
Dr. Khalil Qatu

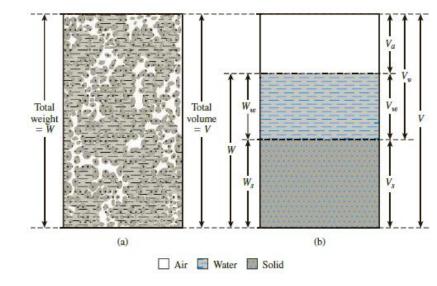
ENCE 331: Weight – Volume relationships

STUDENTS-HUB.com

Block Diagram (phase diagram)

• To develop the weight–volume relationships, we must separate the three phases (that is, solid, water, and air) as shown

Volume relationships


• Void ratio: $e = \frac{V_v}{V_s}$ (indication of soil compaction) (can be larger than 1)

<u>UNITS ??</u>

• Porosity: $n = \frac{V_v}{V}$ (less confidence as indication of compaction) (less or more than 1 ???) where W_s = weight of soil solids W_w = weight of water

• Degree of saturation:
$$S = \frac{V_w}{V_v} * 100\%$$
 (indication of water presence) where V_s = volume of soil solids
 V_v = volume of voids
 V_u = volume of water in the voids
 V_u = volume of air in the voids

• Relationship between *e* and *n* ??

 $V = V_{x} + V_{y} = V_{x} + V_{y} + V_{y}$

Weight relationships

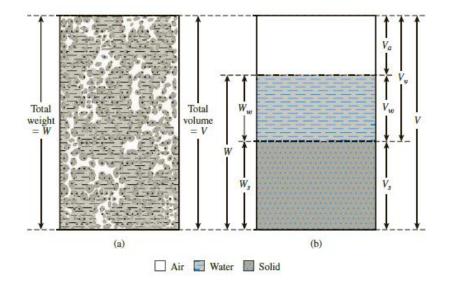
• Moisture content (water content):

$$w\% = \frac{W_w}{W_s} * 100\%$$

- Unit weight γ :
 - Bulk (moist) $\rightarrow \gamma_B = \frac{W}{V}$
 - dry $\rightarrow \gamma_d = \frac{W_s}{V}$
 - Saturated $\rightarrow \gamma_{sat} = \frac{W_s + V_v \gamma_w}{V}$ • Soil Solids $\rightarrow \gamma_s = \frac{W_s}{V_s}$
- Specific Gravity

$$G = \frac{\gamma}{\gamma_w}, \qquad \begin{array}{c} \gamma_w = 9.81 \ kN/m^3 \\ \gamma_w = 62.4 \ lb/ft^3 \end{array}$$

