
ANALOG TO DIGITAL
CONVERTER (ADC)
Shadi Daana

STUDENTS-HUB.com

https://students-hub.com

Basics of analog and digital signals

• In the real world, analog signals are
continuous, time-varying signals that
represent information using a
continuous range of values. These types
of signals can come from sound, light,
temperature, and motion

• Digital signals are discrete, non-
continuous signals that represent
information using a finite set of values.
These signals are typically binary,
consisting of discrete 0s and 1s.

STUDENTS-HUB.com

https://students-hub.com

Basics of analog and digital signals

• To process a continuous signal in a computer or other digital system, you must
first translate it into digital representation.

• Analog-to-Digital converters (ADC) translate analog signals, real world signals like
temperature, pressure, voltage, current, distance, or light intensity, into a digital
representation of that signal.

• This digital representation can then be processed, manipulated, computed,
transmitted or stored.

STUDENTS-HUB.com

https://students-hub.com

ADC Conversion Process

STUDENTS-HUB.com

https://students-hub.com

ADC Sampling

• To process an analog signal in a digital system, it needs to be
converted into a series of discrete values.

• Sampling in ADC refers to the process of taking discrete samples of an
analog signal at regular intervals or sampling rate.

STUDENTS-HUB.com

https://students-hub.com

What sampling rate do we need?

• The Nyquist-Shannon sampling
theorem dictates that the
sampling rate must be at least
twice the highest frequency
present in the analog signal to
avoid aliasing.

• Aliasing is a phenomenon
where high-frequency
components incorrectly appear
as lower frequencies

STUDENTS-HUB.com

https://students-hub.com

Sample and hold

• The main function of a sample-and-hold (S/H) circuit
is to take samples of its input signal and hold these
samples in its output for some period of time.

• Typically, the samples are taken at uniform time
intervals; thus, the sampling rate (or clock rate) of
the circuit can be determined.

STUDENTS-HUB.com

https://students-hub.com

Sample and Hold Circuit

STUDENTS-HUB.com

https://students-hub.com

Determining minimum sampling time

• Sampling time is software programmable

• Sampling time must be long enough to settle within ½ LSB

STUDENTS-HUB.com

https://students-hub.com

ADC Quantization

• Sampling converts a time-varying voltage signal into a discrete-time signal, a
sequence of real numbers.

• Quantization replaces each real number with the closest value among a limited
number of discrete levels

• The type of ADC depends on how it’s performing the quantization process; it can be
▪ Analog integration

▪ Digital counter

▪ Successive approximation

▪ Or flash ADC .

STUDENTS-HUB.com

https://students-hub.com

Basics of analog and digital signals

• Basically, an analogue to digital converter takes a snapshot of an
analogue voltage at one instant in time and produces a digital output
code which represents this analogue voltage.

• Resolution of ADC: number of binary bits in ADC output used to
represent this analog voltage value

STUDENTS-HUB.com

https://students-hub.com

ADC resolution

STUDENTS-HUB.com

https://students-hub.com

ADC quantization error

• Analog to digital conversion destroys information: we convert a range
of input voltages to a single digital value

STUDENTS-HUB.com

https://students-hub.com

STM32 ADC Peripheral

• The ADC in the STM32F4 microcontroller is a peripheral that converts analog signals
into digital values, allowing the microcontroller to process real-world sensor data

• It utilizes successive approximation approach to perform analog to digital
conversions.

• It has up to 19 multiplexed channels allowing it to measure signals from 16 external
sources, two internal sources, and the VBAT channel.

• The resolution of the ADC in the STM32F4 microcontroller is configurable, and it can
be 12-bit, 10-bit, 8-bit, or 6-bit.

• The sample time in STM32 microcontroller is programmable

STUDENTS-HUB.com

https://students-hub.com

STM32 ADC Peripheral

• The STM32F4 microcontroller has up to three ADC modules (ADC1, ADC2, and ADC3) connected to the
APB2 bus.

• This means that the ADCs Receive their clock source through this bus. (check Functional overview
section in the datasheet)

• The clock from the APB2 bus might be too fast for the ADCs to operate correctly.

• To adjust the clock speed to a suitable value for the ADC, there is an internal prescaler dedicated to the
ADCs

• This prescaler is used to divide the APB2 clock down to a frequency that is compatible with the ADC
that does not exceed its maximum operating frequency

• (Typically up to 36 MHz for the STM32F40xx and STM32F41xx ADCs). (check ADC characteristics table
in the datasheet)

STUDENTS-HUB.com

https://students-hub.com

Programming ADC sampling time

STUDENTS-HUB.com

https://students-hub.com

Successive approximation (SAR)

STUDENTS-HUB.com

https://students-hub.com

Successive approximation (SAR) ADC

• Binary search algorithm is used
to gradually approach the input
voltage

• Settle into ± ½ LSB bound
within the time allowed

STUDENTS-HUB.com

https://students-hub.com

ADC conversion time

TADC= TSampling+ TConversion

• Suppose ADC clock = 16 MHz and sampling time = 4 cycles

• For 12-bit ADC

TADC= 4 + 12 = 16 cycles = 1 µs

• For 6-bit ADC

TADC= 4 + 6= 10 cycles = 0.625 µs

STUDENTS-HUB.com

https://students-hub.com

ADC conversion modes

STUDENTS-HUB.com

https://students-hub.com

Example: Read ADC Value From Potentiometer

• The potentiometer is a variable voltage divider based
on the amount of shaft rotation

• The voltage is divided into two portions, V1 and V2,
with V2 being the voltage presented to the
microcontroller’s analog input.

