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Acoustic Modeling
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Vector Quantization (VQ)
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VQ and clustering
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Acoustic Modeling Example
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Clustering Issues

Uploaded By: anonymousSTUDENTS-HUB.com



K-means clustering
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K-means example: K=3
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K-means Prosperities
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K-means clustering: Initialization

Uploaded By: anonymousSTUDENTS-HUB.com



K-means clustering: Stopping Criterion
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K-means Issues: Number of clusters
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Clustering Issues: Distance metric
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Clustering Issues: Training and Testing Data
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Hierarchical Clustering
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Example of Non-Uniform Divisive clustering
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Example of Uniform Divisive clustering
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Divisive clustering Example: Binary VQ
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Agglomerative Clustering
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Dendrogram Example: (One dimension)

Uploaded By: anonymousSTUDENTS-HUB.com



Pattern Classification
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Probability Basics
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Bayes Theorem
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Bayes decision Theory
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Discriminant functions
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Parametric Classifiers
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Gaussian Distribution
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Gaussian Distribution: One Dimension
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Maximum Likelihood Parameter Estimation
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Gaussian ML Estimation: One Dimension
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Gaussian ML Estimation: One Dimension
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Gaussian Distributions: Multiple Dimension
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Gaussian Distributions: 
Multi-Dimensional Properities
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Diagonal Covariance Matrix: 
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Diagonal Covariance Matrix: 
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General Covariance Matrix: 
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Multivariate ML Estimation
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Multivariate Gaussian Classifier
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Gaussian Mixture Model (GMM)
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Gaussian Mixture Example: One Dimension
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Gaussian Example
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Independent Mixtures
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GMM Components
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Two Dimensional GMM
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Two Dimensional Components
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EM Algorithm
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EM Algorithm
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EM Algorithm
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EM Algorithm
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EM Algorithm
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EM Algorithm
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Example: 4 Samples, 2 Components
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Notes on Implementation
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Some Notes on Modeling
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Some Notes on Modeling
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Under Training (Over Fitting)

• A major practical problem in maximum likelihood 
parameter estimation is under training

• Suppose a class w gives rise to measurements 
uniformly distributed over the interval [0,1].  

• Unfortunately we don’t know this and try to 
model the distribution using a Gaussian mixture 
PDF.  

• First, we obtain a training set of S samples x1,…,xS
• Suppose S=4
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Under training (continued)

• 4 component PDF gives best fit to training data, but will not generalise to 
unseen test data

• 1 component PDF performs worse on training data, but is a better 
model!
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Under training
• Given a finite training set X, and a ML estimate M of the 

parameters of a model, p(X|M) will increase, in general, as the 
number of parameters in M increases

• As number of parameters increases, model begins to 
characterise detail in the training set which is not present in 
unseen data.  The model begins to “remember the training 
set”

• As number of parameters increases, performance on test data 
will improve at first, but will then start to degrade as the 
number of parameters increases and the model focuses on 
specific detail in the training set 
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Under training

Number of model parameters

Number of model parameters

Performance on 
training data

Performance on 
test data
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Experimental method
• Available data is divided into 3 sets: 

– the training set, the evaluation set and the test 
set

• For each number of parameters, the ML 
estimate of the parameters is made using the 
training set

• Classification experiments are run on the 
evaluation set, and the number of parameters 
which gives best performance is chosen for 
the final system

• This system is evaluated using the test set
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