Signal and Sytems

Part
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Transmission of Signals through Linear Systems

* Definition: A system refers to any physical device that produces an output signal in response
to an input signal.

* Definition: A system is linear if the principle of superposition applies.

e |If X4(t) produces output y,(t) input System output
"excitation" | h(t),H(f) [ response"

. X,(t) produces output y,(t)
* then a x(t)+ a,x,(t) produces an output a,y,(t)+ a,y,(t)
* Also, azeroinput should produce a zero output.

* Examples of linear systems include filters and communication channels.

* Definition: A filter refers to a frequency selective device that is used to limit the spectrum of
a signal to some band of frequencies (will be discussed in detail in a later lecture)

* Definition: A channel refers to a transmission medium that connects the transmitter and
receiver of a communication system.

Time domain and frequency domain may be used to evaluate system performance.
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Basic Time-domain Definitions

* Definition: The impulse response h(t) is defined as the response of a system to
an impulse 6 (t) applied to the input at t=0 .

* Definition: A system is time-invariant when the shape of the impulse response
is the same no matter when the impulse is applied to the system.

- 6(t) > h(t), then &(t—ty) > h(t—ty)

* When the input to a linear time-invariant system in a signal x(t) , then the
output |s§3|ven by 5(t)‘ xa(t —t,) input system  L_output

cy(t) = f_oox(ﬁ)h(t — A)dA - o

o () hit)
= [*_ h(A)x(t — A)dA; convolution integral x() y(®)
h(t]' AN h{t-t, )
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Basic Time-domain Definitions

* Definition: A system is said to be causal if it does not respond before the excitation is
applied, i.e.,

* h(t)=0 for t<0; the causal system is physically realizable.

* Definition: A system is said to be stable if the output sighal is bounded for all
bounded input signals.

. |If | x(t) | < M ; M is the maximum value of the input
s then | y(t) | < [T [h(D [Ix(t—T)[dt =M [ | h(D) |dt

* Therefore, a necessary and sufficient condition for stability (a bounded output) is

y(t) = f h()x(t — 1) dt

. f_oooo lh(t)| dt < oo ; h(t)is absolutely integrable ( zero initial conditions assumed)

h(t)

f lh(f)| dt < oo

5(t) I [y S —
0

S " hy /\/(

t
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Basic Frequency-domain Definitions

* Definition: The transfer function of a linear time invariant system is defined as
the Fourier transform of the impulse response h(t)

H(f) = 3{h(t)}

*Since y(t) =x(t)«h(t), then Y(f)=H(f)X().

* The system transfer function is thus the ratio of the Fourier transform of the

output to that of the input H(f) = Yy)

X(f)

* The transfer function H(f) is a complex function of frequency, which can be
expressed as

© H() = [H()]ed 00
* where, |H(f)]: Amplitude spectrum il H(f) v

X(f) Y(f)
(f): Phase spectrum.
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System input—output energy spectral density

* Let x(t) be applied to a LTI system, then the Fourier transform of the output is
related to the Fourier transform of the input through the relation

*Y(f) = H)X).

* Taking the absolute value and squaring both sides, we get () J(
* [Y(OI? = [HOIPIX(H)I? ) xpn| " v
Sy(f) = [H(H)|*Sx(f) Sx() Sy(f)

* Sx(f), Sy(f): Input and output Energy Spectral Density
output energy spectral densit = |H(f|? (input energy spectral density)

* Total input and output energies

*E. = f_zo S.(Hdf = fj;o |1X(f)|?df; Recall Rayleigh Energy Theorem
PEy = [ Sy(Ndf = [ HOI Sx(df
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Example: Response of a LPF filter to a sinusoidal input

* Example: The signal x(t) = cos(2mfyt),—o0 < t < o, is applied to a filter described by the transfer
function H(f) = : B is the 3-dB bandwidth. Find the filter output y(t).

