Chapter-4

Legendre’s Polynomials

4.1 Introduction

The following second order linear differential equation with variable
coefficients is known as Legendre’s differential equation, named after
Adrien Marie Legendre (1752-1833), a French mathematician, who is
best known for his work in the field of elliptic integrals and theory of
numbers :

(1—x2)y" =2xy"+n(n+1)y=0 (D
where n is a non-negative integer.

Legendre’s differential equation occurs in many physical and
engineering problems involving spherical geometry and gravitation.

4.2 Legendre’s Differential Equation
We know that the differential equation of the form
1-x¥)y" -2xy'+n(n+1)y=0 (1)

is called Legendre’s differential equation (or simply Legendre’s equation),
where n is a non-negative integer.

This equation can also be put in the following form:
;—x{(l —x?) %} +n(n+1y=0.

Clearly, the only singular points of (1) are x = 1, x = — 1 and x = oo,
which are regular. Therefore, the Legendre’s differential equation is a
Fuchsian differential equation.
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The points other than singular points e.g., x = 0, x = 2, etc. behave like
ordinary points of (1).

Let the series solution of (1) be of the form

Y = Y=o Cx*™,Co # 0 .2
Y = Yo Co(k + m)xktm=1 ..03)
and y' =32 o Cnlk + m)(k + m — 1)xktm=2 (4

Putting the above values of y, y'and y" in (1), we have
=0 Cn(k +m)(k +m — D)x*m2 — 2 F2 €, (k + m)(k +m — 1)x*+m2
—2x 3% _o Cn(k + M)x¥+H ™1 L n(n + 1) X8, Cpx¥+™ = 0
or %o C ke + m) (k + m — 1)xktm=2
3% o Cod(k + m)(k +m = 1) + 2(k + m) — n(n + D}x*+m = 0
or Yo Cplk +m)(k +m — 1)xkrm=2
— 3% Co ((k +m)? + (k + m) —n? —n}x¥*™ = 0
or  Y_oCp (k+m)(k +m—1)xkm2
— Y=o Cn{k +m+n)(k + m—n) + (k + m —n)}x*+™ =0
or =0 C(k + m)(k + m — 1)x*+m2
—YeoCn (k+m—m)(k+m+n+DxFm=0 (5

which is an identity in X and, therefore, the coefficients of various powers
of x in it should be zero.

Thus, equating to zero, the coefficient of the smallest power of x,

k-2

namely x*~“ in (5), we get the following indicial equation

Cok(k—1)=0 or k(k—1)=0, [ Cy # 0]
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which gives two indicial roots k =k; = 1 and k =k, = 0.

Note that the roots of indicial equation are unequal and differ by an
integer.

Now, to get the recurrence relation, we equate to zero, the coefficient

of x¥*™=2in (5). Thus, we have

Cplk+m)(k+m—-1)—Cp_(k+m—-2-n)(k+m—-2+n+1)=0

_ (k+m=2-n)(k+m—1+n)
or Cph = e y— Chs ...(6)

Next, equating to zero, the coefficient of x*~in (5), we obtain
Cilk+Dk=0 (D

For k = 0, we note from (7) that C; is indeterminate.

_ (m=2-n)(m-14n)

Thus, putting k = 0 in (6), we get C,, = ——C,,_, ...(8)

m(m—1)

We now express Cp, Cy4, Cg.... in terms of Cy and C3, Cs C5.... in terms
of C; by assuming that C is finite.

(-n)(n+1) _ n(nt1)

Putting m =2 in (8), we have ¢, = 1 Co= — Co (9
Putting m = 4 in (8) and using (9), we obtain
_ (2-m)3+n) _ (n=2)n(n+1)(n+3)
Cr="—Cy = . Co ...(10)
and so on.
Next, putting m = 3 in (8), we obtain
_ (-n)e+m _ (n-1)(n+2)
Ci=——C=—"—0 ..(11)

Again, putting m = 5 in (8) and using (11), we have
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(3_7;);“”) C, = (n—3)(n—1)5!(n+2)(n+4) c, (12)

C5 =
and so on.

Now, the solution (2) can be re-written as:

y = x¥(Co + C1x + Cox% + C3x3 + Copx* + Csx® + -+), where k=0

or y = (Co+ Cpx? + Cox* + ) + (Cyx + C3x3 + Csx® + +++) ...(13)
Using the values of C,, Cs, C4, Cs,...... in the above equation, we get
Y =G, [1 _ n(T;‘:'l)xz 4 (n_Z)n(Zg_l)(nH) o ]
¢, [x [ (n- ll(|n+2) 3 (=9 1)(n+2)(n+4-) 54 ] e

which is the required general series solution, Cy and C; being arbitrary
constants.

4.3. Solution of Legendre’s Differential Equation in
Descending Powers
Consider Legendre’s differential equation of the type
(1—x2)y" —2xy' +n(n+1)y =0 e
where n is a non-negative integer.

It is possible to obtain the solution of (1) in terms of descending
powers of x. Due to its applications to physical problems, this form of
solution of Legendre’s differential equation is more important.

