O

=
o

-
—_

—_
N

—_
w

—
o

15

physical memory

10.14

N
N

U
[] [a] [e]
] [e] [€]
[F] [s] [H]
L

-

backing store

.8

Uploagigdl By Maharmmes,Saades

=

(.

“$7/ Steps in Handling Page Fault

1. If there is a reference to a page, first reference to that page will trap to
operating system

* Page fault

2. Operating system looks at another table to decide:
* Invalid reference = abort
* Just not in memory

3. Find free frame

4. Swap page into frame via scheduled disk operation

5. Reset tables to indicate page now in memory
Set validation bit = v

6. Restart the instruction that caused the page fault

e —

7 ' J}\E-;" g
GBI 10 Edition 10.15 Uploagigd By Mahammed,Rasdss

Vmﬁ : :
=»r7 Steps Iin Handling a Page Fault (Cont.)

@ page is on
backing store

operating
system @
reference
@ trap
load M |e N [
restart page table
instruction
free frame e
reset page bring in
table missing page
physical
memory N\

r‘;,g‘;

Jplgr%)t!%é\g§e ng nc:epg1 10t Edition 10.16 Uploegﬂggsaﬁle\&m@ggm@@

7 Free-Frame List

= When a page fault occurs, the operating system must bring the
desired page from secondary storage into main memory.

= Most operating systems maintain a free-frame list -- a pool of free
frames for satisfying such requests.

head —>[7] —>[97] —>[15]—>[126] -+ —>[75

= Operating system typically allocate free frames using a technique
known as zero-fill-on-demand -- the content of the frames zeroed-
out before being allocated.

= When a system starts up, all available memory is placed on the free-
frame list.

GBI 10 Edition 10.17 Uploagigd By Mahammed,Rasdss

=

frf-f‘"""‘“\/ \ . .
‘f%f’ What Happens if There is no Free Frame?

= Used up by process pages
= Also in demand from the kernel, I/O buffers, etc
= How much to allocate to each?

= Page replacement — find some page in memory, but not really in use,
page it out

* Algorithm — terminate? swap out? replace the page?

* Performance — want an algorithm which will result in minimum
number of page faults

= Same page may be brought into memory several times

e —

7 ' J}\E-;" g
GBI 10 Edition 10.18 Uploagigd By Mahammed,Rasdss

o Page Replacement

= Prevent over-allocation of memory by modifying page-fault service
routine to include page replacement

= Use modify (dirty) bit to reduce overhead of page transfers — only
modified pages are written to disk

= Page replacement completes separation between logical memory and
physical memory — large virtual memory can be provided on a smaller
physical memory

e —

GBI 10 Edition 10.19 Uploagigd B Maammedyrasdas

Need For Page Replacement

frame valid-invalid
N/ bit N
o A 6| v [
PC—> -
1 B = i
2 C 3| v T
3 D 2| v. :
logical memory page table for 0 | kernel
for process 1 process 1 1 J,
2 D
s| & |#
frame valid-invalid 4 E
N Y/ bit o
o| E 7| v o
1| F 4l v gl A
2| @ i 7] E N
3 H S| V. Hivysieal memmery backing store
logical memory page table for
for process 2 process 2

b

Jplgratmgl\g§emlé nc:epg1 10t Edition 10.20 p|06yﬂ§éis§§éle\&m@gg§a@@§g

w o Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:
- If there is a free frame, use it
- If there is no free frame, use a page replacement algorithm to
select a victim frame
- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page
and frame tables

4. Continue the process by restarting the instruction that caused the
trap

Note now potentially 2 page transfers for page fault — increasing EAT

e —

v
GBI 10 Edition 10.21 Uploagigd By Mahammed,Rasdss

S Page Replacement

frame valid—invalid bit

Ny P N

swap out
0 | i to invalid @ page
i [v /
@ f| victim
reset page
table for
page table new page @ swap
desired
page in

physical
memory

e

€@ 2
J N St U GO0 10w Ediition 10.22 Uploagied By Maammed 8

A”m'&:\% "
“$»7 Page and Frame Replacement Algorithms

y

= Frame-allocation algorithm determines
* How many frames to give each process
* Which frames to replace
= Page-replacement algorithm
* Want lowest page-fault rate on both first access and re-access

