
T R A N S A C T I O N S M A N A G E M E N T

Credits to Dr. Ahmad Abusnaina Uploaded By: Jibreel BornatSTUDENTS-HUB.com

TR A N S A C TIO N

Transactions Management

 A transaction can be defined as a group of tasks.
A single task is the minimum processing work
which cannot be divided further.

 Let’s take an example of a simple transaction.
Suppose a bank employee transfers J O D 500
from A's account to B's account.

 This very simple and small transaction involves
several low-level tasks.

2

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

TRA NSA C T IO N

Transactions Management

 A’s Account

Open_Account(A)

Old_Balance = A.balance

New_Balance = Old_Balance - 500

A.balance = New_Balance

Close_Account(A)

 B’s Account

Open_Account(B)

Old_Balance = B.balance

New_Balance = Old_Balance + 500

B.balance = New_Balance

Close_Account(B)

3

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

TR A N S A C TIO N

Transactions Management

 A transaction is the DBMS ’s abstract view of a
user program (or activity):

- A sequence of reads and writes of database objects.
-Unit of work that must commit or abort as an atomic
unit.
•A user’s program may carry out many operations on the
data retrieved from the database, but the D B M S is only
concerned about what data is read/written from/to the
database.
• Transaction Manager controls the execution of
transactions.

4

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

A C I D PRO P ERT IES

Transactions Management

 A transaction is a very small unit of a program
and it may contain several low-level tasks.

 A transaction in a database system must
maintain four properties:

 Atomicity,

 Consistency,

 Isolation,

 Durability

 Commonly known as A C I D properties.

5

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

A T O M I C

Transactions Management

 The execution of each transaction has to be atomic

 Either all actions are carried out (happen) or none
happen.

 There must be no state in a database where a
transaction is left partially completed.

 The user should not worry about the effect of
incomplete transactions.

6

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

C O N S I S T E N C Y

Transactions Management

 The database must remain in a consistent state
after any transaction.

 No transaction should have any adverse effect on
the data residing in the database.

 If the database was in a consistent state before
the execution of a transaction, it must remain
consistent after the execution of the transaction
as well.

7

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

IS O L A T I O N

Transactions Management

 In a database system where more than one
transaction are being executed simultaneously and in
parallel,

 Every transaction is an independent entity. One
transaction should not affect any other transaction
running at the same time.

 all the transactions will be carried out and executed as
if it is the only transaction in the system.

8

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

DU R A B I L I T Y

Transactions Management

 Once the D B M S informs the user that the
transaction has been successfully completed:

⚫ Its effects should be permanent even if the system
crashes before changes are reflected to disk.

 If a transaction commits but the system fails
before the data could be written on to the disk,
then that data will be updated once the system
springs back into action.

9

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 A transaction ends in one of three cases:

 Commit after completing all actions

 Abort after executing some actions

 System crash while the transaction is in progress.

Transactions Management

10

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 D B M S ensures the above states by logging all
actions:

 Undo the actions of aborted/failed transactions

 Redo actions of committed transactions not yet
propagated to disk when system crashes.

Transactions Management

11

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 The D B M S must find a way to clean up partial
transactions

 The D B M S uses Log

 Keeping in it all the changes made to the database

 It is also used for durability

Transactions Management

12

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

ST A T E S O F TRA NSA C T IO N

13

Transactions Management Uploaded By: Jibreel BornatSTUDENTS-HUB.com

TR A N S A C T ION S A N D S C H E D U L E S

Transactions Management

 A transaction is seen by D B M S as a series of
actions… . .read and write

 R(O) : transaction reading an object from D B

 W(O) : transaction writing an object to D B

 Abort : action of a transaction aborting

 Commit : action of transaction committing

14

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 A schedule: is a list of actions of reading, writing,
aborting or committing from a set of transactions with
the same order as when the transactions are in the
origin transaction

 Vertical axis's is the time

Transactions Management

15

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

 A complete schedule include all actions of all
transactions appearing in it

 Serial schedule no interleaving (no concurrent
execution) of actions from different transactions.

 Refer to figure 16.1

Transactions Management

16

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

17

Transactions Management Uploaded By: Jibreel BornatSTUDENTS-HUB.com

C O N C U R R E N T E X E C U T I O N O F

T R A NS A C T I O NS

Transactions Management

 Concurrent Execution: The D B M S interleaves the
actions of different transactions to improve the
performance

 But not all interleaves should be allowed, why?