1+jf/B’
* Solution: Here, we will find the output using the frequency domain approach. © ®
. X y
o+ Y(f) = H()X(f), H(f) = —=e"/", 6=tan‘1-£—; HO:tan‘l%0 —1 Hf) [
1H )

¢ Y(f) = H(OGS(f — fo) +38(f + fo), = Y(F) = SHUDS(f — fo) + TH(—f)5(f + fo)

¢| i

1 - 1 :
« Y(f) == e 1985(f — fo) += e/%§(f +

2 2 /1+(%°)2 V=lad 2 /1+(%’)2 G+ fo) g()8(t —ty) = g(te)d(t — to);
* Taking the inverse Fourier transform, we get

1 1, g i _ 1 il

e y(t) = = [e]@mfot=6o) 4 o—J(27fot—00)] ) = cos(2nrtfot — tan~ 122

y(t) . Ly == Eus(B 3
1+ 1+(29)

* Note that in the last step we have made use of the Fourier transform pair e/2™ot & §(f — f;)

* Remark: Note that the amplitude of the output as well as its phase depend on the frequency of the
input, fo, and the bandwidth of the filter, B.
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Response of a LPF to a sum of two sinusoidal signals
. 1 . . .
« Example: The signal x(t) = cos wyt — —Cos 3wyt is applied to a filter

described by the transfer function H(f) = T Use the result of the
previous example to find the filter output y(t).

* Solution: From the previous example, we have

e coS(2Tfyt) = ———cos(27fyt — tan"ljf%0

1+(5Y

* Therefore, using linearity property

1
* COS Wyt — —C0s 3wpt =

e —L_cos (anot —tan™! %’) — = = COS (27’[3f0t —tan! 37{0)

)
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Example: Response of a LPF to a periodic square pulse

« Example: Consider the periodic rectangular signal g(t) defined over one period T, as
(0 = {+A, ~To/4 <t <T,/4

0, otherwise
« If g(t) is applied to a filter described by the transfer function H(f) =
the result of the previous example to find the filter output y(t).

1
1+jf/B

use

* Solution: The Fourier series of g(t) is:
« g(t) = §+ %{cos(anOt) —%cos(2n3f0t) +§cos(2n5f0t) —%cos(2n7f0t)

* Using the result of the previous example:

[} - é 24 1 — _1E
y(t) = = = COS (27Tf0t tan B)

[
- = COS 27r3f0t—tan‘13%) +...
{ren

241
T 3
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Transmission of Signals through Linear Systems: A Convolution Example

« Example: The signal g(t) = 6(t) — §(t — 1) is applied to a channel described

by the transfer function H(f) =
the channel output.

1+jf/B

. Use the convolution integral to find

* Solution: The impulse response of the channel is obtained by taking the inverse
Fourier transform of H(f), whichis h(t) = 2mBe *™5tu(t)

* Using the linearity and time invariance property, the output can be obtained as

*y(t) = h(t) *[6(t) =6(t = 1], y(t) = h(t) —h(t = 1)

e y(t) = 2nB[e~2"Bty(t) — ¢~ 2By (¢t — 1)]

g(t)‘ =1

=

STUDENTS-HUB.com

H(F)

y(t)
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Transmission of Signals through Linear Systems: A Convolution Example
 Example: channel response due to a rectangular pulse
* The signal x(t) = u(t) — u(t — 1) is applied to a channel
described by the transfer function H(f) = . Find the
channel output y(t).

1+jf/B

* Solution: The impulse response of the channel is:

h(t) = 2mBe "Bty (t) v
vt = f h( )x(t — 4) da
The output is the convolution .

y(t) = h(t) = [u(t) — u(t — 1)]. The answer is

y(®) = [7 h(D)x(t — 1) dA

y(iE)=0fori =<0

y(t) = f; 2mBe 24 dA =1 —e 2™t for0 <t < 1

« y(®) = [, 2mBe 2™ dA = (e2™B—1)e~?"B¢ fort > 1
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x(1) 172
| Fig

Example: Find the 0 l_I 2 3 4 - (t) .
convolution of the " | Aeale L —[4 —t]
two signals x(t) and y(4) 1/2 4 4
y(t) shown in the 0
fi : , : >
igure y(=2) | 5 2

l . t<0, ZH)=0 2(t)= [~ _x(A)y(t—2)da

’ = 0<t=<2 % tl dA :

| =P E = ®) = f 272 4
— 0
-2+t t -
‘ t=2 Zt—flx dA—l
y(t —2) | =2, L) = |oX5 di=3
' 5 0
-2+ | 't ' 2
” _ O | . A . _ 1
y(t|— ) I I 2<st<s4 I(t) = ffxidl_zl‘z”_ Z[‘l-—-t]
T -2+t
-2+t
y(t —4) | 4, (=0
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Signal Distortion in Transmission

The objective of a communication system is to deliver to the receiver almost an exact copy of
what the source generates.