For such a solution, let us assume that the Legendre’s differential
equation (1) has a series solution of the form

Y = Y=o Cmx*™™,Cy # 0 (2

Then, by Frobenius method, we can find two linearly independent
solutions of (1) in descending powers of x as:
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_ n_nm-1) pp  n-1)0-2)n-3) n_4 _
h=a [x 2(2n—1)x 2.4(2n-1)(2n-3) ] E)
_ —n—-1 , +D)(+2) _,_3 | (n+1)(n+2)(n+3)(n+4) x5
and y2=b [x 2(2n+3) 2.4(2n+3)(2n+5) t ] (@)
1.3.5..(2n—1)

If we take a = , the solution (3) is denoted by P, (x) and is

n.
called Legendre’s function of the first kind or Legendre’s polynomial
of degree n [since (3) is a terminating series and so, it gives rise to a

polynomial of degree n]. Again, if we take b = #;m the solution (4) is
denoted by Qn(x) and is called Legendre’s function of the second kind.
Since n is positive, (4) is an infinite or non-terminating series and hence
Qn(x) is not a polynomial. Thus, P,(x) and Q,(x) are two linearly
independent solutions of (1). Hence, the most general solution of (1) is

given by
y = AB,(x) + BQ,,(x) ...
where A and B are arbitrary constants.
Remarks: When there is no confusion regarding the variable x, we
shall use a shorter notation P, for P,(x), B,’ for % P, (x) and so on.
4.4 Legendre’s Functions of First and Second Kinds

Legendre’s function of the first kind or Legendre’s polynomial of
degree n is denoted by P,(x) and is defined by

_135.2n-D[ n _ n(-1) n_» nn-1)(n-2)(n-3) n_4 .
Pa(x) = n! [x 2(2n—1)x + 2.4(2n-1)(2n-3) x ] (D)

We can also write P, (x) in a compact from as :

P,(x) = ¥V (—qyr __@n2t yn-ar (2)

2ri(n—-2r)(n-r)
h [n/2] = n/2,ifnis even
WREIe |N/2] =1 (n-1)/2,if n is odd"

Legendre’s function of the second kind is denoted by Q,(x) and is
defined by
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! [—n—l (n+1)(n+2)  _n_3 |, +1)+2)(n+3)(n+4) _p_g

n:
Qn(X) T 135..(2n+1) 2(2n+3) 2.4(2n+3)(2n+5) x + ] -()

4.5 First Few Legendre’s Polynomials

Using the definition (1) or (2), the first few Legendre’s polynomials
are given by

Py(x) = 1, Py (x) = x, P,(x) = - (3x% — 1), P3(x) = 5 (5x° — 3x)

P,(x) = 2 (35x* — 30x2 + 3), Ps(x) = §(63x5 — 70x3 + 15x), etc.

4.6. Generating Function for Legendre’s Polynomial P,(x)

The function (1-2x h + h?)™"? is called as the generating function for
P,(x) and, therefore, P,(x) is the coefficient of h" in the expansion of

(1 — 2xh + h)™* in ascending powers of h, ie., (I — 2xh + K" =
gp
Yo oh™ B(x),|x| < 1land |h| < 1.

Proof: Since |h| < 1 and |x| < 1, therefore, we can write

(1-2xh+h* ”={1-h(2x-h)}"

— 1 _ 13,2 V2 gy 18Cn3) g _ pyn-1
—1+2h(2x h)+2.4h (2x —h)* + +2.4...(2n—2)h (2x — h)
13.20=3) ) n o \n
a5 MQ@x-n"+ (D

. Coefficient of h" in R.H.S. of (1) is

_13..(2n-1) n_ 13.(2n-3) n—z | 13..(2n-5) n_3 n—4 _ .
T 24.2n -(2x) 2.4..(2n-2) n—16,(2x) + 2.4..(2n—4) C2(2x)
_13..(2n-1) ,p [ n_ 2n P 2n(2n-2)  (n-2)(n-3) x"7* ]

T 24.2n 2% |« 2n—1 -1 2z T (2n-1)(2n-3) " 2! 22
__13..(2n-1) [ n_ 2n XA 2n(2n-2)  (n-2)(n-3) x"7* ]

- n! x 2n-1" (n—1) 22 (2n-1)(2n-3) 2! 22

_13..(2n-1) [xn _nm-1) pp , n(n-1D@m-2)(n-3) p_4 ]

- n! 2(2n-1) 2.4(2n-1)(2n-3)

= P(x).
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Thus, we can say that in the expansion of (1 — 2xh + h*)™"?, in ascending
powers of h, the Legendre’s polynomials Py(x), P(x),Px(x)..... respectively
are the coefficients of h’ h', h’,.... in the expansion given by (1).

Hence, we have (1 — 2hx + h?)™Y/2 = ¥*_ h" P,(x), where Py(x) = 1.

This shows that P,(x) is the coefficient of h" in the expansion of
(1 —2hx + h?)~¥/2, This is why (1 — 2hx + h?)"%/2 is called as the generating
function of the Legendre’s polynomial P,(x).

4.7 Murphy’s Formula for Legendre’s Polynomial P, (x)
Consider the Legendre’s differential equation
(1-x*)y — 2xy +n(n+ 1y =0 (D)
where n is a non-negative integer.

It has only three singular points namely x = 1, x = —1 and x = o and
all are regular. Therefore, Legendre ‘s differential equation is a Fuchsian
differential equation with three regular singular points x =1, x = —1 and

X =00,
Let us find the solution of (1) about the singular point x = 1 as follows:
The substitution t = % (1 — x) transfers the singular point x =1 to t = 0.