18

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

MOT I V A T ION F O R C O N C U R R E N T

E X E C U T I O N

Transactions Management

 First: while one transaction is waiting for page
reading from disk, the C P U can process another
transaction . Fast

 Second: interleaved execution of a short transaction
with a long transaction usually allows the short
transaction to complete quickly.
⚫ In serial execution, the short transaction will have to wait.

Short could stuck behind long transaction.

 Concurrent Execution
⚫ increase System throughput: number of transactions

completed in a given amount of time.

⚫ decrease Response Time: average time taken to complete
a transaction. 19

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

SERIALIZABILITY A N D S C H E D U L E S

Transactions Management

 Given a set of transactions, a schedule is a sequence of
interleaved actions from all transactions

 Example: Given the following transactions, how to
schedule them?

 T1: Read(A), Write(A), Read(B), Write(B)

 T2: Read(A), Write(A), Read(B), Write(B)

20

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

S E R I A L S C H E D U L E

Transactions Management

 A possible serial schedule is:

 T1:

 R(A)

 W(A)

 R(B)

 W(B)

T2:

 R(A)

W(A)

 R(B)

W(B)

21

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

SERIALIZABILITY

Transactions Management

 A schedule is serializable if it is equivalent to
complete serial schedule.

 A serializable schedule: over a set of a
committed transaction has the effect of the
database to be the same as some other complete
serial schedule.

 Informally, equivalent, means that all conflicting
operations are ordered in the same way

 conflicting those read and write operations to the
same element,

22

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

SERIALIZABILITY

 T1

 R(A)

 W(A)

T2





R(A)

W(A)

 R(B)

 W(B)

 R(B)

W(B)

 T1

 R(A)

 W(A)

T2





R(A)

W(A)

R(B)

W(B)





 R(B)

 W(B)

Serializable Non-Serializable

Transactions Management

23

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

AN O M A L I E S D U E TO I N T E R L E A V E D

E X E C U T I O N

Transactions Management

 Two actions on the same data object may conflict if at
least one of them is a write

 WR (dirty read)

 RW (unrepeatable read)

 WW (overwriting uncommitted data)

Unrecoverable schedule

24

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

R E A D I N G U N C O M M I T T E D DATA

WR C O N F L I C T

Transactions Management

 A transaction T2 could read
a database object A that has
been modified by T1, but not
yet committed

 We call it Dirty Read

25

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

U N R E P E A T A B L E R E A D S

RW C O N F L I C T

Transactions Management

 T2 change the value of an object A that has been read by
T1 while T1 is still in progress

 If T1 tries to read A another time it will be different!
 It is called Unrepeatable read

T1 T2

R(A)

R(A)

W(A)

Commit

R(A)

Commit 26

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

O V E R W R I T I N G U N C O M M I T T E D DAT A

WW C O N F L I C T

Transactions Management

 T2 could overwrites object A which has already been
modified by T1, while T1 is still in progress.

 It is called Blind write

T1 T2

W(A)

W(A)

W(B)

Commit

W(B)

Commit

27

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

U N R E C O V E R A B L E S C H E D U L E

Transactions Management

 In case of aborted transaction, the system make
rollback (undo), so the effect of T2 will be lost.
T1

R(A)

W(A)

T2

R(A)

W(A)

Commit

R(L)

Abort

28

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

TE S T I N G SERIALIZABILITY

29

Transactions Management

Which schedule is serial, non serial, serializable?

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

C O N S T R U C T I N G T H E P R E C E D E N C E G R A P H S F O R
S C H E D U L E S

Constructing the precedence graphs for schedules A to D from Figure 21.5
to test for conflict serializability.
(a) Precedence graph for serial schedule A.
(b) Precedence graph for serial schedule B.
(c) Precedence graph for schedule C (not serializable).
(d) Precedence graph for schedule D (serializable, equivalent to schedule 3A0).

Transactions Management Uploaded By: Jibreel BornatSTUDENTS-HUB.com

31

Transactions Management Uploaded By: Jibreel BornatSTUDENTS-HUB.com

32

Transactions Management Uploaded By: Jibreel BornatSTUDENTS-HUB.com

L O C K - B A S E D C O N C U R R E N C Y C O N T R O L

Transactions Management

 A locking protocol is a set of rules to be followed by
each transaction to ensure that, even though actions
of several transactions might be interleaved, the net
effect is identical to executing all transactions in
serial order.

 To avoid previous conflicts

33

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

S T R I C T TWO-PHAS E L O C K I N G (STRIC T

2PL) P R O T O C O L

Transactions Management

 Each transaction must obtain an S (shared) lock
on object before reading, and an X (exclusive) lock
on object before writing.

