
Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

Comp 1330/ First Semester 2024/2025

Introduction to Computers
& Programming

Faculty of Engineering and Technology
Department of Computer Science

Instructor: Saif Harbia

Chapter 03
Top-Down Design
with Functions

Loading…

3.1 Building Programs from Existing Information

1. Programmer can use existing information to solve problems by following software development
methods.

2. Another way in which programmers use existing information is by extending the solution for

one problem to solve another

- Predefined Functions and Code Reuse
➢ C promotes reuse by providing many predefined functions that can be used to perform mathematical

computations
➢ i.e. C’s standard math library defines a function named sqrt that performs the square root computation.

3.2 LIBRARY FUNCTIONS

Loading…If w is 9.0 , the assignment statement
z = 5.7 + sqrt(w);

is evaluated as follows:
1. w is 9.0 , so function sqrt computes the square root of 9.0 , or 3.0 .
2. The values 5.7 and 3.0 are added together.
3. The sum, 8.7 , is stored in z .

Figure 3.6

The program in Fig. 3.7, pg. 119 displays the square root of two numbers provided as input data (
first and second) and the square root of their sum. To do so, it must #include the math library and
call the C function sqrt three times.

• first_sqrt = sqrt(first);
• second_sqrt = sqrt(second);
• sum_sqrt = sqrt(first + second);

● you see that each statement contains a call to a library function (printf ,

scanf , sqrt)—we have used C’s predefined functions as building blocks to
construct a new program.

EXAMPLE 3.1 P.118

➢ If one of the functions in Table 3.1, pg.121 is called with a numeric argument that is not
of the argument type listed, the argument value is converted to the required type before it
is used.

➢ Conversions of type int to type double cause no problems, but a conversion of type

double to type int leads to the loss of any fractional part, just as in a mixed-type
assignment.

➢ The arguments for log and log10 must be positive; the argument for sqrt cannot be

negative.

➢ The arguments for sin , cos , and tan must be expressed in radians, not in degrees.

➢ Example 3.2 p. 121

C LIBRARY FUNCTIONS
RULES

➢ C also allows us to write our own functions.
➢ Let’s assume that we have already written functions find_area and find_circum :
■ Function find_area(r) returns the area of a circle with radius r .
■ Function find_circum(r) returns the circumference of a circle with radius r .

➢ We can reuse these functions in other programs:

 area = find_area(radius);
 circum = find_circum(radius);

RE-USING OUR OWN
FUNCTIONS

• Top-down design:

● In attempting to solve a subproblem at one level, we introduce new subproblems
at lower levels.

● This process proceeds from the original problem at the top level to the

subproblems at each lower level

3.3 TOP-DOWN DESIGN AND STRUCTURE

CASE STUDY P.124 Drawing Simple Diagrams

Loading…

● One way that programmers implement top-down design in their programs is by
defining their own functions.

● Often, a programmer will write one function subprogram for each subproblem in

the structure chart.

● Use the main function in Fig. 3.11, pg.127 to draw the stick figure of a person.
● In Fig. 3.11 , the three algorithm steps are coded as calls to three function

subprograms.
● For example, the statement: draw_circle(); calls a function (draw_circle) that

implements the algorithm step Draw a circle

3.4 FUNCTIONS WITHOUT ARGUMENTS

Function Prototypes
➢ One way to declare a function is to insert a function prototype before the main function.

➢ A function prototype tells the C compiler the data type of the function, the function name, and

information about the arguments that the function expects.

➢ The functions declared in Fig. 3.11 are void functions (that is, their type is void) because they
do not return a value.

➢ In the function prototype

 void draw_circle(void); /* Draws a circle */

 the second void indicates that draw_circle expects no arguments.

Function Definitions
➢ To specify the function operation, you need to provide a definition for each function

subprogram similar to the definition of the main function.

➢ Any identifiers that are declared in the optional local declarations are defined only during the
execution of the function and can be referenced only within the function.