In this case, the Legendre’s differential equation (1) is transformed to
the following differential equation:

tl-0)y"+A+20)y ' +n(n+1)y=0 ...(2)

This transformed differential equation is in the hypergeometric form
witha=—n,b=n+1andc=1.

All solutions of the transformed differential equation (2) are
represented by the P- symbol as follows:
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0 1 oo
y=PJ0 0 n+1 ¢ ...(3)
0 0 —n

Hence, all solutions of the Legendre’s differential equation (1) are
represented by the following P- symbol :

0 -1 o
y=P40 0 n+1 x .4
0 0 —n

One of the solutions of the differential equation (2) is the polynomial
F(—n;n+1; 1;t).

Now, replacing t by (1 — x)/2, we can have one of the solutions of
Legendre’s differential equation (1) as:

P, (x) = F(—n,n +1; 1;%) (5

which is the polynomial solution of (1). This relation (5) for P,(x) is
known as the Murphy’s formula for Legendre’s polynomial P,(x).

4.8. Laplace’s Definite Integrals for P (x)

(I) Laplace’s First Integral for P,(x): When n is a positive integer ,
then Laplace’s first integral for P,(x) is given by

P,(x) = %fo"[x +/(x%2 = 1) cos p]" d¢p (D)
Proof: From integral calculus, we have
T d¢ b4
Js Theosd = T where a? > b2, ..(A)

Puttinga = 1 —hx and b =h /(x2 — 1) so that ¢* — b* = (1- hx)* — h’
(x*~1)=1-2hx +h%.

Using these values of a, b and a* — b* in (A), we have
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m(1 — 2hx + h?) 7Y% = [*[1 — hx + hy/(x? — 1) cos ¢] ™' d¢p

= Jyl = h{x F/(x* = 1) cos p} " d¢p

= [[1—ht]"tde, where t = x F \/(x2 — 1) cos ¢
or T Yoo R Py(x) = [y (1 — ht + R2t2 + -+ W™t + ) dp

= [ [Zro(ht)"]de = Tr_o[h™ [ t™ dep].

Equating the coefficients of h" on both sides, we have
P (x) = [§ t"de = [ [x £/ = 1) cos ]" dp
or Pa(0) = L[y Tr £ /G2 = 1) cos ¢]" dg,

(II) Laplace’s Second Integral for P,(x): When n is a positive
integer, then Laplace’s second integral for B, (x) is given by

— a¢
Pu () = f [x+y/(x2-1) cos p]n+1" -(2)

Proof: From integral calculus, we have

T do T
fO atbcos ¢ = Jaz-p2’ where a® > b?. ...(A)
Putting @ = hx — 1 and b =h /&zZ = 1) s that @* — b = 1 - 2hx + h”,

Using these values of a, b and a*— b’ in (A), we have

(1 — 2hx + h?)™2 = ["[1 — hx + hy/(x? — 1) cos p]* d¢p

or %[1—2 x + ] —f [A{x £/ (x2 — 1) cos ¢} — 1]"d¢

or

%ZfzohinPn(x) = f(;r(ht —1)"1d¢, where t = x + /(x2 — 1) cos ¢

:f [1__] d¢ = fo [+ +h1t2+m+hnltn+m]d¢

n[1 1 1 1 o 1
= fo [E + h2t2 + h3t3 +oet pntlentl + ] dé = Yo [hn+1 0 tnl 4)]
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P =
n=0 [zn+t Jo {xiMcosqﬁ}nH

Now, equating the coefficient of # from both sides, we have

T P,(x) = [" i 7
Tl( ) fo {xi ,—(xz—l)cosq}] +1

1 do
B(x) ==
Tl( ) TL'fO {xi ,—(xz—l) cos¢]n+1

Remarks: Replacing n by — (n + 1) in Laplace’s second integral, we
have

1
P_(ns1y() = = [ {x £/ (x2 = 1) cos $}" d¢p
= P,(x), [From Laplace’s first integral.]

Hence, we have ~ P_,,4)(x) = P,(x) , which can also be obtained by
using the Murphy’s formula for P,(x).

4.9. Orthogonal Properties of Legendre’s Polynomials

2
2n+1"

@ [ Pp@) Py(dx=0ifm=n. (D [ [P,(0)]?dx =

Proof: (I) Legendre’s differential equation may be written as
;—x{(xz—l)z—i}+n(n+1)y=0 e

Since P,(x) is a solution of Legendre’s differential equation (1),
therefore, we have

%{(x2 -1) ‘%} +n(m+ 1B, = 0. (2
Similarly, if we consider the Legendre’s differential equation
;—x{(xz—l)z—z}+m(m+1)y=0 ...(3)

Then, we have %{(x2 -1) ‘%"} +m(m+ 1P, = 0. (4
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Multiplying (2) by B,, and (4) by B, and then subtracting, we have
Pu {1 =222 = b, 2 {1 = x) 22} 4 (n(n + 1) = m(m + 1)}ByBy = 0
Integrating the above between the limits — 1 to 1, we have
-1 d dpry, -1 d de
i mla -t g ar - L [m -t o ax
+n(n +1) — m(m + 1)} [, PyPydx = 0