* However, communication channels are not perfect in the sense that impairments on the
channel will cause the received signal to differ from the transmitted one. During the course
of transmission, the signal undergoes attenuation, phase delay, interference from other
transmissions, Doppler shift in the carrier frequency, AWGN, and many other effects.

* In this lecture, we consider the conditions for a distortion-less transmission over a channel.
In addition, we consider linear and non-linear distortion

* Distortion-less Transmission: A signal transmission is said to be distortion-less if the output
signal y(t) is an exact replica of the input signal x(t) , i.e., y(t) has the same shape as the
input, except for a constant amplification (or attenuation) and a constant time delay.

c x(t) y(t) Biktartiondua y(t) Signal distorted
2 5
0 0 /\ 0 )
2 4 1 3 5 0.8 3 " 5.5
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Signal Distortion in Transmission

Condition for distortion-less transmission in the time-domain:

y(t) = kx(t — t;); where k is a constant amplitude scaling, t; is a constant time delay.

In the frequency domain, the condition for a distortion-less transmission becomes

Y(f) = kX(f)e~J2mfta or H(f) = ;E’B ke-i2mfta — -0

* Thatis, for a distortion-less transmission, the transfer function should satisfy two conditions:

* |H(f)| = k ; The magnitude of the transfer function is constant (gain or attenuation) over the
frequency range of interest.

0(f) = —2mft; = —(2mty)f ; The phase function is linear in frequency with a negative
slope that passes through the origin (or multiples of m).

When |H(f)| is not constant for all frequencies of interest, amplitude distortion results.
When 8(f) # —2nft,; + 1807, then we have phase distortion (or delay distortion).

The following examples demonstrate the two types of distortion mentioned above.
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Example: amplitude distortion

Consider the signal x(t) = cos wyt — % cos 3wyt. If this signal passes through a channel
with zero time delay (i.e., t;=0) and amplitude spectrum as shown in the figure

Find y(t)

Is this a distortion-less transmission?

Solution: x(t) consists of two frequency components, f, and 3f, . Upon passing through the
channel, each component will be scaled by a different factor.

y(t) = (1)cos wot — (%). % cos 3wyt

Since y(t) = (cos Wyt —% : % cos 3W0t) * k (cos Wot —% cos 3W0t)

* then this is not a distortion-less transmission. "
AXO
1
05 |
In this figure, only the positive part T
of the spectrum is shown ' ~ >
2fo 4fo 7 fo 3fa f
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Example' phase distortion

* Consider the signal x(t) = cos wyt — = COS 3wyt. If x(t) passes through a channel whose
amplitude spectrum is a constant h. Each component in x(t) suffersa —— phase shift.
* Find y(t). LH{f)] =
* |s this a distortion-less transmission? L f
* Solution:
e x(t) = cosw,t — Zcos 3w, t
o 2 3 o Tt/2 G(f)
T 1 T
y(t) = h cos(w,t _5) = = h cos (3W0t _E) ¢
1 T 4
y(t) a 3 (BWO (t B 2x3w0)) -T[/Z

* y(t) =h cosw,(t —tz1) — % h cos(3w,(t —tz,))

* Since tg, # tgy, we cannot write y(t) = kx(t — t;). Here, each component in x(t) suffers
from a different time delay. Hence, this transmission introduces phase (delay) distortion.
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Example: Amplitude and Phase Distortion
Example: The signal x(t) = cos wyt — %cos 3wyt is applied to a filter described by the
transfer function H(f) =
output y(t).
Solution: From the previous example, we have

cos(2mfyt) —

——. Use the result of the previous example to find the filter
1+jf/B

1 f_o)