➢ We omit the return statement because draw_circle does not return a result.
➢ Control returns to the main function after the circle shape is displayed.
➢ You can omit the void and write the argument list as () .

➢ Instead of using printf statements to display a triangular pattern, the body of function
draw_triangle calls functions draw_intersect and draw_base to draw a triangle.

Placement of Functions in a Program
• Figure 3.14 , pg.130 shows the complete program with function subprograms

➢ The subprogram prototypes precede the main function (after any #include or #define

directives).

➢ The subprogram definitions follow the main function.

➢ The relative order of the function definitions does not affect their order of execution; that is
determined by the order of execution of the function call statements.

Order of Execution of Function Subprograms and Main Function

➢ The compiler processes the function prototypes before it translates the main function.

➢ The information in each prototype enables the compiler to correctly translate a call to that function.

➢ The compiler translates a function call statement as a transfer of control to the function.

➢ After compiling the main function, the compiler translates each function subprogram.

➢ During translation, when the compiler reaches the end of a function body, it inserts a machine language
statement that causes a transfer of control back from the function to the calling statement

➢ When we run the program, the first statement in the main function is the first statement
executed (the call to draw_circle in Fig. 3.15).

➢ When the computer executes a function call statement, it transfers control to the function that
is referenced (indicated by the colored line in Fig. 3.15).

Figure 3.15

Advantages of Using Function Subprograms

● Procedural Abstraction

• Function subprograms allow us to remove from the main function the code
that provides the detailed solution to a subproblem

• So, we can write the main function as a sequence of function call statements

as soon as we have specified the initial algorithm and before we refine any
of the steps.

• We should delay writing the function for an algorithm step until we have

finished refining that step

Advantages of Using Function Subprograms

● Reuse of Function Subprograms

• Once you have written and tested a function, you can use it in other

programs or functions.

• For example, function draw_intersect is called twice in Fig. 3.14 (once by
draw_triangle and once by the main function)

● The arguments of a function are used to carry information into the function subprogram
from the main function (or from another function subprogram) or to return multiple results
computed by a function subprogram.

● Arguments that carry information into the function subprogram are called input arguments
; arguments that return results are called output arguments (CH06).

● We can also return a single result from a function by executing a return statement in the
function body.

● Arguments make function subprograms more versatile because they enable a function to
manipulate different data each time it is called

rim_area = find_area(edge_radius) - find_area(hole_area);

.

3.5 FUNCTIONS WITH INPUT ARGUMENTS

void Functions with Input Arguments

• void functions do not return a result

void Functions with Input Arguments

• the effect of the function call print_rboxed(135.68);

Figure 3.19

Functions with Input Arguments and a Single Result

● If function f that has 2 type double inputs we can reference it in an expression such as w
+ f(2.5, 4.0)

Figure 3.20

Functions with Input Arguments and a Single Result

radius = 10.0;
circum = find_circum(radius);

Figure 3.22

Functions with Multiple Arguments

Argument List Correspondence (number,order,and type(not))

● The number of actual arguments used in a call to a function must be the same as
the number of formal parameters listed in the function prototype.

● The order of arguments in the lists determine correspondence. The first actual
argument corresponds to the first formal parameter, the second actual argument
corresponds to the second formal parameter, and so on.

● Each actual argument must be of a data type that can be assigned to the
corresponding formal parameter with no unexpected loss of information.

The Function Data Area

● Each time a function call is executed, an area of memory is allocated for storage
of that function’s data.

● Included in the function data area are storage cells for its formal parameters and

any local variables that may be declared in the function.

● The function data area is always lost when the function terminates; it is

recreated empty (all values undefined) when the function is called again.

Loading…

Figure 3.25

Refernces
Problem Solving and Program Design in C, 7th Ed., by Jeri R. Hanly and Elliot B.
Koffman

Uploaded By: anonymousSTUDENTS-HUB.com

