Chapter 1 Chemical Measurements

Overview

- 1-1 SI Units
- 1-2 Chemical Concentrations
- 1-3 Preparing Solutions
- 1-4 Stoichiometry Calculations for Gravimetric Analysis

SI Units

SI base units include the following:

- meter (m)
- kilogram (kg)
- second (s)
- ampere (A)
- kelvin (K)
- mole (mol)

Derived SI Units

Other quantities can be derived in terms of base SI units. See Table 1-2.

- force (newton, N), Kg·m / s²
- pressure (pascal, Pa), N / m²
- energy (joule, J), N·m

Prefixes

TABLE 1-3 Prefixes						
Prefix	Symbol	Factor		Prefix	Symbol	Factor
yotta Y		10 ²⁴ deci			d	10^{-1}
zetta Z		10 ²¹ centi			С	10^{-2}
exa E		10^{18} milli			m	10^{-3}
peta P		10 ¹⁵ micro			μ 10	-6
tera T		10^{12} nano			n	10^{-9}
giga G		10 ⁹ pico			p	10^{-12}
mega M		10 ⁶ femto	f		-	10^{-15}
kilo k		10^3 atto			a	10^{-18}
hecto h		10 ² zepto			z	10^{-21}
deca da		10 ¹ yocto			У	$10^{-21} \\ 10^{-24}$

Table 1.3 Memorize these prefixes with their abbreviations and powers of ten.

Using Prefixes in Calculations

- In calculations, units should be carried along with the numbers.
- Prefixes such as kilo- and milli- are used to denote multiples of units.
- Prefixes can be used to simplify conversions between units.

Example:

Express 19.3 mPa in terms of atm 19.3 mPa can be written as 19.3×10^{-3} Pa

$$19.3 \times 10^{-3} \text{ Pa} \times \frac{1.00 \text{ atm}}{101325 \text{ Pa}} = 1.90 \times 10^{-7} \text{ atm}$$

Concentrations

- Molarity (moles of solute per liter of solution), M
- Molality (moles of solute per kilogram of solvent), m
- Formal concentration (formula units per liter), F
- Percent composition (w/w, v/v or w/v), %
- Parts per million, ppm
- Parts per billion, ppb

% Composition (w/w or v/v)

$$Weight \ percent = \frac{mass \ of \ solute}{mass \ of \ total \ solution \ or \ mixture} \times 100$$

$$Volume\ percent = \frac{volume\ of\ solute}{volume\ of\ total\ solution} \times 100$$

95% (w/w) ethanol contains 95 g of ethanol for every 100 g of solution.

$$ppm = \frac{mass \ of \ substance}{mass \ of \ sample} \times \ 10^6$$

$$ppb = \frac{mass \ of \ substance}{mass \ of \ sample} \times 10^9$$

- Shortcut: ppm is also mg/L or µg/mL if the density of the solution is 1.0 g/mL.
- An aqueous solution that is 1 000 ppm in Cu contains 1 000 mg Cu per liter of solution.
- It also contains 1000 µg per mL of solution.

EXAMPLE Converting Parts per Billion into Molarity

Normal alkanes are hydrocarbons with the formula C_nH_{2n+2} . Plants selectively synthesize alkanes with an odd number of carbon atoms. The concentration of $C_{29}H_{60}$ in summer rainwater collected in Hannover, Germany, is 34 ppb. Find the molarity of $C_{29}H_{60}$ and express the answer with a prefix from Table 1-3.

Solution A concentration of 34 ppb means there are 34 ng of $C_{29}H_{60}$ per gram of rainwater, which is nearly the same as 34 ng/mL because the density of rainwater is close to 1.00 g/mL. To find the molarity, we need to know how many grams of $C_{29}H_{60}$ are contained in a liter. Multiplying nanograms and milliliters by 1 000 gives 34 μ g of $C_{29}H_{60}$ per liter of rainwater:

$$\frac{34 \text{ ng C}_{29} H_{60}}{\text{mHz}} \left(\frac{1\ 000 \text{ mHz/L}}{1\ 000 \text{ ng/\mu g}} \right) = \frac{34 \ \mu \text{g C}_{29} H_{60}}{\text{L}}$$