;COS(ZTCfOt —tan™" <
J1+ 2y

Therefore, using linearity property

1
cos Wyt ——cos 3wyt —

1 I 1 1 —1 3§
————cos (2nfyt — tan 1—0) —= cos(ZnSft—tan 1220
gy ) e - e)

Note that we cannot write y(t) = kx(t — t;). Here, each component in x(t) suffers from
a different amplitude attenuation and a different time delay. Hence, this
transmission introduces both amplitude and phase distortion.
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Nonlinear distortion

* When a system contains nonlinear elements, it is not described by a transfer
function H(f), but rather by a transfer characteristic of the form

* y(t) =a; x(t) +a,x3(t) +a5x3(t) +... (time domain)
* In the frequency domain,
* Y(f) = a; X(f) +a, X(f)*X(f) + a5 X(f)*X(f)*X(f) + ...

* Here, the output contains new frequencies not originally present in the original
signal. The nonlinearity produces undesirable frequency component for |f|< W,
in which W is the signal bandwidth.
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Harmonic distortion in nonlinear systems
Let the input to a nonlinear system be the single tone signal x(t) = cos(2mf,t).
This signal is applied to a channel with characteristic y(t) = a;x(t) + a,x(t)?+ a;x(t)?;
y(t) = a, cos(2mfyt) + a,(cos(2mft))? + as(cos(2mft))3;
upon substituting x(t) and arranging terms, we get
y(t) = %az + (a1 + %a-g) cos2mf,t +% a, cos 4mfyt + iagcos&rfot
Note that the output contains a component proportional to x(t), which is

(al | %a3) cos2Tfyt, in addition to a second and a third harmonic terms (terms at twice
and three times the frequency of the input).

These new terms are the result of the nonlinear characteristic and are, therefore, considered
as harmonic distortion. The DC term does not constitute a distortion, for it can be removed
using a blocking capacitor.

Note: Use was made of the inequalities Cos?x = %{1 + cos2x}; Cos3x=%{3wsx + cos3x}.
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Harmonic distortion in nonlinear systems
* Let the input to a nonlinear system be the single tone signal

. y(t) = a x(t) + ax(t)? + azx(t)3; X(t) = cos(2mfpt);
« y(t) = %az — (a1 - %ag) cos2mfyt + % a, cos2(2mfyt) + %achSS(Zn fot)

* Define the second harmonic distortion
592 |
|(a1+%a3)|

* In a similar way, we can define the third harmonic distortion as:

lamplitude of second harmonic|

lamplitude of fundamental term|’

1
1243 |

3
(a1 +5as)]

lamplitude of third harmonic |

. D3 = D3 = X 100%

lamplitude of fundamental term|’
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Introduction to Filters
» Afilter is a frequency selective device. It allows certain
frequencies to pass almost without attenuation while it
suppresses other frequencies.

H(f)

k /[Passband

* Filters are an integral part of any communication system

) P Stopband,
Ideal Filters > ’f
Ideal low pass filter
—j2rft
e H(f) = {" e/t |f1 < B. g is the bandwidth
0 0.W - -
* The transfer function satisfies the condition for the
distortion-less transmission (constant channel gain and
linear phase shift with negative slope)
* h(t) = 2Bk sinc2B(t — ty)
* Since h(t) is the response to an impulse applied at t=0,
and because h(t) has nonzero values for t < 0, the filter is | . o
non-causal (physically non realizable). TNty VY T
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Filters and Filtering

Ideal band-pass filter
CH(F) = {k e~J2nfta fi <If1 < fa
0 0.W

* Filer bandwidth B =f - f;; difference
between upper and lower positive
frequencies

¢ fo. = @; Center frequency of the filter

impulse response:
* h(t) = 2Bk sincB(t — ty)cos w.(t — t )
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H(f)
T Passband
k 1 «—B —

Z
N

f, . f, ONQ Vf

e
F 4

Stopband
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Filters and Filtering