On integrating by parts, we obtain

[Pt =y o] - 1 o - e - [ - ]

@ - T dx + [+ 1) —mGm + D] [ PuPudx = 0.

or {n(n+1) —m(m + D} [} BaPrdx =0
Hence, we have [ B, (x)P,(x)dx = 0,if m # n
(IT) We know that the generating function for B,(x) is given by
(1= 2hx + h?)™Y2 =¥ h"P,(x) .3
Also, we have (1 — 2hx + h?)™Y/2 =¥ h™P,,(x) (@
Multiplying the corresponding sides of (3) and (4), we get
(1—=2hx+h®) L =32_ >= h™"P, (x)P,(x).
Integrating the above between the limits — 1 to + 1, we have

S = 2ha + B2 dx = B B [ {1 Pu (0P ()]

+1 dx

or  Tieo J1 R R + Do [ AR P (R) dx = [T s

m#+n

Now, since f_+11 B, (x)P,(x) dx = 0, where m # n. Therefore, we have

STUDENTS-HUB.com


https://students-hub.com

102

co 1 n 1 dx
oo [ R P00V dx = [ e = — - llog(1 — 2hx + R)]

= —ﬁ{log(l —h)? —log(1 + h)?},

=, llog(1 —h) —log(1 — )]

A=) (- E -2 )

Now, equating the coefficients of h?" from both sides, we have

2
2n+1

SR (0)]Pdx =

Remarks: Making use of the Kronecker delta, the results (I) and (II)
can be written in compact from as

[ Pr(OPy(x) dxt = ——= 8y

2n+1

where Kronecker delta 6,,, is defined by 8, = { S:EZ:Z

4.10 Recurrence Formulae for Legendre’s Polynomials
(D) 2n+ Dx Pp(x) = (0 + 1)Ppyq(x) + nPp_q(x).
Proof : Generating function for B, (x) is given by
(1—=2xh+h?)"Y2 =32 h"P,(x) (D
Differentiating both sides of (1) w.r.to h, we have
— (1 — 2xh + h2) /2 (=2x + 2R) = ¥ onh" 1P (%)
Multiplying both sides by( 1 — 2xh + h?) and simplifying, we have

(x —h)(1 —2xh + h?)"Y2 = (1 — 2xh + h?) ¥2_nh™ 1P, (x)

or (x —h) T_o h"Py(x) = (1 — 2xh + h?) X5 nh™ 1B, (x), on using (1)
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or X Lo K Py (%) — Zneg A 1By (x) = Xioo nh™ 1Py (%) — 2x X nh" Py (%)
+ Yo nh" 1P, (x) ..(2)
Equating the general coefficients of A" on both sides of (2), we have
xB,(x) = Pp_1(x) = (m+ VP, 1 (x) — 2xnB(x) + (n — 1) P_1(x)
or 2n + DxP,(x) = (n + 1Py, (x) + nP,_1 (%)

This recurrence relation is the classical three-term relation for P,(x)
and it is a pure recurrence relation for Legendre’s polynomials.

Remarks: Equating the general coefficients of h"~! on both sides of
(2), we get

xPn—l(x) - Pn—Z(x) = nPn(x) - ZX(Tl - 1)Pn—1(x) + (Tl - Z)Pn—z (X)
or nP,(x) = (2n—- 1)xP,_1(x) — (n— 1P, _,(x).

This is a substitute recurrence relation of (I) and may be directly
obtained by replacing n by (n — 1) in (I).

(D nPy(x) = xP'y(x) — P'y_1(x),
Proof: Generating function for P, (x) is given by

(1 —2xh + h?)~Y2 =32 h"P,(x) (D)
Differentiating (1) w.r.to h, we have

(x —h)(1 — 2xh + h?)73/2 = ¥ nh" 1P, (x) ..(2)
Again, differentiating (1) w.r.to X, we have

h(1 —2xh + h?)73/2 = ¥=_ h"P’, (x) ..(3)
Multiplying both sides of (3) by (x — h), we have

or h(x — h)(1 — 2xh + h?)™3/2 = (x — h) ¥, AP’ (x) (4

Now, from (2) and (4), we have

h Yo nh™™ Py (x) = (x = B) Lo h"P' (%)
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or Tronh™ Py (x) = x Xy KP'n (%) — Xiieo AP () (5
Equating the general coefficients of h™ on both sides of (5), we have
nP,(x) = xP'y (x) — P’y (x)
This recurrence relation is a differential recurrence relation.
() (2n + DP,(x) = P'pya1(x) = P'pg (%).
Proof: From recurrence formula (I), we have
(2n + 1)xPy(x) = (n + 1Py (x) + nPy_y (%). (D)
Differentiating both sides of (1) w.r.t. x, we have
@n+DxP',(x) + 2n+ P, (x) =(m+ VP 1(x) + nP' 1 (%), ...(2)
From recurrence formula (II) we have
XP' (%) = nPy(x) + P'p_y (%) ..3)
Eliminating xP’, from (2) and (3), we have
Cn+ DMB,x)+P 1]+ Cn+ DB,(x) =+ VP11 (x) + nP'_1 (%)
or Cn+ 1D+ DX =M+ DP i (x)+nP'(x) — 2n+ 1P’ ,_1(x)
or @n+ DM+ DP(x) = (n+ DP' ey (x) — (n+ DP_ (%)
2n+ DPy(x) = P'pya(x) — P'yq (%)
(IV) (n+1)Py(x) = P'pya(x) — xP'o (%)
Proof: Writing recurrence formulae (II) and (III), we have
NP, (x) = xP' (%) — P’y (%) (D)
and 2n+ 1P, (x) = P'yyq(x) — Py (%) (2)
Subtracting (1) from (2), we have
(n+ Py (x) = P'yyq1(x) — xPy (x)

(V) (@ = xH)P'y(x) = n[P p_1(x) — xP n(x)].