The molecular mass of $C_{29}H_{60}$ is $29 \times 12.011 + 60 \times 1.008 = 408.8$ g/mol, so the molarity is

Molarity of
$$C_{29}H_{60}$$
 in rainwater = $\frac{34 \times 10^{-6} \text{ g/L}}{408.8 \text{ g/mol}} = 8.3 \times 10^{-8} \text{ M}$

An appropriate prefix from Table 1-3 would be nano (n), which is a multiple of 10^{-9} :

$$8.3 \times 10^{-8} \,\mathrm{Mf} \left(\frac{1 \,\mathrm{nM}}{10^{-9} \,\mathrm{Mf}} \right) = 83 \,\mathrm{nM}$$

EXAMPLE Converting Parts per Billion into Molarity

Normal alkanes are hydrocarbons with the formula C_nH_{2n+2} . Plants selectively synthesize alkanes with an odd number of carbon atoms. The concentration of $C_{29}H_{60}$ in summer rainwater collected in Hannover, Germany, is 34 ppb. Find the molarity of $C_{29}H_{60}$ and express the answer with a prefix from Table 1-3.

Solution A concentration of 34 ppb means there are 34 ng of C₂₉H₆₀ per gram of rainwater, which is nearly the same as 34 ng/mL because the density of rainwater is close to 1.00 g/mL. To find the molarity, we need to know how many grams of C₂₉H₆₀ are contained in a liter. Multiplying nanograms and milliliters by 1 000 gives 34 μg of C₂₉H₆₀ per liter of rainwater:

$$\frac{34 \text{ ag C}_{29} H_{60}}{\text{mHz}} \left(\frac{1\ 000 \text{ mHz/L}}{1\ 000 \text{ ag/µg}} \right) = \frac{34\ \mu\text{g C}_{29} H_{60}}{\text{L}}$$

The molecular mass of $C_{29}H_{60}$ is $29 \times 12.011 + 60 \times 1.008 = 408.8$ g/mol, so the molarity is

Molarity of
$$C_{29}H_{60}$$
 in rainwater = $\frac{34 \times 10^{-6} \text{ g/L}}{408.8 \text{ g/mol}} = 8.3 \times 10^{-8} \text{ M}$

An appropriate prefix from Table 1-3 would be nano (n), which is a multiple of 10^{-9} :

$$8.3 \times 10^{-8} \,\mathrm{Mf} \left(\frac{1 \,\mathrm{nM}}{10^{-9} \,\mathrm{Mf}} \right) = 83 \,\mathrm{nM}$$

 To calculate quantities of reagents needed to prepare solutions, use the relation

$$(M_{conc})(V_{conc}) = (M_{dil})(V_{dil})$$

 Equates moles of reagent removed from a stock solution to moles delivered into a new solution.

 How many moles of CuCl₂·5H₂O are needed to make 500 mL of a solution that is 1 000.0 ppm in Cu?

grams of CuCl₂·5H₂O?

 milliliters of 10 000 ppm CuCl₂·5H₂O solution?

Figure 1-4

How many grams of CuCl₂·5H₂O are needed to make 500 mL of a solution that is 1 000 ppm in Cu? (MM of CuCl₂·5H₂O is 224.53 g/mol)

$$- (500-mL) \times (1000 \mu g/mL) = 5.0 \times 10^5 \mu g Cu$$

$$-5.0 \times 10^{5} \,\mu g \, Cu = (5.0 \times 10^{5})(10^{-6})g \, Cu$$

$$-5.0 \times 10^{-1}$$
g Cu

$$(5.0 \times 10^{-1} \text{g Cu}) \times \left(\frac{224.53 \text{ g CuCl}_2 \cdot 5\text{H}_2\text{O} / \text{mol}}{63.546 \text{ g Cu} / \text{mol}}\right) = 1.76_7 \text{g CuCl}_2 \cdot 5\text{H}_2\text{O}$$

- How many milliliters of CuCl₂·5H₂O are needed to make 500 mL of a solution that is 1 000.0 ppm in Cu?
- moles of CuCl₂·5H₂O solution?

$$(M_{conc})(V_{conc}) = (M_{dil})(V_{dil})$$

(10 000 ppm)(V_{conc}) = (1 000 ppm)(500 mL)
 V_{conc} = (1 000 ppm)(500 mL) / (10 000 ppm)

 $V_{\rm conc} = 50 \, \rm mL$

Figure 1-4

500-mL mark

Place 50 mL of 10 000 ppm CuCl₂ stock solution in stuther 500 mL mark! Uploaded By: Mariam Qadah

 How many milliliters of concentrated HCl are needed to make 500 mL of a solution that is 0.250 M in HCl?

$$(M_{conc})(V_{conc}) = (M_{dil})(V_{dil})$$

 Need to know molarity of concentrated HCI.