Band rejection or notch filter | H(f)
ke—jZTL’ftd 0. W T
o H( ) = { . assband
D=l n<in<sn ‘ :
-f-f1 0 f1 ?2\ f
High-pass filter o
—j2nfty ' H
-H(f)={ke f1>B ®
0 0.wW Passband
k
y Stopil\and %
) B 0 B /f
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Real filters
* |deal filter do not exist in practice, but are

g . i H(j®) [dB]
used to simplify the analysis of the system | ' Passband Ripple (Rpass) [~ 35
* For a real filter, there are three frequency | (0)| + A ............... -
bands PaSSbg“d Transition
Gai
* Passband o Stopband
Rejection

* Transition band
* Stopband (rejection)

WL

AN

* There are several specifications that dictate

the filter order fo fo—— f
Passhand = stop - Stopband
* The passband edge frequency and the R Frequency
maximum allowable attenuation (ripple) within Example: Let B be the 3-dB bandwidth
the passband + -1dBatf=0.9B,
* The 3-dB cutoff frequency. * -30dBatf=168B

* The designer then finds the order of the
filter that meets these specifications and
then realizes that filter.

* The minimum required attenuation at the edge
of the stopband and the desired stopband
frequency.
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Real filters

* Here, we consider Butterworth low pass filters. The transfer function of a low
pass Butterworth filter is of the form:

© O =

* Bis the 3-dB bandwidth of the filter and P, (]f) is a complex polynomial of
order n. The family of Butterworth polynomials is defined by the property

- (R@)) =1+

* Therefore, |H(f)| = .

HON

* The first few polynomials are:
P (X)) =1+x; BL,(x)=1+vV2x+x% P;(x) =1 +x)(1+x + x?)
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Filters and Filtering

A first order LPF R
Hi) = (L) 1+jf/B  P1(f/B) ) =1%2 ?
1
« H(f) = 2 C -
R ez
— 1 . — 1 .
ety = 2nRC ’ H(f) = 1+jf/B

* Note: In this filter, there is only one energy storage element
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Filters and Filtering
A second order LPF

1 L
e H =
) = B iy e
i 1
*let R = \/:_C ; 2mVLC S R
1 ¢ ’
= R )=

1+\/_ ( L—(r/B)?
. — : — 2
H(f) = PZWB) P,(x) =1+2x+x

* Note: In this filter, there are two energy storage element
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Butterworth Low-pass Filters

B: is the 3-dB frequency at which the
magnitude drops to 0.707 of the
maximum value.

Let the maximum allowable
attenuation in the passband be 0.1
and the maximum gain within the
stopband be 0.1.

1
50 = s
* Passband:

* Transition band:

1
H) = S m

* Passband:

* Transition band:

As the filter order increases, both of
its pass-band and stop-band
capabilities improve.
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1

05

0.4

03

0.2

0.1

!

: Frequency Response and Filter Order

: : : 1st order
.-unq-.-qg!!.-9.-!_-!.-.-_-.-.'!:t_'!.'?.".'.‘_"E'_'.'.'::.'.'.'.'. g 2nd order
' : P ———3rd order
N 4th order
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A second order BPF

R
* The figure shows a band-pass filter. Its transfer function is o AN .
jw ﬂ(jw) » +
H(f) = RC = > QO . V, cLt L3 V.
(jw)? + + 1/LC () +—(Jw) + (o)

- o

& . 2 1 . . R f " ZMOrderBandpaaFlltarwithO 5

Wy = n(an) ; fo: Resonance frequency '

* Q=woRC = ﬁ; Quality factor which determines the
0

sharpness of the resonance.

S - B e — - —

[dB]

BW = 200KHz

Magnitude

B o o o o s i s s 3
l

. Bandwidth is inversely proportional to Q il — :
* Q= -; Higher Q provides higher selectivity ol z s .
e - :
* For the shown characteristic, Q = 1MHz/200KHz =5 o R, T S ... T —
. I H—Dl :
T T S T TS K K

Frequency [MHz]
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Other practical second order filters

o VAVA O
+ + p 2
L (e = Jw)” +1/LC Second order

V, Vo (jw)? + jwR/L + 1/LC ;

Tc; J band-stop filter

R C

o VA |1 o .
' . = Bl = (jw)? Second order
V L3V, (Jw)* + jwR/L + 1/LC high-pass filter
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Hilbert Transform

* The quadrature filter is an all pass filter

that shifts the phase of positive
frequency by (-90 ) and negative
frequency by (+90 ).