• Specific gravity of soil solids

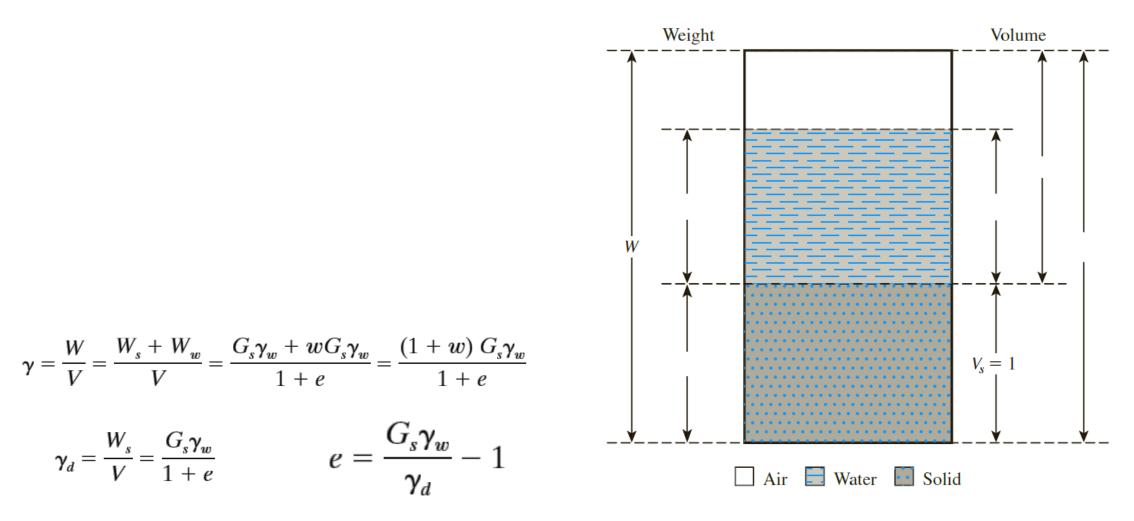

$$G_s = \frac{\gamma_s}{\gamma_w}$$
, DOESN'T CHANGE

<u>UNITS ??</u>

 $W = W_s + W_w$

where
$$W_s$$
 = weight of soil solids
 W_w = weight of water
 $V = V_s + V_v = V_s + V_w + V_w$

where
$$V_s$$
 = volume of soil solids
 V_v = volume of voids
 V_w = volume of water in the voids
 V_u = volume of air in the voids

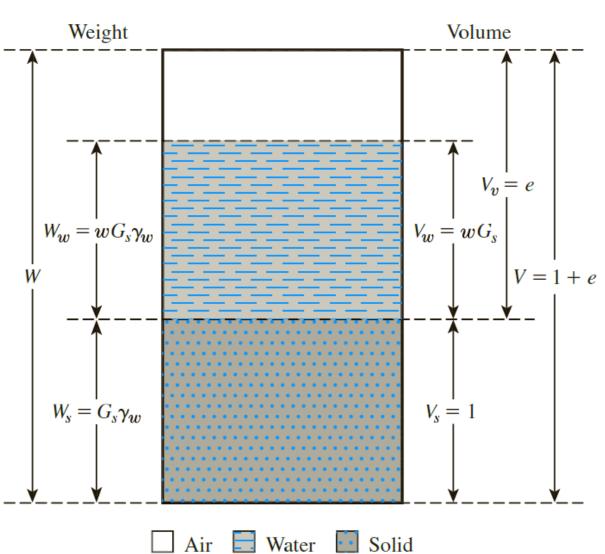


STUDENTS-HUB.com

 Table 3.1
 Void Ratio, Moisture Content, and Dry Unit Weight for Some Typical Soils in a Natural State

		Natural moisture	Dry unit weight, γ_d	
Type of soil	Void ratio, e	content in a saturated state (%)	lb/ft ³	kN/m ³
Loose uniform sand	0.8	30	92	14.5
Dense uniform sand	0.45	16	115	18
Loose angular-grained silty sand	0.65	25	102	16
Dense angular-grained silty sand	0.4	15	121	19
Stiff clay	0.6	21	108	17
Soft clay	0.9–1.4	30-50	73–93	11.5-14.5
Loess	0.9	25	86	13.5
Soft organic clay	2.5-3.2	90-120	38-51	6–8
Glacial till	0.3	10	134	21

• Relationships among Unit Weight, Void Ratio, Moisture Content, and Specific Gravity of soil solids



• Relationships among Unit Weight, Void Ratio, Moisture Content, and Specific Gravity of soil solids

$$V_w = \frac{W_w}{\gamma_w} = \frac{wG_s\gamma_w}{\gamma_w} = wG_s$$

$$S = \frac{V_w}{V_v} = \frac{wG_s}{e}$$

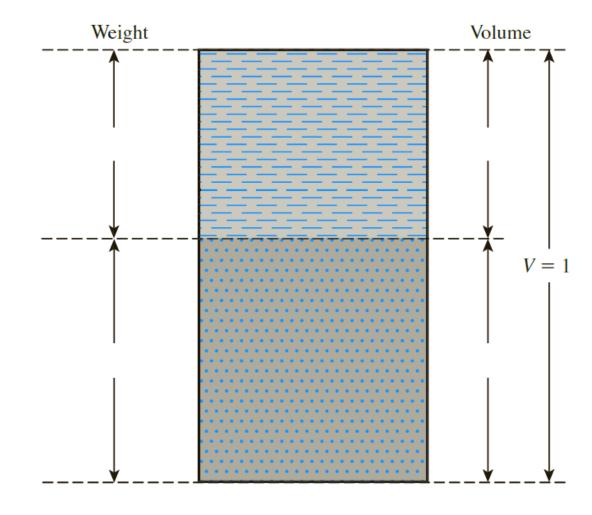
$$Se = wG_s$$

• Relationships among Unit Weight, Void Ratio, Moisture Content, and Specific Gravity (saturated Case)