STUDENTS-HUB.com


https://students-hub.com

105

Proof: Replacing n by (n — 1) is recurrence formula (IV), we have

nP,_,(x) = Pln(x) - xP,n—l(x)-

Writing recurrence formula (II), we have nB,(x) = xP',(x) — P'_1(x)..

Multiplying (2) by x and then subtracting from (1), we have
n{Pn_1(x) = xB ()} = (1 = x*)P'n (x)
or 1 —x»)P',(x) = n(P ,_1(x) — xP ,(x)).
(VD (1 = x)P'y(x) = (n + D[xPp(x) — Ppy1 ()]
Proof: Writing recurrence formula (I), we have
(2n + DxPy(x) = (n + 1Py (x) + nPy_4 (%)
which may also be written as
(n+ DxP,(x) + nxB,(x) = (n+ 1)Pyy1(x) + nP,_1(x)
or (n + D[xPy(x) = Poyr (0] = n[Py_q (x) — xP, (x)].
Writing recurrence formula (V), we have
(1 = x®)P',(x) = n[Pp_q(x) — 2Py (X)].
Now, from (1) and (2), we have
(1 —x*)P',(x) = (n + 1)[xPy (%) — Ppys(0)]:
4.11 Beltrami’s Result
The following relation is known as Beltrami’s Result:
2n+ D(x? = DP'R(x) = n(n + D[Poyy (x) = Py (0]
Proof : From recurrence formulae (V) and (VI), we have
(1 = x*)P',(x) = n[Pp-1(x) — xP, (x)]
and (1 = x®)P',(x) = (n+ D[xB (%) = Prya (0]

Multiplying (1) by (n +1) and (2) by n and then adding, we get
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[(n+1) +n](1 = x*)P',(x) = n(n + D[Py-1(x) = Posa (x)]
or @n+ D*— P (x) = nn+ D[P (%) — Py_y (2)].
4.12 Christoffel’s Expansion
The following relation is known as Christoffel’s Expansion:

P (x)=02n—1)P_1(x)+ 2n —5)P,_1(x) + Cn —9)P,_;(x) +---, the last
term of the series being 3P;(x) or Py(x) according as n is even or odd.

Proof: From recurrence formula (III), we have
Poii(x)=0Cn+ DB, x)+ P _1(x) ...(A)
Replacing n by (n — 1), we have P',(x) = 2n — 1)P,_1(x)+P'p_5(x) ...(1)
Replacing n by (n —2), (n — 4),....4,2 in (1), we have
P ,(x) = (2n—=5)P,_3(x) + P',_4(x) ...(2)
P s(x)=02n—=9)P,_s(x) + P',_¢(x) ...(3)
P'5(x) =3P (x) + P'y(x) =3P, (x) [~ P'y(x)=0]
Adding (1),(2),(3), ...... , we have (when n is even):
P(x)=02n—1)P,_1(x) + 2n —5)P,_5(x) + 2n — 9 P,_s(x) + - + 3P, (x)
Again, when n is odd, the last of the above relation is
P'3(x) = 5P,(x) + P'1(x) = 5P,(x) + Py(x). [+ P (x) =1=Py(x)]
Adding as before, we have (when n is odd):
P (x)=02n—1)P,_;(x) + (2n — 5)P,_5(x) + - + 5P, (x) + Py (x).
Hence P',(x) = (2n — 1)Py_1(x) + (2n — 5)P,_5(x) + (2n — 9)P,_s(x) + -

The last term of the series being 3P;(x) or Py(x) according as n is even
or odd.
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4.13 Christoffel’s Summation Formula
The following formula is known as Christoffel’s Summation
Formula:

Pn+1(X)Pn(¥)=Pnt1(y)Pn(x)
(x-y)

T+ DREORG) = (n+ 1) |
Proof: From recurrence formula (I), we have
2r+DxP,(x) = (r+ P, (x) + rP,_;(x) (1)
and @r+yr.(y) =+ 1P (y) +7P,_1 () (2
Multiplying (1) by B.(y) and (2) by P.(x) and then subtracting, we have
(2r + Dx =P, (P, (y) = (r + D[P ()P, (¥) = Py ()P, (1]
—r[Pr 1 (W B () = Pr—1 () B (¥)] HE)
Now, putting r = 0 in (3), we have
(x = y)Py(x)Po(y) = PL(x)Py(y) — PL(¥) Py (x) (Ao
[« Py(x) =1 = Py(y)and P,(x) = x = P,(y)]
Again, puttingr=1,2, 3,....., (n— 1), nin (3), we have
3(x = »)P1 ()P, (y) = 2[P, ()P, (¥) — P,(¥) P, (x)]
—[Po )Py (x) — Py )Py ()] (A
5C = »)P, ()P, (y) = 3[Ps ()P, (y) — Ps(¥) P, (x)]
—2[P, (P (x) = P ()P, ()]  ...(A)