* The transfer function of such a filter is

 H(f) = {J‘.f .7 o= —isan(f)

* Note that |[H(f)| =1 forallf.

* Using the duality property of Fourier
transform, the impulse response of the

e g g -8
filteris h(t) = — (I{sgn(t)} = jnf)
* The Hilbert transform is the output of
the quadrature filter to the signal g(t)

. 1 0o A
GO = —xg(t) = [ L2d)

—80 3pff— A)

STUDENTS-HUB.com

* Note that the Hilbert transform of a signal

is a function of time (not frequency as in
the case of the Fourier transform). The
Fourier transform of g(t)

G(f) = —jsgn(HG(f)

* Hilbert transform can be found using

either the time domain approach or the
frequency domain approach depending on
the given problem. That is

* Time-domain: Perform the convolution

1
—*g(b).

* Frequency-domain: Find the Fourier

transform G (f), then find the inverse
Fourier transform

- §t) =[O G(f) e/t df
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Some properties of the Hilbert transform

* Asignal g(t) and its Hilbert transform g(t) have the same energy spectral
density

16(AI° = 1-j sgn(NIGN|I? = 1] sgn(PI|G(HI? =
’ = |G(f)|2 (1 -
The consequences of this property are: B

* If a signal g(t) is bandlimited to a bandwidth W Hz, then g(t) is bandlimited
to the same bandwidth (note that IG(f)| = |G(f)])

* g(t) and g(t) have the same total energy (or power). E = f_oooo 1G()|?df

* g(t) and g(t) have the same autocorrelation function (in the next lecture, we
will see that the autocorrelation function and the energy spectral density form

a Fourier transform pair R, (1) < |G (f)[?)
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Some properties of the Hilbert transform

« Asignal g(t) and §(t) are orthogonal, i.e., fjooo g(t) g(t)dt =0

* This property can be verified using the general formula of Rayleigh energy theorem
« [ 8 gDt = [7 GO G*(Ndf = [ GO {—jsgn(f) (N} df
= [, isgn(f) 1G(NI?df = 0.

* The result above follows from the fact that |G(f)|? is an even function of f while sgn(f) is

an odd function of f. Their product is odd. The integration of an odd function over a
symmetrical interval is zero.

* If g(t) is a Hilbert transform of g(t), then the Hilbert transform of §(t) is —g(t) (each
Hilbert transform introduces 90 degrees phase shift).

— | Hilbert Hilbert
g(t) | transform transform ~g(t)

e b
—
—+
——"
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Example on Hilbert transform

Example: Find the Hilbert transform of the impulse function g(t) = 6(t)

Solution: Here, we use the convolution in the time domain

c g ==+ 58(t)

* As we know, the convolution of the delta function with a continuous function
is the function itself. Therefore,

. 1
’ g =—.
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Example on Hilbert transform

Example: Find the Hilbert transform of g(t) = cos(2nf,t)
Solution: Here, we use the frequency domain approach

. | | JOR
c G = —jsgn(NG(f) = - LS 2fo)+ (f +o))

A . S(f—fo)+o(f+ S(f—fo)—6(f+
* G(f) — —]Sgn(f)G(f) — sgn(f{6(f j]2r0) (f+/o)} ={ (f fo)j2 (f+/o)}
. g(t) = sin(2mfyt)
sgn(t)
14
0‘ t
T—I
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Example on Hilbert transform

sin t
L

* Solution: Here, we will first find the Fourier
transform of g(t), find G(f), and then find

g(t):

* Find the Hilbert transform of g(t) =

. Arect(%) o Atsinc ft; 1 =%
. AreCt(L) o5 A LEMTGE LS
1/m T mfT ® f

t sin f
nrect (1/7r ) © -
So, by the duality property, we get the pair

mrect (L) <
1/m

sin t
t

ie. G(f)=m rect(lj/r—n) , (See figure next)

STUDENTS-HUB.com

* G(f) = —jsgn(f)G(f) =
— O < T <1/
{jn —-12n< f<0

$ 40 = [2,G(N e df

é‘ﬁ G

Jr T

3% f

]
o |
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Pulse Response of a First Order System