$$\gamma_{\text{sat}} = \frac{W}{V} = \frac{W_s + W_w}{V} = \frac{G_s \gamma_w + e \gamma_w}{1 + e} = \frac{(G_s + e) \gamma_w}{1 + e}$$

$$e = wG_s$$

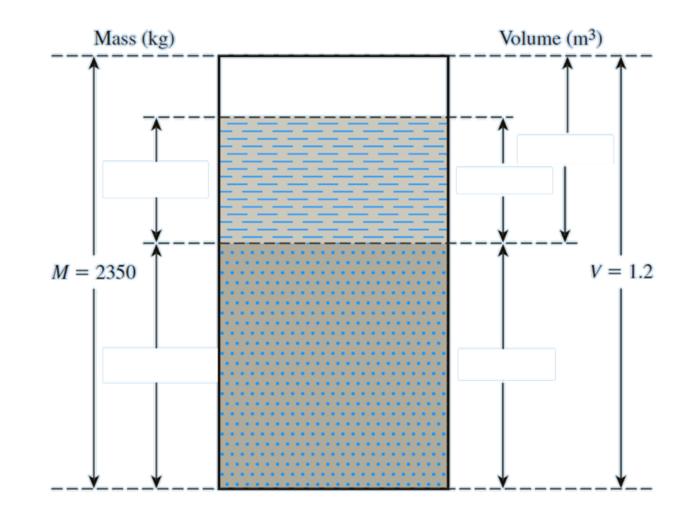
$$w_{\text{integration}}$$



• Relationships among Unit Weight, Porosity, and Moisture Content

• Relationships among Unit Weight, Porosity, and Moisture Content (Saturated case)

$$\gamma_{\text{sat}} = \frac{W_s + W_w}{V} = \frac{(1-n)G_s\gamma_w + n\gamma_w}{1} = [(1-n)G_s + n]\gamma_w$$
$$w_{\text{sat}} = \frac{W_w}{W_s} = \frac{n\gamma_w}{(1-n)\gamma_w}G_s = \frac{n}{(1-n)G_s}$$



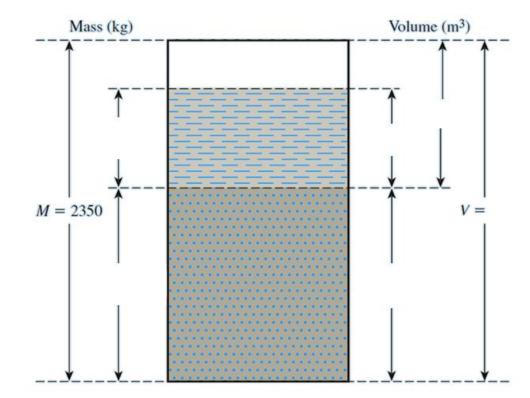
Moist unit weight (γ)		Dry unit weight (γ_d)		Saturated unit weight (γ_{sat})	
Given	Relationship	Given	Relationship	Given	Relationship
w, G _s , e	$\frac{(1+w)G_s\gamma_w}{1+e}$	γ, w	$\frac{\gamma}{1+w}$	G_s, e	$\frac{(G_s+e)\gamma_w}{1+e}$
S, G_s, e	$\frac{(G_s + Se)\gamma_w}{1 + e}$	G_s, e	$\frac{G_s \gamma_w}{1+e}$	G_s, n	$[(1-n)G_s + n]\gamma_w$
w, G_s, S	$(1+w)G_s\gamma_w$	G_s, n	$G_s \gamma_w (1-n)$	G_s, w_{sat}	$\left(\frac{1+w_{\rm sat}}{1+w_{\rm sat}G_s}\right)G_s\gamma_w$
$w, G_s, S = \frac{(1+w)G_s\gamma_w}{1+\frac{wG_s}{S}}$	G_s, w, S	$\frac{G_s \gamma_w}{1 + \left(\frac{wG_s}{S}\right)}$	e, w _{sat}	$\left(\frac{e}{w_{\rm sat}}\right)\left(\frac{1+w_{\rm sat}}{1+e}\right)\gamma$	
w, G _s , n S, G _s , n	$G_s \gamma_w (1-n)(1+w)$ $G_s \gamma_w (1-n) + nS \gamma_w$	e, w, S	$\frac{eS\gamma_w}{(1+e)w}$	$n, w_{\rm sat}$	$n\left(\frac{1+w_{\rm sat}}{w_{\rm sat}}\right)\gamma_w$
		$\gamma_{\rm sat}, e$	(1+e)w $\gamma_{\rm sat} = \frac{e\gamma_w}{1+e}$	γ_d, e	$\gamma_d + \left(\frac{e}{1+e}\right)\gamma_w$
				γ_d, n	$\gamma_d + n\gamma_w$
		$\gamma_{\rm sat}, n$ $\gamma_{\rm sat}, G_s$	$\frac{\gamma_{\text{sat}} - n\gamma_w}{(\gamma_{\text{sat}} - \gamma_w)G_s}$ $\frac{(G_s - 1)}{(G_s - 1)}$	γ_d, S	$\left(1-\frac{1}{G_s}\right)\gamma_d+\gamma_w$
		γ_{sat}, O_s	$(G_{s} - 1)$	$\gamma_d, w_{\rm sat}$	$\gamma_d(1 + w_{\rm sat})$