@2n—1)(x = Y)Pp_1 ()P (y) = . [P (). Ppoy (¥) — Py () Proi (X)]
—nm — 1)[Pr_y(¥)Py—1(x) = Py (X) Py ()] - (An)

@2n =D = y)PPY) = (n+ D[Prs1 ()P YY) = Prya ()P (0]
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—n[Py_1 (M) Py (¥) — Py ()P, ()] (A
Adding (Ay), (A1), (Az),....(An1) and (A,) together, we have

(x =) X7=0Cr + DR R W) = (0 + D[Prya ()P, () = Prya Py (1]

Pnt1(X)Pp(¥)—Pn+1(¥)Pn
or P02 + DB(ORG) = (n+ 1) [l il

4.14. Rodrigue’s Formula for P,(x)

The following is known as the Rodrigue’s formula for P,(x):

1 dn
Pn(X) = m.m(xz - 1)”
Proof: Let us take y=(x%-1" ..(D

Differentiating it w.r.t x, we have y’ = 2nx(x? — )" ?
Multiplying both sides by (x? — 1) and using (1), we have
(x%2—=1)y' = 2nxy .2

Differentiating it (2), (n + 1) times by Lebnitz’s theorem, we have

(x2 —1)dn+2+(n+1) Y ox +(”“)"”2 2n[

dxnt1i

+(n+1) ]

dxnt1i

antiy
n+2 dxn+1

or (x? —1) n(n+1)—=0

ant2y
dxT+2 5 —2x

or (1-x?

+n(n+ 1) =0. ...(3)

dx n+1
Putting % = zin (3), it becomes
_ %2 _ 5,82 -
1-x )dx2 Zxdx+n(n+1)z— 0 ...(d

which is the Legendre’s differential equation whose solution is given by z
= C P,(x), where C is a constant.

16 ..(5)

Putting x = 1 in (4), and then using P,(1) = 1, we get
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(d"—y) =C . sincePy(h=1. .(6)

dx™) y=
Now, from (1), we have
y=1-x)"=x+D"(x—-1D" ..(D
Differentiating (7) w.r.t. x, n times by Leibnitz’s theorem, we have

Z,%Z(X—l) —(x+1)"+n{ 1;1(X+1) } n(x 4+ 1)" 1 4 .

e { et DS - D) ok D - D"
=(x—1"n!+ n?—:(x +Dnx— D"+ +nn(x+ 1)"‘1?—:(x — D+ (x+1D"n!
Putting x = 1 in it, we have (Z—:i)x:l =1+ 1D"n!
Using (6) in it, we find € = 2™.n! ...(8)
Therefore, by putting the value of C from (8) in (5), we get

dn

e D ...(9)

ni2m dx™

P(x) =
which is the required Rodrigue’s formula for P,(x).

Ilustrative Examples
Example 1. Using generating function for P,(x), prove the following:

Py(x) = 1,P(x) = x, P, (x) = 3(3x% — 1), P3(x) = 3(5x° — 3x)
and P,(x) = :(35x* — 30x? + 3).
Solution: Generating function for P,(x) is given by

Y& A" P,(x) = (1 — 2xh + h?)™Y/2 = [1 — h(2x — h)]"/?

1.3.5 1.3.5.7

= 1+2(2x —h) + 32 h2(2x = h)? + 22 k3 (2x — h)? + e R4 (2x — h)* +
or Po(x)+hP1(x)+h2P2(x)+h3P3(x)+h4P4(x)+"'

=1+x.h+13x% - 1)h2§(5x3 — 3x)h® + 1(35x2 + 302 + 3)h* +
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Equating the coefficients of like powers of h on both sides, we have
Py(x) =1,P(x) =x,
P,(x) = (3x2 — 1)
P3(x) == (5x° — 3x)
P(x) = %(353(4 +30x2 + 3)

Example 2. Express f(x) = x* + 2x° + 2x* — x — 3 in terms of Legendre’s
polynomials.

Solution: We know that

Py(x) = 1, P (x) = x, (D)
Py(x) =3(3x* = 1) )
P3(x) = 2(5x° — 3x) ...(3)
P(x) = §(35x4 +30x2 +3) (@)

Now, from (4), we have x* = 2P, (x) + 2x* — .

Again, from (3), we have x? = 2P;(x) + 3x.
Next, from (2), we have x? = 2P,(x) + 1.

Also, from (1), we have x = P;(x),1 = P,(x).

3

Substituting in succession the values of x4, X,....in the given

polynomial, we have
f) = 2P (x) + %% — 24+ 26 + 2x* —x =3

_ 8 3,20,2 _ . _ 108
=32Pa(x) +2x° + 2x° —x —

= 2Py (x) +2 [§P3(x) +§x] +8x% —x -2

35

108
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= 2Py (x) + 2P3(x) + 5P (x) +2x — 222

105

105

0 ,ifnisodd
Example 3. Prove that B,(0) ={ (-n"2n:
2™{(n/2)2’

ifnis even
Solution: We know that the generating function for P,(x) is
Y® A" P,(x) = (1 — 2xh + h?)~1/2 (D
Putting x = 0 in both sides of (1), we have
Yoo B Py (0) = (1 +h*) 7Y% = {(1 = (=h*)}7/?
= 145 (=h?) + 22 (=h?)? + 22 (=h?)? 4 e 4 Z=CED 2y 4 (2)

We observe that all the powers of h in R.H.S. of (2) are even.