* |t is the response of the circuit to a pulse
of duration t. For the same RC circuit
: *y(£)=g)—g(t—T
considered above, let us apply the pulse V(&) = g( ()) 9( ) F<0

* x(t) = u(t) —u(t —1) .« y(t) ={ 1 — e~ 2™ Bent O<LE< T

* Using the linearity and time invariance (1 — @ 2FBan)g=20B 8t~ -
properties, the output due to the pulse  « Thijs response is sketched in the figure below.
can be obtained from the step response

g(t) as * From the equation above, we observe that the

1 output y(t) approximates the input x(t)
——————— provided that (y(7) > 0.99)

1
/ Bopt =21 or Bep = -

x(t)

STUDENTS-HUB.com Uploaded By: Malak Obaid



Pulse Response of a First Order System

The figure below shows the Fourier * If the channel bandwidth is much wider than the
transform of the input and the channel. message bandwidth, then

To reproduce the input, the channel
bandwidth should be wider than the

message bandwidth S()  1deal Channel ;. it B> B Y(f)
* Y () = X(F) H(f) /\ x 1 = /\
* YO =X() B, 0 B J B, 0 B, | B, 0 B J
X(f)=t sincft N

HOL o) = —A

1+jf/Bch

| | _ H(0)
Null Bandwidth = 1/t ! Channel Bandwidth = Bch

| "'~;1/ T}/ I\',l/ T }

\ /

e ——— - —— -
e e e e

-Bchg Bch  frequency
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Relationship to data transmission

* In digital communication systems, data are transmitted at a rate of R}, bits/sec.
. L 1 : :
The time allocated for each bitis T = — To enable the receiver to recognize

b
the transmitted bit within its allocated slot and to prevent cross talk between
neighboring time slots, we require that

1
BchE;ZRb

* Result: the channel bandwidth in binary digital communication systems should
be larger than the rate of the data sent over the channel.
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Autocorrelation and Spectral Density

* In this lecture, we define the autocorrelation function of a signal. Also, we
present the relationship between the autocorrelation function and the
power/energy spectral density.

* In this discussion, we restrict our attention to real signals. First, we consider
power signals and then energy signals.

* Definition: The autocorrelation function of a signal g(t) is a measure of
similarity between g(t) and a delayed version of g(t).

/ \\/ ! /\ / \

0
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Correlation and Spectral Density

* Autocorrelation function of a periodic power signal

* The autocorrelation function of a periodic power signal g(t) with period T is

Ry(D) = - f, " 9(Dg(t — D

Properties of R (7)
* Ry(r=10)=— [,° g(©)?dt; isthe
0

total average signal power.
* R4(7) is an even function of 7, i.e.,

Ry (1) = Ry(—1).
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0 s
| g(®)
-T Ty 2T
. g(t—1) 0
iy B T To+T  2To+T
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Correlation and Spectral Density

Properties of R, (7): R,(7) = TifOTO g(®)g(t —1)dt
0
* R, (7) has a maximum (positive) magnitude at t=0,i.e. |[R4(7)| < Ry(0).

Proof of this property:
Consider the quadratic quantity

[g@®) +g(t+D)]*=>0
Taking the time average ( < y(t) > TLfOTO y(t)dt) of both sides, and expanding, we get
0

<{lg®) gt +D]*}> =20
<{g®)*}> +<{gt+1)?}>+2<{g)gt+1)}>>0
But, < { g(t)?} > = Ry(0) and R;(0) = < { g(t + 7)?} > as well.

Combining these results, we get: —R4(0) < Ry(7) < Ry(0).
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Correlation and Spectral Density

* Theorem: The autocorrelation function R, (7) of a periodic signal g(t) is also periodic with
the same period T,

1 (T,
* Proof: R,(7) = T—Ofoo g(t)g(t —1)dt

* Expand g(t) in a complex Fourier series g(t) = Yo _o, Cpe/"®0t,

* Form the delayed signal g(t — 1) = Y% __., C,,,e/M®o(t=7)
* Perform the integration over a complete period T, , making use of orthogonality. The result is:

* Ro(t) = 2o D, e/"®T =¥ _I1C, |*e/™07 ; Fourier series expansion of Ry (1)
« D, = |C, |? Fourier coefficients of R4(7); Cy, Fourier coefficients of g(t).