Figure 1-4

Concentrated HCl is 37.2% (w/w) HCl and has a density of 1.188 g/cm³

 How many milliliters of concentrated HCl are needed to make 500 mL of a solution that is 0.250 M in HCl?

$$M_{conc. HCI} = ?$$

$$(M_{conc})(V_{conc}) = (M_{dil})(V_{dil})$$

Figure 1-4

Molarity of the Conc. HCI Solution

c =
$$37.2\% = 37.2$$
 gHCl / 100 g_{soln} MM = 36.46 g/mol $\rho = 1.188$ g/cm³

desired units

$$\frac{37.2 \text{ g HCl}}{100 \text{ g}_{\text{soln}}}$$

$$\frac{37.2\,\mathrm{g\,HCl}}{100\,\mathrm{g_{soln}}} \;\; \mathsf{X} \; \frac{1\,\mathrm{mol\,HCl}}{36.46\,\mathrm{g\,HCl}} \; \mathsf{X} \; \frac{1.188\,\mathrm{g_{soln}}}{1.000\,\mathrm{cm_{soln}^3}} \;\; \mathsf{X} \; \frac{1000\,\mathrm{cm_{soln}^3}}{1\,\mathrm{L}}$$

$$\frac{1.188\,\mathrm{g_{soln}}}{1.000\,\mathrm{cm_{soln}^3}}$$

$$x \frac{1000 \, \text{cm}_{\text{soln}}^3}{1 \, \text{L}}$$

$$= 12.1 \text{ mol/L}$$

 How many milliliters of concentrated HCl are needed to make 500 mL of a solution that is 0.250 M in HCl?

$$M_{conc. HCI} = 12.1 M$$

$$(M_{conc})(V_{conc}) = (M_{dil})(V_{dil})$$

 $(12.1M)(V_{conc}) = (0.250 M)(500 mL)$
 $V_{conc} = (0.250 M)(500 mL / (12.1 M))$
 $V_{conc} = 10.3_3 mL$

Figure 1-4

Stoichiometry

- Use stoichiometry relationships to calculate required masses or volumes of reagents for chemical reactions.
- From the mass of product of a reaction, you should be able to compute how much reactant was consumed.

Stoichiometry

Iron from a dietary supplement tablet can be measured gravimetrically by dissolving the tablet and then converting the dissolved iron into solid Fe₂O₃. The mass of Fe₂O₃ tells us the mass of iron in the original tablet.

Here are the steps in the procedure:

- Step 1 Tablets containing iron(II) fumarate (Fe²⁺C₄H₂O₄²⁻) and inert binder are mixed with 150 mL of 0.100 M HCl to dissolve the Fe²⁺. The mixture is filtered to remove insoluble binder.
- Step 2 Iron(II) in the clear liquid is oxidized to iron(III) with excess hydrogen peroxide:

$$2\text{Fe}^{2+}$$
 + H_2O_2 + 2H^+ \rightarrow 2Fe^{3+} + $2\text{H}_2\text{O}$ (1-7)
Iron(II) Hydrogen peroxide Iron(III)
(ferrous ion) FM 34.01 (ferric ion)

Step 3 Ammonium hydroxide is added to precipitate hydrous iron(III) oxide, which is a gel. The gel is filtered and heated in a furnace to convert it to pure solid Fe₂O₃.

$$Fe^{3+} + 3OH^{-} + (x - 1)H_2O \longrightarrow FeOOH \cdot xH_2O(s) \xrightarrow{900^{\circ}C} Fe_2O_3(s)$$

Hydroxide

Hydroxide

Hydroxide

FM 159.69

Stoichiometry

EXAMPLE How Many Tablets Should We Analyze?