Therefore, equating the coefficients of h" from both sides of (2), we
have

P,(0) = 0, if n is odd. ..03)

Again, equating the coefficients of h*™ from both sides of (2), we have

Py (0) = 225=C1D (_qym = (—qym G )

2.4.6..2m 22mm)2

Putting 2m = n in above, we have

"%
P, (0) = TR ...(5

Example 4. Prove that (1 — 2xz + z2)~'/2 is a solution of the equation

9%(zv) , @ 2y V) _
arr +5{(1_x )5}_0

Solution. Let v = (1 — 2xz + z2)"Y2 = ¥2_,z" P,, where P, = P,(x)

Then, we have 0=z Y30 0zZ" P, = X5, 2" B,

2 2
B = 3 (S0 2 R = Tie(n + 12",

022 022
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62 o n
or z 5 (zv) = Xi-o(n + Dnz" P,
Also, we have Z—Z =Yn=0Z" B,

ad J a © r
Z{a-) 2 =2 {1 -2 N 2" Py}
= (1 -2 Lo 2" Py = 2x Nio 2" Py

Substituting the values from (1) and (2) in the L.H.S. of the given
equation, we have
92 (zv) " 9

0z2 ax

(=22} = 5olnn + Dz" B + (1 - x2)z"P', — 2x2"P',
=¥ 0z [(1 —x*)P", — 2xP', + n(n + 1)B,]
=Y oz™.0 [since P, is a solution of Legendre’s equation]
=0.
Example S. Prove that IP,(x)I< 1, when -1 <x < 1.

Solution: From Laplace’s first integral for P,(x), we have
P =2 [xiimcos¢]nd¢ e
If -1 <x <1, then putting x = cos 8 in (1), we get
P,(cos @) = % J; (cos 6 % isin 6 cos ¢)" dp.
IP()] = By (cos 8] = |1 [ (cos 6 + isin cos §)" dg)
= % |/ (cos 6 % i sin 6 cos ¢)" d|

1 m P
<—J, [(cos @ + isin 6 cos p)"| d¢p

= %f;[\/(cos 0 £ isin 6 cos ¢)z]" do

< %f;[\/(cosz 6 + sin? 6 cos? q,’)]n de
< %fgn[\/mn d¢ ,since cos?¢p <1
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=~ [ d¢ =~ [¢]%

s

%. T=1.
Hence, we have IP,(x)| < 1, when —1 <x< 1.
Example 6. Prove P,(x) = P_41)(x) by using Murphy’s Formula for P,(x).
Solution: Murphy’s formula for P,(x) is given by
P, (x) = F(—n,n +1; 1;%) ()

From symmetric property of hypergeometric function, we have

F (—n;n +1,1; %") =F (n +1;-n; 1;%") = P_ a1y (®) (2)
Thus, from (5) and (6), we get
Py(x) = P_(u41y(¥) -.(3)
EXERCISE 4

Using Rodrigue’s formula for P,(x), prove the following:
1. Py(x) = 1,P;(x) = x,P,(x) = 2(3x* — 1), P3(x) = 2(5x° — 3x)
and Py(x) = 2(35x* — 30x” + 3) .
2. Show that P,(1) = (1).
3. (i) Show that P, (= x) = (— 1)" P,(x). Hence, deduce that P, (= 1) = (- 1)".
(ii) Prove that P,(x) is an even or odd function of x according as n is even or odd
respectively.
Prove that P',,(x) — P',_,(x) = 2n — 1)P,,_1(x)
Prove that xP'o(x) = P'g(x) + 9Py(x).
Show that 11(x? — 1)P’5(x) = 30[Ps(x) — P,(x)].

=1 = 52 [Pu(@) + P (0] 27

z(1-2xz+z2)1/2 2

NS » Ak

Prove that

(1-z%)
(1-2xz+22)3/2

8. Show that =Y o(2n+ 1) B, (x)z™

9. Prove that
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Q) [P (dx = 2Pus® 4 0o iy 1P, (x)dx = 2t Fen ()

(2n+1) (2n+1)
10. Show that [ ' xP, (x)Py_y (x)dx = —=
. -1 n n-1 T an2-1"
11. Prove that [} (1 — x?) [P, (x))?dx = 2822

. NP
12. Prove that (i) [ B, (@))dx = 0,n # O and (i) [*] Py (x)dx = 2.
.t NP 1
13. Evaluate (i) f_+1 x3 P (x)dx (i) f_+1 x%° Pioo(x)dx and (iii) f_+1 x2P,(x)dx.
14. If P,(x) is defined by the relation (1 — 2xh + h?)~%/2 = ¥2_ h"P,(x), then, show
that (1 —x?)P",(x) — 2xP',(x) + n(n+ 1)P,(x) =0
15. Prove that [ '[P, (x)]2 dx = n(n + 1).
16. Express x° as series in Legendre’s polynomials of various degrees.