= Evaluate algorithm by running it on a particular string of memory
references (reference string) and computing the number of page faults
on that string

e String is just page numbers, not full addresses
* Repeated access to the same page does not cause a page fault
* Results depend on number of frames available

= |n all our examples, the reference string of referenced page numbers
IS

7,0,1,2,0,3,04,2,3,0,3,0,3,2,1,2,0,1,7,0,1

e —

v
GBI 10 Edition 10.23 Uploagigd By Mahammed,Rasdss

Graph of Page Faults Versus the Number of Frames

16
w 14 \
E \
J 12
0 \
g 10
ol
° 8 \\
@
e
gﬁ \
c 4 \'—=-—
2
1 2 3 4 5 6

number of frames

o
<

J RN S UB SO 10m Edition 10.24 Uploagigd By Maharhedymaadas

o
Y,

“$77 First-In-First-Out (FIFO) Algorithm

= Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
= 3 frames (3 pages can be in memory at a time per process)

reference string
7 01 2 0 3 0 4 2 3 0 3 2 1 2 01 7 0 1
7| 17| 7] 2] |2 2| (4] [4] 4] o] 0| |0
U [lof [of [of 3] 3 3 2 2| (2] [1)
page frames

15 page faults
= Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
* Adding more frames can cause more page faults!
» Belady’ s Anomaly
= How to track ages of pages?
* Just use a FIFO queue

A ,.‘E(’
J N St U GO0 10w Ediition 10.25 Uploagied By Maammedsraadas

“@?\?’F FIFO lllustrating Belady’s Anomaly

16
14

number of page faults
S
®

no RS » (00)
¥
@

1 2 3 4 5 6 7
number of frames

Jplejrle?t!%gNQ;éém léangé(BQ— 10t Edition 10.26

o o Optimal Algorithm

= Replace page that will not be used for longest period of time
* Qs optimal for the example

= How do you know this?
* Can’tread the future

= Used for measuring how well your algorithm performs

reference string
c 3 0 4 2 3 0 3 2 7 0 1

0
il

page frames

k g
ES’VA

Jplgr%)t!%lg\gge lC! ncepg1 10t Edition 10.27 Uplo%ﬂgé}is@}é{z“&mm@ggm

~$»7 Least Recently Used (LRU) Algorithm

= Use past knowledge rather than future
= Replace page that has not been used in the most amount of time
= Associate time of last use with each page

reference string
2 0 3 0 4 2 3 0 3 2

7772
322

page frames

= 12 faults — better than FIFO but worse than OPT
= Generally good algorithm and frequently used
= But how to implement?

e —

{ S v\ :“'A\I
VD
GBI 10 Edition 10.28 Uploagigd By Mahammed,Rasdss

S5 LRU Algorithm (Cont.)

f y
|

= Counter implementation

* Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

* When a page needs to be changed, look at the counters to find
smallest value

» Search through table needed

= Stack implementation
* Keep a stack of page numbers in a double link form:

* Page referenced:
» move it to the top
» requires 6 pointers to be changed

* But each update more expensive
* No search for replacement

L W
UploagisgdShaMalanmiedsmaasss

GBI 10t Edition 10.29

m;:—““ﬁ LRU Algorithm (Cont.)

= LRU and OPT are cases of stack algorithms that don’ t have
Belady’ s Anomaly

= Use Of A Stack to Record Most Recent Page References

reference string
4 7 0 7 1 0 1 2 1 2 7 1 2

a b
1 2
0 1
7 0
4 4
stack stack
before after
a b

\

AT
> \

S
.,\(

)
AX

Jplgr%)t!%wge lC! ncepg1 10t Edition 10.30 Uplo%ﬂggs%{mmm@ggm@?g

,«.ff"'"’“'.“ " i
%«-?35(Counting Algorithms

= Keep a counter of the number of references that have been made
to each page

* Not common

= |ease Frequently Used (LFU) Algorithm:
* Replaces page with smallest count

= Most Frequently Used (MFU) Algorithm:

* Based on the argument that the page with the smallest count
was probably just brought in and has yet to be used

A8
v
J N St U GO0 10w Ediition 10.31 Uploagied By Maammedsraadas