In a gravimetric analysis, we need enough product to weigh accurately. Each tablet provides ~15 mg of iron. How many tablets should we analyze to provide 0.25 g of Fe₂O₃ product?

Solution We can answer the question if we know how many grams of iron are in 0.25 g of Fe₂O₃. The formula mass of Fe₂O₃ is 159.69 g/mol, so 0.25 g is equal to

$$\text{mol Fe}_2\text{O}_3 = \frac{0.25 \text{ g}}{159.69 \text{ g/mol}} = 1.6 \times 10^{-3} \text{ mol}$$

Each mol of Fe₂O₃ has 2 mol of Fe, so 0.25 g of Fe₂O₃ contains

$$1.6 \times 10^{-3} \text{ mol Fe}_2 \Theta_3 \times \frac{2 \text{ mol Fe}}{1 \text{ mol Fe}_2 \Theta_3} = 3.2 \times 10^{-3} \text{ mol Fe}$$

The mass of Fe is

$$3.2 \times 10^{-3} \text{ mol-Fe} \times \frac{55.845 \text{ g Fe}}{\text{mol-Fe}} = 0.18 \text{ g Fe}$$

If each tablet contains 15 mg Fe, the number of tablets required is

Number of tablets =
$$\frac{0.18 \text{ g-Fe}}{0.015 \text{ g-Fe/tablet}} = 12 \text{ tablets}$$

- The limiting reagent in a chemical reaction is the one that is consumed first.
- Once the limiting reagent is gone, the reaction ceases.

Example: For the reaction: A + 2B → P

0.751 moles of A are mixed with 1.43 moles of B.

 What is the limiting reagent and how much excess reagent remains unreacted?

Solution:

$$A + 2B \rightarrow P$$
I. 0.751 1.43 0
F. ?

If A is the L.R., how much B is required to completely consume A?

$$0.751 \operatorname{mol} A \times \left(\frac{2 \operatorname{mol} B}{1 \operatorname{mol} A}\right) = 1.502 \operatorname{mol} B \operatorname{required}$$

However, we only have 1.43 mol B, so B must be the L.R.

Solution:

$$A + 2B \rightarrow P$$
 much is required to completely consume A? Initial $0.751 \ 1.43 \ 0$ A?

If B is the L.R., how **A?**

$$0.1.43 \text{ mol B} \times \left(\frac{1 \text{ mol A}}{2 \text{ mol B}}\right) = \textbf{0.715} \text{ mol A} \text{ react with B}.$$

So, 0.751 mol A - 0.715 mol A = 0.036 mol A remain after the reaction is complete. All of B is consumed.

EXAMPLE Limiting Reagent

Reaction 1-9 requires one mole of oxalate for each mole of calcium.

$$Ca^{2+} + C_2O_4^{2-} \rightarrow Ca(C_2O_4) \cdot H_2O(s)$$
 (1-9)
Oxalate Calcium oxalate

If you mix 1.00 g of CaCl₂ (FM 110.98) with 1.15 g of Na₂C₂O₄ (FM 134.00) in water, which is the limiting reagent? What fraction of the nonlimiting reagent is left over?

Solution The available moles of each reagent are

$$\frac{1.00 \text{ g CaCl}_2}{110.98 \text{ g/mol}} = 9.01 \text{ mmol Ca}^{2+} \qquad \frac{1.15 \text{ g Na}_2\text{C}_2\text{O}_4}{134.00 \text{ g/mol}} = 8.58 \text{ mmol C}_2\text{O}_4^{2-}$$

The reaction requires 1 mol Ca^{2+} for 1 mol $C_2O_4^{2-}$, so oxalate will be used up first. The Ca^{2+} remaining is 9.01-8.58=0.43 mmol. The fraction of unreacted Ca^{2+} is (0.43 mmol/9.01 mmol)=4.8%

TEST YOURSELF The reaction $5H_2C_2O_4 + 2MnO_4^- + 6H^+ \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$ requires 5 mol $H_2C_2O_4$ for 2 mol MnO_4^- . If you mix 1.15 g $Na_2C_2O_4$ (FM 134.00) with 0.60 g KMnO₄ (FM 158.03) and excess aqueous acid, which reactant is limiting? How STUDENTIS COB. isoproduced? Uploaded By: Mariam Qadah