
1 | P a g e

Shell Scripting 1

The use of quotes in grep command:

Description: Searches for patterns in files.

Usage: grep [options] pattern [file(s)]

Examples:

• grep Fadia addresses.txt

• grep ’Salem Kaseer’ addresses.txt

• grep Salem addresses.txt

• grep Salem Kaseer addresses.txt // this will give you an

error

what you need to know about quotes :

1. if you want to search for a string contains two or more words

you have to use the single quotes.

2. The single quotes ‘ ’ ignores every thing inside it.

3. So there is another option which is the Double quotes “ ”

4. Where they are not restricted like the single one , Double

quotes doesn’t ignore the following signs :
• Dollar signs ($)

• Back quotes (‘)

• Back slashes (\)
5. The Back slash sign is same as single quotes.

PATH environment variable:

Description: Specifies directories in which the

shell looks for executable files.

Uploaded By: Malak ObaidSTUDENTS-HUB.com

2 | P a g e

Usage: PATH=$PATH:/path/to/directory

Example:

• PATH=$PATH:/home/user1/shell

mv command:

Description: Moves or renames files and

directories.

Usage: mv [options] source destination

Example:

• mv $filename ${filename}X

Notes:

You can apply arithmetic expressions on

Integers like this : $((expression)) , and it can be

used with echo command.

But of course there is a better option which is

the expr command.

expr command:

Description: Evaluates expressions.

Usage: expr [options] expression

Uploaded By: Malak ObaidSTUDENTS-HUB.com

3 | P a g e

Examples:

• expr 1 + 2

• expr 5 * 5 // you can use the multiply operation only in

this expression : ‘ * ’.

• expr 10 + 20 / 2

• expr 10 - 9

Command Substitution:

Usage: to pretty up the text 😊

Example:

• echo “the date is : `date`” // this will give you the

following output : the date is : current date . Note that

we’ve used the back quotes.

echo command (inside a script):

Example:

• echo "$1 $2" >> phonebook

grep command (inside a script to remove):

Usage: grep -v "$1" phonebook >

/tmp/phonebook

Example:

Uploaded By: Malak ObaidSTUDENTS-HUB.com

4 | P a g e

• grep -v "$1" phonebook > /tmp/phonebook

mv command (inside a script to remove):

Usage: mv /tmp/phonebook phonebook

Example:

• mv /tmp/phonebook phonebook

Passing Arguments to shell scripts:

Importance: Shell programs become more useful when

you learn how to process arguments passed to them.

How it works :

After defining a certain amount of variables in the

shell file you can pass a value for them when you

execute the file as follows :

• ./file.sh 1 2 3

$# command (inside a script to display the

number of arguments):

Example:

• echo $# arguments passed

Uploaded By: Malak ObaidSTUDENTS-HUB.com

5 | P a g e

$* command (inside a script to read arguments

from user <any number of args>) :

Example:

• echo they are :$*:

Passing more than 9 arguments to shell scripts:

If you provide more than nine arguments to a program,

accessing the tenth and higher arguments with $10, $11,

etc., won't work as expected. Instead of representing the

tenth argument, for instance, $10 would substitute the value

of $1 followed by 0.

To access these arguments beyond the ninth, enclose them

in curly braces {}. For instance, to access the 11th

argument, the script should use ${11}.

shift command:

Description: Shifts command line arguments.

The shift command allows you to effectively left shift your positional

parameters. If you execute the command: shift whatever was

previously stored inside $2 will be assigned to $1, whatever was

previously stored in $3 will be assigned to $2, and so on. The old

value of $1 will be lost. In addition, $# (the number of arguments

variable) is also automatically decremented by one.

Example:

• shift

• shift 3

Uploaded By: Malak ObaidSTUDENTS-HUB.com

6 | P a g e

echo command (to display exit status):

Example:

• echo $?

rm command (inside a script to remove a file):

Usage: \rm fileNoExist

Example:

• \rm fileNoExist

Notes:

You can use all of the commands in the last 3

experiments in a shell file instead of using them

in the terminal.

To create the shell file do this:

• Touch filename.sh

• chmod +x filename.sh // to give the permission to

execute

• to execute the file use ./filename.sh

Uploaded By: Malak ObaidSTUDENTS-HUB.com

7 | P a g e

• you can use # to write comments in the shell files like

this : # this is a good comment.

• to create a variable do like this var=56 // very important

note : Do not put spaces before or after the equal sign

• there is no data types in shell, so you can assign what

ever you type of data to the variable.

• If you didn’t give the variable any value you will not face

any problem, put when you print the variable you will

get an empty line , you can also use these methods to

assign a null value to the variable : - dataflag1=”” or -

dataflag2=’’

• to use the variable in the file do this : echo $var

اللَّهمَّ أنتَ ربِِّي، لا إلَهَ إلَّا أنتَ، خَلقتَني وأَنا عبدُكَ، وأَنا على عَهْدِكَ

ووعدِكَ ما استطعتُ، أعوذُ بِكَ من شرِِّ ما صنعتُ، وأبوءُ لَكَ

هُ لا يَغفرُ ، وأعترفُ بِذنوبي، فاغفِر لي ذنوبي إنَّ بنعمتِكَ عليَّ

 .الذُّنوبَ إلَّا أنتَ

Uploaded By: Malak ObaidSTUDENTS-HUB.com