* Note that the real Fourier coefficients D), of R, (1) are related to the complex Fourier
coefficients C,, of g(t) by the relation D,, = |C,|?.

* The Fourier transform of the autocorrelation function is

* 54(F) = S{Rg(r)} =Y _|C.|*8(f — nfy) ; Discrete spectrum
* This is, of course, the power spectral density of g(t) , which we considered earlier.
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Autocorrelation of a periodic sinusoidal signal

* Example: Find the auto-correlation function and power spectral density of the
sine signal g(t) = Acos(2nfyt + 6), where A and 6 are constants.

* Solution: As we know, g(t) is a periodic signal. Therefore, we find Rg(r) using the
definition

© R@ =10, 9®g(t—Dde

R, (1) = Ti [,° Acos(2mfyt + )Acos(2mfot — 2mfot + B)dt
0

. Ry(7) = ;%foro [cos(4mfyt — 2mfoT + 260) + cos(2mfyT)]dt

AZ

. Ry(7) = — [0 + cos(2mf,T)Tp]
7
. Ry(7) = A?COS(ZﬂfOT); Periodic with period T.

. Sq(f) = %2{6(]’ — fo) + 6(f + fu)}; power spectral density
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Correlation and Spectral Density

Autocorrelation function of energy signals

* When g(t) is an energy signal, R, (1) is defined as
Ry(1) = [, g()g(t —1)dt

Properties of R(1)
* Ry(1=0) = ffooog(t)zdt; is the total signal energy.
* Ry(7) isan even function of 7, i.e., R, (7) = Ry(—1).

* Ry(7) has a maximum (positive) magnitude att=0, i.e. |[R,(7)| < R, (0).
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Correlation and Spectral Density

Theorem: The autocorrelation function of an energy signal and its energy spectral density (a
continuous function of frequency) are Fourier transform pairs, i.e.,

« S;(f) = 3{R,(D} = [ Ry(T)e /2™ 7 dx;
* Ry(D) = [, Sy(Ne* T df.

Proof: The autocorrelation function is defined as:
*Ry(D) = 2, 9(Dg(A —1)d 2

* In this integral we have replaced t by A (both are dummy variables of integration). With this
substitution, we can rewrite the integral as

* Ry = [, g(Dg(—(T = ))d A
* One can realize that R, (7) is nothing but the convolution of g(7) and g(—1). That is,

* Ry(1) =g(r) » g(-1)
* Taking the Fourier transform of both sides, we get

* F{Ry(D} = G(f)G*(f), Therefore S,(f) = I{Ry(D)}=|G()I*.
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Example: Autocorrelation of a non-periodic signal

* Example: Determine the autocorrelation function of the sinc pulse
g(t) = Asinc2Wt.
* Solution: Using the duality property of the Fourier transform, we deduce that

. G(f) ——rect( )

* The energy spectral density of g(t) is
. — NP EL 2E
So(F) = 161 = (Ey?rect(L)

* Taking the inverse Fourier transform, we get the autocorrelation function

A% . t
’ Ry(7) = o StnezWt rect (T) o TsinfT
nc2Wt < . t /
sinc 2Wrec ( )
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Autocorrelation function of the rectangular pulse

« Example: Find the autocorrelation function of the pulse g(t) = rect(

t—0.5T

),T:1.

* Solution: As we saw earlier, this pulse is an energy signal and therefore, we can find its

Ry(t)as: R, (r) = [ (A)(A)dt=A%(1-1) ; O<T <1

* Using the even symmetry property of the autocorrelation function, we can find Rg (1) for -

ve values of T as:
* R,(1) = A*(1+1); -1<T<0

* This function is sketched below. Note that that the maximum value occurs at t = 0 and that
g(t) and g(t-t) become uncorrelated for t = 1 sec, which is the duration of the pulse.

* The energy spectral density is S,(f) = S{Rg(r)} = A%((sincf)?)
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