 Lock rules:
•If a Tx holds an X lock on an object, no other Tx
can acquire a lock (S or X) on that object;
•If a Tx holds an S lock, no other Tx can get an
X lock on that object.

34

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

C O N C U R R E N T

T1 T2
R(A)

R(A)
W(B)
Commit

R(C)
W(C)
Commit

Transactions Management

A F T E R A P P LY I N G S T R I C T 2PL

T1 T2

S(A)

R(A)

S(A)

R(A)

X(B)

W(B)

Commit
S(C)

R(C)

X(C)

W(C)

Commit
35

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

S C H E D U L I N G WITH 2PL
 T1

 S(A)

 R(A)

 X(A)

 W(A)

 S(B)

 R(B)

 X(B)

 W(B)

 CO MMIT

T2

 S(A)

R(A)

X(A)

W(A)

S(B)

R(B)

X(B)

W(B)

Commit

















36

Transactions Management Uploaded By: Jibreel BornatSTUDENTS-HUB.com

S C H E D U L I N G WITH 2PL (EXAMPLE2)

Transactions Management

 T1 T2



 R(A)

 R(C)

W(C)

 R(B)

 W(B)

 W(B)

C O M M IT

 CO MMI T



 T1

 S(A)

 R(A)

T2

 X(C)

R(C)

W(C)





 X(B)

 R(B)

 W(B)



 CO MMI T

 X(B)

W(B)

C O M M IT





37

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

DE A D L O C K

Transactions Management

 In a multi-process system, deadlock is an unwanted
situation that arises in a shared resource environment,
where a process indefinitely waits for a resource that is
held by another process.

 For example, assume a set of transactions {T0, T1, T2, ...,Tn}.

 T0 needs an object X to complete its task.

 object X is held by T1, and T1 is waiting for a object Y,

 Y is held by T2. T2 is waiting for object Z,

 Z is held by T0.

o Thus, all the processes wait for each other to release
resources.

 In this situation, none of the processes can finish their task.

 This situation is known as a deadlock.
38

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

DE A D L O C K

Transactions Management

 Deadlocks are not healthy for a system.

 In case a system is stuck in a deadlock, the
transactions involved in the deadlock are either rolled
back or restarted.

 Deadlock Detection: many, one of them is timeout
mechanism.

 Deadlock Prevention: If D B M S finds that a deadlock
situation might occur, then that transaction is never
allowed to be executed.

39

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

DE A D L O C K

 T1 T2

 X(A)

 R(A)

 W(A)

 X(C)

 R(C)

 W(C)

 X(C)

 R(C)

 W(C)

 C O MMIT

 X(A)

 W(A)

 C O MMI T

Transactions Management

40

Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Wait-for-graph deadlock detection

Key Elements of a Wait-for-Graph:

• Nodes: Each node represents a transaction currently active in the
database.

• Directed Edges: An edge from node Ti to node Tj indicates that
transaction Ti is waiting for a lock currently held by transaction Tj.

• Cycles: The presence of a cycle in the graph signifies a deadlock, as
each transaction in the cycle is indefinitely waiting for another
transaction to release a lock.

41
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Construction of the Wait-for-Graph

1. Create a node for each active transaction in the system.
• This will represent transactions like T1, T2, etc.

2. Draw a directed edge from transaction Ti to transaction Tj if:
• Transaction Ti has requested a data lock
• The requested data is currently locked by Tj
• Ti has to wait for Tj to release the lock

3. Repeat step 2 as lock requests come in from transactions over time. This
incrementally builds the graph.

4. Whenever a new lock request adds an edge from Ti to Tj:
• Check if graph now has a cycle from Ti → ... → Tj → Ti
• If yes, a deadlock is detected

5. To check for cycles, use a cycle detection algorithm like depth first search on
directed graph.

42
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Deadlock Handling

• Aborting Transactions:
• The DBMS typically selects one or more transactions from

the cycle to be aborted (rolled back).

• Victim Selection:
• The choice of which transaction(s) to abort might be based

on factors like priority, age, or number of resources held.

• Releasing Locks:
• Once a transaction is aborted, its locks are released, allowing

other transactions to proceed.

43
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

Thrashing

Thrashing occurs when a database system becomes overloaded with too
many transactions attempting to access and modify data simultaneously.
This excessive contention for resources leads to significant performance
degradation.

Thrashing Threshold: When around 30% of active transactions are
blocked, thrashing typically begins.
Throughput Decline: Beyond this threshold, adding more transactions
counterintuitively reduces overall throughput, as the system becomes
overwhelmed with managing conflicts and resource contention.

44
Uploaded By: Jibreel BornatSTUDENTS-HUB.com