• Example:

For a moist soil sample, the following are given. Total volume: $V = 1.2 \text{ m}^3$ Total mass: M = 2350 kgMoisture content: w = 8.6%Specific gravity of soil solids: $G_s = 2.71$ Determine the following

- Determine the following.
 - Moist density
 - Dry density
 - Void ratio
 - Porosity
 - Degree of saturation
 - Volume of water in the soil sample

• Example:

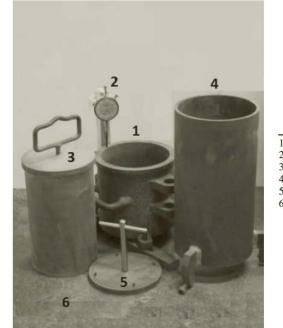

The following data are given for a soil:

Porosity: n = 0.4

Specific gravity of the soil solids: Gs = 2.68

Moisture content: w = 12%

Determine the mass of water to be added to 10 m³ of soil for full saturation.



• Relative density (D_r) : commonly used to indicate the in-situ denseness or looseness of granular soil

$$D_r = \frac{e_{\max} - e}{e_{\max} - e_{\min}}$$

$$D_r = \left[\frac{\rho_d - \rho_{d(\min)}}{\rho_{d(\max)} - \rho_{d(\min)}}\right] \frac{\rho_{d(\max)}}{\rho_d}$$

Description of soil deposit		
Very loose		
Loose		
Medium		
Dense		
Very dense		

LEGEND

1 - Mold

- 2 Dial indicator
- 3 Surcharge weight
- 4 Guide sleeve
- 5 Surcharge base plate 6 - Vibrating table

vibrating the sand in the mold for 8 min. A surcharge of 14 kN/m^2 (2 lb/in²) is added to the top of the sand in the mold. The mold is placed on a table that vibrates at a frequency of 3600 cycles/min and that has an amplitude of vibration of 0.635 mm (0.025 in.)

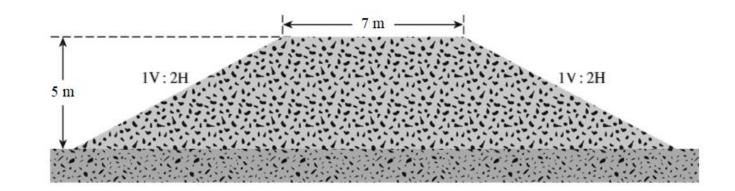
sand is poured loosely into the mold from a funnel with a 12.7 mm (12 in.) diameter spout. The average height of the fall of sand into the mold is maintained at about 25.4 mm (1 in.).

•

Minimum dry unit weight,

maximum dry unit weight

• Borrow Pit:


Earth is required to be excavated from borrow pits for building an embankment as shown in the figure below.

The moist unit weight of the borrow pit is 18 kN/m^3 and its water content is 8%. The specific gravity of solids as 2.67

The dry unit weight required for the embankment is 15 kN/m³ with a moisture content of 10%.

- Estimate the quantity of earth required to be excavated per meter length of embankment.
- Determine the degree of saturation of the embankment soil and the volume of water in the embankment