• You need to connect the middle pin of the
potentiometer to an ADC channel of the
microcontroller

• In this example the middle pin is connected to
channel 4 of ADC1, which is PA4

• Note: the Vref in STM32 microcontroller is 3.3, it
cannot handle more than 3.3 voltage input

STUDENTS-HUB.com

https://students-hub.com

Example: Read ADC Value From Potentiometer

• Open STM32CubeIDE and create a new STM32 project for your STM32F4 microcontroller.

• Set frequencies for the system clock (SYSCLK), (APB) clocks, and AHB bus (for example: Select HSI as a
clock source to PLL, and set APB2 clock to 84 MHz)

STUDENTS-HUB.com

https://students-hub.com

Example: Read ADC Value From Potentiometer

• Enable ADC1 channel 4 as shown in the following figure.

• PA4 will be activated when you select ADC1,
Channel 4

STUDENTS-HUB.com

https://students-hub.com

Example: Read ADC Value From Potentiometer

• The frequency of the clock to ADC module is
determined by dividing the APB2 clock frequency
by the clock prescaler

• In this example, the prescaler is selected to be 4.

• Thus, the ADC clock is (84Mhz/4 = 21MHz).

• You can select the sampling time from drop menu

• Can you calculate the total ADC time?

STUDENTS-HUB.com

https://students-hub.com

Example: Read ADC Value From Potentiometer

• Click on the "Project" menu and select "Generate Code" to generate the
initialization code based on your configuration.

• Inside the main.c, you can write the code to read the ADC value

• Since we just covered single channel, single conversion mode, every time we need
to read an ADC value, we need to
• Tell the ADC to start the conversion

• Wait until the ADC module convert the value, then read the ADC value and save it into a variable
(i.e. uint16_t adcValue;)

• Stop the conversion

HAL_ADC_Start(&hadc1);

if(HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY) == HAL_OK) {

adc_value = HAL_ADC_GetValue(&hadc1);// Read ADC value

}

HAL_ADC_Stop(&hadc1);

hadc1 is a declaration of a structure(ADC_HandleTypeDef)
that is automatically generated by the Cubemx tool. It
encapsulates all the information and configurations related to a
specific ADC instance
ADC_HandleTypeDef hadc1;

STUDENTS-HUB.com

https://students-hub.com

Example: Read ADC Value
From Potentiometer

• If you have more than one ADC channel, you must
select the channel from which you need to
acquire data

• To simplify the process, you can create your own
function for selecting the channel and getting the
ADC value.

• For Example,
▪ ADC_Get_Value is used to return ADC value using single

channel, single conversion mode.

▪ ADC_Select_Channel is used to select the channel that
you will get data from.

• Do not forget to include Function Declarations
(Function Prototypes)

uint32_t ADC_Get_Value(ADC_HandleTypeDef *hadc, uint32_t adc_channel) {

 ADC_Select_Channel(hadc, adc_channel);

 uint32_t adc_value;

 HAL_ADC_Start(hadc);

 if(HAL_ADC_PollForConversion(hadc, 100) == HAL_OK)

 {

 adc_value = HAL_ADC_GetValue(hadc);

 }

 HAL_ADC_Stop(hadc);

 return adc_value;

}

void ADC_Select_Channel(ADC_HandleTypeDef *hadc, uint32_t adc_channel)
{

 ADC_ChannelConfTypeDef sConfig = {0};

 sConfig.Channel = adc_channel;

 sConfig.Rank = 1;

 sConfig.SamplingTime = ADC_SAMPLETIME_144CYCLES;

 if (HAL_ADC_ConfigChannel(hadc, &sConfig) != HAL_OK) {

 Error_Handler();

 }

}

STUDENTS-HUB.com

https://students-hub.com

Example: Program Code

• In the debug view, you can add the variables that you want to see to the Live Expression tab.

• It will display the value based on the change of input voltage from the potentiometer

STUDENTS-HUB.com

https://students-hub.com

Exercise: Interfacing a Light Dependent Resistor
(LDR)

• Develop firmware to read data from an LDR sensor

STUDENTS-HUB.com

https://students-hub.com

Questions?

STUDENTS-HUB.com

https://students-hub.com

	Slide 1: Analog to digital converter (Adc)
	Slide 2: Basics of analog and digital signals
	Slide 3: Basics of analog and digital signals
	Slide 4: ADC Conversion Process
	Slide 5: ADC Sampling
	Slide 6: What sampling rate do we need?
	Slide 7: Sample and hold
	Slide 8: Sample and Hold Circuit
	Slide 9: Determining minimum sampling time
	Slide 10: ADC Quantization
	Slide 11: Basics of analog and digital signals
	Slide 12: ADC resolution
	Slide 13: ADC quantization error
	Slide 14: STM32 ADC Peripheral
	Slide 15: STM32 ADC Peripheral
	Slide 16: Programming ADC sampling time
	Slide 17: Successive approximation (SAR)
	Slide 18: Successive approximation (SAR) ADC
	Slide 19: ADC conversion time
	Slide 20: ADC conversion modes
	Slide 21: Example: Read ADC Value From Potentiometer
	Slide 22: Example: Read ADC Value From Potentiometer
	Slide 23: Example: Read ADC Value From Potentiometer
	Slide 24: Example: Read ADC Value From Potentiometer
	Slide 25: Example: Read ADC Value From Potentiometer
	Slide 26: Example: Read ADC Value From Potentiometer
	Slide 27: Example: Program Code
	Slide 28: Exercise: Interfacing a Light Dependent Resistor (LDR)
	Slide 29: Questions?