17. Express the following in terms of Legendre’s polynomials:

(i) x> —5x2+6x+1 and (i) 5x3+x
18. Prove that
(1) x% 43Py (x) + 2P, (x), (i) x* = 2P (x) + 2P (x).
-1<x<0
19. If f(x) = {x 0 < x < 1, then show that

FG) = 1Py () + 2Py (1) + 2Py (x) — 2P (0) + -
20. Prove that x* = Z[8P,(x) + 20P,(x) + 7P, (x)].
21. Solve the Legendre’s differential equation (1 — x?)y"”" —2xy' +n(n+ 1)y =0

about its ordinary point x = 0 by assuming a solution of the form y = Y5o_; C,,x™ and
show that the general solution of it is given by y = au + bv, where

u=1- n(n+1) x2 + n(n-2)(n+1)(n+3) b
2! 41
and v=x-— (n_l)("+2)x3 + ("_1)(n—3)(n+2)(n+4)x5 —

3! 5!

22. Prove that :

(i) Cn+1DxB,(x) =M+ 1Py (x) +nPp_1(x).
(i) nP,(x) =xP'y(x) = P'py(x)

@iii) 2n + DP(x) = P'pyr(x) = P'pq (x)

(iv) M+ DP,(x) = P'pyq (x) — xP' (%)
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23. Prove that
() A =2*)P'h(x) =n[P 1 (x) = xP 5 (x)]
(i) (1=x*)P"p(x) = (n + D[xPy(x) — Ppys(x)]
24. Prove that
(2n + 1)(x* = P (x) = n(n + D[Pry1(x) = Proy ()]

ANSWERS

13.(4) 0 (i) 0 (iii) 4/15

16. 6142385 Pg(x) + P6(x) + P4 (x) + p2 (x) ++ Po )

17. () 2Py (x) = 2 P, () + 2P (x) = 2Po(2), (i) 2P3(x) + 4Py ().
OBJECTIVE TYPE QUESTIONS

Choose the correct alternative in the following questions:

1. Legendre’s differential equation is :

A A-x)y"-2xy +n(n+1y=0

B A-x2)y"+2xy +n(n+1)y=0

C©@=-x)y"=2xy +n(n+ 1y =0

D)1 —-xD)y" —2xy' —n(n+1)y=0.
2. The value of P, (1) is :

(A) O B)1

©n (D)~
3. Rodrigue’s formula for P, (x) is :

dn

(A) P, (X) _dx_" ( 2 _ 1)71 (B) Pn(x) — anln — x2 — 1)n
O PRG) =55z (2 =1" D) R = 5 @8 = D™
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4. The value of f_ll P,(x) dx whenn # 0 is :
(A) 0O (B)2
O1 D) -1.
5. The value of f_ll Py, (x) dx is :
A1 B)0
©)x (D) 2n.
6. Let f1(x) = u, fo,(x) = x3, f3(x) = 1 + Ax + Bx2. If f3(x) is orthogonal to f; (x)
and f,(x) on the interval (-2, 2), then
(A) A=0,B=1 (B)A=0,B=0

(C)A=0,B= —% (D) None of these

7. The value of P, (1) is :
A1 B)0
©-1 (D) =1)"
8. The following differential equation is known as:
1-=x¥)y"=2xy +n(n+1y=0
(A) Hermite’s equation (B) Legendre’s equation
(C) Chebyshev equation (D) Bessel’s equation
9. All roots of P,(x) =0 are :
(A) Real (B) Some real and some complex
<© 0 (D) Complex
10. If P,(x) is Legendre’s polynomial, then
(A) Py(=x) = By(x) B) B (—x) = (=D)"F,(x)

©) P(-1)=1 (D) None of these
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11. Two real function f;(x) and f5(x) are said to be orthogonal functions on interval

a<x<b,if
@A) [7 £ f(x)dx <0 ®) [” (0 fo(x)dx > 0
(©) fab f1(x) f(x)dx =0 (D) None of these

12. (1 — x%)P' (%) = nPy_1(x) + - =0
(A) Py(x) (B) 2xB,(x)
(C) xPy(x) (D) —nxP, (x)
13. The value of Py (x) is :
(A) 0 (B) o0
©) 1 (D) None of these

14. [P, (x)dx = -

(A) 5 {Prsa (1) = Pas (0} (B) Pay1 () = Pooa (%)

(©) 5= {Pass(0) = Po_y ()} (D) Ppys (6) + Py ().
15. The value of %% (x2 = 1)%is :

(A) 0 B)1

(C) P,(x) (D) None of these

16. The value of [ x%° Py (x)dx is

(A) 1 B)-1

© 0 (D) None of these
17. Py(—x) = (1) ...

(A) B(x) (B) P_p(x)

© Q.(x) (D) Q-n(x)
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18. P41 (0) = -

(A) 0 (B) 1

(©) n (D)2n+1
19. B,(—1) = -

(A) 0 (B) 1

© -1 O D"

20. All roots of B,(x) = 0 lie between

(A) =1 and +1 (B)0Oand 1
(C) Oandn (D)-nandn
ANSWERS

1.(A) 2.B) 3.A) 4.(A) 5@ 6.(C) 7.(D) 8.(B) 9.(A) 10.(B)
11.(C) 12.(D) 13.(C) 14.(A) 15.(C) 16. (C) 17.(A) 18.(A)19. (D) 20.(A)
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